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Abstract
We introduce a novel and efficient simulation technique for generating physics-based skinning animations of
skeleton-driven characters with full support for collision handling. Although physics-based approaches may use
a volumetric (e.g. tetrahedral) flesh model, operations such as rendering, collision processing and user manip-
ulation directly involve only the surface of this mesh. Motivated by this fact we define an elastic model of the
skin surface which, while directly using only the surface degrees of freedom, exhibits a mechanical response that
captures the full volumetric flesh behavior. We achieve this unusual result by combining three fundamental con-
tributions: First, we present a material model which offers a plausible approximation to corotational elasticity at
significantly reduced cost, by computing local rotations via procedural skinning rather than deriving them from
the mesh deformation; the result is a force model which is affine on vertex positions, with coefficients dependent
on the skeletal pose (but not on the deformation). Second, we use this force model to derive a direct mapping be-
tween surface vertex positions and resulting equilibrium forces on the same boundary vertices, which is a discrete
version of the Steklov-Poincaré operator of the volumetric elastic model. This mapping is conveniently shown to
also be affine (with pose-dependent coefficients), but with a dense stiffness matrix which renders direct numerical
solution impractical. However, as a third and final step we show how a modified Newton iteration and a skinning-
inspired preconditioner can solve the boundary problem with a competitive runtime cost. We assess the efficacy of
our solution in simulations of high resolution human flesh models, with full external and self-collision processing.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling

1. Introduction

Skinning tools for articulated characters are indispensable
components of a production pipeline, and artists today have
access to a number of different techniques, whether they
stress real-time performance [KCZO08], physical realism
[MZS∗11] or interactive collision modeling [VBG∗13]. We
present a different, and somewhat unconventional physics-
based skinning alternative which can simulate large mod-
els of flesh-covered articulated characters with collision pro-
cessing, at interactive or near-interactive rates. Compared
to full-fledged finite element-based skinning techniques, our
method makes just two simplifying assumptions, which are
well tolerated in a majority of practical scenarios: First,
we initially concentrate on quasistatic flesh simulation and
forgo inertial or ballistic effects. Second, we employ a spe-
cific constitutive law which provides a highly plausible ap-
proximation to the familiar corotated elasticity model, but
sidesteps the algebraic nonlinearity of the latter and its ef-
fect on solver convergence. Beyond that, our approach fully
supports physics-based collision handling, both in cases of
self-collision as well as flesh collisions with external objects.

Our key conceptual innovation stems from a simple ob-
servation: Physics-based skinning techniques will often uti-
lize volumetric discretizations (e.g. tetrahedral/hexahedral
meshes or embedded grid-based models) to capture behav-
iors such as volume conservation, pinching and bulging.
However, even though the entirety of this volume is in-
volved in determining the mechanics of deformation, in
many practical aspects the flesh behavior is “experienced”
via its boundary surface alone, i.e. the skin surface layer. It
is exactly that layer that is used for rendering, manipulation
by the user/artist, or even collision detection and process-
ing. In light of this, it would be fortuitous if the deformable
flesh could be modeled solely as an elastic surface, while
minimizing (or eliminating, if possible) the computational
effort spent on the interior of the flesh which is not directly
rendered or manipulated. Simplified modeling approaches
could achieve this goal, albeit with significant compromises
in physical accuracy. For example, one could use soft springs
to attach an elastic cloth model on the surface of a procedu-
rally skinned flesh volume. Of course, in such a scenario the
skin layer would not be able to couple its influence back to
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Figure 1: Skinning simulation of a high-resolution human character, in a running sequence, with self-collision handling

the volume, nor could it faithfully resolve volumetric behav-
iors such as collision-induced compression and bulging. In
contrast, our approach replicates exactly what a quasistatic
volumetric simulation would have produced, even though it
only uses boundary vertices as degrees of freedom. From a
technical standpoint, our volumetrically-reactive elastic sur-
face model is a discretization of the construct known as the
Steklov-Poincaré operator in the study of boundary-value
PDE problems. This operator converts a given boundary
condition (e.g. Dirichlet) to the values of a different type
(e.g. Neumann) that would yield the same solution assuming
any source terms remain unchanged. In our case, the PDE in
question is that of 3D elasticity, and the mapping is from
Dirichlet to traction boundary conditions or, discretely, from
boundary displacements to boundary elastic forces.

At first glance, it may seem that our motivation for pur-
suing a surface-only elastic skin model has to do with re-
ducing the number of degrees of freedom. Although there is
truth in this statement, the cost-benefit analysis is more com-
plex as the governing equations of our surface model are,
numerically, more complex than the standard volumetric dis-
cretization. Our design decisions were even more influenced
by the practical impact that collisions have on the efficiency
of physics-based skinning techniques. When simulating high
resolution nonlinear flesh models it is well documented (see,
e.g. [MZS∗11]) that collision support has a profound impact
on runtime cost. Collision detection itself is typically a small
fraction of the overall cost, for high-resolution models. The
true cost stems from the collision-induced nonlinearity and
its impact on the convergence of the Newton-Raphson itera-
tion for the combined governing equations. When perform-
ing such iterations, we pay a volumetrically-scaling runtime
cost to resolve what is primarily a defect localized on the
surface (or fraction thereof). Using a surface-based elastic
response helps defray the cost of such iterations, by avoid-
ing misplaced emphasis on the interior of the flesh volume
as contact and collision patterns are iterated to convergence.

