Supplemental Material

Three-way clustering of multi-tissue multi-individual gene expression data using semi-nonnegative tensor decomposition

Miaoyan Wang ${ }^{1}$, Jonathan Fischer ${ }^{2}$, and Yun S. Song ${ }^{1,2,3}$
${ }^{1}$ Computer Science Division, University of California, Berkeley, CA 94720, USA
${ }^{2}$ Department of Statistics, University of California, Berkeley, CA 94720, USA
${ }^{3}$ Chan Zuckerberg Biohub, San Francisco, CA 94158, USA

1 Supplemental notes

1.1 Proofs

Proof of Property 1. Let $\mathcal{Y} \in \mathbb{R}^{n_{G} \times n_{I} \times n_{T}}$ be the observed tensor. As described in the main manuscript, we aim to solve the following rank-1 optimization,

$$
\begin{align*}
& \underset{\lambda, \boldsymbol{G}, \boldsymbol{I}, \boldsymbol{T}}{\operatorname{minimize}}\|\mathcal{Y}-\lambda \boldsymbol{G} \otimes \boldsymbol{I} \otimes \boldsymbol{T}\|_{F}^{2}, \tag{1}\\
& \text { subject to }\|\boldsymbol{G}\|_{2}=\|\boldsymbol{I}\|_{2}=\|\boldsymbol{T}\|_{2}=1, \quad \text { and } \quad \boldsymbol{T} \geq 0
\end{align*}
$$

The objective function can be re-written as

$$
\begin{equation*}
\|\mathcal{Y}-\lambda \boldsymbol{G} \otimes \boldsymbol{I} \otimes \boldsymbol{T}\|_{F}^{2}=\|\mathcal{Y}\|_{F}^{2}-2 \lambda \mathcal{Y}(\boldsymbol{G}, \boldsymbol{I}, \boldsymbol{T})+\lambda^{2} . \tag{2}
\end{equation*}
$$

Note that partial derivative of (2) with respect to λ vanishes at the optimizer $(\widehat{\lambda}, \widehat{\mathbf{G}}, \widehat{\mathbf{I}}, \widehat{\mathbf{T}})$. Hence we obtain that

$$
\begin{equation*}
\widehat{\lambda}=\mathcal{Y}(\widehat{\mathbf{G}}, \widehat{\mathbf{I}}, \widehat{\mathbf{T}}) \tag{3}
\end{equation*}
$$

Plugging (3) back to the objective function, we find that the optimization (1) is equivalent to

$$
\begin{aligned}
& \underset{\boldsymbol{G}, \boldsymbol{I}, \boldsymbol{T}}{\operatorname{maximize}} \mathcal{Y}(\boldsymbol{G}, \boldsymbol{I}, \boldsymbol{T}) \\
& \text { subject to }\|\boldsymbol{G}\|_{2}=\|\boldsymbol{I}\|_{2}=\|\boldsymbol{T}\|_{2}=1, \quad \text { and } \quad \boldsymbol{T} \geq 0 .
\end{aligned}
$$

The above optimization is separable into each of its factors $\boldsymbol{G}, \boldsymbol{I}, \boldsymbol{T}$, so we can optimize one factor at a time while fixing other factors. Specifically,
$\widehat{\mathbf{G}}=\underset{G \in \mathbb{R} G:\|\boldsymbol{G}\|_{2}=1}{\arg \max } \mathcal{Y}(\boldsymbol{G}, \widehat{\mathbf{I}}, \widehat{\mathbf{T}}), \quad \widehat{\mathbf{I}}=\underset{I \in \mathbb{R}^{I}:\|I\|_{2}=1}{\arg \max } \mathcal{Y}(\widehat{\mathbf{G}}, \boldsymbol{I}, \widehat{\mathbf{T}}), \quad \widehat{\mathbf{T}}=\underset{T \in \mathbb{R}^{n} T:\| \| \|_{2}=1, \boldsymbol{T} \geq 0}{\arg \max } \mathcal{Y}(\widehat{\mathbf{G}}, \widehat{\mathbf{I}}, \boldsymbol{T})$.

Now consider the first sub-optimization $\widehat{\mathbf{G}}=\max _{\boldsymbol{G} \in \mathbb{R} G:\|\boldsymbol{G}\|_{2}=1} \mathcal{Y}(\boldsymbol{G}, \widehat{\mathbf{I}}, \widehat{\mathbf{T}})$. By definition, $\mathcal{Y}(\boldsymbol{G}, \widehat{\mathbf{I}}, \widehat{\mathbf{T}})=$ $\langle\boldsymbol{G}, \mathcal{Y}(\cdot, \widehat{\mathbf{I}}, \widehat{\mathbf{T}})\rangle$, where $\mathcal{Y}(\cdot, \widehat{\mathbf{I}}, \widehat{\mathbf{T}})$ is a length $-n_{G}$ vector. Hence, the solution for $\widehat{\mathbf{G}}$ is

$$
\begin{equation*}
\widehat{\mathbf{G}}=\mathcal{Y}(\cdot, \widehat{\mathbf{I}}, \widehat{\mathbf{T}}) /\|\mathcal{Y}(\cdot, \widehat{\mathbf{I}}, \widehat{\mathbf{T}})\|_{2} \tag{4}
\end{equation*}
$$

