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A MACHINE LEARNING APPROACH TO PROBLEMS IN COMPUTER NETWORK PERFORMANCE

ANALYSIS
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Computer networks are becoming increasingly complex with time due to the introduction of sophisticated technologies

and protocols and the increase in network size in terms of users, volume of data transferred, and available bandwidth.

This increase in complexity means that in many cases existing network performance analysis methods are no longer

effective, and that there is a need for more powerful methods.

In this dissertation, we propose the use of Support Vector Machines (SVMs), a powerful state-of-the-art machine

learning technique, as a network performance analysis framework that can cope with increasing network complexity.

Support Vector Machines are a suitable candidate framework in this situation because of their ability to handle com-

plicated non-linear relationships between large numbers of variables while retaining high computational efficiency.

To make a case for the effectiveness of SVMs as a framework for network performance analysis, we devise SVM-

based solutions for three network performance analysis problems. The three problems that we consider present very

different challenges, but they have in common the property of becoming more difficult to solve as network complexity

increases. Finding effective solutions to a set of problems that present different challenges is important for establishing

SVMs as a useful general-purpose framework rather than an ad hoc solution for specific situations. We find that in

each case SVM-based solutions improve on existing solutions significantly in areas such as accuracy, measurement

overhead and ease of practical deployment. Hence we conclude that SVMs provide an effective framework for network

performance analysis in the face of growing network complexity.

Paul Barford
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Chapter 1

Introduction

1.1 Motivation

The complexity of computer networks continues to increase for many reasons. One is the introduction of new

technologies, protocols and optimizations at all network layers to improve network throughput, reliability and security.

Another is the presence of many different flavors of a given protocol or optimization. A third is the increase in network

size in terms of the number of users and the volume of data transferred. A fourth is the increase in range of both

available bandwidth and delays.

This increase in network complexity makes the task of analyzing network performance more difficult. However,

network performance analysis continues to be important. The design of improved network technologies is often driven

by an understanding of the performance deficiencies in existing ones. Network management tasks such as provisioning,

tuning and debugging depend on an understanding of network performance.

Each of the reasons for increase in network complexity listed above lead to specific challenges for network per-

formance analysis. The most important criterion on which any attempt at network performance analysis is evaluated

is accuracy. However, as discussed below, network complexity forces analysis efforts to strike a balance between

maximizing accuracy and completely overcoming all these challenges.

The presence of a large number of technologies, protocols and optimizations at all network layers increases the

number of variables that effect network performance. The identification of all variables that effect performance is

challenging, as is capturing the exact relationship between the variables and a performance metric such as throughput.

A consequence of this problem is that performance analysis efforts tackle simplified versions of protocols or systems

rather than fully general production versions because it is too difficult to accurately analyze production systems. We

refer to this as theanalysis comprehensivenesschallenge.

The presence of many different flavors of a given protocol or optimization means that even if the analysis com-

prehensiveness problem has been solved for a specific combination of protocols and optimizations, the analysis will

need to be constantly updated as the protocols and optimizations are tweaked. We refer to this as theextensibility and

maintenancechallenge.
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Increase in network size in terms of the number of users and volume of data, and increase in the range of available

bandwidth and delay mean that network performance analysis techniques have to be able to(a) function effectively in

a wide range of operating conditions across different networks, and(b) adapt quickly to changing network conditions

in the same network. We refer to the first challenge as therobustnesschallenge, and to the second as theagility

challenge.

Even if all of the above-mentioned problems are solved, it may be difficult in practice to acquire the information

necessary to analyze network performance. This can occur due to system opaqueness,e.g., in wide area paths the only

available measurements are often from the perspective of the path end points, and the internal state of the network has

to be inferred from these measurements. This can also occur in the form of measurement traffic overhead or because

the number of measurements required for performance analysis increase with the number of nodes in the network. We

refer to this as thepracticalitychallenge.

In this dissertation, we focus on network performance analysis problems that involve either trace based classi-

fication of deployed protocols and algorithms or the prediction of network performance metric values. These two

classes of problems become more difficult to solve as network complexity increases, so they provide good test cases

for efforts focused on developing novel techniques to handle the problem of network performance analysis in the face

of growing network complexity. Classification problems become more difficult because the increasing sophistication

of protocols and algorithms means that they can can no longer be identified by short characteristic packet patterns.

Prediction problems become more difficult because the number of factors affecting the target metric increases, and the

relationship between the relevant factors and the target metric becomes more complex.

The types of protocol and algorithm classification problems we focus on in this dissertation arein the darkprob-

lems. These are problems for which classification is done based on implicit information contained in passively ac-

quired packet traces rather than based on explicit queries or probes. Implicit information refers to any information

that can be gleaned from passive packet traces, such as PHY, MAC and transport header fields, packet interarrival time

distributions and whether a host is a consumer or producer of data.

Most of the prior efforts involvingin the darkprotocol and algorithm classification focus on identifying the classes

of applications (web, peer-to-peer, mail, transactional) or application layer protocols (HTTP 1.0 versus HTTP 1.1, dif-

ferent peer-to-peer protocols) in use. There are two types of classification techniques, those which classify applications

based on flow properties such as packet sizes and packet interarrival times [106, 85, 41, 89, 133, 35, 64, 21, 20, 111]

and those which classify applications based on theirsocialbehavior,i.e., by considering the number of different hosts

they communicate with and the number of different ports they use [67, 11]. The above-mentioned techniques have high

classification accuracy. These techniques meet most, if not all, of the analysis comprehensiveness, extensibility and

maintenance, robustness, agility and practicality criteria desired of performance analysis techniques. The techniques

meet the analysis comprehensiveness and robustness criteria because they exhibit high accuracy on real or realistic

packet traces. Early classification techniques [21, 20, 111] are extremely agile because they can classify applications
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based on the first handful of packets in a flow. Andin the darkclassification is the only practical classification approach

for production wireline and wireless networks because it does not assume any active cooperation from the clients in a

network and works even when the data payload is encrypted.

All of the above-mentioned studies deal with application layer classification problems. All the flow-feature based

studies demonstrate that a small number of fairly obvious features hold the key to highly accurate classification, and

all the studies based on social behavior hinge on the presence of distinguishing communication patterns that are easy

to identify and isolate. The classification problem we consider – identification of 802.11 rate adaptation algorithms –

is a MAC-layer problem. As a result, transport and application layer features such as packet size, interarrival time and

social behavior patterns, which are some of the most useful distinguishing features for application identification, are

of little use. We need to find a novel classification technique because in our problem the algorithms to be classified

can assume a much larger number of possible states than application protocols, and the distinguishing features are

non-obvious.

Prediction-based studies predict future values of network performance metrics based on past values of the metric

and/or the values of related end host and path properties. The performance metric predicted most often by such studies

is network (TCP) throughput. Examples of throughput prediction studies for wireline environments include [96, 84,

87, 75, 98, 31, 10, 12, 128, 81, 120, 54], and for wireless environments include [23, 28, 27, 97, 105, 47, 68, 103, 92, 80].

There are two common types of prediction studies,formula-basedand history-based. Formula-based studies

predict future values of the metric of interest based on a mathematical formula that captures the relationship between

network path properties (e.g.,loss and delay) and the metric of interest (e.g.,throughput). History-based studies predict

future values of the metric of interest based on time-series analysis of past values of the metric. These two approaches

make constrasting tradeoffs in coping with the challenges associated with system complexity.

Formula-based approaches deal with the analysis comprehensiveness challenge by modeling simplified versions

of the system under study. It takes several incremental efforts to create full system or near full system models. An

example from the wireline domain is the [84, 98, 31] sequence for TCP throughput modeling for wireline networks

where [84] considers only losses due to triple duplicate ACKS, [98] adds analysis of losses due to timeouts, and [31]

further completes the analysis by adding connection establishment and slow start latencies. An example from the

wireless domain is the [47, 97, 105, 68, 103, 92, 80] set of throughput models where the simplest model [47] handles

interference-free broadcast traffic only and the models become progressively more complete, with the most com-

plete, [80], handling interference, RTS/CTS, multi-hop networks, and TCP traffic. Hence analysis realism can be

an expensive and laborious undertaking for formula-based approaches. Maintenance and extensibility with formula-

based approaches is challenging for the same reason, with new or significantly modified models required for improved

or modified versions of protocols,e.g., new performance models for TCP Vegas [108]. Formula-based approaches

exhibit high agility, i.e., respond quickly to changes in network conditions, assuming that up-to-date measurements
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of formula parameters are available. The robustness of formula-based approaches depends on analysis comprehen-

siveness. If the formula captures system behavior over a wide range of operating conditions, the approach is robust,

otherwise it is not. The practicality challenges faced by formula-based methods are generally related to system opaque-

ness. Formula-based methods are designed based on assumptions regarding the measurements that will be available,

and if these assumptions are incorrect, the method fails the practicality challenge. To completely handle the practical-

ity challenge, formula-based methods have to construct multiple models based on measurement availability,e.g., most

wireline TCP throughput models assume that per-flow end-to-end RTT and loss rate is available, but [48] presents an

alternate model that assumes that the only available information is via SNMP MIBs from routers at the granularity

of aggregate traffic through the router. Constructing multiple models for the formula-based approach overcomes the

practicality hurdle, but falls at the maintenance and extensibility hurdle.

History-based methods deal with the analysis comprehensiveness problem by side-stepping it. They are based

on time-series analysis of the target metric, so assuming that accurate past measurements of the target metric are

available, system complexity is not an issue. Consequently, history-based methods are able to handle real systems

with significantly less effort than formula-based approaches. However, side-stepping the analysis comprehensiveness

problem comes at a cost. Formula-based methods are able to provide insight into the factors that effect the target

metric because the relationship is represented by the formula parameters, but history-based methods are unable to

provide any such insight. Similarly, history-based methods handle maintenance and extensibility well with little

extra effort, but with the same tradeoff with insight. History-based methods have poor agility because time-series

analysis often includes smoothing to filter outliers, which results in slow response to genuine level shifts. History-

based methods are quite robust as long as level shifts are not frequent. The practicality challenge faced by history-

based methods is generally that of measurement overhead and delays,e.g.,in [54], the measurement samples required

for TCP throughput prediction are bulk TCP transfers that introduce a large amount of measurement traffic into the

network.

Our work is motivated by the desire to develop a network performance analysis framework that is able to provide

robust performance analysis solutions in spite of the increasing complexity of computer networks.

1.2 Approach

As computer networks become increasingly complex, machine learning based methods have been applied to com-

puter network analysis problems. These methods are particularly suited for computer network analysis because most

network analysis problems involve understanding complex relationships between large numbers of variables, and

learning-based methods are designed to handle just such problems.

In this dissertation, we introduce analysis based on Support Vector Machines (SVM), a powerful, state of the

art machine learning technique, as a new and better design point in the spectrum of analysis methods for network
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performance problems involving classification and prediction. We are motivated by the need for analysis methods that

can cope with increasingly complex and difficult to analyze computer networks.

To demonstrate that it is indeed a useful general purpose framework for network performance analysis rather than

an ad hoc solution to narrow, one-off problems, SVM-based network performance analysis has to meet several criteria.

First, it has to be able to provide effective performance analysis solutions for a diverse set of problems. Second, the

solutions should be at least as accurate as, and ideally more accurate than, those based on existing methods. Third,

the tradeoffs that SVM-based solutions make regarding the challenges of analysis comprehensiveness, maintenance

and extensibility, robustness, agility and practicality should be no worse than, and ideally better than, those made by

existing analysis frameworks.

In this dissertation, we apply SVM-based analysis to three network measurement problems, TCP throughput pre-

diction for wireline networks, TCP throughput prediction for wireless networks, and identification of the rate adapta-

tion algorithms deployed in a wireless network. These problems differ widely from each other, and effective solutions

to these problems make a case for the feasibility of SVMs as a framework for network performance analysis.

We use SVMs because they are one of the best, if not the best, general purpose supervised learning methods avail-

able at present. They have a strong foundation in statistical learning theory [126] and also exhibit good performance

for a wide variety of real world problems. SVMs do not conform to any particular parametric form, and due to their

use of kernels (Chapter 3, Section 3.5) are able to capture complex non-linear relationships between large numbers

of variables. SVMs are based on a convex optimization problem, so unlike methods such as neural nets and deci-

sion trees, they do not suffer from the problem of local minima. SVMs are computationally very efficient for several

reasons. First, the theoretical basis of SVMs, that the best classification accuracy on test data is achieved by finding

the correct balance between maximizing accuracy on training data and minimizing the complexity of the classifer,

prevents SVMs from falling prey to thecurse of dimensionality, and allows efficient solutions even for problems with

high dimension attribute spaces (Chapter 3, Section 3.2). Second, the SVM optimization problem is solved in its more

computationally efficient dual form rather than its primal form (Chapter 3, Section 3.3). Finally, the solution to the

SVM optimization problem depends only on a small fraction of the input data (Chapter 3, Section 3.3), so SVMs are

sparse. Chapter 3 presents a detailed overview of SVMs. In this section, we outline the challenges that have to be

overcome to apply SVMs successfully to network performance analysis.

Thesis Statement

As the complexity of computer networks increases, techniques that have been conventionally used for network

performance classification and prediction, such as formula-based performance modeling and time series analysis,

are no longer adequate in a number of scenarios, and more sophisticated techniques are needed. We claim that

applying machine learning based methods to network performance classification and prediction results in signif-

icant improvements over conventional methods. This is due to learning based methods’ ability to combine the
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benefits, and eliminate many of the inherent tradeoffs, of conventional methods. We support our claim by find-

ing learning-based solutions to three problems that present widely different performance analysis challenges. Our

learning-based method of choice is Support Vector Machines (SVMs), a powerful state-of-the-art technique that

has a strong foundation in statistical learning theory and is known to work well in practice. Our SVM-based so-

lutions demonstrate learning-based methods’ strengths over conventional methods in terms of the ability to handle

complex real systems more easily, the ability to function accurately in a wide variety of network conditions and

under rapidly changing conditions, and being low overhead and easy to deploy in practice.

The first step towards solving a problem using SVMs is to cast it into the SVM framework, in which a functional

relationship is represented as a mapping between afeature vectorand atarget value. For a classification problem

such as determining which of a set of 802.11 rate adaptation algorithms is deployed in a network, the feature vector

consists of information such as the sequence of transmission rate changes, and the target value is the identity of the

algorithm. For a regression problem such as TCP throughput prediction, the fields in the feature vector consist of path

properties such as loss rate and RTT, and the target value is the TCP throughput. There is atraining phase and atest

phase. In the training phase, both feature vectors and target values are acquired from measurements of the network

under consideration, and a predictor or classifier is constructed based on the relationship between the feature vectors

and target values. In thetestphase, only the feature vectors are available, and the predictor or classifier has to infer the

target values.

The success of applying SVMs to a network performance analysis problem depends on two key elements, appro-

priate feature selection and effective training to construct the classifier or predictor.

Feature selection is the process of identifying the factors that are sufficient for the characterization of the target

value over a wide range of operating conditions. The effectiveness of the features over a wide range of operating

conditions is important because special cases of a problem can sometimes be solved by a small subset of features or

even fallicious feature selection. Comprehensive feature selection is thus a manifestation of the analysis comprehen-

siveness challenge of network performance analysis. In some cases,e.g., for TCP throughput prediction of wireline

networks, the factors that effect the target value, throughput, such as loss rate and RTT, are well known and small in

number. In other cases,e.g., the identification of the 802.11 rate adaptation algorithms deployed in a network, features

are non-obvious, and the number of features required for high accuracy is on the order of thousands.

