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Motivation - expanding feature set

Wet cloth - [Fei et al. 18] Viscous fluid - [Larionov et al. 17]

Snow - [Stomakhin et al. 13] Melting - [Stomakhin et al. 14]



Motivation - accelerating performance

OpenVDB - [Museth et al. 13]
PhysGrid - [Milne et al. 16]

Cloth - [Tang et al. 16] Fluid - [Wu et al. 18]



Feature breadth vs. optimal performance



Sparse paged grid

Material point method Adaptivity



SCA 14 SIGGRAPH 17 SIGGRAPH 18

SIGGRAPH Asia 17 SIGGRAPH Asia 18 
(under review)

Eurographics 16



SPGrid / Adaptivity SPGrid / MPM

SPGrid / MPM / Adaptivity SPGrid / MPM / GPU



Sparse paged grid (SPGrid)

135M voxels 
23GB

Setaluri et al. 14



Sparsity

Resolution:

Liu et al. 16
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Virtual memory
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Material point method (MPM)

Stomakhin et al. 13 Gao et al. 18



Discretization schemes

Grid



Discretization schemes

Grid Particle



Discretization schemes

Grid Particle Hybrid
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Particle communication

SPH MPM



Particle communication
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Power Diagrams and Sparse Paged Grids for High 
Resolution Adaptive Liquids

Fig. 1. (Le�) Water filling a river bed surrounded by a canyon, with e�ective resolution 5122 ⇥ 1024. Three refinement levels are used, based on proximity to the
terrain. (Right) Sources inject water into a container and collide to form a thin sheet, with e�ective resolution 5123. Adaptivity pa�ern shown on background.

We present an e�cient and scalable octree-inspired �uid simulation frame-
work with the �exibility to leverage adaptivity in any part of the computa-
tional domain, even when resolution transitions reach the free surface. Our
methodology ensures symmetry, de�niteness and second order accuracy of
the discrete Poisson operator, and eliminates numerical and visual artifacts
of prior octree schemes. This is achieved by adapting the operators acting
on the octree’s simulation variables to re�ect the structure and connectiv-
ity of a power diagram, which recovers primal-dual mesh orthogonality
and eliminates problematic T-junction con�gurations. We show how such
operators can be e�ciently implemented using a pyramid of sparsely popu-
lated uniform grids, enhancing the regularity of operations and facilitating
parallelization. A novel scheme is proposed for encoding the topology of
the power diagram in the neighborhood of each octree cell, allowing us to
locally reconstruct it on the �y via a lookup table, rather than resorting
to costly explicit meshing. The pressure Poisson equation is solved via a
highly e�cient, matrix-free multigrid preconditioner for Conjugate Gradi-
ent, adapted to the power diagram discretization. We use another sparsely

† M. Aanjaneya and M. Gao are joint �rst authors.
⇤ M. Aanjaneya was with the University of Wisconsin - Madison during this work.
This work was supported in part by National Science Foundation grants IIS-1253598,
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populated uniform grid for high resolution interface tracking with a narrow
band level set representation. Using the recently introduced SPGrid data
structure, sparse uniform grids in both the power diagram discretization
and our narrow band level set can be compactly stored and e�ciently up-
dated via streaming operations. Additionally, we present enhancements to
adaptive level set advection, velocity extrapolation, and the fast marching
method for redistancing. Our overall framework gracefully accommodates
the task of dynamically adapting the octree topology during simulation. We
demonstrate end-to-end simulations of complex adaptive �ows in irregularly
shaped domains, with tens of millions of degrees of freedom.

CCS Concepts: • Computing methodologies → Physical simulation;

Additional Key Words and Phrases: Power diagrams, Octrees, Adaptivity
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1 INTRODUCTION
Liquids exhibit complex and detailed motion across a vast range
of scales, from tiny ripples to huge waves; this fact motivates the
desire for liquid simulation tools that can handle ever increasing
levels of resolution. While a key avenue towards this goal is the
development of more e�cient numerical methods on regular uni-
form grids that conserve mass with large time steps [Chentanez and
Müller 2012; Lentine et al. 2011, 2012] and allow for fast pressure
projection [Ando et al. 2015; Dick et al. 2016; Lentine et al. 2010; Liu
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Previous work
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Previous work
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Spurious motions