Our specific algorithmic contributions are:
• We introduce the material model of ex-rotated (extrin-

sically rotated) elasticity, which uses a procedural skin-
ning technique to approximate co-rotated elasticity with
an affine force model with pose-dependent coefficients.

• We craft an equivalent formulation of the quasistatic equi-
librium equations for a volumetric model which, concep-
tually, uses only surface degrees of freedom in its formu-
lation. We demonstrate equivalence with the volumetric
approach and compatibility with collision processing.

• We present a preconditioning technique and a modified
Newton iteration that dramatically accelerate the surface-
based elasticity formulation and circumvent the need for
dense linear algebra in its implementation. We demon-
strate the efficacy of our preconditioned treatment in sim-
ulations of high-resolution body motion with collisions.

2. Related work

Procedural skinning of a skeleton driven character was intro-
duced in the form of Linear Blend Skinning [MTLT88]. De-
spite its efficiency, this technique has well known practical
limitations which a number of authors have worked to alle-
viate [LCF00, LCF00, SRC01, MG03, WP02, KJP02]. These
techniques offer significant quality improvements with com-
petitive performance, but cannot avoid nonphysical defor-
mations, especially in configurations involving collisions.
Dual quaternion skinning [KCZO08] has been a very pop-
ular procedural approach, and further improvements such as
the use of a high-quality weighting scheme [JBPS11] or pre-
computing weights to best approximate nonlinear model be-
havior [KS12] have been developed. Allowing nonrigid bone
transformations has also been investigated [JS11].

For applications that require faithful resolution of nonlin-
ear material behavior, finite element discretizations can cap-
ture intricate details of flesh deformations [LST09, SB12].
For some of the simplest nonlinear material models, such
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as corotated elasticity [CPSS10], accelerated solutions have
been demonstrated which optionally support collision han-
dling [MZS∗11] at near-interactive simulation times. Re-
cent efforts have also focused on plausible contact model-
ing without simulation of nonlinear material deformation
[VBG∗13]. Our work has a strong link to finite element
based tetrahedral flesh approaches [TSB∗05, TSIF05] but
employs a simplified approximation to corotational elastic-
ity in the interest of performance. A number of authors have
exploited the fact that skin deformation of skeleton-driven
characters is dominated by the kinematics of the driving
rig or skeleton: Capell and colleagues [CGC∗02, CBC∗05]
adapted elasticity tensors to the local frame of reference of
skeletal components. Hahn et al. [HTC∗13] generated sec-
ondary skin dynamics based on the rig degrees of freedom.
Kim and James [KJ12] combined locally-rotated nonlinear
subspace models to simulate detailed deformations of com-
plex models. Our preconditioning strategy uses local rotation
information to approximate the stiffness matrix of our spe-
cific elastic model; Hecht et al. [HLSO12] describe a much
more general preconditioning strategy based on delayed ro-
tational updates. Finally, our concept of a surface-centric
elastic model parallels the Schur Complement Method
[QV99] for iterative substructuring, the Boundary Element
Method leveraged by James and Pai [JP99] for real-time sim-
ulation of deformable models, and the process of static con-
densation for finite elements which has been utilized in the
context of surgical simulation [BNC96].

3. Outline and background

In section 4 we propose a constitutive law specifically tuned
for simulating flesh deformation driven by an articulated
skeleton, which we label ex-rotated elasticity. This model
leverages information from a procedural skinning method,
and ultimately yields an affine force-position relationship:

f(x;q) = K(q)x+g(q)

where the coefficients in K and g are only dependent on
the skeletal pose q, and not on the flesh deformation x. We
demonstrate that the behavior of this model is very similar to
that of co-rotated elasticity, even when collisions are present.
In section 5 we show that we can further derive a purely
affine relationship that links boundary vertex positions (xb)
directly to resulting boundary forces (fb), assuming that the
interior remains at equilibrium at all times:

fb(xb;q) = Kb(q)xb +gb(q).

We show that due to the reduced dimensionality of this for-
mulation, iterative solvers converge in notably fewer itera-
tions than its volumetric counterpart. However, a naive use of
this system would be computationally impractical, since Kb
is both (a) dense and (b) very expensive to compute. Section
5.1 alleviates these drawbacks by designing a very effective
preconditioner, and replacing Kb with an excellent approxi-
mation that only requires sparse algebra. In the remainder of

this section, we review certain theory and algorithmic con-
cepts that our method builds on.

Tetrahedral FEM discretization of elasticity. We define
discrete elastic forces on tetrahedral meshes using the stan-
dard finite element methodology, assuming linear elements
and constant-strain tetrahedra. We refer the reader to the tu-
torial by Sifakis and Barbić [SB12] for the detailed deriva-
tion, while we restate just the final algorithm in this section.