Similar argument applies to the second sub-optimization,

$$
\begin{equation*}
\widehat{\mathbf{I}}=\mathcal{Y}(\cdot, \widehat{\mathbf{I}}, \widehat{\mathbf{T}}) /\|\mathcal{Y}(\cdot, \widehat{\mathbf{I}}, \widehat{\mathbf{T}})\|_{2} \tag{5}
\end{equation*}
$$

For the third sub-optimization, we note that $\mathcal{Y}(\widehat{\mathbf{G}}, \widehat{\mathbf{I}}, \cdot)$ is a length $-n_{T}$ vector. Without loss of generality, assume $\mathcal{Y}(\widehat{\mathbf{G}}, \widehat{\mathbf{I}}$.$) has at least one positive entry. Otherwise, we can flip the sign of \widehat{\mathbf{G}}$ (or $\widehat{\mathbf{I}}$) and work with $-\mathcal{Y}(\widehat{\mathbf{G}}, \widehat{\mathbf{I}}, \cdot)$. By Lemma 1 , the solution for $\widehat{\mathbf{T}}$ is

$$
\begin{equation*}
\widehat{\mathbf{T}}=\mathcal{Y}(\widehat{\mathbf{G}}, \widehat{\mathbf{I}}, \cdot)_{+} /\left\|\mathcal{Y}(\widehat{\mathbf{G}}, \widehat{\mathbf{I}}, \cdot)_{+}\right\|_{2} \tag{6}
\end{equation*}
$$

Combining (3),(4),(5) and (6) yields the desired conclusion.
Remark 1. In practice, we can combine the first two sub-optimizations into a single step of matrix SVD. Specifically,

$$
\begin{equation*}
(\widehat{\mathbf{G}}, \widehat{\mathbf{I}})=\underset{(\boldsymbol{G}, \boldsymbol{I}):\|\boldsymbol{U}\|_{2}=\|\boldsymbol{I}\|_{2}=1}{\arg \max } \mathcal{Y}(\boldsymbol{G}, \boldsymbol{I}, \widehat{\mathbf{T}})=\underset{(\boldsymbol{G}, \boldsymbol{I}):\|\boldsymbol{G}\|_{2}=\|\boldsymbol{I}\|_{2}=1}{\arg \max } \boldsymbol{G} \boldsymbol{M} \boldsymbol{I}^{T} \tag{7}
\end{equation*}
$$

where $\boldsymbol{M}:=\mathcal{Y}(\cdot, \cdot, \widehat{\mathbf{T}})$ is $a n_{G} \times n_{T}$ matrix. So the solution to the above optimization is simply the leading singular-vector pairs of the matrix \boldsymbol{M}. This trick is in spirit similar to that used in the two-mode HOSVD algorithm (Wang and Song 2017).
Lemma 1. Suppose $\boldsymbol{a} \in \mathbb{R}^{d}$ and \boldsymbol{a} has at least one positive entry. Let $f(\boldsymbol{x})=\langle\boldsymbol{x}, \boldsymbol{a}\rangle$, where $\boldsymbol{x} \in \mathbb{R}^{d}$. Then

$$
\underset{\boldsymbol{x} \in \mathbb{R}^{d}: \boldsymbol{x} \geq 0,\|\boldsymbol{x}\|_{2}=1}{\arg \max } f(\boldsymbol{x})=\frac{\boldsymbol{a}_{+}}{\left\|\boldsymbol{a}_{+}\right\|_{2}}
$$

Proof. Let $\boldsymbol{a}=\left(a_{1}, \ldots, a_{d}\right)^{T}$. Define $a_{+}:=\max (a, 0)$ and $a_{-}=\min (a, 0)$ for any $a \in \mathbb{R}$. We write $\boldsymbol{a}=\boldsymbol{a}_{+}+\boldsymbol{a}_{-}$, where $\boldsymbol{a}_{+}=\left(a_{1,+}, \ldots, a_{d,+}\right)$ and $\boldsymbol{a}_{0}=\left(a_{1,-}, \ldots, a_{d,-}\right)$. Note that for any $\boldsymbol{x} \geq 0$,

$$
f(\boldsymbol{x})=\left\langle\boldsymbol{x}, \boldsymbol{a}_{+}\right\rangle+\left\langle\boldsymbol{x}, \boldsymbol{a}_{-}\right\rangle .
$$

Let $\mathcal{I}=\left\{i \in[d]: a_{i}<0\right\}$. We claim that the optimizer $\boldsymbol{x}^{*}=\left(x_{1}^{*}, \ldots, x_{d}^{*}\right)^{T}$ must satisfy $x_{i}^{*}=0$ for all $i \in \mathcal{I}$, i.e., $\sum_{i \notin \mathcal{I}}\left(x_{i}^{*}\right)^{2}=\left\|\boldsymbol{x}^{*}\right\|_{2}=1$. Otherwise, we can construct another vector $\boldsymbol{y}=\left(y_{1}, \ldots, y_{d}\right)^{T}$ by

$$
y_{i}=\left\{\begin{array}{l}
\frac{x_{i}^{*}}{\sqrt{\sum_{i \notin \mathcal{I}}\left(x_{i}^{*}\right)^{2}}}, \quad \text { if } i \notin \mathcal{I} \\
0, \quad \text { if } i \in \mathcal{I}
\end{array}\right.
$$