Unstructured mesh

Ando et al. 13



Our solution: power diagram
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Power diagram Voronoi diagram

Comparison

Original topology



Opportunities

• Power diagram ensures orthogonality 

• Can still use octree for storage 

• Accelerate via SPGrid



Further technicalities (see thesis)

• Minor topological complications (3D) 

• Velocity interpolation 

• Retrieval of Poisson equation stencils
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An Adaptive Generalized Interpolation Material Point Method for
Simulating Elastoplastic Materials

MING GAO, University of Wisconsin Madison
ANDRE PRADHANA TAMPUBOLON, University of Pennsylvania
CHENFANFU JIANG, University of Pennsylvania
EFTYCHIOS SIFAKIS, University of Wisconsin Madison

Fig. 1. Le�: An elastoplastic model is dropped into a plane with a thin perforation pa�ern; our adaptive discretization allows the material to drip through.
Right: Adaptive sand simulation with a visualization of the underlying grid refinement. We color refined particles with blue and coarse ones with green.

We present an adaptive Generalized Interpolation Material Point (GIMP)
method for simulating elastoplastic materials. Our approach allows adaptive
re�ning and coarsening of di�erent regions of the material, leading to an
e�cient MPM solver that concentrates most of the computation resources
in speci�c regions of interest. We propose a C1 continuous adaptive basis
function that satis�es the partition of unity property and remains non-
negative throughout the computational domain. We develop a practical
strategy for particle-grid transfers that leverages the recently introduced
SPGrid data structure for storing sparse multi-layered grids. We demonstrate
the robustness and e�ciency of our method on the simulation of various
elastic and plastic materials. We also compare key kernel components to
uniform grid MPM solvers to highlight performance bene�ts of our method.

CCS Concepts: • Computing methodologies → Physical simulation;

Additional Key Words and Phrases: Material Point Method (MPM), General-
ized Interpolation Material Point (GIMP), Adaptive grids, Elastoplasticity
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1 INTRODUCTION
The Material Point Method (MPM) has been attracting considerable
interest since it was introduced to the �eld of computer graphics
by Stomakhin et al. [2013]. Combining advantages from both La-
grangian particle representation and Eulerian grid representation,
MPM proves to be especially e�ective for animating elastoplastic ma-
terials undergoing large deformation or topology change [Jiang et al.
2016]. Despite its physical realism and geometrical convenience, a
traditional MPM solver has several disadvantages. First, it is more
computationally expensive thanmesh-based Lagrangian approaches
such as those based on Finite Element Methods (FEM) [Sifakis and
Barbic 2012]. The bottleneck of MPM is usually the costly transfer
operations between the particles and the grid. The cost of such trans-
fer operations is particularly evident when we realize that MPM has
to maintain the same grid resolution and a su�cient particle count
throughout the simulation domain. The overhead of this process
is highlighted in scenarios such as the example of drawing in a

ACM Transactions on Graphics, Vol. 36, No. 6, Article 223. Publication date: November 2017.
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MPM adaptivity
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C1 continuity

Steffen et al. 08

Weight / mass Weight gradient / force



C0 continuity

Steffen et al. 08

Weight / mass Weight gradient / force



C1 continuity in octree ?

Steffen et al. 08

C0 C1

Weight / mass Weight gradient / force



C0 from uniform to quadtree

Uniform Quadtree



Embedding T-junctions 
DOF node
Embedded node / T-junction node



Step1 - set all nodes free
Free node



Step1 - set all nodes free
Free node



Free node

Step 2 - constrain T-junctions



Free node
T-junction node

Step 2 - constrain T-junctions



Parent node

Free node
T-junction node

Step 2 - constrain T-junctions



Parent node

Free node
T-junction node

Step 2 - constrain T-junctions



Parent node

Free node
T-junction node

Step 2 - constrain T-junctions



Parent node

Free node
T-junction node

Step 2 - constrain T-junctions



Step 3 - upgrade to C1 continuity
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Step 3 - upgrade to C1 continuity
Free node