The deformation of the flesh volume is encoded in the
deformation function ~x = ~φ(~X) which maps any material
point with reference coordinates ~X to its deformed spatial
location~x. Using a tetrahedral mesh to capture the flesh ge-
ometry, we sample the deformation map through the unde-
formed (~Xi) and deformed (~xi) coordinates of every mesh
vertex vi, and barycentrically interpolate~φ(~X) in each tetra-
hedron to yield a piecewise linear deformation field. The Ja-
cobian F := ∂~φ/∂~X is called the deformation gradient ma-
trix, and is piecewise constant as a consequence of the piece-
wise linear interpolation of~φ. In a given tetrahedron with un-
deformed vertex positions ~X0,~X1,~X2,~X3 and deformed coor-
dinates ~x0,~x1,~x2,~x3 the deformation gradient can be shown
to equal F = DsD−1

m , where Ds = [~x1−~x0|~x2−~x0|~x3−~x0]
and Dm = [~X1−~X0|~X2−~X0|~X3−~X0] are called the deformed
and undeformed shape matrices, respectively.

We use a hyperelastic material model, defined via an en-
ergy density function Ψ(F) measuring the stored potential
energy per unit volume as a function of the deformation gra-
dient. The matrix P = ∂Ψ(F)/∂F is the first Piola-Kirchhoff
stress tensor. A hyperelastic material model can be defined
via a formula for either Ψ(F) or P(F) since any of the two
can be derived from the other. Given an algebraic expression
for P(F) we can readily compute the elastic forces on three
of the four tetrahedron vertices using the matrix equation

[~f1|~f2|~f3] =− 1
6 det(Dm) ·P(F) ·D−T

m (1)

while the last vertex receives a force ~f0 = −~f1− ~f2− ~f3 to
ensure balance of internal forces. The elastic forces on all
vertices of the tetrahedral simulation mesh are computed by
accumulating the contribution of each individual element.

Penalty-based collisions. Similar to other physics-based
skinning techniques (see, e.g. [MZS∗11]) we detect collision
events on a discrete point set of surface collision proxies and
respond to such instances using penalty forces. In our work,
we simply use all surface vertices in the flesh mesh as col-
lision proxies, although any set of points sampled from the
surface of the flesh model can be used instead. Collisions
with external kinematic bodies are detected using a level-set
representation of the latter, allowing computation of colli-
sion depth and normal at O(1) time. For self-collision detec-
tion we use, in principle, the same technique employed by
Teran et al [TSIF05] and McAdams et al [MZS∗11] by first
checking each proxy against an axis-aligned bounding box
hierarchy defined over the tetrahedra of the flesh volume.
Once a collision is detected, the offending interior location

c© The Eurographics Association 2014.



Gao et al. / Steklov-Poincaré Skinning

Figure 2: Pictorial illustration of our surface-based simulation timeline: (a) Starting pose, boundary outlined in red. (b) A bone
is articulated, causing its associated constrained vertices to move. (c) Keeping the boundary fixed, we relax all interior vertices
to equilibrium. Convergence is fast due to the extensive constraints on bones and surface. (d) Elastic forces are computed on
the boundary. (e) Disregarding the interior, we advance the surface-based model to equilibrium using the previous forces as
external stimuli. (f) The surface model is converged. (g) Interior vertices have not been updated, as they did not participate in
the last step. (h) If desired, interior vertices can be relaxed one last time. The result is the same as full volumetric simulation.

is mapped to its undeformed coordinates, where a level-set
representation of the flesh volume is used to project it to the
skin surface. Finally, that surface location is mapped back to
the deformed configuration, providing an approximate colli-
sion target that the proxy should be attracted to. Ultimately,
every colliding proxy~xi receives a penalty force

~f col
i =−k(~xi−~x

target
i ). (2)

Finally, if the proxy in question was party to a self-collision,
the collision target will also receive the opposite penalty
force ~f target

i = −~f col
i which is barycentrically distributed

to its embedding (surface) vertices.

Quasistatic simulation. Our skinning algorithm operates in
the context of quasistatic simulation; as a consequence, each
skeletal pose is mapped directly to an equilibrium shape of
the flesh volume. For simplicity, we assume that the vertices
of the simulation mesh include a set of constrained nodes
xc = xc(q) whose coordinates are kinematically determined
by the pose of the articulated skeleton (q), while the remain-
ing unconstrained vertices are partitioned into interior (xi)
and boundary nodes (xb). The flesh shape resulting from
a pose q is determined by requiring that all unconstrained
nodes (interior and boundary) are at force equilibrium:

fb(xb,xi,xc(q)) = 0 and fi(xb,xi,xc(q)) = 0 (3)

In Section 4 we discuss a formulation which yields elas-
tic forces that are affine functions of xi and xb. Thus, in
the absence of collisions equation (3) is just a linear sys-
tem of equations. In the presence of collisions, however, the
boundary forces fb (note: only the boundary forces, not the
interior fi) incorporate nonlinear collision-related terms. Al-
though equation (2) seems linear, it is in fact a nonlinear term
since its contribution is activated or deactivated depending
on whether ~xi is colliding, while additionally the collision
target~x target

i is a function of the proxy location~xi itself.