Then it follows that $\boldsymbol{y} \geq 0,\|\boldsymbol{y}\|_{2}=1$, and

$$
f(\boldsymbol{y})=\left\langle\boldsymbol{y}, \boldsymbol{a}_{+}\right\rangle=\frac{\left\langle\boldsymbol{x}^{*}, \boldsymbol{a}_{+}\right\rangle}{\sqrt{\sum_{i \notin \mathcal{I}}\left(x_{i}^{*}\right)^{2}}}>\left\langle\boldsymbol{x}^{*}, \boldsymbol{a}_{+}\right\rangle \geq\left\langle\boldsymbol{x}^{*}, \boldsymbol{a}_{+}\right\rangle+\left\langle\boldsymbol{x}^{*}, \boldsymbol{a}_{-}\right\rangle=f\left(\boldsymbol{x}^{*}\right)
$$

which contradicts with the assumption. So the optimizer \boldsymbol{x}^{*} must satisfy

$$
\begin{equation*}
f\left(\boldsymbol{x}^{*}\right)=\sum_{i \notin \mathcal{I}} x_{i}^{*} a_{i}=\left\langle\boldsymbol{x}^{*}, \boldsymbol{a}_{+}\right\rangle \tag{8}
\end{equation*}
$$

The optimizer for (8) is thus obtained at $\boldsymbol{x}^{*}=\frac{\boldsymbol{a}_{+}}{\left\|\boldsymbol{a}_{+}\right\|_{2}}$.

1.2 Pseudcocode

```
Algorithm 1 Semi-nonnegative tensor decomposition
Input: Expression tensor \(\mathcal{Y} \in \mathbb{R}^{n_{G} \times n_{I} \times n_{T}}\), number of components \(R\).
Output: Singular values \(\left\{\widehat{\lambda}_{r}\right\}\), triplets of singular vectors \(\left\{\left(\widehat{\mathbf{G}}_{r}, \widehat{\mathbf{I}}_{r}, \widehat{\mathbf{T}}_{r}\right)\right\}\), where \(\widehat{\mathbf{T}}_{r} \geq 0\) entrywise.
    for \(r=1\) to \(R\) do
        Initialize \(\left(\widehat{\mathbf{G}}_{r}, \widehat{\mathbf{I}}_{r}, \widehat{\mathbf{T}}_{r}\right)\) by running two-mode HOSVD algorithm (Wang and Song 2017) on
    \(\mathcal{Y}\);
        while convergence is not reached do
            Update \(\left(\widehat{\mathbf{G}}_{r}, \widehat{\mathbf{I}}_{r}\right)=\arg \max _{\left(\boldsymbol{G}_{r}, \boldsymbol{I}_{r}\right):\left\|\boldsymbol{G}_{r}\right\|_{2}=\left\|\boldsymbol{I}_{r}\right\|_{2}=1} \mathcal{Y}\left(\boldsymbol{G}_{r}, \boldsymbol{I}_{r}, \widehat{\mathbf{T}}_{r}\right)\) by matrix SVD as in (7);
            Update \(\widehat{\mathbf{T}}_{r}=\mathcal{Y}\left(\widehat{\mathbf{G}}_{r}, \widehat{\mathbf{I}}_{r}, \cdot\right)_{+} /\left\|\mathcal{Y}\left(\widehat{\mathbf{G}}_{r}, \widehat{\mathbf{I}}_{r}, \cdot\right)_{+}\right\|_{2}\) as in (6);
            Update \(\widehat{\lambda}_{r}=\mathcal{Y}\left(\widehat{\mathbf{G}}_{r}, \widehat{\mathbf{I}}_{r}, \widehat{\mathbf{T}}_{r}\right)\) as in (3);
        end while
        Update \(\mathcal{Y} \leftarrow \mathcal{Y}-\widehat{\lambda}_{r} \widehat{\mathbf{G}}_{r} \otimes \widehat{\mathbf{I}}_{r} \otimes \widehat{\mathbf{T}}_{r} ;\)
    end for
```


1.3 Permutation-based procedure for selecting top genes

Let $\left[n_{G}\right]$ denote all genes in the analysis, and let $\widehat{\mathbf{G}}_{r}=\left(\widehat{G}_{r, 1}, \ldots, \widehat{G}_{r, n_{G}}\right)^{T}$ be the r-th eigengene esitimate. Genes with extreme loadings contribute more to this expression module, and we are particularly interested in the overexpressed and underexpressed gene clusters $\mathcal{G}_{\text {top }}=\{i \in$ $\left.\left[n_{G}\right]: \widehat{G}_{r, i} \geq c_{\text {top }}\right\}$ and $\mathcal{G}_{\text {bottom }}=\left\{i \in\left[n_{G}\right]: \widehat{G}_{r, i} \leq c_{\text {bottom }}\right\}$. Here $c_{\text {top }}$ and $c_{\text {bottom }}$ are thresholds which control the cluster sizes.