Feature selection also has implications for the practicality of an SVM-based solution of a performance analysis

problem. If the features are such that their values are easy to acquire without running into system opaqueness or

measurement scalability issues, the SVM-based solution is more likely to be adopted in practice. An example is

our solution for wireline TCP throughput prediction (Chapter 4, Section 4.3), where we show that while both RTT

and available bandwidth are equally useful features in terms of prediction accuracy, the use of RTT is preferred

because measuring available bandwidth is significantly more expensive in terms of the amount of measurement traffic

introduced.
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The robustness and agility of an SVM-based solution depends on the diversity of the training set used to construct

the classifier or predictor, where diversity means that the samples in the training set demonstrate system behavior in

as many different system states as possible. This suggests that if a very large and comprehensive training set is used,

the classifier or predictor can be made infinitely robust and agile. Unfortunately, garnering such a comprehensive

training set is neither always possible nor useful. The first issue is the amount of time required for gathering the

training samples. For a scenario such as throughput prediction for wireless nodes moving at driving speeds, a quickly-

generated if somewhat rough prediction is useful while an infinitely robust and agile one that takes a long time to

generate is useless. The second issue is that it is not always possible to exercise all system states in training,e.g., for

TCP throughput prediction of wide area paths (Chapter 4, Section 4.4), the volume of cross traffic on the path cannot

be controlled, limiting the comprehensiveness of the training set that can be gathered. Finally, even if the first two

problems associated with creating comprehensive training sets are resolved, it is sometimes the case that training sets

are not portable,e.g., for wireless throughput prediction from one network to another, where the network environment

is very complex and analysis has to be location-specific due to interference effects, node and building layout, etc.

Hence problem-specific training protocols, with provisions for detecting errors and triggering re-training as necessary,

have to be devised to make appropriate tradeoffs between comprehensiveness, practicality, robustness, and agility.

One of the greatest strengths of the SVM framework is that it allows for easy maintenance and extensibility. The

need for maintenance and extensibility arises in cases where a problem instance somewhat different from one already

solved occurs, such as throughput prediction for different TCP flavors or the addition of a new 802.11 rate adaptation

algorithm to the set of algorithms to be identified. In such a scenario in the SVM framework, only the identification

of new features that effect classification or prediction is required, and the SVM implicitly determines the relationship

between the new feature set and the target value. In contrast, approaches that require explicit information to facilitate

classification or prediction are very expensive to maintain,e.g., every time a new 802.11 rate adaptation algorithm

is developed, a model based on explicit enumeration of all possible algorithm states would be needed to enable its

classification, and for formula-based throughput prediction new models have to be developed to predict throughput for

different flavors of TCP. Hence the SVM-based approach supports maintenance and extensibility at significantly lower

cost compared to approaches that require explicit modeling. And SVMs retain their computational efficiency even for

high dimension feature vectors, so the computational cost of adding features is low as well.

The first problem for which we find an SVM-based solution is TCP throughput prediction for wireline paths. When

multiple network paths exist between data senders and receivers, as is the case for content distribution, multi-homing,

and overlay networks, there is a need to select thebestpath. The highest throughput path is generally considered the

best path, and the capability to accurately predict TCP throughput can be used to select this path.

We investigate the relationship between bulk TCP transfer throughput and network path properties such as avail-

able bandwidth, queuing delay and packet loss in a controlled, high accuracy laboratory environment.Our results

show that, using lab-based passive measurements with perfect accuracy, SVM-based predictions are 3 times
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more accurate than history-based predictions, the most accurate predictor in prior work, with SVM-based pre-

dictions being within 10% of actual value 87% of the time for bulk transfers under heavy traffic conditions

while history-based predictions are within 10% of actual value only 32% of the time. Since the lab-based per-

fect accuracy passive measurements are unavailable in the wide area, we evaluated SVM-based throughput prediction

using less accurate but practical active measurements of network path properties.Using these measurements, the

accuracy of SVM-based predictions exceeds those of history-based predictions by a factor of 1.6, with 49% of

SVM-based predictions being within 10% of actual value compared to 32% of history-based predictions.We

find that the above accuracy levels for both perfect lab-based passive measurements and practical active measurements

can be achieved by using only queuing delay and packet loss rates for throughput prediction, and including available

bandwidth provides almost no improvement in accuracy. This is good news, because measurements of packet loss

and queuing delay are lightweight and introduce little measurement traffic into the network, while measurements of

available bandwidth are considerably more heavyweight.We find that the measurement traffic overhead of the

SVM-based approach using active measurements of queuing delay and packet loss is a factor of 13 lower than

that of a history-based approach.Unlike prior work which focuses only on bulk transfers, our approach can predict

throughput accurately for a wide range of file sizes. We found that a training set of only three file sizes can extrap-

olate and accurately predict throughput for a wide range of file sizes. Prior work [54] has shown thatlevel shiftsin

path conditions pose difficulties for throughput prediction. We show that updating the predictor following level shifts

allows our technique to adapt to level shifts almost immediately and to maintain high accuracy on paths where level

shifts occur frequently. We complete our study by showing that our SVM-based predictor is robust not only in the

laboratory environment, but also on a diverse set of 18 wide area paths.

The application of the SVM framework to TCP throughput prediction for wireline networks illustrates the power

of the framework in many ways. The most important property of the SVM-based solution is its high accuracy even

when throughput is variable,i.e., when the average link utilization is 90% of the bottleneck. The fact that SVM

does not conform to any particular parametric form and is able to capture complex relationships between variables

enables robustness under challenging, variable throughput conditions. SVM allows for easy plug-and-play of candidate

input features for throughput prediction, in contrast to formula-based predictors where explicitly deriving throughput

using alternative path properties is an expensive undertaking. This capability enabled us to identify that lightweight

RTT and loss measurements are sufficient to maintain high prediction accuracy and the more expensive available

bandwidth measurements are unnecessary, making our solution low overhead and hence more desirable for practical

deployments. The SVM-based approach can respond to level shifts immediately,i.e., after observing a single training

sample following a change in path conditions, making it significantly more agile than the history-based approach.

This is because, due to its capability to consider as many input features as necessary, the SVM-based approach is able

to distinguish between genuine level shifts and outliers much more effectively than the history-based approach. The

flexibility and ease of feature inclusion allows SVMs to predict throughput for arbitrary-sized transfers, not just bulk



9

transfers. The power of SVMs to capture complex relations between variables allows the predictor to extrapolate from

three file sizes in the training set to a wide range of files sizes in the test set, allowing the SVM-based predictor to clear

the analysis comprehensiveness hurdle and keep the training set size manageable at the same time.

The second problem to which we apply the SVM framework is TCP throughput prediction for wireless paths.

Wireless applications can use throughput predictions to improve their performance in many ways. One use is the

selection of the highest throughput AP by a wireless client when multiple APs are within range. Another is to determine

the TCP friendly rate for non-TCP flows. Our work aims to design a TCP throughput mechanism that works not only

for stationary clients in enterprise or hot-spot settings, but also for clients ofopportunistic networks. Opportunistic

networking is a new model of wireless connectivity in which guest users passing through the range of one or more

open APs can gain temporary Internet access. Opportunistic networks can be stationary. However, over the last five

years, many efforts have focused on understanding the limits of the opportunistic connectivity paradigm, developing

protocols that allow efficient use of opportunistic connectivity, and developing applications for vehicular clients [94,

95, 29, 26, 58, 140, 52, 83, 40, 124, 123, 6]. Vehicular wireless clients present the most challenging scenario for

throughput prediction for two reasons. First, the vehicular network environment is more dynamic and variable,i.e.,

less predictable, than a stationary environment. Second, the vehicular environment imposes stringent limits on the

amount of time available to generate a prediction. Studies such as [40] show that most vehicular clients spend 10

seconds or less within the range of a particular AP, so throughput predictions need to be generated in a small fraction

of that time, no more than 1 second, to be useful to applications. Prior work on throughput modeling and prediction

for wireless networks does not handle the stringent timeliness requirements of the vehicular environment. Our work

aims to address this challenge.

TCP throughput prediction for wireless environments, whether they be stationary or vehicular, is extremely diffi-

cult, and differs significantly from TCP throughput prediction for wireline paths. The wireless network environment is

much more variable at the physical (PHY) and medium access control (MAC) layers than the wireline environment. In

wireline networks, packet loss is mainly due to congestion and consequent buffer overflow at routers, and the amount

of congestion and the behavior of transport protocols are the main determinants of throughput. In wireless networks

the dominant types of losses, radio losses and interference losses, are due to PHY and MAC layer phenomena. Radio

losses occur due to high bit error rates (BER) caused by poor channel quality. Interference losses occur when multi-

ple sources within range of each other transmit at the same time in the same frequency band. Hence, in addition to

congestion and transport protocol behavior, wireless throughput depends on PHY and MAC layer behavior and PHY

and MAC layer mechanisms to prevent losses. The presence of a larger number of factors that effect throughput make

wireless throughput prediction a more challenging problem than wireline throughput prediction. The fact that PHY

and MAC layer phenomena are the main determinants of wireless throughput means that the tools used for measur-

ing path properties and predicting throughput in wireline networks, such as our SVR-based method discussed above,

cannot be applied to wireless networks because the assumptions they are based on do not hold.
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There have been a large number of efforts to model and predict wireless throughput [47, 97, 105, 103, 68, 92,

80]. The primary challenges these efforts have faced have been those of analysis comprehensiveness and practicality.

Given the large number of complex factors effecting wireless throughput, the earliest of the above-listed efforts [47]

considered only interference-free broadcast traffic, and analysis comprehensiveness increased with each model, with

the latest and most complete, [80], handling an arbitary number of sources of interference interference, unicast traffic,

and TCP. Hence achieving analysis comprehensiveness for wireless throughput modeling and prediction has been a

long and laborious process. Practicality has been a challenge on two accounts. The first is system opaqueness, and

the second measurement delay. System opaqueness is a challenge because these approaches assume knowledge of the

network topology such as the number of interfering sources, and assume cooperation of the other nodes in the network

to take pairwaise measurements of channel quality and loss rates between nodes. These assumptions are not realistic

in the vehicular opportunistic networking scenario because the vehicular clients are autonomous. The measurement

delay of the above approaches is prohibitive under the stringent time constraints of the vehicular environment because

the number of measurements is quadratic in the number of nodes in the network.

We develop an SVR-based technique for predicting wireless TCP throughput using a set of short active measure-

ments to gauge network conditions. Our measurements are conducted between the target client and the AP, and do not

involve any other nodes in the network, so they surmount the system opaqueness challenge. The measurements are

short, 0.3–1.25 seconds, so they overcome the measurement delay challenges faced by earlier approaches. A major

strength of our approach is the ease with which it handles analysis comprehensiveness compared to prior work. Our

combination of simple and short active measurements and SVR-based prediction allows us to predict TCP throughput

for fully general wireless networks whereas the prior work, which combines analytical models and seed measurements

to predict throughput, had to go through a long process of building incrementally more complete models to achieve

analysis comprehensiveness.

The accuracy and timeliness of our approach is cause for cautious optimism. The accuracy is significantly lower

than that for the wireline case. In most of our wireless experiments only 10% to 30% of predictions are within 10%

of actual throughput, while in our wireline experiments 50% or more of predictions are within 10% of actual, a drop

from wireline to wireless of a factor of 2 to 5. However,80% to 100% of predictions are within a factor of two

of actual throughput. The factor of two bound on accuracy means that predictions are useful for many (but not all)

applications.This bound on accuracy can be achieved using measurements lasting for as little as 0.3 seconds,

and for vehicular clients moving at speeds of 15–25 mph, so our approach is suitable for practical deployment in

opportunistic wireless networks.

The third problem to which we apply the SVM framework is the identification orfingerprintingof the rate adap-

tation algorithms deployed in an 802.11 environment. Unlike the first two regression-based throughput prediction

problems, this is a classification problem.
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802.11 rate adaptation algorithms have a large impact on wireless throughput. However, to date, they have been

studied in isolation rather than as a component of production wireless network performance studies. Such studies are

based on passively acquired network traces because clients in a wireless network are autonomous,i.e., are not under

the centralized control of network administrators, so their cooperation in any performance analysis effort cannot be

assumed. There is currently no way to understand the impact of rate adaptation algorithm behavior on the performance

of production networks because there is no practical (i.e. passive trace based) technique to identify the deployed rate

adaptation algorithms.

We develop an SVM-based method to identify the 802.11 rate adaptation algorithms deployed in a network using

only passive traces. 802.11 rate adaptation algorithms can exhibit a very large number of rate change permutations

depending on the prevailing network conditions and the resulting packet loss patterns. Consequently, attempting to

identify algorithms by explicitly enumerating all possible rate change patterns would be extremely tedious if not im-

possible. However, learning-based methods are suited to such problems, so we use SVM for rate adaptation algorithm

identification.

Our SVM-based approach achieves a classification accuracy of 95%-100%.The key to our method’s high

accuracy is careful feature selection and classifier construction based on a broad sampling of algorithm behavior under

a wide range of operating conditions (Chapter 6 Section 6.4). We also show that the classifiers generated by our

method are portable.

The application of SVM to the identification of 802.11 rate adaptation algorithms demonstrates SVM’s ability

to accurately and efficiently model complex relationships between large numbers of variables. We have shown in

Chapter 6 Section 6.4 that a set of approximately 4000 input features is necessary for 95%-100% accuracy. Such a

large feature set is a fundamental requirement for correct algorithm identification and not a quirk of our methodology

because, as discussed in Chapter 6 Section 6.4, algorithm behavior at different time granularities much be considered

to facilitate accurate classification. Hence a learning-based method such as SVM that can handle complex relationships

between large numbers of variables effectively is not merely desirable but essential for 802.11 rate adaptation algorithm

classification.

Our SVM-based 802.11 rate adaptation algorithm fingerprinting method meets the analysis comprehensiveness

requirement because it identifies algorithms implemented by a commodity 802.11 driver (MadWifi). The SVM frame-

work provides for extensibility and maintenance because input features can be added easily and efficiently, so when

new algorithms are developed, classifiers can be updated with minimal effort. Our careful selection of input features

makes our method robust for a wide range of operating conditions. Since classifiers are portable, pre-computed classi-

fiers can be used to eliminate any start-up or retraining latency, so our method has high agility. Our method is practical

because it is based entirely on passively acquired packet traces and does not assume any cooperation from the wireless

clients in a network.
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1.3 Major Contributions

This dissertation makes the following main contributions:

• We present a methodology for TCP throughput prediction over wireline paths using Support Vector Regression

(SVR), a state-of-the-art machine learning technique. Our methodology is 1.6 times more accurate than the best

technique in prior work, predicts throughput for short as well as bulk transfers while prior work considers only

bulk transfers, handles level shifts in network conditions with greater agility, and introduces significantly less

measurement traffic into the network. We implement our methodology in a tool called PATHPERF, and test it

on a diverse set of wide-area paths to show that the strengths of our methodology hold for wide-area paths in

addition to the laboratory environment.