Parallelism optimization
Free node
Ghost node



Parallelism optimization
Free node
Ghost node
T-junction node



Tan 02 Ma 05 Lian 14 Lian 15 Our

C1 
continuity No Yes No No Yes

Partition of 
unity Yes Yes Yes Yes Yes

Non-
negativity Yes Yes Yes No Yes

Arbitrary 
octree Yes No Yes No Yes

Ease of 
parallelism Hard Maybe Hard Maybe Easy

H. Tan and J. A. Nairn. 2002. Hierarchical, adaptive, material point method for dynamic  energy release rate calculations. 
J. Ma, H. Lu, B. Wang, S. Roy, R. Hornung, A. Wissink, and R. Komanduri. 2005. Multiscale simulations using generalized interpolation material point 
(GIMP) method  and SAMRAI parallel processing. Comp Model Eng & Sci 8, 2 (2005), 135–152.
Y. Lian, X. Zhang, F. Zhang, and X. Cui. 2014. Tied interface grid material point method for problems with localized extreme deformation. Int J Imp 
Eng 70 (2014), 50–61. 
Y.P. Lian, P.F. Yang, X. Zhang, F. Zhang, Y. Liu, and P. Huang. 2015. A mesh-grading material point method and its parallelization for problems with 
localized extreme deformation. Comp Meth App Mech Eng 289 (2015), 291 – 315.
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Animating Fluid Sediment Mixture in Particle-Laden Flows

MING GAO, University of Wisconsin, Madison
ANDRE PRADHANA, University of Pennsylvania
XUCHEN HAN, University of California, Los Angeles
QI GUO, University of California, Los Angeles
GRANT KOT, Phosphorus
EFTYCHIOS SIFAKIS, University of Wisconsin, Madison
CHENFANFU JIANG, University of Pennsylvania

Fig. 1. Sediment transport: Our method can animate intricate two-way coupled particle-laden flows such as sediment transport in liquid.

In this paper, we present a mixed explicit and semi-implicit Material Point
Method for simulating particle-laden �ows. We develop a Multigrid Precon-
ditioned �uid solver for the Locally Averaged Navier Stokes equation. This
is discretized purely on a semi-staggered standard MPM grid. Sedimentation
is modeled with the Drucker-Prager elastoplasticity �ow rule, enhanced by
a novel particle density estimation method for converting particles between
representations of either continuum or discrete points. Fluid and sediment
are two-way coupled through a momentum exchange force that can be easily
resolved with two MPM background grids. We present various results to
demonstrate the e�cacy of our method.

CCS Concepts: • Computing methodologies → Physical simulation;

Additional Key Words and Phrases: Material Point Method (MPM), particle-
�uid interaction, multiphase, sedimentation, sediment transport
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1 INTRODUCTION
Recently, multi-phase multi-material simulations are increasingly
gaining attention from computer graphics researchers. Simulat-
ing various phases or materials in a uni�ed framework is particu-
larly favored. Existing work includes coupled Lagrangian particle
simulation with Position Based Dynamics (PBD) [Macklin et al.
2014], water-gas mixtures [Nielsen and Østerby 2013] with an Euler-
ian method, solid-�uid phase-change [Stomakhin et al. 2014] and
porous granular media [Pradhana-Tampubolon et al. 2017] with Ma-
terial Point Method (MPM), as well as interactive solids and �uids
based on the mixture model with Smoothed Particle Hydrodynamics
(SPH) [Yan et al. 2016].

Most of the existing approaches are based on continuum mixture
theory [Manninen et al. 1996]. The continuum assumption for each
material phase is essential for simulations of macroscopic porous
media (e.g., landslides and liquid blending). However, it may fail
to capture the correct behavior of particle-laden �ows where the
solid phase is on a relatively small scale. Note that particle-laden
sediment �ow is ubiquitous in natural systems. Typical examples
include sediment transport, sedimentation, volcano eruption, dune
migration by erosion with ripples, and dust storms. The signi�-
cance of understanding and simulating these phenomena is also
recognized in many engineering applications, such as granular ma-
terial �uidization [van der Hoef et al. 2006] and coastal erosion
prediction [Sun and Xiao 2016a].