We propose a permutation-based procedure to determine the cut-off values (and thus gene cluster sizes) at significance level α. Specifically, we generate a set of null tensors by randomly and independently permuting genes for every individual-tissue pair (j, k), i.e.,

$$
\mathcal{Y}^{\text {null }}\left(\left[n_{G}\right], \text { individual } j, \text { tissue } k\right) \stackrel{\text { def }}{=} \mathcal{Y}\left(\operatorname{Perm}\left(\left[n_{G}\right]\right), \text { individual } j, \text { tissue } k\right),
$$

where $\operatorname{Perm}\left(\left[n_{G}\right]\right)$ represents a random permutation of the set $\left[n_{G}\right]$ for individual i and tissue k. The shuffled tensor therefore represents a null expression tensor without any genuine gene clusters across samples. We then decompose each of the null tensors $\mathcal{Y}^{\text {null }}$ and use their eigen-genes $\widehat{\boldsymbol{G}}^{\text {null }}=\left(\widehat{G}_{r, 1}^{\text {null }}, \ldots, \widehat{G}_{r, n_{G}}^{\text {null }}\right)^{T}$ to approximate the null distribution of \widehat{G}_{r}-values. The cut-off value $c_{\text {top }}$ (respectively, $c_{\text {bottom }}$) is determined using the top α-quantile (respectively, bottom α-quantile) of the empirical distribution of $\left\{\widehat{G}_{r, i}^{\text {null }}\right\}$.

1.4 Data Processing

Here we describe our data processing steps and additional results in the GTEx analysis.

Normalization and quality control. To prepare for comparisons across samples, normalization was performed using the size factors produced by the estimateSizeFactors function of DESeq2 (Love et al. 2014). After normalizing, we applied quality control measures at both the tissue and gene levels to refine our results and restrict our analyses to informative features. Specifically, we required at least 15 samples to include a given tissue and an average of at least 500 normalized reads in one or more tissues to retain a gene.

Correction for nuisance variation. There were several technical covariates whose effects we wished to remove in order to focus on the correlation between gene expression and biological and phenotypic characteristics. The choice of these factors was driven by a preliminary step in which we looked for signs of significant correlations between any one technical covariate and expression levels. After curating the list of technical covariates in this manner, we were left with the sample collection cohort (postmortem, organ donor, surgical), ischemic time (IT, in minutes), whether the patient died while on a ventilator, and the date of RNA sequencing. Evidence of effects due to some of these factors has been discussed previously elsewhere (McCall et al. 2016).

To correct for the variation due to these factors while preserving the impact of phenotypes, we ran multiple linear regression for every tissue-gene pair per the following linear model:

$$
\begin{aligned}
\log \left(Z_{i j k}+1\right)= & \beta_{1}^{i k}+\beta_{2}^{i k} 1_{\text {female }}^{j}+\beta_{3}^{i k} 1_{\text {African-American }}^{j}+\beta_{4}^{i k} \text { Age }^{j}+\beta_{5}^{i k} 1_{\text {organ donor }}^{j}+\beta_{6}^{i k} 1_{\text {surgical }}^{j} \\
& +\beta_{7}^{i k} 1_{\mathrm{IT} \leq 300}^{j k}+\beta_{8}^{i k} 1_{\mathrm{IT} \in(300,900)}^{j k}+\beta_{9}^{i k} 1_{\text {ventilator }}^{j}+\beta_{10}^{i k} 1_{\text {sequencing } \leq 7 / 01 / 12}^{j k}+\varepsilon^{i j k}
\end{aligned}
$$

where $\epsilon^{i j k} \stackrel{\text { i.i.d. }}{\sim} N\left(0, \sigma_{i k}^{2}\right)$. Here $Z_{i j k}$ is the normalized read count in gene i, individual j, and tissue k. The superscripts on coefficients and covariates indicate to which attribute(s) (gene, individual, tissue) they correspond. We log-transformed the expression data because otherwise the raw counts are substantially skewed. Furthermore, our downstream tensor model assumes i.i.d. normal noise, and such assumption makes more sense on the log scale (otherwise, genes that are highly expressed will have high variance).

After fitting this set of models, we removed the estimated effects due to the aforementioned technical covariates. To obtain the log-transformed corrected expression value $Y_{i j k}$, we computed

$$
\begin{aligned}
Y_{i j k}= & \log \left(Z_{i j k}+1\right)-\hat{\beta}_{5}^{i k} 1_{\text {organ donor }}^{j}-\hat{\beta}_{6}^{i k} 1_{\text {surgical }}^{j}-\hat{\beta}_{7}^{i k} 1_{\mathrm{IT} \leq 300}^{j k}-\hat{\beta}_{8}^{i k} 1_{\mathrm{IT} \in(300,900)}^{j k}-\hat{\beta}_{9}^{i k} 1_{\text {ventilator }}^{j} \\
& -\hat{\beta}_{10}^{i k} 1_{\text {sequencing }}^{j k} \leq 7 / 01 / 12
\end{aligned}
$$

for all $i=1, \ldots, n_{G}, j=1, \ldots, n_{I}$, and $k=1, \ldots, n_{T}$, where n_{G}, n_{I}, and n_{T} denote the number of genes, individuals, and tissues, respectively.