• We develop an SVR-based mechanism for TCP throughput prediction over wireless paths. Unlike prior meth-

ods that require active measurements involving all senders and receivers in a wireless network for throughput

prediction, our method can predict throughput based entirely on measurements taken from the node that desires

the throughput prediction. Our method can generate predictions using measurements as short at 0.33 seconds,

rapidly enough for them to be useful for mobile drive-through wireless applications. 80–100% of predictions

generated by our method are within a factor of two of actual throughput, even for nodes driving at speeds of

15–25mph.

• We introduce a technique for identifying the 802.11 rate adaptation algorithms deployed in a network using

Support Vector Machines (SVM), which has an accuracy of 95–100%. Our technique is based entirely on

the use of passive network traces. The application of SVM/SVR to rate adaptation algorithm identification is

different from its application to the two throughput prediction problems because in the latter case the feature set

is small and well-known or obvious while in the former case it is non-obvious and turns out to be almost 4000 to

support high accuracy. To our knowledge, ours is the only effort in the literature to date that attempts to identify

rate adaptation algorithms.

1.4 Thesis Organization

In Chapter 2, we present prior work related to each of the three applications of SVM, and place our contributions

in the context of the prior work.

In Chapter 3, we provide an overview of the aspects of Support Vector Machines and Support Vector Regression

relevant to this dissertation.

In Chapter 4, we present an SVR-based solution to the problem of TCP throughput prediction for wireline net-

works. Our solution is significantly more accurate, robust, and agile compared to the best solution in prior work, and

also introduces considerably less measurement traffic into the network.
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In Chapter 5, we present an SVR-based solution to the problem of TCP throughput prediction for wireless net-

works. Unlike earlier solutions, our solution does not assume any cooperation from senders and receivers other than

the node desiring the prediction. Our predictions can be generated with reasonable accuracy in under 0.5 seconds,

allowing them to be useful enough for mobile drive-through wireless applications.

In Chapter 6, we present an SVM-based solution to the problem of identifying the rate adatation algorithms de-

ployed in a wireless network based entirely on passive network traces. Our identification methodology has an accuracy

of 95%–100%.

In Chapter 7, we summarize the contributions of this dissertation and identify directions of future work.
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Chapter 2

Related Work

In this chapter, we present studies related to each of the three problems addressed in this dissertation. A broader

overview of the use of Support Vector Machines for solving problems in computer networking is presented in Chapter 3

Section 3.7.

2.1 Related Work for Wireline TCP Throughput Prediction

There are four areas of research related to our work on SVR-based wireline TCP throughput prediction. The first

area is Internet measurement studies that demonstrate that TCP throughput distributions over the Internet have certain

characteristics in common – if TCP throughput was completely random, all efforts at predicting it would be doomed

to failure. The second and third areas are two different approaches to TCP throughput modeling and prediction, the

formula-based approach and the history-based approach. The formula-based approach(FB) represents TCP throughput

as a mathematical function based on network path properties such as loss rate and RTT, and TCP features such as

congestion window size and acknowledgment schemes. The history-based approach(HB) predicts future throughput

based on time-series analysis of past throughput. The fourth area of related work is tools for active measurements of

network path properties such as loss rate and available bandwidth. The existence and accuracy of these tools is an

essential component of our approach because it allows our approach to be transferred from a controlled laboratory

environment equipped with ground-truth passive monitoring facilities to Internet paths without any such facilities.

In what follows, we first present in detail the related work from each of these four areas, and then discuss the new

contributions of our work.

2.1.1 Internet Performance Measurement Studies

A number of measurement studies of the Internet have been carried out to investigate how performance metrics

such as delay, loss, and throughput vary over time for given Internet paths. Such studies are of great importance for any

attempt to predict network performance because they provide insight into whether any predictability exists in network

performance in the first place.
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Balakrishnanet al. in [16] found that the throughput of individual hosts over time can be represented as a lognor-

mal distribution. They foundtemporal localityof throughput,i.e., for about 90% of hosts in the study, throughput for

successive transfers differed by a factor of two or less. The also foundspatial localityof throughput,i.e., that through-

put for nodes close to each other in terms of network distance was quite similar. Barford and Crovella’s application of

critical path analysis to TCP file transfers provides a more detailed perspective on how delay, queuing and loss relate

to TCP performance [17].

Paxson in [100] studied the behavior of loss, delay, and bottleneck bandwidth on Internet paths and found the

following: (a) loss was bursty, with bursts typically being longer than 200ms, as a result of drop tail queues at routers,

(b) delay was usually between 0.1 and 1 second and paths were very asymmetric in terms of delay, and(c) bottleneck

bandwidth between a pair of hosts was generally stable over time.

Zhanget al. in [142] introduceconstancyto represent more precisely the degree of stability of loss, delay, and

throughput in Internet paths. They considermathematical constancy, which exists if a set of measurements can be

described by a single, time-invariant mathematical model,operational constancy, which determines the granularity of

change of a metric needed to have a meaningful impact on application performance, andpredictive constancy, which

indicates whether time-series analysis of past measurements is useful for predicting future values. For throughput,

they find that constancy of all three forms exists on the order of minutes but not hours.

Finally, Zhanget al. in [141] study the distribution of rates at which flows transmit data. They find that the flow

rates have a skewed distribution, but it is not as heavily skewed as the distribution of flow sizes. They also find that

flow rates and flow sizes are correlated, suggesting that the amount of data transferred is not intrinsically determined,

but rather dependent on the performance a user can get from the network.

2.1.2 Analytical Models of TCP Throughput

Since the seminal work by Jacobson and Karels established the basic mechanisms for modern TCP implementa-

tions [59], it has been well known that many factors affect TCP file transfer performance. In general, these include the

TCP implementation, the underlying network structure, and the dynamics of the traffic sharing the links on the path

between two hosts. A large number of research efforts have modeled TCP throughput using analytical formulas which

take into account some of the above-mentioned factors, with later models attempting to improve the accuracy of the

earlier ones. The presence of a large number of efforts to derive analytical formulas for modeling TCP throughput is

a testament to the difficulty of capturing the dynamics of TCP.

In [96], Ott et al. derive the stationary distribution of the TCP congestion window size by approximating the

discrete-time process of window size evolution with a continuous-time process. They consider only the congestion

avoidance phase, assume that losses are independent and that loss is always signaled by triple duplicate ACKs. They

were the first to derive the famous inverse square root relationship between throughput and loss,i.e., to show that

throughput is proportional to 1√
loss rate

. Mathiset al. in [84] present an approximate version of the model in [96]
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based on the assumption that loss is periodic, and show that throughput is proportional tomaximum segment size

RTT∗
√

loss rate
.

Misra et al. in [87] improve on the model in [96] by representing loss as a function of instantaneous window size

instead of treating it as a constant.

In [75], Lakshmanet al. model high delay-bandwidth product networks,i.e.,networks where the delay-bandwidth

product is the same or higher order of magnitude as the amount of buffering on the bottleneck. A high delay-bandwidth

product is generally a property of wide area paths rather than LANs. They model TCP slow start as a discrete time

process and congestion avoidance as a continuous time process similar to [96], and show that for high delay-bandwidth

product networks, throughput is proportional to 1
loss rate ∗ (delay ∗ bandwidth)2 . And while earlier studies had identified

the bias of TCP against high delay-bandwidth product paths, Lakshmanet al. were the first to present a quantitative

analysis of the bias. Kumaret al. in [72] build a model similar to that of [75] but focus instead on LANs and add

coarse-grained timeouts to the analysis.

Padhyeet al. in their model of TCP Reno performance [98] consider losses signaled by both triple duplicate ACKs

and timeouts. They introduce the concept ofroundsfor modeling TCP loss. A round starts when the current window

size worth of packets is sent and ends when the first ACK is received. Losses within a round are assumed to be

correlated to capture burstiness due to drop tail queues, and losses in different rounds are assumed to be independent.

Cardwellet al. in [31] extend the Padhye model by adding connection establishment and slow start latencies.

Abouzeidet al. in [10] present a comprehensive stochastic model of TCP loss, taking into consideration both ran-

dom and correlated loss and small and large delay-bandwidth products. Altmanet al. in [12] model TCP performance

assuming that loss events have a general distribution,i.e., the only assumption regarding the loss process is that it is

stationary. They show that for a general distribution, throughput is proportional to 1
RTT ∗

√
loss rate

just like it is for

specific loss event distributions considered in earlier works discussed above.

All models presented so far assume that TCP packet traces are available to compute end-to-end per-flow metrics

such as loss rate and RTT. Goyalet al. in [48] consider the case where the only available information is via SNMP

MIBs from routers at the granularity of the aggregate traffic through the routers rather than individual flows. They

adapt the Padhye model [98] to handle metrics derived from SNMP MIBs. Arlittet al. in [14] present a heuristic based

on the Cardwell model [31] for predicting the throughput of a TCP transfer based on the transfer size and the RTT of

the first packet exchange of the transfer.

2.1.3 History-based TCP Throughput Prediction

A number of studies have used time-series analysis of past TCP throughput on a path to predict future throughput.

These are referred to as history-based prediction approaches.

Vazhkudaiet al. in [128] predict throughput for large files using mean-based, median-based, and auto-regressive

predictors and find that the mean-based and median-based predictors did as well as the more heavyweight auto-

regressive predictors. Luet al. in [81] note the strong correlation between TCP throughput and transfer size. Their
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goal is to exploit this relationship for throughput prediction for arbitrary file sizes without having to build a history by

transferring every possible file size. They accomplish this by conducting one small transfer and one large transfer, and

predicting throughput for a given size by extrapolating based on the throughput of these two transfers. Similar to our

work, Lu et al. find that prediction errors generally followed a normal distribution.

A problem with history-based approaches is that they introduce a large amount of measurement traffic into the

network, because in order to predict the throughput of a transfer of a given size, at some point in the past a file of com-

parable size has to be transferred to establish the historical throughput. Most history-based methods perform some

type of averaging, so in general the file has to be transferred a number of times. Given changes in path conditions over

time, recent history is more likely to yield accurate predictions than distant history. The need for greater accuracy calls

for conducting transfers frequently and as close to prediction time as possible, while the need to lower overhead calls

for conducting transfers infrequently. For the Network Weather Service [120], Swanyet al. handle the competing de-

mands of accuracy and low overhead by using a combination of large, heavyweight transfers, conducted infrequently,

and small, lightweight transfers, conducted frequently.

He et al. in [54] consider three different ways of predicting TCP throughput,(a) using available bandwidth as a

proxy for, and hence predictor of, throughput, where available bandwidth is defined as the spare capacity on a network

path,(b) using analytical formulas, specifically the Padhye formula from [98], and(c) time-series based predictors

such as EWMA and Holt-Winters. They find that available bandwidth is a poor proxy for throughput, because(a)

available bandwidth is an inelastic measure of link conditions while TCP throughput is an elastic quantity, varying

with the degree of multiplexing on the link,(b) available bandwidth measurements take far too long to converge to be

useful for predicting the throughput of short TCP transfers, and(c) there is no obvious way to account for slow-start

effects with available bandwidth measurements. They show that using analytical formulas for throughput prediction

yields very poor accuracy for wide area paths. One important reason for the inaccuracy of formula-based predictors

is that analytical formulas are designed tomodelrather thanpredictthroughput,i.e., that the formulas assume that the

values of variables such as loss and RTT are obtainedduring the flow of interest, using packet-level passive traces of

the flow. However, to use the formulas for prediction, loss and RTT values have to be obtained prior to the start of

the flow whose throughput is to be predicted. Active measurements have to be used to acquire loss and RTT values

because there is no data traffic and therefore no passive traces prior to the beginning of the flow. Predictions are

hence inaccurate for two reasons,(a) measurements of loss and RTT are made prior to, rather than during, the flow,

so inaccuracy is introduced because the values are unlikely to be exactly the same before and during the flow, and(b)

measurements are made using UDP-based active measurement tools so the loss and RTT values they observe will most

likely be somewhat different from what a TCP flow, with its window-based congestion control, will experience. Heet

al. also show that history-based predictors such as EWMA and Holt-Winters yield significantly better accuracy than

formula-based predictors. They find that increased multiplexing on a link increases history-based predictor accuracy,

but high link utilization and throughput level shifts and outliers decrease accuracy.
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2.1.4 Practical Tools for Measuring Internet Path Properties

As described in more detail in Chapter 4 Section 4.3, our TCP throughput prediction technique uses active mea-

surements of path properties such as loss, RTT, and available bandwidth to assess the conditions on a given path.

A complete overview of techniques for measuring loss, RTT, and available bandwidth is beyond the scope of this

thesis – an excellent summary can be found at [43], and [112] present a comparison of available bandwidth mea-

surement tools. We chose Badabing [115] and Yaz [116] for loss and available bandwidth measurements respectively

because they were the most accurate tools available to us. However, the Support Vector Regression framework is flex-

ible, so if more accurate path measurement tools become available in the future they can trivially replace the existing

tools to yield potentially more accurate predictions.

2.1.5 Our Contributions Relative to Prior Work

As discussed in Chapter 1 Section 1.1, high accuracy is the most important criterion for evaluating any network

performance analysis method. However, a number of other criteria, such as analysis comprehensiveness, extensibility

and maintenance, robustness, agility and practicality are important as well. For wireline TCP throughput prediction,

practicality translates to low measurement traffic overhead and use of practical techniques for measuring path prop-

erties, agility to quick response to level shifts, analysis comprehensiveness to the ability to extrapolate and predict

throughput accurately for previously unseen file sizes, robustness to high prediction accuracy over a diverse set of

real wide area paths, extensibility and maintenance to the ability to handle different flavors of TCP without having to

rebuild a predictor from scratch.

Our SVR-based predictor is at least as good as, and often outperforms, the better of the history-based and formula-

based predictors on all of the above criteria. In the discussion below, we compare the SVR-based predictor with both

formula-based and history-based predictors on all of the above criteria. However, it is the comparison with history-

based predictors that is of real importance because [54] has already shown history-based predictors to be significantly

more accurate than formula-based ones. We discuss formula-based predictors merely for the sake of completeness.

The most important feature of a TCP throughput prediction mechanism is high accuracy, because accurate predic-

tions allow applications to make good decisions (e.g.,accurately selecting the highest throughput path in an overlay

network) and improve performance. We evaluate the accuracy of our prediction mechanism in two ways, usingorac-

ular andpractical measurements of path properties as described in Chapter 4 Section 4.3. For bulk transfers in heavy

traffic (90% average utilization on the bottleneck link) usingoracular measurements, TCP throughput is predicted

within 10% of the actual value 87% of the time, representing nearly a 3-fold improvement in accuracy over history-

based methods. For practical measurements of path properties, predictions can be made within 10% of the actual value

49% of the time, an improvement of a factor of 1.6 over history-based methods.
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The SVR-based predictor introduces a significantly lower amount of measurement traffic compared to history-

based methods. As described in Chapter 4 Section 4.5, a typical run of the SVR-based predictor will generate a

factor of 13 less measurement traffic than a history-based predictor. There are two reasons for this. First, the SVR-

based predictor uses lightweight active measurement tools instead of bulk TCP transfers to gauge path conditions.

The second reason is the set of path properties that the SVR-based predictor needs for high accuracy. We consider

three path properties as inputs to the SVR, RTT, loss rate, and available bandwidth. We find that high prediction

accuracy can be achieved by using only RTT and loss rate, and the addition of available bandwidth to the input features

does not yield any increase in prediction accuracy (Chapter 4 Section 4.3). This is good news, because while active

measurements of RTT and loss rate are lightweight and introduce little measurement traffic, active measurements of

available bandwidth are heavyweight. The fact that these heavyweight active measurements can be excluded without

compromising accuracy helps reduce the measurement overhead of SVR-based prediction. The measurement overhead

of SVR is the same as that of formula-based predictors because the latter also require RTT and loss rate measurements.