In cases where the system of equation (3) is nonlinear
(whether this is due to a nonlinear material or collisions),
a Newton-Raphson procedure is employed for iterative so-
lution. In each iteration, we perform collision detection and,
if a proxy is found to be colliding, we instance (for the du-
ration of the Newton iteration) a zero-restlength spring con-
necting the collision proxy with its target, which is either
an explicit point in space (for external body collision) or an
embedded surface location (for self collision). Thus, in each
Newton step the total forces in our flesh model are given
by the sum of elastic material forces plus any (temporar-
ily created) collision-induced springs; since we use linear
zero-restlength springs for collision response, no further lin-
earization is needed in the Newton-Raphson procedure (be-
yond adding and removing springs after each detection step).
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Figure 3: Arm bending simulation using standard corotated elasticity (left), vs. our ex-rotated elasticity model (right).

4. The ex-rotated elasticity model

We propose a new material model for skeleton-driven flesh
deformation, which we call extrinsically rotated elasticity,
or ex-rotated elasticity for short. Our objective is to mimic
as closely as possible the nonlinear behavior of corotational
elasticity (see figure 3). However, our design goal is to have
the forces of our material model be affine functions of the
vertex positions (x), but with coefficients that are dependent
on the pose (q) of the articulated skeleton, as follows:

f(x;q) = K(q)x+g(q). (4)

Note that such a linear relation would be trivial to achieve
if we used linear elasticity as the flesh material model – in
this case K and g would actually be pose-independent con-
stants. Of course, linear elasticity lacks rotational invariance
and suffers from artifacts under large deformation. Our ra-
tionale is that, by making K(q) and g(q) pose-dependent we
have the opportunity to mitigate such artifacts while retain-
ing the linearity (with respect to the shape x) of equation (4).
Specifically, our new model defines the energy density as

Ψ(F;q) = µ
∥∥F− R̂(q)

∥∥2
F +

λ

2
tr2
[
R̂(q)T F− I

]
(5)

while, for comparison, standard corotational elasticity uses

ΨCOR(F) = µ‖F−R(F)‖2
F +

λ

2
tr2
[
R(F)T F− I

]
.

In both equations, Ψ is the energy density, F is the defor-
mation gradient, and µ,λ are the Lamé coefficients. In the
corotated model, R(F) is the rotational component of the po-
lar decomposition F = RS of the deformation gradient, thus
ultimately a function of the deformed shape. As a conse-
quence, ΨCOR(F) is not a pure quadratic, and elastic forces
will be inherently nonlinear. In contrast, our proposed energy
in equation (5) replaces R(F) with a pose-dependent approx-
imation R̂(q), which is computed via procedural skinning.

More specifically, we compute a collection of scalar fields
corresponding to blending weights, one for each indepen-
dently moving skeletal component, using the Bounded Bi-
harmonic Weights (BBW) method [JBPS11]. Discretely,
the BBW method produces weights on every mesh ver-
tex; we average those to tetrahedron centers and normal-
ize across all bones to make sure they form a partition of
unity. We then compute a procedural pose-dependent (yet

shape-independent) skinning transform at each tetrahedron
center using Dual-Quaternion skinning [KCZO08]. We ulti-
mately retain only the rotational component of this transform
as R̂(q) and use exactly this value in equation (5) to compute
elastic forces on each tetrahedron. Note that since we only
care about the rotational component, the result is essentially
that of Spherical Linear Interpolation (with Bounded Bihar-
monic Weights). Our approach is inspired by the work of
Capell et al [CGC∗02], although we use a separate rotation
per tetrahedron and our skeletal transform is built directly
in to the energy model, while their work partitions the body
mesh into bone-associated regions and applies macroscopic
rotations on locally computed discretizations of elasticity.

We observe that the energy of equation (5) is now purely
quadratic on F (and by extension on vertex positions). The
associated first Piola-Kirchhoff stress tensor P = ∂Ψ/∂F is

P(F;q) = 2µ
[
F− R̂(q)

]
+λtr

[
R̂(q)T F− I

]
R̂(q) (6)

Since equation (6) is affine on F, substituting into equation
(1) yields purely affine nodal forces, as encapsulated in our
initially desired formulation (4). Note that, when using equa-
tion (6) to evaluate discrete forces, we take R̂(q) at the cen-
troid of each tetrahedron, and treat this (similar to the treat-
ment of F) as an element-wise constant matrix. From a com-
putational standpoint, an explicit representation of g(q) is
not directly utilized (it suffices to be able to evaluate f(x;q)
via equations 1 and 6), but if desired it could be computed
simply as g(q) = f(0;q). Constructing the stiffness matrix
K(q) is more relevant to us; consider the “canonical” energy

Ψ0(F) = µ‖F− I‖2
F +

λ

2
tr2 (F− I)

resulting from fixing the rotation R̂ to the identity matrix.
Then, for tetrahedron Te with vertices xe = (~x e

1 ,~x
e

2 ,~x
e

3 ,~x
e

4 )
we can define the associated (canonical) stiffness matrix as

Ke
0 =−

∂
2
Ψ0(Fe)

∂x2
e
·Volume(Te)

This would be the contribution of Te to the stiffness matrix, if
the rotation at its centroid was R̂e = I. In our model, this el-
emental stiffness is conjugated by the block diagonal matrix
Re
∗(q) = diag

[
R̂e(q), R̂e(q), R̂e(q), R̂e(q)

]
to yield

Ke(q) = Re
∗(q) ·Ke

0 · (R
e
∗(q))

T
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Since Ke
0 is symmetric negative definite (it is the negated

Hessian of a convex quadratic), its orthogonal conjugation
Ke(q) and the global stiffness matrix assembled from all el-
emental contributions will also be symmetric negative defi-
nite. As a consequence, Conjugate Gradients can be used to
solve the equilibrium equations (3) without the need for an
indefiniteness treatment as in McAdams et al [MZS∗11].