Imputation of unobserved entries. Applying our tensor decomposition method necessitates a complete set of observations in which we have the RNA-seq gene read counts for all individuals in all considered tissues. To obtain the requisite data structure from the initial incomplete set of observations, we implemented a k-nearest neighbors imputation scheme which fills missing entries with the averaged read counts from the corresponding tissue in the ten individuals most similar in terms of age, ancestry, and gender. This method preserves the pre-imputation signal in the data and does not appear to introduce erroneous clusterings due to the non-random sample collection procedure as validated by comparing hierarchical tissue trees (Supplemental Figure S5) before and
after imputation. For tissue hierarchy, we took the mean across individuals to produce a gene-bytissue matrix and computed the distance matrix based on the tissue-tissue Spearman correlation matrix. The hierarchy tree was constructed using UPGMA (Unweighted Pair Group Method with Arithmetic Mean) algorithm (Sokal 1958).

Handling sex-specificity at the tissue and gene levels. As the GTEx cohort comprises both male and female samples, it does not make sense to compare some tissues and genes when using the full set of individuals. To remedy these concerns, we held out sex-specific tissues (e.g. testis, uterus, etc) and only considered them in smaller analyses in the appropriate gender. Further, we also removed all Y chromosome genes save those in the pseudoautosomal region, whose reads we combine with their X chromosome paralogs.

1.5 Fine structures in subtensors of similar tissues

The following six tissue groups are considered in the subtensor analysis: (i) 13 brain tissues; (ii) three artery tissues (tibial, aorta, coronary); (iii) two adipose tissues (subcutaneous, visceral) and breast - mammary tissue; (iv) three muscle tissues (heart - atrial appendage, heart - left ventricle, and muscle - skeletal); (v) three female-specific tissues (ovary, uterus, vagina); and (vi) two malespecific tissues (testis, prostate). The analyses for the tissue group (i) has been detailed in the main manuscript, and now we describe the results for the tissue groups (ii)-(vi).

Tissue-specific and ancestry/sex-related expression in cardiac and skeletal muscles. The muscle subtensor consists of gene expression profiles sampled from two heart regions of cardiac muscle (atrial appendage, left ventricle) and skeletal muscle. As seen from Table S2, the top five eigen-tissues reveal the hierarchy-based similarity among the three tissues. Eigen-tissues 2 and 3 represent the muscle and heart clades, respectively, whereas eigen-tissues 4 and 5 further partition the heart clade into each of its constituent components. The corresponding gene clusters capture the differentially expressed genes which drive the tissue partition. In particular, the 3rd gene cluster comprises 511 genes that are similarly expressed in the heart tissues but have distinctive expression patterns in the heart relative to skeletal muscle. By projecting the expression tensor through the 3 rd eigen-tissue, we identified 122 ancestry-related genes and 95 sex-related genes in this gene cluster (Supplementary Data). Comparatively, the corresponding single-tissue analyses uncover only 91 ancestry-related (86 sex-related) in the left ventricle and 107 ancestry-related (91 sex-related) genes in the atrial appendage, again displaying the increased detection power of our tensor method for genes with moderate but concordant effects across tissues. One such covariateassociated gene, TCF21, is a tumor suppressor gene involved in dilated cardiomyopathy which exhibits consistently decreased expression in African-Americans ($p=4.7 \times 10^{-12}$ in the ventricle; p $=8.1 \times 10^{-17}$ in the atrial appendage), in females ($p=1.8 \times 10^{-6}$ in the ventricle; $p=2.3 \times 10^{-12}$ in the atrial appendage), and in the elderly ($p=9.4 \times 10^{-4}$ in the ventricle; $p=2.8 \times 10^{-9}$ in the atrial appendage). Using our tensor-based joint analysis to test for individual effects, we improve the statistical significance to $p=2.9 \times 10^{-20}$ for ancestry effect, 3.3×10^{-13} for gender effect, and 1.3×10^{-9} for age effect, respectively.

Gender-driven distinction between breast and two adipose tissues. In the adipose subtensor, we detected several modules representing highly expressed genes in breast tissue and fe-
males. For example, the eigen-tissue in module 2 (Table S3) loads on breast tissue only and 40% of the individual-level variation is attributable to sex. Such a pattern highlights the gender-driven distinction between breast tissue and the other two adipose (subcutaneous and visceral) tissues. More importantly, the top five genes in this module (SCGB2A2, KRT17, VTCN1, PIP, MUCL1) are breast cancer biomarkers. For example, the increased expression of SCGB2A2 is thought to be linked with low-grade, steroid receptor-positive tumors in postmenopausal patients, and as a biomarker, SCGB2A2 currently has the highest diagnostic accuracy for the screening of metastatic breast cancer (Barh 2014; Lacroix 2006). KRT17 is known to be up-regulated in triple-negative breast tumors and is a marker of poor prognosis for patients with advanced stage ER(-)/HER2(-) breast cancer (Merkin et al. 2017). Meanwhile, PIP encodes a protein which promotes the growth of breast cancer cells (Naderi and Vanneste 2014). Each of these five genes has a significant sex effect in the breast tissue (p ranging from 9.8×10^{-8} to 1.1×10^{-18}), but not in the other two adipose tissues (p ranging from 0.003 to 0.62). In addition to the risk genes themselves, genes known to be co-expressed with them also tend to be included in this module. Indeed, the secretoglobins SCGB1D2 and SCGB2A1, known to be reliably co-expressed with SCGB2A2 (Lacroix 2006), were also highly ranked (13rd and 51st, respectively) in the gene cluster.