[54] has shown thatlevel shiftsin path conditions pose a challenge for history-based predictors. The use of

long-term history in history-based predictors has the advantageous effect of smoothing out predictions by preventing

ocassional outliers from introducing errors into predictions, but at the same time has the disadvantageous effect of

making them slow to respond to level shifts. The SVR-based predictor does not suffer from this problem. As shown in

Chapter 4 Section 4.3, it is extremely responsive to level shifts and can generate accurate predictions after observing

one single training sample at the new throughput level. Formula-based predictors are the most responsive to level shifts

in theory. Both history-based and SVR-based predictors need one or more training samples at the new throughput level,

but formula-based predictors require none (they require only the new values of RTT and loss) because the formula

represents the complete spectrum of possible throughput behavior and there is no learning component to predictions.

However, the inaccuracy of formula-based predictors in practice renders their responsiveness immaterial.

History-based predictors are focused on bulk transfers,i.e., transfers large enough that start-up effects such as

connection setup and TCP slow-start have a negligible impact on throughput. There is no direct way to extrapolate

from one file-size to another for history-based methods ([81] indirectly extrapolate for file sizes of 400KB or larger),

and the only way to generate accurate predictions for TCP transfers where start-up effects do impact throughput is

to explictly construct a new predictor for the different transfer sizes. SVR-based predictors, on the other hand, can

directly extrapolate over a wide range of transfer sizes with high accuracy from a small number of transfer sizes

in training. As illustrated in Chapter 4 Section 4.3, we found that a training set of only three file sizes results in

accurate throughput predictions for a wide range of file sizes. Formula-based predictors are, once again,fundamentally

different from both history-based and SVR-based predictors because they have no learning component and the formula

represents the complete spectrum of possible throughput behavior at all transfer sizes.

The SVR-based predictor is accurate not only in laboratory settings but also over a diverse set of wide area paths.

We tested the SVR-based predictor in over 18 paths in the RON testbed [13]. 2 of the 18 paths were trans-European,
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9 were trans-Atlantic, and 7 were trans-continental-US. The RTTs varied from 8ms to 145ms. Chapter 4 Section 4.4

shows that the SVR-based predictor maintains high accuracy for most of these paths, and explains the reasons for

decreased accuracy over certain wide-area paths. The accuracy profile of the history-based predictor follows that of

the SVR-based predictor. We do not consider formula-based predictors in our wide area experiments because [54] has

already shown formula-based predictor accuracy to be quite poor for wide area paths.

Both SVR-based and history-based predictors are more flexible than formula-based predictors in terms of han-

dling different flavors of TCP. The fundamental difference between formula-based predictors on the one hand and

history-based and SVR-based predictors on the other is that history-based and SVR-based predictors have a learning

component while for the formula-based predictors the complete range of throughput behavior is captured by the for-

mula itself. The absence of a training phase, and the absence of associated delay and measurement traffic cost is clearly

an advantage of formula-based methods. However, the price of this advantage is a lack of flexibility for formula-based

methods. Formula-based predictors are specific to flavors of TCP, and a separate formula has to be explicitly derived

for each flavor of TCP, making formula-based predictors expensive to maintain.

Over the last few years, online tools such asSpeedtest[7] and M-Lab’sNetwork Diagnostic Tool[5] have become

available. These allow end users to measure TCP throughput achievable via their ISPs, and to identify throughput

bottlenecks. Such tools differ from our work in two ways. First, they measure current throughput while our work

predicts future throughput. Second, their throughput measurements are used for relatively long time scale tasks such as

comparing ISP performance or identifying bottlenecks to improve network provisioning and configuration. In contrast,

our throughput predictions are used for shorter time scale tasks such as allowing applications to take advantage of

higher throughput paths in overlay networks or determining a new TCP-friendly transmission rate as path conditions

change.

2.2 Related Work for Wireless Throughput Prediction

Areas of work related to our research on TCP throughput prediction for opportunistic wireless networks include

(a) studies on wireless network performance,(b) studies on opportunistic networks, and(c) studies on 802.11 access

point selection. In this section, we present prior work from each of these three areas and discuss our contributions

relative to the prior work.

2.2.1 Studies on Wireless Network Performance

There is an extensive body of work on wireless network performance. Modeling and predicting wireless network

performance is extremely challenging because link quality, signal propagation and interference are very deployment

and location specific and hence nearly impossible to model analytically. Early efforts to model wireless network

performance assume abstract models of signal propagation and interference. Later efforts seed throughput models

with deployment-specific measurements of interference. We discuss each body of work in turn.
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2.2.1.1 Abstract Models of Wireless Network Performance

There are two sets of abstract models of wireless network performance, those that relate to general wireless net-

works and those that are specific to 802.11-based wireless networks.

In their seminal paper [51], Gupta and Kumar study the capacity of general ad hoc wireless networks with no

centralized control, no hidden terminals and collision losses, and multi-hop routing from source to destination via in-

termediate nodes. They model successful packet transmission rates based on interference at the sender (carrier sense),

ambient noise and the distance between the sender and receiver. They show that for a network withn randomly-placed

nodes, the average per-node throughput is proportional tototal channel capacity√
nlogn

and for a network withn optimally-

placed nodes, the per-node throughput is proportional tototal channel capacity√
n

.

The main result of [51], that per-node throughput decreases as the number of nodes in the network increases, is

discouraging for large ad hoc networks, and argues for smaller ad hoc networks or infrastructure networks to reduce

packet routing overhead. Later projects identify ad hoc deployment scenarios where this bound on throughput can

be improved. Grossglauseret al. in [49] show that if nodes are mobile and data transmission can tolerate delays of

minutes to hours, throughput can be made independent of the number of nodes in the network by transmitting data

only when the source and destination are close to each other, thus cutting the multi-hop routing overhead. Liet al.

in [79] show that for certain realistic non-random traffic patterns network throughput can exceed the bound derived for

random traffic patterns in [51]. Gastparet al. in [45] show that if there is a single source and destination in an ad hoc

network, and the remainder of the nodes merely act as relays, throughput can be made independent of the number of

nodes with use of appropriate network coding. Jainet al. in [60, 61] use the interference model from [51] to determine

whether a given traffic matrix is feasible for a given network by modeling the network as a conflict graph. They show

that maximizing throughput in a network is NP-hard, so they present heuristics for the task. Kumaret al. in [73]

improve on the work in [60, 61] by designing heuristics that allow network throughput to be within a constant factor

of the maximum possible throughput.

There are also a large number of analytical models focused specifically on predicting the performance of 802.11-

based wireless networks. Bianchi [23] analytically predicts system throughput for 802.11 networks that use either

the distributed coordination function (DCF) or RTS/CTS for media access control based on 802.11 MAC parameters

such as minimum and maximum backoff windows. The throughput predicted is thesaturationthroughput under ideal

channel conditions,i.e., no hidden terminals and capture effects. Thesaturationthroughput is defined as the stable

throughput reached by a network of a finite number of senders as offered load increases to the point where every node

always has a non-empty transmission queue. Throughput is calculated based on packet collision probability, which

in turn is calculated based on the simplifying assumption that at each transmission attempt, regardless of the num-

ber of previous failed transmissions, each packet experiences collisions with a constant and independent probability.

Burmeisteret al. in [28, 27] model 802.11 throughput for the AP-client communication model instead of the ad hoc
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network model. They are the first to consider the impact of 802.11 rate adaptation on throughput. They assume that

wireless signal strength decreases with distance. They show that in the presence of even a single distant receiver,

total network throughput can decrease dramatically because successful packet delivery to the distant receiver occurs

at lower transmission rates, decreasing the medium access time available to all other nodes.

2.2.1.2 Hybrid Models of Wireless Network Performance

Studies such as [97, 105] show that abstract RF propagation models, based on assumptions such as the interference

range of a sender being twice the successful transmission range, are inaccurate in practice. The failure of abstract

models of interference has led tohybrid models, which consist of an analytical throughput model that is seeded with

deployment-specific interference measurements in place of abstract interference models. The goal of measurement-

based models is to categorize the throughput variation of a target network link with senderA and receiverB for all pairs

of links AB for all possible combinations of interference from other sendersS in the network. The number of possible

interference combinations increases exponentially with the number of senders in the network, making a complete

set of measurements to seed the model impractical. All the hybrid models described in this section approximate the

interference characteristics of the network with a smaller number of measurements.

Gopalakrishnanet al. in [47] use a combination of environment-specific RSSI measurements to seed signal prop-

agation models and simulations to predict 802.11 throughput in an interference-free environment,i.e., an environment

where packet loss is due to bit errors only. Padhyeet al. in [97] use pairwise broadcast link interference to approximate

the full spectrum of possible unicast network interference combinations usingO(n2) measurements, wheren is the

number of senders, and report that model accuracy decreases when(a) 802.11 rate adaptation is used for unicast traffic

because there are no acknowledgments and hence no rate adaptation for broadcast, and(b) when there is a time lag

between model seed measurements and model testing. Reiset al. in [105] model throughput for the case of broad-

cast transmissions and binary interference (only two senders transmitting simultaneously in the network) usingO(n2)

measurements that can be acquired inO(n) time. Kashyapet al. in [68] model throughput for both broadcast and

unicast traffic for an arbitrary number of interfering sources usingO(n2) seed measurements by representing 802.11

protocol states as a discrete-time Markov model. Qiuet al. in [103] also model the 802.11 DCF using a Markov chain

andO(n2) seed measurements. Their model predicts throughput for both saturated and unsaturated traffic demands,

and they optimize the model by pruning model states that are very unlikely to occur. Niculescu [92] approximates

interference by assuming independence of interference effects,i.e.,by assuming that the throughput of a linkABwith

n simultaneous sources of interferenceS1–Sn is the product of the throughput ofAB when each interfererSi inter-

feres withAB individually. Li et al. in [80] further reduce the complexity of earlier models by constructing a model

that assumes the independence of collision and error loss in addition to the independence of interference, and handles

RTS/CTS, multi-hop networks, and TCP in addition to CBR traffic.
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2.2.2 Opportunistic and Vehicular Wireless Networks

In this section, we present an overview of opportunistic wireless networks because they are the motivation for our

work on wireless TCP throughput prediction. Our work targets opportunistic wireless networks, particularly oppor-

tunistic vehicular networks, because they present the most challenging scenario for wireless throughput prediction due

to their opaqueness and stringent prediction speed requirements, as discussed in Section 2.2.4.

Opportunistic wireless networking is a communication model in which clients passing through the range of one or

more open APs gain temporary network connectivity. Opportunistic networking has been made possible by the growth

in popularity of WiFi access over the past decade, which has resulted in dense deployments of 802.11 APs in urban

areas. The clients in an opportunistic network can be either stationary or mobile and vehicular.

A common example of a stationary opportunistic network isFon (www.fon.com). Fon supports acooperative

opportunistic networking model.Fon members open up their home APs to allow access to otherFon members who

happen to be in the vicinity and desire connectivity in exchange for similar guest access via other members’ home

APs. The goal is to provideFonmembers WiFi connectivity worldwide via such bandwidth exchange.

There has been extensive research into 802.11-based vehicular opportunistic networks over the past few years.

The earliest efforts investigated the feasibility of communication between fixed APs and moving vehicles, because

802.11 had not been designed for this purpose1. Ott and Kutscher [94] study the communication between vehicular

clients and stationary roadside APs on a German Autobahn in an environment free of 802.11 interference sources. The

vehicular clients move at 80-180 km/h, and are equipped with external antennas. They find that the connection between

the vehicular client and the AP consists of theentry, productionandexit phases. Connectivity is poor,i.e., losses are

high, in theentryandexit phases. Connectivity is best during theproductionphase, which is typically a 200m range

around the AP where most of the data is transferred. For speeds of 80-180 km/h, theproductionphase lasts for 4–9

seconds and allows for the transfer of 1.5–5.0MB of data for both TCP and UDP. This volume of data transfer is likely

to be sufficient for a number of applications. Gasset al. [44] study communication between vehicular clients without

external antennas and roadside APs in an environment free of 802.11 interference sources. They consider transport

and application layer effects in addition to link layer effects. They find, just as [94] did, that for driving speeds ranging

from 5–75 mph, bulk transfers for both TCP and UDP perform quite well. However, performance is considerably

poorer for HTTP because small-sized HTTP request packets incur full round-trip delays without transferring useful

application data in the short vehicle-AP connectivity window. Bychkovskyet al. in the CarTel project [29] study

the behavior of vehicular 802.11 clients driving through the Boston and Seattle metropolitan areas at speeds of up

to 60 km/h attempting to connect to open APs. They find that the median duration of link layer connectivity is 13

second, the mean time between successful associations is 75 seconds, the median throughput is 30KBytes/s, and the

average connection can transfer 216KBytes of data in this setting. They also find that associations are equally likely

1Cellular networks support communication between vehicles and fixed base stations, but 802.11 offers significantly higher bandwidth and has
the advantage of being part of the unlicenced spectrum
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across a range of speeds. Mahajanet al. in [83], in an urban environment similar to that of [29], find that the well-

defined entry, production, and exit phases observed in [94] on autobahns do not hold in urban environments, and there

are abrupt losses of connectivity even in the production phase. However, they found that connectivity behavior at

particular locations tends to be predictable. Hadalleret al. in [52] find several causes of sub-optimal performance

in communication between vehicles and APs, such as losses in the entry phase leading to backoffs that last into the

production phase, lengthy AP scanning and selection, poor MAC layer rate selection. TheDieselNetproject studies

WiFi communication between buses and between buses and fixed infrastructure in Amherst, MA., and has developed

ad hoc routing protocols for efficient communication in the face of intermittent connectivity [26, 140]. Deshpandeet

al. in [39] have compared the performance of 3G cellular connectivity and WiFi connectivity in the vehicular scenario,

and provide evidence that a hybrid network is the best option for a combination of high connectivity, high throughput

and low cost. The consensus of all these studies is that while there are challenges, 802.11-based communication

between APs and moving vehicles is feasible,i.e., is adequate for supporting applications that can tolerate some

amount of delay.

The challenge of vehicular opportunistic networks is that connectivity isfleetingandintermittent. The good news

is that while connectivity is established communication occurs at high speed. Mitigating the effects of fleeting or

short-lived connections requires making use of connectivity time as efficiently as possible.QuickWiFi [40] is an

implementation that reduces client to AP connection time from about 10 seconds to 400ms by optimizing channel

scanning and eliminating MAC-layer delays and timeouts – 10 seconds is acceptable connection setup latency for a

stationary client, but for a vehicular client it leaves no time for useful data transfer. Mitigating the effect of intermittent

connectivity requires saving and restoring transport layer connection state as connectivity comes and goes. Ott and

Kutscher in [95] and Erikssonet al. in [40] implement persistentsessionsusing client and server side proxies. Unlike

TCP connections, sessions persist when connectivity is lost, and restore transport layer connections when connectivity

returns. The difference between the two solutions is that [95] implement a session layer that runs on top of TCP,

while [40] implement a combined transport and session layer that, in addition to providing connection loss recovery,

conducts wireless-aware congestion control.