In our experiments, the ex-rotated model produced visual
results that were strikingly similar to standard (nonlinear)
corotated elasticity, as seen in Figure 3. This was the case,
even in scenarios involving collision. Upon closer inspec-
tion, small differences can be seen, but typically well below
the threshold of perceptible non-physicality. Of course, we
can envision scenarios that discrepancies would be more vis-
ible: areas of loose skin, that are not well attached to the un-
derlying skeleton, or parts of the skin where folds and wrin-
kles tend to form might accentuate visible differences. For
the range and styles of motions we examined, however, we
found the ex-rotated approximation to be surprisingly plau-
sible. Finally, we note that the use of the procedural rotation
R̂(q) in our energy density does not force the simulation to
match this local rotation exactly – the final rotation is deter-
mined by the quasistatic solution of the ex-rotated forces.

5. A volumetrically reactive surface-only model

The ex-rotated model allowed us, for a given skeletal pose,
to express the elastic forces as a purely affine function of
vertex positions. We claim that an even more aggressive op-
timization is now made possible: we will show that, if the
interior vertices xi are assumed to be at quasistatic equilib-
rium at all times, we can derive an affine mapping directly
from boundary vertex positions xb to the forces f∗b exerted
on them by the deformed volume. We will initially use the
symbol f∗b (xb;q) to distinguish boundary forces when the
interior is equilibrated vs. the notation fb(xb,xi,xc(q)) (no
asterisk) when we allow the interior nodes to be at arbitrary
(non-equilibrium) positions, as previously in equation (3).

Conceptually, the function f∗b (xb;q) encapsulates the re-
sult of the following process:

• We place the boundary vertices at user-specified locations
xb, treating them as Dirichlet boundary conditions.
• Given the user-specified boundary values xb and the pose-

determined constrained vertices xc(q), we compute the
equilibrium position of all interior vertices, which we de-
note by x∗i (xb;q). This is accomplished by solving (for
x∗i ) the interior equilibrium system

fi(xb,x
∗
i ,xc(q)) = 0 (7)

treating xb and xc(q) as constants. Equation (7) is purely
affine, even in the presence of collisions, since colli-
sion penalty forces only contribute to boundary forces fb.
Thus, equation (7) has a unique solution for x∗i (xb;q).
• We substitute x∗i (xb;q) into the equation (3) for fb, obtain-

ing the final forces that the boundary feels from the equi-

librated interior. The final result is denoted as f∗b (xb;q)

f∗b (xb;q) = fb(xb,x
∗
i (xb;q),xc(q)) (8)

The important consequence of this manipulation is that we
can replace the volumetric equilibrium equations (3) with the
surface-only variant

f∗b (xb;q) = 0

This last expression has abstracted away the interior degrees
of freedom, but is fully equivalent with the volumetric equi-
librium conditions. Of course, if the equilibrium locations of
the interior nodes are also needed for any reason, they can
be readily computed by solving equation (7).

The interesting fact we will prove is that f∗b (xb;q), for all
its perceived complexity, is merely an affine function of xb.
We start by differentiating equation (7) with respect to xb:

∂

∂xb

{
fi(xb,x

∗
i ,xc(q))

}
= 0⇒

⇒ ∂fi

∂xb
+

∂fi

∂xi
· ∂x∗i

∂xb
= 0⇒ ∂x∗i

∂xb
=−(Kii)

−1Kib (9)

where we use the notation Kii := ∂fi/∂xi, Kib := ∂fi/∂xb
(similarly for Kbi and Kbb, to be used later) for the blocks of
the stiffness matrix corresponding to the partitioning of the
unconstrained vertices into interior and boundary. Note that
the chain rule applied in equation (9) would technically dic-
tate that the partial derivative ∂fi/∂xi should be evaluated at
x∗i . However, ∂fi/∂xi = Kii is constant, so an explicit spec-
ification of the evaluation point is not necessary. Next, we
differentiate equation (8) with respect to xb:

∂

∂xb
f∗b (xb;q) = ∂

∂xb

{
fb(xb,x

∗
i (xb;q),xc(q))

}
=

=
∂fb
∂xb

+
∂fb
∂xi
· ∂x∗i

∂xb
= Kbb−Kbi(Kii)

−1Kib (10)

So far we have not assumed that f∗b (xb;q) is an affine
function of xb; but equation (10) effectively proves that fact,
since the derivative with respect to xb is constant (it is only
a function of q). We can, thus, write

f∗b (xb;q) = Kb(q)xb +gb(q), (11)

where Kb(q) = Kbb(q)−Kbi(q) [Kii(q)]−1 Kib(q) (12)

is easily recognized as the Schur complement of Kbb in the
stiffness matrix K(q). Thus, Kb(q) is symmetric since Kbi =
KT

ib, and inherits the negative definiteness of K(q). The exact
algebraic expression of gb(q) is of less relevance; the typical
mode of utilization of equation (11) would be as follows:
Given an initial guess for the equilibrium boundary shape
x(0)b , we seek a correction δxb such that

f∗b (x
(0)
b +δxb;q) = 0⇒ f∗b (x

(0)
b ;q)+Kb(q)δxb = 0⇒

⇒−Kb(q)δxb = f∗b (x
(0)
b ;q) (13)
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The right hand side of equation (13) can be computed via
equation (8), and the coefficient matrix −Kb(q) is symmet-
ric positive definite. As a consequence, the Conjugate Gradi-
ents algorithm can be used to solve for the boundary update.