Tissue-specific and age-related expression in three artery types. In the artery subtensor, the most distinct tissue is the tibial artery, with the 2nd eigen-tissue clearly separating it from the other two arteries (coronary and aorta). The corresponding eigen-gene peaks in the HOXA and HOXC regions (Supplemental Figure S4b), indicating the overexpression of HOX genes in the tibial artery relative to the coronary artery and aorta. Of note is the famous lncRNA HOTAIR, the first RNA gene found to regulate distantly located genes throughout the genome. HOTAIR gene is located inside the $H O X C$ locus and plays a key role in the initiation and progression of different types of cancer. In addition, this tibial-specific expression module exhibits significant agerelatedness; in particular, 14.9% of the individual-level variation is attributable to age. A further investigation reveals that this aging signal is mostly driven by the group of genes at the negative end of the eigen-gene (Table S4). Among the 517 genes in the cluster, we detected 207 age-related genes (with significance threshold $\alpha=10^{-3} / 517 \approx 1.9 \times 10^{-6}$ via Bonferroni correction), 206 of which are over-expressed with age (Supplementary Data). The top age-related gene is ARHGEF28, encoding a member of the Rho guanine nucleotide exchange factor family. The encoded protein may be involved in amyotrophic lateral sclerosis, a neurodegenerative disorder that affects the movement of arms, legs, and body (Droppelmann et al. 2013).

Expression patterns in reproductive tissues The subtensor analyses of gender-specific reproductive tissues (ovary, uterus, and vagina for female; prostate and testis for male) also reveal interesting gene expression patterns. We observed a clear uterus \times age specificity in the female subtensor (Supplemental Table S5) and a prostate \times age/ancestry specificity in the male subtensor (Supplemental Table S6).

In the female tensor, component 4 is an age-related expression module which also distinguishes the uterus from the other two tissues (ovary, vagina). The top genes in this gene cluster are CHRDL2, DPP6, TEX15 and ZCCHC12. These genes tend to be related to reproductive functions such as DNA double-strand break repair (TEX15), or be involved in X-linked disease (ZCCHC12). DPP6 expression changes are associated with age and this gene is preferably expressed in the uterus relative to the other two tissues (paired t-test $p<2 \times 10^{-16}$). In particular, DPP6 expression decreases significantly with age in the uterus only (p-value for age $=1.3 \times 10^{-16}$ compared to p
$=0.05$ in ovary and $p=0.51$ in vagina). A recent study (Chettier et al. 2014) reveals that DPP6 harbors a copy number variant locus, rs758316, that is significantly associated with endometriosis. While the function of DPP6 in uterus remains unclear, its unique aging pattern makes it a good candidate for further investigation.

In the male subtensor, we found that the prostate and testis are characterized by two distinct clusters of genes (components 2 and 3 in Supplemental Table S6). Genes overexpressed in the prostate are mostly related to prostate glandular acinus development (e.g. HOXB13, FOXA1) and fluid transport (e.g. SLC14A1, UPK3A). Among the top five genes, KLK3, ACPP, and MSMB encode the three predominant proteins secreted by a normal human prostate gland. Their protein level in serum is commonly used for monitoring prostate disorders such as prostatitis (KLK3 and $M S M B$) or prostate cancer ($A C P P, M S M B, H O X B 13)$. Genes overexpressed in testis, on the other hand, are mostly enriched for sperm motility ($p=1.4 \times 10^{-17}$), meiosis I ($p=7.9 \times 10^{-17}$), and male meiosis $\left(p=5.1 \times 10^{-7}\right)$. In addition, we found that the prostate-specific modules tend to be ancestry- or age-related (components $2,4,7,8$ and 9 in Table S6). The top ancestry-related gene in module 2 is SPINK2, with a higher average expression in black than white Americans $\left(p=9.0 \times 10^{-4}\right)$. SPINK2 encodes a serine protease inhibitor located in the spermatozoa, and recent evidence shows that SPINK2 deficiency leads to fertility changes by causing sperm defects in individuals with one defective copy and azoospermia in those with two defective copies (Kherraf et al. 2017).

Common expression features in subtensors Analysis of subtensors allows us to focus on one tissue group at a time, revealing a finer-scale characterization of transcriptional variation in different parts of the body. In addition to tissue comparisons within each subtensor, it is interesting to examine how expression modules identified in different tissue groups compare, and several intriguing features emerge from this meta-analysis.