A different approach to making the most of fleeting and intermittent connectivity in vehicular opportunistic net-

works is to enable applications to reduce the amount of data being sent, or to prioritize the transmission of the most

important data. A natural use of vehicular networks is for collecting data about driving conditions,e.g., road traffic

congestion reports to facilitate route planning [124, 123] or reports of damage to road surfaces to facilitate repair

work [6]. This sensor data needs to be transferred to fixed infrastructure either directly or via otherdata mulevehicles

when there is a connectivity window. To make efficient use of the connectivity window, Hullet al. in [58] present

CafNet, a callback-based network stack. Unlike traditional network stacks that buffer and then stream application data

in the FIFO order,CafNetdoes not buffer any data. Instead, it informs the application when connectivity is available,
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allowing the application to prioritize which data should be sent at connectivity time rather than making the application

commit data to the network in FIFO order in advance.

Even though all the studies discussed so far in this section focus on using 802.11a/b/g for vehicular wireless

communication, and there is strong evidence that these protocols can support useful applications in the vehicular envi-

ronment, they were not designed to support vehicular communication. The 802.11p Dedicated Short Range Commu-

nication standard is being developed specifically for communication between neighboring vehicles to allow exchange

of information such as vehicle GPS coordinates, velocity and road conditions to determine if accidents are likely. The

802.11p physical layer is designed to handle the challenges of high speed mobility, such as severe signal fading. Bai

et al. in [15] investigate the behavior of 802.11p PHY in a practical setting.

2.2.3 Access Point Selection for 802.11 Networks

When a wireless client is in an environment with multiple APs, it has to select which AP to associate with.

Commodity 802.11 interface cards choose to associate with the AP that delivers the strongest signal strength. However,

in many scenarios, an association decision based solely on signal strength is sub-optimal,i.e., it does not result in the

highest possible throughput for the client. For example, if a large number of other clients are associated with the AP

with the strongest signal and contending for the AP’s time , the client might achieve higher throughput by associating

with a different AP with a weaker signal but fewer other clients.

A mechanism for accurate TCP throughput prediction for wireless networks can facilitate AP selection – the

obvious choice would be the AP with the highest predicted throughput. There are a number of research efforts [127,

118, 91, 122, 77] that focus on AP selection based on highest projected throughput. What distinguishes these efforts

from our work is that these efforts focus ranking APs by projected throughput while we focus on general-purpose

wireless TCP throughput prediction that can be used by applications other than AP-selection, such as determining the

TCP-friendly rate of non-TCP flows. These approaches make certain assumptions, such as the presence of beacons,

so they can only be used for infrastructure networks and not for ad hoc networks, while our approach is not limited in

this way. We outline these efforts in the remainder of this section.

Vasudevanet al. in [127] develop an algorithm for AP selection based on observing the expected and actual timing

of 802.11 beacon frames. Sundaresanet al. in [118] propose a combination of physical and MAC layer metrics for

calculating projected throughput and facilitating AP selection, but acquiring their proposed metrics requires changes to

wireless interface firmware. Nicholsonet al. in [91] focus on AP-selection based on the performance of the backhaul

wireline connection to the Internet in addition to the performance of the AP-client link. Taenakaet al. in [122] use the

number of frame retransmissions on the AP-client link to gauge link quality and guide AP selection. Leeet al. in [77]

propose an AP selection scheme based on the behavior of packet exchanges that occur when a client scans candidate

APs on different channels prior to association. And Bejeranoet al. in [18] take a global, network-wide approach to



26

AP selection by pairing APs and clients based on load-balancing from the perspective of the APs and fair bandwidth

allocation from the perspective of the clients.

2.2.4 Our Contributions Relative to Prior Work

In this section, we explain why there was a need for an effort such as ours for TCP throughput prediction for

wireless networks in general and opportunistic wireless networks in particular. The key contributions of our approach

are that(a) it does not require knowledge or cooperation of other clients in the network, and(b) it can generate

predictions with useful accuracy in as little as 0.3 seconds. The remainder of this section discusses why neither

the wireless performance models discussed in Section 2.2.1 nor the wireline TCP throughput prediction techniques

discussed in Chapter 4 and Section 2.1 are suited to TCP throughput prediction for opportunistic wireless networks.

The wireless performance models discussed in Section 2.2.1 compromise on both the analysis comprehensiveness

and practicality requirements.

The models compromise on the analysis comprehensiveness requirement by making several simplifying assump-

tions that do not hold for real operational networks, because modeling fully general wireless networks is extremely

challenging. Common examples of simplifying assumptions include considering only binary interference, considering

a single 802.11 data transmission rate instead of modeling 802.11 rate adaptation, and modeling constant bit rate traf-

fic, i.e., assuming the absence of TCP or some other transport layer protocol that supports reliability and congestion

control. Our approach works for a fully general wireless network environment and makes no simplifying assumptions.

The wireless performance models from Section 2.2.1 compromise on practicality in terms of system opaqueness

and scalability. The models do not handle real network opaqueness because(a) they assume complete knowledge of

the number and location of interfering sources in the network and their traffic demands, and(b) they assume complete

cooperation of all the nodes in the network to obtain model parameters such as pairwise link loss rate. Such cooperation

and knowledge is not available in practice. The models require at leastO(n2) measurements in ann-node network to

obtain relevant parameter values. In an opportunistic vehicular network, the total connectivity time between a vehicle

and a roadside AP is generally10 seconds or less [40], so the throughput prediction needs to be generated in around

1 second to be useful to applications. Hence even if complete network knowledge and cooperation was available

to overcome the system opaqueness problem, the measurement scalability problem would prevent the models from

Section 2.2.1 from being applicable to vehicular opportunistic networks.

He et al. [54] and our approach in Chapter 4 present two different approaches to wireline TCP throughput predic-

tion. Both these approaches are practical because they have been tested on real wide area paths. However, in their

original forms, both approaches take tens of seconds to generate a prediction. The reason that the approach in [54]

takes tens of seconds is that it considers only bulk transfers of several megabytes, which inevitably take several sec-

onds to complete. The approach in Chapter 4 handles arbitrarily small transfers. The reason it takes tens of seconds is

due to the convergence time of the active measurement tools [115, 116] use to measure path properties. Another issue
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is that these tools are based on assumptions that hold only for wireline environments, such as loss being an indicator

of congestion whereas in wireless environments it is an indicator of interference, so they are unsuitable for use on

wireless paths. Even active measurement tools designed specifically for wireless environments, such as [76, 69], take

tens of seconds to converge, so they cannot be used in vehicular wireless environments

Our approach is able to generate predictions with useful accuracy in under one second in contrast to prior ap-

proaches which require tens of seconds because, as discussed in Chapter 5 Section 5.2.2 we develop a probe process

based on short active measurements to gauge network path properties. Our model requires measurements between only

the target client and the AP,i.e., it does not explicitly take any measurements involving any other nodes in the network.

Since our model requires a few short measurements that involve only the target node and the AP, and handles fully

general network deployments, it handles the challenges of system comprehensiveness, scalability and system opaque-

ness better than both the wireless performance models discussed in Section 2.2.1 and the wireline TCP throughput

prediction techniques discussed in Chapter 4 and Section 2.1.

Gerberet al. in [46] take a history-based approach to measuring maximum achievable TCP throughput in a 3G

wireless network. Instead of using active probes, they observe application flows to estimate this metric. This work

differs from our work in that maximum achievable TCP throughput is a network-centric metric that is calculated using

measurements over long time scales and is used to inform network management decisions such as provisioning and

configuration, while our TCP throughput predictor is a client-centric tool based on short active measurements and used

to inform client decisions such as AP selection and TCP-friendly rate selection.

2.3 Related Work for Wireless Rate Adaptation Fingerprinting

There are two major types of studies related to our work on the identification of 802.11 rate adaptation algorithms.

The first are studies on the design of rate adaptation algorithms. The second are studies on analyzing passively acquired

packet traces that contain no explicit information to deduce the deployed applications and protocols. We present each

body of work in turn, and conclude with a discussion of our contributions relative to prior work.

2.3.1 802.11 Rate Adaptation Algorithms

Given their potentially large impact on throughput in wireless networks, it is not surprising that many research

efforts over the past decade have focused on improving rate adaptation algorithms. In this section, we describe the

various 802.11 rate adaptation algorithms present in the literature. Our objective here is to provide a flavor for the range

and complexity of algorithm behavior. The need for a learning-based classifier to distinguish between the algorithms

arises because the large number of packet rate patterns that can occur with a given algorithm under different RF

environments would be very difficult to enumerate explicitly.

The biggest challenge in rate adaptation algorithm design is the difficulty of determining whether losses are due

to bit errors resulting from poor channel quality or due to collisions with other transmissions. In the former case,
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switching to a lower rate is helpful because lower rates are more robust to bit errors, and lowering the rate will

decrease packet loss. However, in the latter case, switching to a lower rate is the incorrect course of action because(a)

it will not reduce losses, and(b) it will make the throughput worse than it would have been at the higher rate because

of the unnecessary transmission rate reduction.

Rate adaptation algorithms fall into three categories, those that use physical layer information such as signal-to-

noise ratio (SNR) to trigger rate changes, those that use frame level information such as packet loss and throughput,

and hybrid algorithms that combine features of both SNR-based and frame-based algorithms. SNR-based algorithms

are highly responsive because SNR information is updated in a meaningful manner with every packet transmission,

allowing SNR-based algorithms to adapt the rate at single packet granularity when the RF environment changes.

Frame-based algorithms are slower to respond because they need to aggregate loss and throughput information over

multiple packets to correctly detect a change in the RF environment. However, SNR-based algorithms have a high

overhead because they assume the use of the 802.11 RTS/CTS packet exchange to gauge channel quality. SNR-based

algorithms are often rendered impractical because they require changes to standard 802.11 headers to communicate

channel quality information from the receiver to the sender. Hybrid algorithms attempt to combine the practicality and

low overhead of frame-based algorithms with the agility of SNR-based algorithms.

Projects such as [24, 132, 30, 136] have developed frameworks for characterizing the performance of rate adapta-

tion algorithms. They evaluate rate adaptation algorithms based on(a) how quickly they adapt to changes in the RF

environment,(b) whether the rate they select is optimal for the prevailing conditions, and(c) whether conventional

wisdom principles on which algorithm design is based do indeed hold in practice. Such efforts have yielded important

insight into the relative merits of rate adaptation algorithms under a range of network conditions. Gudipatiet al. in [50]

present a packet coding mechanism that automatically handles rate adaptation. Our work is complementary to these

efforts.

2.3.1.1 Frame-based Rate Adaptation Algorithms

Kamermanet al. in [66] present the well-known frame-basedAuto Rate Fallback (ARF)algorithm for rate adapta-

tion. After the first packet loss,ARF retransmits at the current rate, but after the second consecutive loss, it transmits

at the next lower rate and starts a timer. It increases the rate to the next higher level when either the timer expires

or when10 consecutive packets are transmitted without loss. However, if the current rate is optimal (i.e., the highest

sustainable without loss in prevailing conditions), trying a higher rate after every10 successful transmissions is a bad

strategy because it leads to unnecessary loss. Lacageet al. in [74] propose a solution to this problem in the form of

theAdaptive Auto Rate Fallback (AARF)algorithm. If, when a higher rate is tried after10 successful transmissions

and a loss results, the interval after which the higher rate is tried the next time is doubled to20 packets and so on, up

to a maximum of50 packets. This approach attempts to balance the elimination of unnecessary losses while retaining

the responsiveness to quickly take advantage of favorable RF conditions to boost throughput. Chevillatet al. in [33]
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present a similar adaptive approach to probing for higher rates. They propose having two different probing frequen-

cies, one low and one high. Their algorithm probes at the high frequency as long as probe loss stays below a certain

threshold, and switches to the lower frequency when loss exceeds the threshold.

Bicket in [24] significantly advances the state of the art in frame-based algorithms by observing that the assumption

that a higher bit rate will always result in higher loss in a given environment is not necessarily true. The actual

relationship between loss rate and bit rate depends on the modulation, the encoding of the rate, and the amount of

noise in the RF environment. Bicket designs theSampleRatealgorithm based on this observation. Instead of using

loss thresholds and merely increasing or decreasing the bit rate to the next higher or next lower level like earlier

algorithms do,SampleRateexplicitly calculates throughput for different rates under prevailing network conditions and

selects the rate that maximizes throughput even though this rate may not be the next highest or lowest relative to the

current rate.SampleRatecalculates throughput at rates other than the current rate by sending 10% of packets at other

rates. The rates thus sampled are chosen intelligently,i.e., only those rates, based on modulation and encoding, that

can potentially increase throughput relative to the current rate are sampled.

2.3.1.2 SNR-based Rate Adaptation Algorithms

Holland et al. in [56] present theReceiver-Based AutoRate Protocol (RBAR), an SNR-based rate-adaptation al-

gorithm where the receiver picks the bit rate. The receiver picks the highest rate that keeps BER below a certain

threshold. Since the relationship between SNR and BER is environment-specific,RBARuses an analytical model to

estimate it. The motivation behind receiver-based rate selection is that the packet’s SNR information upon reception

is available at the receiver and not at the sender (which only knows whether the packet was successfully transmitted

or lost), and the finer-grained SNR information facilitates better rate selection and allows the rate to be changed at

per-packet granularity if necessary. The disadvantage ofRBARis that it assumes the use of RTS/CTS and changes to

RTS/CTS headers to allow the receiver to communicate the rate to the sender.

Pavonet al. in [99] present a more practical SNR/RSSI-based approach based on the assumption of link reciprocity

on the sender-receiver and receiver-sender directions. The sender observes all the receiver’s packet transmissions re-

gardless of their destination and records the RSSI and the number of retransmissions. The sender uses the relationship

between the RSSI and the number of transmissions to pick a rate that keeps losses below a certain threshold, assuming

that the behavior of its transmissions to the receiver will be similar due to link reciprocity. While this algorithm does

not assume the use of RTS/CTS or changes to 802.11 headers, it assumes the presence of enough transmissions from

the receiver to estimate accurately the relationship between RSSI and loss rate. Juddet al. in [65] presentCHARM,

another algorithm that uses link reciprocity and observations of the receiver’s transmissions to allow RSSI-based rate

control by the sender without the use of RTS/CTS or changes to 802.11 headers for both stationary and vehicular

nodes. Zhanget al. in [139] present an SNR-based rate adaptation algorithm that filters out the effect of interference

on SNR so that rate decreases occur only due to increase in channel noise and not due to increase in interference.
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2.3.1.3 Hybrid Rate Adaptation Algorithms

Sadeghiet al. in [107] presentOpportunistic Auto Rate (OAR), a medium access and reservation scheme designed

to increase network throughput in conjunction with SNR-based rate adaptation algorithms. It is based on the obser-

vation that the RF environment changes on the granularity of multiple packet transmissions rather than single packet

transmissions, so when an SNR-based algorithm decides to increase the rate, it should reserve the medium for multiple

packet transmissions to make the most of good channel conditions. However,OARassumes the presence of RTS/CTS

so it is not implemented in practice.

Haratcherevet al. in [53] present a hybrid rate adaptation algorithm designed specifically for real-time stream-

ing multimedia content. The algorithm has two operating modes, one for stable channel conditions, and one for

volatile (i.e., rapidly changing) channel conditions. Under stable conditions, a frame-based rate adaptation algorithm

is deployed to maximize throughput, but under volatile conditions an SNR-based approach that can adapt the rate at

per-packet granularity is deployed to lower the rate rapidly if needed to meet real-time constraints.