The formulation we presented is related to a familiar
concept in domain decomposition and iterative substructur-
ing approaches. The continuous analogue of our surface-
based force model is known as the Steklov-Poincaré oper-
ator [QV99] and is defined as a differential operator that
maps one type of boundary conditions for an elliptic PDE
to another. In our case, we map Dirichlet boundary con-
dition to the equivalent traction conditions (or, discretely,
boundary forces), via f∗b (xb). In our skinning application,
the tangible benefit of using the surface-based elasticity for-
mulation is that equation (8) has a significantly lower di-
mensionality than its volumetric counterpart, and thus Con-
jugate Gradients (or other iterative solvers) converge much
faster, as illustrated in Figure 4. A related process in com-
putational mechanics is static condensation, which has been
leveraged in the visual computing literature for surgery sim-
ulation [BNC96]. An additional alternative could also be to
construct a surface-based discretization using the Bound-
ary Element Method, which was used as the basis of the
ARTDEFO system by James and Pai [JP99].

5.1. Preconditioning the boundary equations

One may observe that there are serious practicality consider-
ations about utilizing equation (13) directly, to determine the
boundary deformation: the coefficient matrix involves an ex-
pensive inversion, and the right hand side requires a solution
for the interior equilibrium locations x∗i . These concerns will
be addressed in Section 6 but, before we turn to such linear
algebra-related considerations, let us investigate the option
of preconditioning the boundary system (13) to further ac-
celerate the convergence of Conjugate Gradients.

A good preconditioner would provide an approximation
to the coefficient matrix Kb(q). If this matrix was not pose-
dependent, we could consider the possibility of using a
sparse approximate factorization, computed in advance, as
the preconditioner. Of course this is not an option, because
the coefficient matrix would constantly change as the skele-
ton moves. A more promising option has to do with the re-
lation Kb(q) has with its reference value Kb(0), evaluated
around the reference skeletal pose (denoted q = 0). In fact,
the two matrices would be intimately related, if the skeleton
had been rigidly rotated with a global, constant rotation R0.
Due to the way K(q) is constructed, in such a scenario we
have the exact equality K(q) = R0

∗ ·K(0) · [R0
∗]

T , where the
block diagonal matrix R0

∗ = diag(R0,R0, . . . ,R0) contains
the global rotation R0 in each of its 3× 3 diagonal blocks
(one block for each mesh vertex). From equation (12) we can
confirm that this similarity property would carry over to the
Schur complement as Kb(q) = R0

∗ ·Kb(0) · [R0
∗]

T . Note that
we re-used the notation R0

∗ in this last expression to denote

Figure 4: Conjugate Gradients is used to solve for the shape
of an arm, after the elbow joint has been sharply bent to 90
degrees. Convergence speed is compared for the volumetric
ex-rotated formulation (2nd row), our surface-based formu-
lation without a preconditioner (3rd row), and the surface
formulation with our proposed preconditioner (4th row).

a block diagonal matrix with as many blocks as boundary
vertices. We will tolerate this overloaded notation as long as
the context disambiguates the proper size.

These observations suggest the following idea: Let us con-
struct the block diagonal matrix

R∗(q) = diag
(
R̂1(q), R̂2(q), . . . , R̂m(q)

)
where R̂i(q) is the rotation produced by procedural skinning
in at the location of the i-th boundary vertex. Subsequently,
consider approximating Kb(q) with its “skinned” version:

K̂b(q) = R∗(q) ·Kb(0) · [R∗(q)]T (14)

We claim that K̂b(q) can be used as a highly effective
preconditioner for Kb(q). We have already established that
the two matrices are identical when q is a global rotation. In
the general case where the skeleton has been articulated in a
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non-rigid fashion, the two matrices will be different (remem-
ber that K(q) is built by conjugating the canonical stiffness
matrix element-by-element, not vertex-by-vertex), but still
very close, numerically. Qualitatively, the two operators are
almost identical “away” from joints, and develop discrepan-
cies in areas where the skinning transformation blends the
influence of several bones. In addition, since:

[K̂b(q)]
−1 = R∗(q) · [Kb(0)]

−1 · [R∗(q)]T (15)

a precomputed factorization of Kb(0) could be leveraged to
quickly invert K̂b(q); we elaborate on this in Section 6.

Our experiments indicated a very favorable precondition-
ing performance for K̂b(q), both reducing the necessary it-
eration count by close to an order of magnitude as well as
improving the visual quality of the very first few PCG re-
sults (prior to convergence). For single-joint models, as few
as 3-4 PCG iterations were often enough. Figure 4 includes
visual samples from the convergence sequence of our pre-
conditioned scheme, compared to using either of the un-
preconditioned volumetric or surface-based alternatives.