We found that genes belonging to the same family tend to be clustered closely together. For example, the genes ZIC1 and ZIC4 always co-occur in gene clusters (Supplemental Figure S6, component 3 in Supplemental Table S3, component 6 in Supplemental Table S1). KRT13 is often paired with KRT4 (somponent 10 in Supplemental Table S2 and Supplemental Table S4), and HBA1/HBA2 have similar tissue loadings (Supplemental Figure S7). As we reduce the dimension of expression data from thousands genes to a handful of eigen-genes, these co-expressed genes provide a validation of our gene groups. Many gender-related expression modules also prioritize XIST (e.g. component 5 in Supplemental Table S4 and components 5, 6, 8 in Supplemental Table S3). In fact, XIST is one of the most famous lncRNA genes essential for X-inactivation process and female survival (da Rocha and Heard 2017). The wide presence of XIST in our analysis reinforces its crucial role in gender-differentiated expression in tissues.

Several subtensors yield similar eigen-genes, suggesting the presence of common expression patterns shared by seemingly unrelated tissues. In particular, we identified three eigen-genes, one in each of the female and male subtensors and another in the artery subtensor (Supplemental Figure S8) that exhibit clearly similar gene loadings. The three eigen-genes are mainly loaded in four genomic loci encoding immunoglobulin: the $I G K, I G J, I G H$, and $I G L$ regions on chromosomes 2, 4, 14, and 22, respectively. Among other top genes, we identified FCRL5, CH3L1, and CHIT1, all of which are related to immune response. The repeated appearance of this expression module in different tissues and individuals highlights the similar roles of distinct tissues in disparate bodily systems. Despite its presence in each of these tissue groups, this module exhibits differential expression between
tissues within each tissue group. Namely, these immune genes are more expressed in the vagina, prostate, and aorta compared to the other reproductive tissues (ovary/uterus, testis) (Supplemental Figure S8) and artery types (tibial/coronary). Interestingly, this module exhibits a strong ancestry effect in the prostate, with higher average expression in black than white men (explaining 14% variation in the corresponding eigen-individual, $p=3.1 \times 10^{-9}$; see component 7 in Supplemental Table S6). Such non-uniform expression reflects the complex relationship between related tissues and individuals which our method is well suited to uncover.

2 Supplemental figures and tables

Figure S1: Sum of squared residuals in the brain tensor. The sum of squared residual (SSR) was calculated as $\left\|\mathcal{Y}-\sum_{r=1}^{R} \widehat{\lambda}_{r} \widehat{\mathbf{G}}_{r} \otimes \widehat{\mathbf{I}}_{r} \otimes \widehat{\mathbf{T}}_{r}\right\|_{F}^{2}$, which is a function of the rank R.

Figure S2: Barplot for Tissue factors in the brain tensor using HOSVD. We applied $H O S V D$ to the brain tensor and depicted the top six tissue components. Each panel is the barplot of the sorted tissue loading vector, where tissues are colored based on functional similarity.

Figure S3: Barplot for Tissue factors in the brain tensor using SDA. We applied $S D A$ to the brain tensor and depicted the top six tissue components. Each panel is the barplot of the sorted tissue loading vector, where tissues are colored based on functional similarity.

Figure S4: HOX gene expressions and associated tissue loadings in different subtensors. (a) Over-expression of $H O X$ genes in spinal cord (cervical C-1) compared to other brain tissues. This expression pattern was identified from the 3rd tensor component of the brain subtensor. (b) Over-expression of $H O X$ genes in tibial tissues compared to other artery tissues. This expression pattern was identified from the 2 nd tensor component of the artery subtensor. In each panel, the left figure plots gene loadings against gene positions on the chromosomes. Genes with extreme loadings (e.g., HOXD genes, $H O X B$ genes, $H O X A$ genes, etc) are labeled on the plot. The right figure shows the barplot of tissue loadings in the corresponding eigen-tissue.

Figure S5: Hierarchical clustering of GTEx tissues. To build the hierarchical tree, we took computed the mean gene expressions across individuals in a given tissue to produce a gene-by-tissue matrix. We then constructed the distance matrix based on the tissue-tissue Spearman correlation matrix. The hierarchical tree was then assembled using UPGMA (Unweighted Pair Group Method with Arithmetic Mean) Sokal (1958) based on tissue-tissue correlation matrix. Tissues are colored based on functional similarity.

Figure S6: Over-expression of $H O X$ and $Z I C$ genes in subcutaneous adipose compared to visceral adipose and breast. This expression pattern was identified from the 3rd tensor component of the adipose subtensor. The left panel shows the gene loadings in the eigen-gene against the gene positions on the chromosomes. Genes with extreme loadings (e.g., ZIC1, ZIC4, HOTAIR, HOXC10) were labeled on the plot. The right figure shows the barplot of sorted tissue loadings in the corresponding eigen-tissue.

Figure S7: Over-expression of $\boldsymbol{H B}$ genes in whole blood compared to spleen and lymphocytes. This expression pattern was identified from the 4th tensor component of the blood subtensor. The left panel shows the gene loadings in the eigen-gene against the gene positions on the chromosomes. Genes with extreme loadings (e.g., $H B B, H B G 2, H B A, H B M$) were labeled on the plot. The right figure shows the barplot of sorted tissue loadings in the corresponding eigen-tissue.