Collision-Aware Rate Adaptation (CARA)[70] is a frame-based algorithm that uses RTS/CTS. It improves onARF

by including sender-side RTS/CTS-based heuristics to determine whether losses are due to channel noise or interfer-

ence, and decreases the rate only in response to increase in the former. Hence, it incurs the RTS/CTS overhead, but

because it is a sender-side-only algorithm, it does not require changes to 802.11 headers. TheRobust Rate Adapta-

tion Algorithm (RRAA)presented in [132] uses short term frame-based performance averages, rather than the longer

term averages used by otherARF-based algorithms, to increase rate adaptation agility. It also uses an RTS/CTS-based

heuristic to distinguish between noise and collision losses. TheHistory-Aware Robust Rate Adaptation Algorithm

(HA-RRAA)[101] improves onRRAAby including recent channel dynamics history in rate change decisions. Wanget

al. in [130] attempt to solve the problem of rate adaptation algorithms mistaking interference for channel noise using a

mathematical model of packet transmission time. Xuet al. in [134] propose optimizations that allow algorithms such

asSampleRate[24] andCHARM[65] to work well in vehicular environments.

Vutukuru et. al in [129] present a cross-layer rate adaptation scheme that attempts to combine the best of all

approaches,i.e., the agility of SNR-based methods, the zero traffic overhead of frame-based methods, and the ability

to distinguish between losses due to collisions and channel noise. However, this approach requires changing the

interface between the device driver and the wireless card to provide more physical layer information to the driver, so

it is not practical for current commodity hardware.

2.3.2 Trace-based Network Application Identification

Our work identifies the 802.11 rate adaptation algorithms deployed in a network based on the analysis of passively

acquired network packet traces. There is a large body of work in the literature that focuses on identifying the ap-

plications (web, peer-to-peer, bulk transfers, interactive, transactional, etc.) deployed in a network. While our work
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deals with identifying rate adaptation algorithms at the MAC layer, and the application classification work deals with

identifying phenomena at the application layer, both are similar in that they arein the darkapproaches,i.e., both

approaches are based on the recognition of implicit characteristics such as the statistical or time series patterns in the

traces rather than explicit characteristics such as port numbers or packet payload contents. We outlinein the dark

application classification approaches in this section.

There are two main motivations for application classification.2 The first is to allow network administrators to track

how their networks are being used, and to facilitate tasks such as resource allocation and blocking of undesirable

applications. The second is to enable traffic to be assigned appropriate priorities based on the application’s quality

of service (QoS) needs. Applications have been traditionally identified based on the ports they use, but over the last

decade this technique has become ineffective due to the use of non-standard ports by several classes of applications

such as P2P and due to applications using HTTP as the underlying protocol. And, as encryption of network data has

become the norm, application classification techniques no longer have access to application data. Techniques forin

the darkapplication classification have been developed in response to the prevalance of non-standard port numbers

and packet payload encryption.

There are two major approaches toin the darkapplication classification. The first is flow-level classification based

on various moments of packet trace features such as packet size, packet count, packet interarrival time and data volume.

The second is based on considering thesocialsignature of an application,i.e., by analyzing how many other hosts and

ports it communicates with and whether it is a producer or consumer of data.

Techniques that identify applications based on flow-level classification have two key components. The first is the

selection of a set of flow level features, such as packet counts, packet sizes, and packet interarrival times, that are

believed to be most useful in distinguishing between applications. The second is the selection of classification tech-

niques for calculating the degree of similarity between feature vectors to infer the application class of a flow. Roughan

et al. [106] use k-Nearest-Neighbor and Linear Discriminant Analysis for classification. Since these classification

techniques work well only for a small number of features, they experiment with small subsets of features such as

various moments of packet size, flow duration, data volume, number of packets, advertised windows and packet inter-

arrival times. They find that the most effective three features for classification are average packet size, flow duration,

and interarrival time variability. McGregoret al. [85] use Expectation Maximization (EM) on minima, maxima and

quartiles of packet sizes, interarrival times, byte counts, connection durations, numbers of transitions between bulk

and transaction modes and the amount of idle time spent in bulk and transaction mode to classify flows. Erman [41]

use K-Means, a partition-based algorithm, and DBSCAN, a density-based algorithm, on features similar to those used

in [85], and find that both these algorithms are more computationally efficient than EM. Mooreet al. [89] use Näıve

2A third motivation is distinguishing between legitimate and malicious application traffic. In this section, we limit ourselves to the classification
of legitimate applications. The identification of malicious traffic is discussed in Chapter 3 Section 3.7.
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Bayes and Näıve Bayer Kernel estimation for flow classification – the latter method, unlike the former, does not re-

quire feature values to be normally distributed. They begin with a set of 248 features, and use heuristics to eliminate

irrelevant or redundant features to improve classification accuracy. Wrightet al. [133] use Hidden Markov Models to

identify applications. Crottiet al. [35] use normalized thresholds on the Probability Density Functions (PDFs) of flow

properties such as packet size, packet direction, packet arrival order and interarrival time for application classifica-

tion. Turkettet al. [64] use Support Vector Machines for application classification. In addition to using conventional

features such as the number of different TCP packet types in the flow, interarrival times and packet sizes, they use

features generated from the flow’sspectrum kernel[78], which is a kernel (Chapter 3, Section 3.5) particularly suited

for SVM-based classification of strings.

All the application classification approaches discussed so far classify a flow after its completion. Bernailleet

al. [21, 20] present anonline early application identificationapproach. Online early application idenfication is impor-

tant because it facilitates appropriate handling of the flow in a timely manner,e.g., by giving it the resources needed

for QoS support or blocking it if it is a prohibited application. Their approach classifies an application based on the

size and direction of the firstP packets of a flow. The classification techniques they use include K-Means, Gaussian

Mixture Models, and Spectral Clustering on Hidden Markov Models. Senaet al. [111] also use the size and direction

of the firstP packets for early application classification, but use SVMs as the classification technique.

The studies discussed so far classify applications based on individual flows. Other classification studies consider

flow aggregates through backbone routers. Souleet al. [117] use histograms based on mean flow bandwidth and

Dirichlet Mixture Processes to cluster flows according to the amount of data transferred intoelephants, buffaloes, mice

anddragonflies, and identify other distinguishing properties of each cluster. Xuet al.[135] use an information theoretic

approach to the classification of flow aggregates, using the entropy in the distributions of source and destination IP

addresses and ports to cluster flows by applications and also to distinguish between legitimate and malicious traffic.

Karagianniset al. [67] are the first to classify applications based onsocialbehavior,i.e., by studying the commu-

nication patterns between sets of hosts. They look at communication patterns at three different levels of detail – the

social level, which considers the number of hosts a given host communicates with, the functional level, which con-

siders whether a host is a consumer or producer of data or both, and the transport level, which considers the patterns

of port number usage – and use the combination of information at each level to come up with a final classification.

Allan et al. [11] also classify applications based on their social behavior. They use a graph-theoretic classification

approach. They construct graphs based on host communication patterns, and search formotifs, which are frequently

occuring subgraphs, to identify similar applications. The main problem associated with this approach is that it scales

poorly as the size of subgraphs increases. Finally, Szaboet al. [121] use a combination of the social approach [67]

and the information theoretic approach [135] for application classification, and find that the combination improves the

classification confidence and reduces the amount of unclassified traffic.
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2.3.3 Our Contributions Relative to Prior Work

To our knowledge, there have been no other efforts to identify the rate adaptation algorithms deployed in a wireless

network. Our work is complementary to work on the design of 802.11 rate adaptation algorithms. In this section, we

discuss why there was a need for an effort such as ours for 802.11 rate adaptation algorithm identification,i.e., why

some technique from the large body of work onin the darkapplication identification presented in Section 2.3.2 cannot

be used directly or with trivial adaptations for 802.11 rate adaptation algorithm identification.

802.11 rate adaptation algorithms are a MAC layer feature, and algorithm behavior depends only on the unidi-

rectional loss rate on the link under consideration. As a result, the type of information available for rate adaptation

algorithm identification is significantly different from what is available for application identification. Specifically,

methods based on the social behavior of hosts and applications, such as [67, 11] cannot be used because rate adapta-

tion algorithm behavior is specific to one link. Methods that use the size and direction of packets [21, 20, 111] cannot

be used either because rate adaptation algorithms(a) deal with unidirectional links and(b) packet payload size is a

construct of the transport and application layer, and rate adaptation algorithm behavior does not depend on packet size.

Adapted versions of flow-feature based classification techniques such as [106, 85, 41, 89, 133, 35] can potentially

be used for 802.11 rate adaptation algorithm identification. However, our work is distinguished from these methods

by (a) our choice of SVM for classification and(b) our feature selection.

The use of SVM as the classification method sets our work apart from the above-mentioned flow-feature based

classification efforts. SVM is a much more powerful and robust classifier compared to techniques such as k-Nearest-

Neighbor, Linear Discriminant Analysis, Expectation Maximization and Naı̈ve Bayes because(a) it does not impose

any restrictions on the properties of input features such as requiring them to be independent or normally distributed,

and(b) it can easily and efficiently handle large numbers of input features. Both these properties of SVM are essential

for rate adaptation algorithm classification because the input features are neither independent nor normally distributed.

Our careful feature selection also sets our work apart from the above-mentioned flow-feature based classification

efforts. Most of these efforts are based on the use of a small number of key features such as packet size and packet

interarrival time because(a) a small number of features are sufficient for application classification, and/or(b) the clas-

sification methods used can handle only a small number (2–10) of features. However, as Chapter 6 Section 6.4 shows,

a large number (approximately4000) of carefully selected features are necessary for high classification accuracy for

rate adaptation algorithms.

Turkett et al. [64] use SVMs for application classification so they are not restricted in terms of the number of

input features they can use. In addition to using conventional features such as packet sizes and interarrival times,

they generate features using a string kernel called thespectrum representation. In contrast, our method is able to

generate high classification accuracy using only a linear kernel. Unlike [64], our input features do not undergo any

complicated mapping before classification, so with our technique it is possible to explain classification accuracy in
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terms of the choice of features (Chapter 6 Section 6.4). Hence careful feature selection and the ability to provide

an intuitive explanation of the relationship between feature selection and accuracy in spite of the presence of a large

number features are key contribution of our work and set it apart from prior work.
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Chapter 3

Support Vector Machines

Computer networks are becoming more complex with time due to the increased sophistication of deployed tech-

nologies, protocols and algorithms and the growth in network scale in terms of the number of users and the volume

of data transferred. As the number of variables affecting network performance increases, performance analysis using

conventional formula-based and history-based techniques becomes challenging or even impossible. Machine learning

techniques, which are designed to handle complex relationships between large numbers of variables, have thus been

gaining popularity as an alternative to conventional network analysis methods. In this dissertation, we make a case

that Support Vector Machines (SVMs), a state-of-the-art machine learning technique, offers an effective framework

for network performance analysis in the face of growing network complexity.

In this chapter, we present an overview of SVMs. Our objective is to provide the reader with a catalog of the

main ideas behind SVMs. The explanations and derivations presented in this chapter, borrowed from a wide variety

of sources [55, 19, 25, 90, 22, 88], are based on geometric arguments and have been selected for their simplicity and

clarity. Mathematically rigorous treatment of SVMs can be found at [126, 109, 113].

3.1 Overview

SVMs are one of the most accurate, if not the most accurate, ”out-of-the-box” supervised learning methods avail-

able at present. SVMs are able to capture complex relationships between large numbers of variables while remaining

computationally efficient. They have the advantage of being firmly grounded in statistical learning theory [126] while

at the same time delivering high accuracy in practice for a diverse set of applications such as text categorization [62],

face identification [93] and bioinformatics [110].

Three concepts are fundamental to the understanding of SVMs:maximum margin linear classifiers, Lagrangian

duality, andkernels.

In the training phase, SVMs take as input labeled data points from differentclasses, where classes correspond to

categories from the problem domain, and construct alinear classifierto separate the classes. In the test phase, the

SVM has to assign a class label to unlabeled data points, and the goal is to maximize the classification accuracy.
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SVMs are based on the idea, formalized in statistical learning theory [126] that given a finite amount of training

data, the best accuracy on test data is achieved by finding the right balance between accurate classification of the

training data and thecapacityof the machine. The capacity of a machine is a measure of its expressiveness,i.e.,

its ability to learn complex functions. The greater the capacity of a machine, the more effectively it is able to learn

a particular training set. It is important that the machine have sufficient capacity to classify the training data with

reasonable accuracy, because if the training data cannot be classified accurately, it is unlikely that test data will be

classified accurately. On the other hand, a machine with high capacity canoverfit the training data,i.e., learn a

function that is so specific to the quirks and noise in the training data, that it will be unable to generalize to test data.

Statistical learning theory shows that themaximum margin linear classifier, i.e., the linear classifier or hyperplane

that separates the data such that it maximizes the distance between itself and the points closest to it in the training set,

strikes the optimal balance between accurate training set classification and capacity. The computation of the maximum

margin linear classifier is a constrained optimization problem with a quadratic objective and linear constraints, so it

can be solved using quadratic programming.

Instead of solving the SVM optimization problem in its original form, however, it is converted into itsLagrangian

dual form. There are two advantages of this switch. The first is that the optimization constraints are replaced by

constraints on the Lagrange multipliers, which can be solved more efficiently. The second is that input data appears in

the Lagrangian dual only in the form of dot products. This property turns out to be crucial for the extension of SVMs

for data that cannot be classified accurately by a linear boundary and requires non-linear boundaries.

The conventional solution for handling classification problems requiring non-linear boundaries is to map the data

into a higher dimensional space where the data can be separated by a linear boundary. The problem with this approach

is that working in high dimensional spaces is computationally expensive, sometimes too expensive to be practical.

However, since input data appears in the Lagrangian dual of the SVM optimization problem only in the form of dot

products,kernelscan be used to circumvent the computational intractability of working in high dimensional spaces.

Kernels are functions that can approximate the dot product of two points in a higher dimensional space directly,

without having to explicitly map the points into the higher dimensional space and then calculating the dot product.

Thus kernels give SVMs greater expressive power by enabling the construction of non-linear boundaries, but without

incurring the computational cost of working in higher dimensional spaces. The combination of Lagrangian duality and

kernels means that SVMs can construct complex, non-linear classifiers while retaining the form of a linear learning

method which has a solid theoretical foundation and well-understood properties.

SVMs are based on a convex optimization problem, so unlike methods such as neural nets and decision trees, they

do not suffer from the problem of local minima. The solution to the SVM optimization problem depends only on the

points closest to the margin,i.e., the points in the input that are the most difficult to classify accurately, rather than all

the points in the input. The fact that only a small number of input data points determine the solution to the SVM is
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known as thesparsenessproperty of SVMs, and allows SVMs to be applied to tasks such as text categorization and

bioinformatics that involve large amounts of data.

3.2 Linear Separation with Hyperplanes

We begin our overview of SVMs by introducing the concept of linear classifiers. SVMs are a type of a linear

two-class classifier,i.e., they are able to separate two classes using a decision boundary that is linear in the input.

Suppose that we have a set of samples that belong to two different classes, squares and circles, as illustrated in

Figure 3.1a. Let the class label for squares bey = +1 (positive samples) and that for circles bey = −1 (negative

samples). Letxd ∈ Rd be a vector of dimensiond, wherex is called the input vector and each field inx is a feature

or attribute that we expect will be useful for distinguishing between the two classes (squares or circles). The notation

xi denotes theith vector or example in a dataset ofN vectors{(xi, yi)}N
i=1. yi is the label associated withxi.