ACM Transactions on Graphics, Vol. 37, No. 4, Article 1. Publication date: August 2018.
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Approach: mixture in particles vs. grid

3 phases 1 point 2 phases 2 point

Colom et al. 15
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Approach: one-way coupling vs. two-way

One way coupling Two way coupling



Approach: DEM vs. MPM

Translational interaction Rotational interaction

Krugger-Emden et al. 05



Approach: DEM vs. MPM

DEM - discrete view



Approach: DEM vs. MPM

DEM - discrete view MPM - continuum view



Challenge of MPM: handle discrete particles

Volume gain problem



Challenges

• Mixture theory 

• Sub-stepping 

• Momentum conservation
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GPU Optimization of Material Point Methods
Paper ID: 250

ANONYMOUS AUTHOR(S)

Fig. 1. How to melt your dragon.Melting an elastoplastic dragon with 4.2million particles on a 2563 grid using our GPU-optimized implicit MPM dynamics
and heat solvers on a Nvidia �adro P6000 GPU at an average 10.5 seconds per 48Hz frame.

The Material Point Method (MPM) has been shown to facilitate e�ective
simulations of physically complex and topologically challenging materials,
with a wealth of emerging applications in computational engineering and
visual computing. Borne out of the extreme importance of regularity, MPM is
given attractive parallelization opportunities on high-performance modern
multiprocessors. Unlike the conceptually simple CPU parallelization, a GPU
optimization of MPM that fully leverages computing resources presents chal-
lenges that require exploring an extensive design-space for favorable data
structures and algorithms. In this paper we introduce methods for address-
ing the computational challenges of MPM and extending the capabilities of
general simulation systems based on MPM, particularly concentrating on
GPU optimization. In addition to our open-source high-performance frame-
work, we also perform performance analyses and benchmark experiments to
compare against alternative design choices which may super�cially appear
to be reasonable, but can su�er from suboptimal performance in practice.
Our explicit and fully implicit GPU MPM solvers are further equipped with a
Moving Least Squares MPM heat solver and a novel sand constitutive model
to enable fast simulations of a wide range of materials. We demonstrate
that more than an order of magnitude performance improvement can be
achieved with our GPU solvers. Practical high-resolution examples with up
to ten million particles run in less than one minute per frame.

CCS Concepts: • Computing methodologies → Physical simulation;

Additional Key Words and Phrases: Material Point Method (MPM), GPU,
SPGrid, GVDB, Hybrid Particle/Grid
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1 INTRODUCTION
The Material Point Method (MPM) is a hybrid Lagrangian/Eulerian
computational scheme that has been shown to simulate a large vari-
ety of traditionally-challenging materials with visually rich anima-
tions in computer graphics. Recent examples ofMPM-basedmethods
developed for such materials include simulations of snow [Stom-
akhin et al. 2013], granular solids [Klár et al. 2016], multi-phase
mixtures [Gao et al. 2018; Stomakhin et al. 2014; Tampubolon et al.
2017], cloth [Jiang et al. 2017a] and many others. MPM has been
shown to be particularly e�ective for simulations involving a large
number of particles with complex interactions. However, the size
and the complexity of these simulations lead to substantial demands
on computational resources, thereby limiting the practical use cases
of MPM in computer graphics applications.
Using the parallel computation power of today’s GPUs is an at-

tractive direction for addressing computational requirements of
simulations with MPM. However, the algorithmic composition of
an MPM simulation pipeline can pose challenges in fully leveraging
compute resources in a GPU implementation. Indeed, MPM simula-
tions include multiple stages with di�erent computational pro�les,
and the choice of data structures and algorithms used for handling
some stages can have cascading e�ects on the performance of the
remaining computation. Thus, discovering how to achieve a per-
formant GPU implementation of MPM involves a software-level
design-space exploration for determining the favorable combina-
tions of data structures and algorithms for handling each stage.
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Acceleration for hybrid methods
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Target benchmarks

Particles: 9.0 M 
Grid resolution: 512^3 

Simulation: 21.88 secs/frame

Particles: 4.2 M 
Grid resolution: 256^3 

Simulation: 10.48 secs/frame
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Additional contributions

• Accelerated particle sorting 

• Avoiding explicit particle reordering 

• A new sand model for semi-implicit integration 

• A MPM-based heat solver
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