Figure S8: Immune gene expressions and associated tissue loadings in different subtensors. (a) Over-expression of immune genes in vagina compared to other female tissues. This expression pattern was identified from the 8th tensor component of the female subtensor. (b) Overexpression of immune genes in prostate compared to other male tissues. This expression pattern was identified from the 7th tensor component of the male subtensor. (c) Over-expression of immune genes in aorta compared to the other two artery tissues. This expression pattern was identified from the 8th tensor component of the artery subtensor. In each panel, the left figure plots gene loadings against gene positions on the chromosomes. Genes with extreme loadings (e.g., IGK genes, IGH genes, IGL genes, etc) are labeled on the plot. The right figure shows the barplot of tissue loadings in the corresponding eigen-tissue.

Table S1: Top 10 expression modules in the GTEx tensor. The top 10 expression modules (ranked by their singular values) were identified from the MultiCluster method. For each component, we plot the barplots for the sorted tissue loadings, gene loadings, and individual loadings, respectively. In each eigen-gene, we list the top 5 genes as well as the top enriched GO annotations in the identified gene clusters. In each eigen-tissue, we report the leading tissue with the largest tissue loading. In each eigen-individual, we report the proportion of the variance of the individual loadings explained by age, sex, or ancestry, respectively. A value in bold indicates $p<10^{-3}$.

Table S4: Top 10 expression modules in the artery subtensor. The artery subtensor contains tibial (in black), coronary (in blue), and aorta (in red). The top 10 expression modules (ranked by their singular values) were identified from the MultiCluster method. For each component, we plot the barplots for the sorted tissue loadings, gene loadings, and individual loadings, respectively. In each eigen-gene, we list the top 5 genes as well as the top enriched GO annotations in the identified gene clusters. In each eigen-tissue, we report the leading tissue with the largest tissue loading. In each eigen-individual, we report the proportion of the variance of the individual loadings explained by age, sex, or ancestry, respectively. A value in bold indicates $p<10^{-3}$.

Table S6: Top 10 expression modules in the male subtensor. The femele subtensor contains prostate (in black) and testis (in blue). The top 10 expression modules (ranked by their singular values) were identified from the MultiCluster method. For each component, we plot the barplots for the sorted tissue loadings, gene loadings, and individual loadings, respectively. In each eigengene, we list the top 5 genes as well as the top enriched GO annotations in the identified gene clusters. In each eigen-tissue, we report the leading tissue with the largest tissue loading. In each eigen-individual, we report the proportion of the variance of the individual loadings explained by age, sex, or ancestry, respectively. A value in bold indicates $p<10^{-3}$.

References

Barh, D., 2014. Omics Approaches in Breast Cancer: Towards Next-Generation Diagnosis, Prognosis and Therapy. Springer.

Chettier, R., Ward, K., and Albertsen, H. M., 2014. Endometriosis is associated with rare copy number variants. PLoS ONE, 9(8): e103968.
da Rocha, S. T. and Heard, E., 2017. Novel players in X inactivation: insights into xist-mediated gene silencing and chromosome conformation. Nature Structural \S Molecular Biology, 24(3):197204.

Droppelmann, C. A., Wang, J., Campos-Melo, D., Keller, B., Volkening, K., Hegele, R. A., and Strong, M. J., 2013. Detection of a novel frameshift mutation and regions with homozygosis within ARHGEF28 gene in familial amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 14(5-6):444-451.

Kherraf, Z.-E., Christou-Kent, M., Karaouzene, T., Amiri-Yekta, A., Martinez, G., Vargas, A. S., Lambert, E., Borel, C., Dorphin, B., Aknin-Seifer, I., et al., 2017. SPINK2 deficiency causes infertility by inducing sperm defects in heterozygotes and azoospermia in homozygotes. EMBO Molecular Medicine, :e201607461.

Lacroix, M., 2006. Significance, detection and markers of disseminated breast cancer cells. Endocrine-Related Cancer, 13(4):1033-1067.

Love, M., Huber, W., and Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15(550).

McCall, M., Illei, P., and Halushka, M., 2016. Complex sources of variation in tissue expression data: Analysis of the GTEx lung transcriptome. Am J Hum Genet., 99(3):624-635.

Merkin, R. D., Vanner, E. A., Romeiser, J. L., Shroyer, A. L. W., Escobar-Hoyos, L. F., Li, J., Powers, R. S., Burke, S., and Shroyer, K. R., 2017. Keratin 17 is overexpressed and predicts poor survival in estrogen receptor-negative/human epidermal growth factor receptor-2-negative breast cancer. Human Pathology, 62:23-32.

Naderi, A. and Vanneste, M., 2014. Prolactin-induced protein is required for cell cycle progression in breast cancer. Neoplasia, 16(4):329-342.

Sokal, R. R., 1958. A statistical method for evaluating systematic relationship. University of Kansas science bulletin, 28:1409-1438.

Wang, M. and Song, Y. S., 2017. Tensor Decompositions via Two-Mode Higher-Order SVD (HOSVD). In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, volume 54 of Proceedings of Machine Learning Research, pages 614-622.