We want to devise a method to separate the two classes. We assume for now that the two classes are linearly

separable, and later extend to the case where the classes are non-separable. A large number of possible hyperplanes

can separate the two classes, three of which are illustrated in Figure 3.1b. We are now faced with the task of selecting

the best hyperplane to separate the classes. We would like to find a hyperplane that performs well not just on the

training examples, but also minimizesgeneralizationerror, i.e., misclassification error on test data. For this, we

introduce the concept of themarginof a linear classifier. The margin of a linear classifier is the width by which the

classifier boundary can be increased before it touches a data point,i.e., the distance of the closest example to the

decision boundary (Figure 3.1c). Results from statistical learning theory show that the maximum margin hyperplane,

i.e., the hyperplane with the widest margin, minimizes generalization error.

Statistical learning theory [126] deals with proving bounds on generalization error. It has shown that generalization

error is minimized by maximizing the classification accuracy for a finite-sized training set while at the same time

minimizing thecapacityof the linear classifier. Capacity is a measure of the complexity or expressive power of

classification functions. The higher the capacity of a classification function, the greater the complexity of the boundary

it can construct to separate training data. To effectively separate the training data, the classification function has to

have some minimal capacity. However, as the capacity of the classification function increases, the risk ofoverfitting

the training data increases, which in turn increases the risk of misclassifying test data. Hence what is required is

a classifier with the correct balance between maximizing accuracy on training data and minimizing capacity. The

maximum margin hyperplane is the classifier that achieves this balance.

An intuitive explanation for designating the maximum margin hyperplane as the best separating hyperplane, pre-

sented in [90], is the following. Consider Figure 3.1d, which illustrates three pointsA, B andC in the input space

belonging to the classy = +1. A is very far from the decision boundary, so if we are asked to make a prediction for

the value ofy atA, we can be quite confident thaty = +1 there. However,C is very close to the decision boundary, so

we are significantly less confident that it belongs to the classy = +1, because a small shift to the decision boundary
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would have changed the classification toy = −1. B lies betweenA andC, so our confidence in its classification as

y = +1 is somewhere in between as well. We would like to be bothcorrectandconfidentin our classifications, and

an increase in distance from the decision boundary makes us more confident of the correctness of a classification. To

maximize the confidence in the classifications, we need to maximize the margin,i.e., to find the hyperplane with the

largest distance from the input samples. The determination of the maximum margin depends only on the points in

each class closest to the decision boundary. These points are known as thesupport vectors, and for our example are

circled in Figure 3.1e. We describe how to find the maximum margin classifier in the remainder of this section.

A key concept required for defining a linear classifier is thedot productor scalar productbetween two vectors

w>x =
∑d

i=1 wixi. A linear classifier is based on alinear discriminant functionof the form

f(x) = w>x + b (3.1)

The training data is linearly separable, so we classify the input as follows,

+1 if w>xi + b ≥ +1

−1 if w>xi + b ≤ −1
(3.2)

wherexi is a data point,w is a vector of weights perpendicular to the hyperplane and determines its orientation, and

b is they-intercept of the hyperplane (Figure 3.1e). The inequalities in (3.2) indicate that the separating hyperplane

divides the input data into two half spaces, with the sign off(x) determining whether a data point belongs to the

positive or negative class,i.e., determining the side of the hyperplane on which a point lies.

Our goal is to find the maximum margin hyperplane. For this, consider two additional hyperplanes parallel to a

separating hyperplane, such that one touches the support vectors of the positive class and the other the support vectors

of the negative class. We refer to the former as thePlusplane, and the latter as theMinusplane, Figure 3.1e1. We have

to find the maximum margin width, i.e., the distance between thePlusandMinusplanes, in terms ofw andb. To do

this, we scale the discriminant function (3.1) such that equality holds for both inequalities in (3.2) for the points on the

PlusandMinusplanes,

Plusplane:{x : w>x + b = +1}

Minusplane:{x : w>x + b = −1}

Let x− be any point on theMinusplane, andx+ be the closest point tox− on thePlus plane. Thenx+ = x− + λw

for some value ofλ, becausew is perpendicular to both thePlusandMinusplane. It follows from the definitions of

1This explanation is borrowed from [88]
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x+ andx− that

w>x+ + b = +1 (3.3)

w>x− + b = −1 (3.4)

x+ = x− + λw (3.5)

The margin width,M , is the norm of the difference in the position vectors ofx+ andx−,

‖x+ − x−‖ = M (3.6)

Substituting (3.5) forx+ in (3.3) and solving forλ, we get:

w>(x− + λw) + b = 1

⇒w>x− + b + λw>w = 1

⇒− 1 + λw>w = 1

⇒λ =
2

w>w

(3.7)

HenceM , the margin width, is:

M = ‖x+ − x−‖ = ‖λw‖ = λ‖w‖ = λ
√

w>w =
2
√

w>w
w>w

=
2√

w>w
(3.8)

To maximize the marginM , we need to maximize 2√
w>w

, i.e., to minimize(w>w). Hence, for linear SVMs, we

have to solve the following optimization problem:

minimize
1
2
‖w‖2 (3.9)

subject to the constraints

w>xi + b ≥ +1 for yi = +1

w>xi + b ≤ −1 for yi = −1

The above constraints can be combined into one set of inequalities:

yi(w>xi + b)− 1 ≥ 0 i = 1, . . . , N (3.10)

whereN is the number of training samples.
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(a) Two classes to be separated (b) Many possible separating hyperplanes
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(e) Maximum margin hyperplane

Figure 3.1: Geometric representation of the linear Support Vector Machines optimization problem
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3.3 The Dual Formulation of the SVM Optimization Problem

The above constrained optimization problem has a convex quadratic objective and linear constraints, so it can be

solved using available commercialquadratic programming (QP)packages. However, we will transform the problem

with the use of Lagrange multipliers into a form that is more efficiently solvable by quadratic programs. This form

also allows the linear SVMs to be modified easily to non-linear SVMs, as discussed in Section 3.5.

Lagrange multipliers incorporate the constraints into the expression to be minimized or maximized. For a function

f(x) andm constraintsgi(x) = 0, the LagrangianL is defined as

L(x, α) = f(x) +
m∑

i=1

αigi(x)

The αi’s are the Lagrange multipliers. The values of thexi’s and αi’s are determined by setting the partial

derivatives to zero

∂L

∂xi
= 0 for 1 ≤ i ≤ n (n equations)

∂L

∂αi
= 0 for 1 ≤ i ≤ m (m equations)

and solving the resulting system ofm + n equations.

For positive constraints of the formci ≥ 0 such as (3.10), the rule is that the constraint equations are multiplied by

positive Lagrange multipliers and subtracted from the objective function to form the Lagrangian. Hence the Lagrangian

for the linear SVM optimization problem (3.9) with constraints (3.10) is

LP =
1
2
‖w‖2 −

N∑
i=1

αi(yi(w>xi)− 1) (3.11)

There are positive Lagrange multipliersαi’s, i = 1, . . . , N for each of the inequality constraints (3.10). We denote

the Langragian byLP , where the subscriptP means that this is theprimal formulation of the optimization problem.

The Langragian can be solved by setting the partial derivatives ofLP to zero

∂LP

∂w
= 0 ⇒ w =

N∑
i=1

αiyixi (3.12)

∂LP

∂b
= 0 ⇒

N∑
i=1

αiyi = 0 (3.13)

and by incorporating the Lagrangian constraints

αi ≥ 0 (3.14)
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Solving forw, b and allαi based on (3.12), (3.13) and (3.14) is a complicated task, so we turn to an alternate

formulation of the optimization problem known as theWolfe dual, LD. The Wolfe dual has the property that its

maximum subject to some constraintsCD occurs for the same values ofw, b andα, as the minimum ofLP subject

to some constraintsCP . (3.12) and (3.13) are equality constraints in the dual formulation, so we substitute them

into (3.11) to give

LD =
N∑

i=1

αi −
1
2

N∑
i,j=1

αiαjyiyjxixj (3.15)

The linearly separable SVM optimization problem is now

max
α

N∑
i=1

αi −
1
2

N∑
i,j=1

αiαjyiyjxixj (3.16)

with constraints

αi ≥ 0 (3.17)

N∑
i=1

αiyi = 0 (3.18)

The dual problem has constraints that are more manageable than that of the primal problem, and hence can be solved

more efficiently.

The Karush-Kuhn-Tucker (KKT) conditions, listed below, hold for the solutions of all support vector machines

because the constraints are always linear:2

∂LP

∂wv
= wv −

N∑
i=1

αiyixiv = 0 v = 1, . . . , d (3.19)

∂LP

∂b
= −

N∑
i=1

αiyi (3.20)

yi(w>xi + b)− 1 ≥ 0 i = 1, . . . , N (3.21)

αi ≥ 0 i = 1, . . . , N (3.22)

αi(yi(w>xi + b)− 1) = 0 i = 1, . . . , N (3.23)

According to (3.23), the KKTdual complementarycondition, for all instances whereyi(w>xi +b) 6= 1, i.e., when

a point is not on either thePlusplane or theMinusplane, it must hold thatαi = 0. Only for points that lie on either

thePlusor theMinusplane isαi > 0. Recall that these points are thesupport vectorsdiscussed in Section 3.2 and

illustrated in Figure 3.1e. The solution to the SVM,i.e., the maximum margin hyperplane, thus depends only on the

support vectors. In other words, if all other points were removed, or moved around but such that they do not cross the

2In the listing of the KKT conditions,i runs from1 to the number of training points, andv from 1 to the dimension of the data.



43

Plusor theMinusplane, the maximum margin hyperplane would not change. The fact that only the support vectors,

which are generally a small fraction of the input samples, affect the solution to the SVM is known as thesparseness

propertyof SVMs.

Once theαi values have been determined, we can computew as follows:

w =
Ns∑
i=1

αiyixi

whereNs is the number of support vectors.b is obtained by inserting the support vectors into the KKT dual comple-

mentary conditionαi(yi(w>xi + b)−1) = 0 and solving forb. For robustness, the average value ofb over all support

vectors should be used.

One of the benefits of the dual formulation is that the input data appears in the algorithms only in the form of dot

products. As we will discuss in Section 3.5, this allows for easy generalization to non-linear SVMs, and for efficient

computation in very high dimensional spaces.

So far, we have limited our discussion to binary SVMs,i.e., SVMs that can distinguish between only two different

input classes. Binary SVMs can be adapted to distinguish between multiple input classes. Such SVMs are known

asmulti-classSVMs. The simplest way to construct a multi-class SVM from a binary SVM is theone against all

approach. In this approach, if there areN classes,N different machines are computed, with each machine separating

one class from all the otherN − 1 classes. To classify a new input, a prediction is made with each machine, and the

predicted class is the one whose machine puts the input the farthest from the margin into the positive class. A number

of attempts have also been made to handle multiclass input in a single step [34, 131, 102].

3.4 Soft Margin Classifier

So far, we have looked at the case where the data can be separated by a linear boundary. We now look at how SVMs

handle the case where the data cannot be separated by a linear boundary. An example is presented in Figure 3.2a, with

the gray circles and squares indicating the samples that will be misclassified by a linear boundary. This often occurs

due to noise in real data. In such a case, it is better to misclassify a few points and find a robust wide margin rather

than finding a narrow linear margin or a nonlinear boundary using kernels (Section 3.5) because the last two result in

the classifieroverfittingthe training data and hence generalizing poorly to test data.

To handle non-separable data,slack variablesξi are introduced to relax the constraint (3.10) by allowing a point

to be a small distanceξ on the wrong side of the hyperplane:

yi(w>xi + b) ≥ 1− ξi, ξi ≥ 0 i = 1, . . . , N (3.24)
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Such a hyperplane, called asoft margin classifier, is illustrated in Figure 3.2b. Constraint (3.24) allows the trivial

solution where extremely large slacks will allow any line to ”separate” the data. To prevent this, a constant termC is

added to the objective function (3.9):

minimize
1
2
‖w‖2 + C

n∑
i=1

ξi (3.25)

The value of the constantC > 0 determines the tradeoff between maximizing the margin and minimizing the

number of misclassified samples. The Wolfe dual optimization problem is

max
α

N∑
i=1

αi −
1
2

N∑
i,j=1

αiαjyiyjxixj (3.26)

subject to

αi ≥ C (3.27)

N∑
i=1

αiyi = 0 (3.28)

ξi ≥ 0 (3.29)

The solution is again given by

w =
Ns∑
i=1

αiyixi

whereNs is the number of support vectors. Note that neither theξi’s nor their Lagrange multipliers appear in the

dual formulation, and the only difference from the separable case is that the upper bound on the value of theαi’s is C

instead of1. The value ofb can be calculated by considering the primal formulation of the problem and the KKT dual

complementary conditions – a complete derivation can be found in [25].

3.5 Nonlinear Support Vector Machines: Kernels

We now consider the case where a linear decision function cannot separate the data. This problem can be solved

by mapping the data using a functionΦ into a higher, possibly infinite, dimensional space in which the data is linearly

separable. The data points in the SVM optimization problem (3.16) are replaced by their mapping underΦ

max
α

N∑
i=1

αi −
1
2

N∑
i,j=1

αiαjyiyjΦ(xi)Φ(xj) (3.30)

and the remainder of the analysis is carried out as before.

The problem here is that mapping into a higher dimensional space and then computing the dot product may be so

computationally expensive as to be infeasible. The solution to this problem is based on the observation that the input
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(a) Linearly inseparable classes

(b) Soft margin classifier

Figure 3.2: Soft-margin classifiers for linearly inseparable data
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data appears in the optimization problems (3.16) and (3.30) only in the form of dot products. There existkernelsK

such that

K(xi,xj) = ΦxiΦxj

i.e., the kernel is a function that computes the dot product of two points very efficiently, without having to map the

points into higher dimensional space or without even knowing explicitly what the mapping is. SVMs use kernels to

eliminate the problem of computing with vectors in very high dimensional space. With the use of kernels, the SVM

optimization problem (3.16) becomes

max
α

N∑
i=1

αi −
1
2

N∑
i,j=1

αiαjyiyjK(xi,xj) (3.31)

This leads us to the question of how to find kernels. Mercer’s theorem states that any symmetric positive semidefinite

matrix is a kernel in some space. Two kernels that perform very well for SVMs are the polynomial kernelK(xi,xj) =

(xi>xj)d, which maps the input data into a finite dimensional space, and the Radial Basis Function (RBF) kernel

K(xi,xj) = exp(−γ‖xi − xj‖2), which maps the input data into an infinite dimensional space.

Intuitively, the value ofK(xi,xj) is a measure of the similarity between the pointsΦ(xi) andΦ(xj). If the points

are similar, the dot product,i.e., the value ofK(xi,xj) is large, and if the points are dissimilar or orthogonal, it is very

small or zero. If the mappingΦ is into a space with many irrelevant features, the kernel matrix becomes diagonal and

without any clusters or structure, and the resulting margin will not separate the two classes very effectively. A pitfall

at the other end of the spectrum is the introduction of an excessive amount of structure by mapping the input data into

an overly complicated space, which results inoverfitting, i.e., the boundary becoming so specific to the training data

that it will not generalize well to test samples. This problem is known asthe curse of dimensionality. In both cases,

the outcome will be poor classification accuracy on test data. To avoid both these problems, kernels that measure the

similarity between points accurately are needed. An understanding of what makes data points similar or dissimilar

generally depends on the domain of the data, so a good understanding of the input data and the problem domain is

needed to select a good kernel.