5.2. Incorporating collisions

In the presence of collision events, the boundary-specific
force includes terms originating from penalty forces in addi-
tion to internal elastic forces. Very little needs to change in
our quasistatic solution process; the most essential change is
that equation (13) needs to include collision terms, and we
also need to solve this equation with a full Newton-Raphson
iteration, due to the nonlinearity of collision forces. Each
Newton iteration is given by:

−
[
Kb(q)+Kcoll

b (x(k)b )
]

δx(k)b = f∗b (x
(k)
b ;q)+ f coll

b (x(k)b )

where f coll
b (x(k)b ) is the collision spring force and Kcoll

b (x(k)b )
its associated stiffness, for those collision proxies found to
be colliding in configuration x(k). We have successfully used
the same preconditioner K̂b(q) without adapting it for the
extra penalty terms, with very satisfactory performance. In
practice, we observe that areas prone to self-collision (e.g.
joints) often coincide with areas where K̂b(q) was less ef-
fective of a preconditioner to begin with (without collisions).

6. Implementation and practical optimizations

The theoretical results of the previous sections suggest that
the linearized Newton-Raphson system can be solved via
Conjugate Gradients, at a low iteration count. However,
there are three significant practical concerns, related to the
implementation of this algorithm: (a) the matrix Kb(q) is
dense, and difficult to compute as it requires a matrix inver-
sion, (b) the right hand side is not readily available, and (c)
the preconditioner K̂b(q) is dense, and not in a readily in-
vertible form. In this section we provide practical remedies
to those concerns, to make the surface-based formulation vi-
able and competitive from a performance standpoint.

6.1. Modified Newton iteration

In order to facilitate efficient iterative solution, one option
is to replace the coefficient matrix of equation (13) with a
more numerically favorable approximation. This is similar
to altering the Newton-Raphson matrix as other authors have
previously done [MZS∗11, TSIF05] in the interest of safe-
guarding (or restoring) positive definiteness. The resulting
Modified Newton iteration will still converge to the same so-
lution if the approximation is not too invasive. For example,
a sufficient condition would be that K̃b(q) and Kb(q) satisfy
the spectral criterion ρ[I− [K̃b(q)]−1Kb(q)]< 1. Of course,
this would require a Newton-style iteration, even when the
problem would have been otherwise linear. However, from a
practical standpoint, a Newton-style iteration would be man-
dated anyways by the presence of nonlinear collision terms.

The approximation we leverage in our implementation
starts by approximating Kii with its “skinned” reference
value Kii(q) ≈ R∗(q)Kii(0)[R∗(q)]T . In addition, we re-
place the reference matrix Kii(0) (at the reference skeletal
pose) with its incomplete Cholesky factorization Kii(0) ≈
LiLT

i . Finally, our approximation K̃b(q) becomes:

K̃b(q) = Kbb(q)−Kbi(q)R∗(q)L−T
i L−1

i [R∗(q)]T Kib(q)

Note that, although this matrix is also dense, when used as
the system matrix of Conjugate Gradients it never needs to
be explicitly built; instead, we simply need to have a process
by which the matrix-vector product K̃b(q) ·w between the
matrix and a vector w provided by the Krylov solver can be
evaluated. This can be done with just sparse algebra:

• Multiplications by factors Kbb,Kbi,Kib can be performed
efficiently, as those are sparse sub-blocks of K(q), which
is constructed at linear cost (relative to total vertices) as
detailed in Section 4.

• Multiplications by R∗(q) and its transpose are linear-cost
vertex-by-vertex rotations.

• Multiplication by L−1
i is performed in linear time (in the

number of nonzero entires of Li, and equivalently Kii) via
forward substitution. Similarly, multiplication by L−T

i is
performed in linear time via backward substitution.

As a consequence, each matrix-vector product K̃b(q) ·w
can be computed at a cost proportional to the sparsity of the
volumetric stiffness K(q). Although we would have hoped
for a per-iteration cost that scales only with the boundary, the
significant reduction in the number of iterations that Con-
jugate Gradients requires for convergence still makes our
method computationally beneficial, especially in scenarios
with a significant number of active collisions. Further quan-
titative details on this are provided in the examples section.
In practice, we have noticed a very modest impact on the
number of additional required iterations due to the Modified
Newton procedure itself, compared to the extra Newton iter-
ations that are needed, regardless, due to the nonlinearity of
collision forces.
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6.2. Right-hand side update

The right-hand side f∗b (x
(k)
b ;q) = fb(x

(k)
b ,x∗i (x

(k)
b ;q),xc(q))

in the Newton system involves the nontrivial quantity
x∗i (x

(k)
b ;q), i.e. the equilibrium interior positions subject to

given boundary and bone-constrained vertices. This can be
found by solving the linear interior equilibrium equation (7)
with Conjugate Gradients. We have found that simply using
PCG for this system with the incomplete Cholesky precondi-
tioner K̃ii = R∗(q)L−T

i L−1
i [R∗(q)]T converges extremely

rapidly (typically in no more than 4-6 iterations). This is due
to the fact that this is an extremely well supported elasticity
problem; we are solving for an interior layer which is tightly
packed between a fixed boundary and a fixed skeletal layer.
In addition, this interior solve involves no collisions. All
these factors contribute to very good preconditioning per-
formance by incomplete Cholesky (notably improved, per
our observations, compared to the same preconditioner on a
volumetric model with un-constrained surface).

6.3. Practical Preconditioner

In accordance with equation (15), our objective is to gen-
erate an approximation to Kb(0) that can be efficiently in-
verted. It is useful at this point to revisit the intuitive inter-
pretation of Kb; this matrix captures the boundary response
of the ex-rotated flesh model. The i-th column of this matrix
encodes the forces that will manifest on boundary nodes, if
we impart a unit displacement on the i-th boundary degree
of freedom, while keeping the rest of the boundary fixed.
Given the extensive attachments of the flesh to the under-
lying skeleton, we would expect these boundary forces to
be strongly concentrated around the location of the distur-
bance that triggered them (the i-th boundary variable). Thus,
although Kb is algebraically dense, it is practically concen-
trated on a sparse set of entries which correspond to pairs
of boundary vertices with relatively small mesh distance. In
our implementation, we generate a specific sparsity pattern
by only allowing nonzero entries on pairs of degrees of free-
dom that have a maximum graph distance of 4-8 mesh edges
and approximate Kb with a sparse matrix K̃b that only con-
tains nonzero elements at the specified sparse locations.

Although we can tolerate the time expense of construct-
ing K̃b as a one-time preprocessing cost, we have to be con-
scious about space requirements. To aid in this construction
we use the following expression for the exact Kb(0):

Kb(0) = Kbb(0)−Kbi(0)L
−T
i L−1

i Kib(0)

= Kbb(0)−MMT = Kbb(0)−∑
n
i=1mim

T
i .(16)

In this expression, Kii(0) = LiLT
i is the exact Cholesky fac-

torization of Kii (we reorder variables to make it as sparse
as possible), and M = Kbi(0)L−T

i . The i-th column of M is
mi = Mei = Kbi(0)L−T

i ei and can be computed via back-
ward substitution and a sparse matrix-vector multiply. We
build the sparse K̃b by incorporating the contribution of one
mi at a time, without ever building a dense matrix (instead,

we only update entries in the allowable sparsity pattern). The
absolute value of any discarded entries which would nor-
mally be contributed to the values Ki j,K ji falling outside of
the allowable sparsity pattern, are instead subtracted from
the respective diagonal entries K̃ii and K̃ j j to preserve neg-
ative definiteness (this is equivalent to annihilating the off-
diagonal contribution by adding a negative definite rank-one
matrix to K̃b). Once K̃b has been constructed, we compute
an incomplete Cholesky factorization (with the same or a re-
duced sparsity pattern) to use as our final preconditioner.

7. Examples

In addition to the 2D models used for academic demonstra-
tions in figure 2 and in the supplemental video, we bench-
mark our method in three different anatomic models: (a) An
arm model meshed adaptively to refine aggressively near the
surface. The model includes 220K tetrahedra, 12.5K bound-
ary vertices and 26K interior vertices. (b) An arm model with
less aggressive adaptivity (used in figures 3,4) with 259K
tetrahedra, 10.2K boundary vertices and 36.3K interior ver-
tices. (c) A full-body model (figure 1) with 864K tetrahedra,
32.8K boundary vertices and 95.5K interior vertices. The
following table lists the runtime cost of (i) the procedural
skinning update, (ii) the stiffness matrix construction, (iii)
various components of the interior solve (section 6.2), (iv)
components of the boundary system solve. The runtime per
frame includes the collision detection cost. All times are on
a 4-core Intel Xeon E3-1270 v3 CPU @ 3.5Ghz.

Figure 4 demonstrated the convergence improvements of our
scheme, relative to the un-preconditioned volumetric and
surface-based approaches. For completeness, we also com-
pare with a preconditioned volumetric alternative: we use
K̃ = R∗(q)L−T L−1[R∗(q)]T as the preconditioner, where
K(0)≈ LLT is an incomplete Cholesky factorization of the
reference pose stiffness matrix. The following table details
our results on the 259K arm model (b) described above.
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These results clearly indicate that our method is best suited
to simulation of large meshes, in collision-heavy scenarios.
Without collisions, the volumetric approach benefits heavily
from the ex-rotated model, since a good preconditioner can
be obtained, and it only requires a single Newton iteration
(although PCG might converge slower than in our method).

8. Limitations and future work

The most evident among present limitations of our approach
is the strong affinity to linear materials, and the adoption of
a quasistatic-only simulation model. Although it would be
possible to form the boundary-response system for the lin-
earized equations of a nonlinear material, we would not have
the same opportunities for precomputation of an effective
preconditioner. In addition, our approach omits the optimiza-
tion opportunities afforded by grid-based embedded simula-
tion methods (e.g. [MZS∗11]), as it presumes that boundary
vertices are full (not embedded) degrees of freedom. As fu-
ture work we will explore the possibility of extending out
technique to implicit time integration schemes, where the
linearity of the ex-rotated model might expose opportunities
for a boundary-only evolution. Finally, a very exciting pos-
sibility would be to investigate combinations between our
surface-based elasticity and model reduction schemes, using
surface-only modes in the context of a reduced simulation.
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