3.6 Support Vector Regression

We now describe how SVMs are used for regression. We present the case where the candidate function is linear in

the input. Non-linear regression functions can be handled using kernels as discussed in Section 3.5.

For Support Vector Regression (SVR), the input data is in the form{(x1, y1), . . . ,xn, yn)}, wherexi ∈ Rd is

an input vector of dimensiond andyi is the measured value of the function atxi. The function to be deduced is

approximated by a linear function of the form

f(x) = w>x + b (3.32)
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and similar to the classification case we have to determine the value of the weight vectorw and they-interceptb. The

goal is to find a flatw, i.e., a smallw. One definition of the smallness ofw is to minimize its norm‖w‖2 = w>w, and

SVR uses this definition. SVR usesε-insensitive loss, illustrated in Figure 3.3b, as the constraint for this minimization.

ε-insensitive loss means that our goal is to find a functionf(x) that deviates at mostε from the measured valuesyi.

Errors larger thanε are not acceptable, or are penalized, as we will discuss in (3.34). The SVR optimization problem

can be written as

minimize
1
2
‖w‖2 (3.33)

subject to the constraints

w>xi + b− yi ≥ −ε

w>xi + b− yi ≤ ε

Figure 3.3a illustrates the optimization problem geometrically. The solid line through the points corresponds to the

casew>xi + b− yi = 0. The points within a tube of radiusε around this line correspond to the points that satisfy the

above constraints. For real data, it is generally unrealistic to assume that a functionf exists that approximates all pairs

(xi, yi) within the margin ofε, so we allow some errors by introducing slack variablesξi andξi∗, with the former

indicating overestimation errors and the latter underestimation errors. However, to prevent the trivial solution where

very large slack allows every linear function of the form (3.32) to be a solution to the optimization problem, a cost

function which scales the slack variables by a constantC > 0 is added to the term to be minimized.C determines the

tradeoff between minimizing‖w‖2 and minimizing the amount of allowed error. The SVR optimization problem with

slack variables becomes

minimize
1
2
‖w‖2 + C

n∑
i=1

(ξi + ξi∗) (3.34)

subject to

w>xi + b− yi ≥ −ε− ξi∗

w>xi + b− yi ≤ ε + ξi

ξi, ξi∗ ≥ 0

Only the points outside the tube of radius ofε in Figure 3.3a contribute to the cost term in (3.34). The amount of

penalty associated with an error is linear in the magnitude of the error, as illustrated by the dotted box in Figure 3.3a

and dotted lines in Figure 3.3b.

Similar to SVMs, the SVR optimization problem can be solved more easily in its Lagrangian dual form and using

the KKT conditions, complete derivations of which can be found in [113].
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(w.x + b) – y = - ε   

(w.x + b) – y = ε   
(w.x + b) – y = 0    

ζ 

(a) Margin width calculation for SVR

- ε ε 

ζ 

(b) Epsilon-insensitive loss for SVR

Figure 3.3: Geometric representation of Support Vector Regression (SVR)
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3.7 Applications of SVMs in Computer Networking

In this section, we present examples of the use of SVMs for solving problems related to computer networking.

The goal is not to provide an exhaustive listing of the use of SVMs, but rather to provide a flavor of the type of

problems most amenable to SVM-based solutions. We present three example problems,(a) network intrusion and

anomalous traffic detection,(b) node localization in wireless networks, particularly wireless sensor networks, and(c)

link adaptation in MIMO-OFDM wireless networks.

Network intrusion or anomaly detection problems are natural candidates for SVM-based solutions because they

require traffic to be classified as either normal or anomalous based on empirical data,i.e., based on labelled examples

from packet traces rather than based on some formula or model. Example of studies that use SVMs for intrusion

detection are [119, 57]. Sunget al. [119] state that SVMs are particularly suited for intrusion detection for a number

of reasons. The first is that unlike other learning methods SVMs can handle high dimension feature vectors efficiently

because of their sparseness property, (Section 3.3),i.e., the computational cost of finding a classifier depends on the

number of support vectors rather than the dimensionality of the feature vectors. The second is that SVMs do not suffer

from the problem of overfitting even when the feature vector has high dimensionality. The third is that due to their

high computational efficiency SVMs can be used for intrusion detection in real time.

Node localization is the problem of determining the physical location of a node in either a wireless sensor network

or an indoor wireless network. GPS-based localization cannot be used in sensor networks because sensor nodes are

cheap low-end nodes that are not equipped with GPS. GPS does not work well for indoor environments so it cannot be

used for indoor wireless networks. Hence, in both cases, alternative localization techniques are needed. SVM-based

techniques determine node location by hierarchically dividing the area under consideration into progressively smaller

two-dimensional cells. The classification problem is finding the cell a node belongs to. The key to SVMs’ success

in node localization, specially for sensor networks (in addition to high accuracy), is the extremely low memory and

computation cost imposed on sensor nodes. Examples of studies that apply SVMs to the node localization problem

include [125, 71, 42].

SVMs have also been used for link adaptation in multiple-input multiple-output orthogonal frequency division

multiplexing (MIMO-OFDM) wireless links. MIMO-OFDM links are extremely attractive because they can dramat-

ically improve wireless throughput without using a broader frequency spectrum. However, there are two challenges

in realizing the throughput gains in practice. The first is that link peformance is affected by a very large number of

factors. The second is that even if a method (most likely learning-based) can be found to solve the link adaptation

problem, its resource requirements in terms of processing power and memory would be too high to allow it to be used

in real time. SVMs solve both problems. They can handle complicated non-linear relationships between large numbers

of variables, and the sparseness property (Section 3.3) allows the solution to be computed efficiently. Examples of

studies that apply SVMs to the link adaptation problem include [137, 37, 138].
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Chapter 4

Wireline Throughput Prediction

4.1 Overview

The availability of multiple paths between sources and receivers enabled by content distribution, multi-homing,

and overlay or virtual networks suggests the need for the ability to select thebestpath for a particular data transfer. A

common starting point for this problem is to definebestin terms of the throughput that can be achieved over a particular

path between two end hosts when transferring a given size file using TCP. In this case, the fundamental challenge is

to develop a technique that provides an accurate TCP throughput forecast for arbitrary and possibly highly dynamic

end-to-end paths.

There are several difficulties in generating accurate TCP throughput predictions. Prior work on the problem has

largely fallen into two categories, those that investigateformula-basedapproaches and those that investigatehistory-

basedapproaches. Formula-based methods, as the name suggests, predict throughput using mathematical expressions

that relate a TCP sender’s behavior to path and end host properties such as RTT, packet loss rate and receive window

size. In this case, different measurement tools can be used to gather the input data that is then plugged into the formula

to generate a prediction. However, well-known network dynamics and limited instrumentation access complicate the

basic task of gathering timely and accurate path information, and the ever evolving set of TCP implementations means

that a corresponding set of formula-based models must be maintained.

History-based TCP throughput prediction methods are conceptually straightforward. They typically use some

kind of standard time series forecasting based on throughput measurements derived from prior file transfers that are

gathered either passively (e.g.,by tapping a link) or actively (e.g.,by periodically sending a file). In recent work, He

et al. [54] present convincing evidence that history-based methods are generally more accurate than formula-based

methods. However, [54] also carefully outline the conditions under which history-based prediction can be effective.

Furthermore, history-based approaches described to date remain relatively inaccurate and potentially heavyweight

processes focused on bulk transfer throughput prediction.

The objective of our work is to develop an accurate, lightweight tool for predicting end-to-end TCP throughput for

arbitrary file sizes. To achieve this goal, we investigate the hypothesis that the accuracy of history-based predictors can
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be improved and their impact on a path reduced by augmenting the predictor with periodic measurements of simple

path properties. The specific issues our work addresses include the following:

1. identifying the path properties or combination of path properties that maximize the accuracy of TCP throughput

prediction,

2. identifying the minimum set of file sizes required to generate accurate throughput predictors for arbitrary file

sizes,

3. designing a predictor that is robust tolevel shifts, i.e.,is able to resume accurate predictions as quickly as possible

following significant changes in path properties, because [54] has shown that this is a significant challenge for

history-based predictors, and

4. including a confidence value with predictions, a metric that has received little attention in prior TCP throughput

prediction literature.

To resolve the above-listed issues associated with the problem of TCP throughput prediction, we use Support

Vector Regression (SVR), a powerful machine learning technique, described in detail in Chapters 1 and 3.

In Chapter 1 Section 1.1 we discuss the criteria on which any new solution to a network performance analysis

problem is evaluated, namely that it has to be at least as accurate as, and ideally more accurate than, existing solutions,

and make tradeoffs between accuracy, analysis comprehensiveness, extensibility and maintenance, robustness, agility

and practicality that are no worse than, and ideally better than, existing solutions. In the remainder of this section,

we outline how our SVR-based TCP throughput predictor improves upon the prior art based on all of the above-listed

criteria.

We begin by using laboratory-based experiments to investigate how TCP throughput depends on path properties

such as available bandwidth (AB), queuing delays (Q), and packet loss (L). The lab environment enables us to gather

highly accurate passive measurements of throughput and all path properties, and develop and test our SVR-based

predictor over a range of realistic traffic conditions. Our initial experiments focus on bulk transfers. We compare

actual TCP throughput with predictions generated by multiple instances of our SVR-based tool trained with different

combinations of path properties. Our results show that for bulk transfers under heavy traffic conditions (90% average

utilization on the bottleneck link), the SVR-based predictor is 3 times more accurate than a history-based predictor,

with 87% of predictions within 10% of actual throughput in contrast to only 32% within 10% of actual for the history-

based predictor. Our initial tests were based entirely on passive measurements which are unavailable in the wide

area, so we tested our SVR-based approach using practical but less accurate active measurements ofAB, Q, andL.

The reduction in accuracy of active versus passive measurements resulted in a corresponding reduction in accuracy of

SVR-based throughput predictions for bulk transfers under heavy traffic conditions from 87% to 49% of predictions
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within 10% of actual. However, even with practical active measurements, the SVR-based predictor outperforms the

history-based predictor by a factor of 1.6. Hence the SVR-based approach meets the improved accuracy criterion using

both high accuracy laboratory-based passive measurements and practical active measurements.

SVR allows us to experiment with different combinations of path properties as input features for TCP throughput

prediction. Using this capability, we find that the path properties that provide the most improvement to the SVR-

based predictor areQ andL respectively, and that includingAB provides almost no improvement to the predictor.

This is good news, because active measurement techniques forQ and L are lightweight while those forAB are

heavyweight. We show that SVR-based throughput prediction using active measurements ofL andQ results in a

factor of 13 lower network probe load compared to prior history-based methods using long-lived TCP transfers as

described in [54]. Hence the SVR-based approach succeeds on the practicality criterion for network performance

analysis method evaluation.

Prior history-based throughput prediction studies focus only on bulk transfers. Prior formula-based studies handle

throughput prediction for a variety of file sizes, but as illustrated by [54], they are quite inaccurate in practice even for

bulk transfers. The SVR-based approach can predict throughput accurately for a wide range of file sizes when file size

is included in the SVR feature vector. We found that a training set of only three file sizes results in accurate throughput

predictions for a wide range of file sizes. The ability to extrapolate from three file sizes in training to a wide range

of file sizes in testing demonstrates SVR’s ability to capture complex relationships between variables. By effectively

predicting throughput for a variety of file sizes based on a training set of only three file sizes, the SVR-based enables

analysis comprehensiveness while keeping analysis complexity manageable.

Results from [54] showed thatlevel shiftsin path conditions cause significant problems for history-based through-

put prediction due to the difficulty of distinguishing between genuine changes in network conditions and outliers. We

extend the basic SVR predictor with a confidence interval estimator based on an assumption that prediction errors are

normally distributed, an assumption that we test in our laboratory experiments. Estimation of confidence intervals

is critical for on-line prediction, since retraining can be triggered if measured throughput falls outside a confidence

interval computed through previous measurements.

We implement the above capabilities, refined in our laboratory testbed, in a tool called PATHPERF, discussed in

detail in Section 4.5, that we tested on 18 diverse wide area paths in the RON testbed [13]. We find that PATHPERF

predicts throughput accurately under a broad range of conditions in real networks. Hence the SVR-based approach

meets the robustness criterion for network performance analysis method evaluation.

4.2 Experimental Setup

This section describes the laboratory environment and experimental protocol that we used to evaluate our through-

put predictor.
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4.2.1 Experimental Environment

The laboratory testbed used in our experiments is shown in Figure 4.1. It consisted of commodity end hosts

connected to a dumbbell-like topology of Cisco GSR 12000 routers. Both measurement and background traffic was

generated and received by the end hosts. Traffic flowed from the sending hosts on separate paths via Gigabit Ethernet

to separate Cisco GSRs (hop B in the figure) where it was forwarded on OC12 (622 Mb/s) links. This configuration

was created in order to accommodate a precision passive measurement system, as we describe below. Traffic from the

OC12 links was then multiplexed onto a single OC3 (155 Mb/s) link (hop C in the figure) which formed the bottleneck

where congestion took place. We used an AdTech SX-14 hardware-based propagation delay emulator on the OC3

link to add 25 milliseconds delay in each direction for all experiments, and configured the bottleneck queue to hold

approximately 50 milliseconds of packets. Packets exited the OC3 link via another Cisco GSR 12000 (hop D in the

figure) and passed to receiving hosts via Gigabit Ethernet.
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The measurement hosts and traffic generation hosts were identically configured workstations running FreeBSD

5.4. The workstations had 2 GHz Intel Pentium 4 processors with 2 GB of RAM and Intel Pro/1000 network

cards. They were also dual-homed, so that all management traffic was on a separate network than depicted in

Figure 4.1. We disabled the TCP throughput history caching feature in FreeBSD 5.4, controlled by the variable

net.inet.tcp.inflight.enable, to allow TCP throughput to be determined by path properties rather than throughput his-

tory.

A key aspect of our testbed was the measurement system used to establish the true path properties for our evalua-

tion. Optical splitters were attached to both the ingress and egress links at hop C and Endace DAG 3.5 and 3.8 passive

monitoring cards were used to capture traces ofall packets entering and leaving the bottleneck node. By comparing

packet headers, we were able to identify which packets were lost at the congested output queue during experiments,

and accurately measure available bandwidth on the congested link. Furthermore, the fact that the measurements of

packets entering and leaving hop C were synchronized at a very fine granularity (i.e., a single microsecond) enabled

us to precisely measure queuing delays through the congested router.

4.2.2 Experimental Protocol

We generated background traffic in our testbed by running the Harpoon IP traffic generator [114] between up to

four pairs of traffic generation hosts as illustrated in Figure 4.1. Harpoon produced open-loop self-similar traffic using

a heavy-tailed file size distribution, mimicking a mix of application traffic such as web and peer-to-peer applications

common in today’s Internet. Harpoon was configured to produce average offered loads ranging from approximately

60% to 105% on the bottleneck link (the OC3 between hops C and D).

For the measurement traffic hosts, we increased the TCP receive window size to 128 KB (with the window scaling

option turned on). In receive window limited transfers, file transfer throughput was approximately 21 Mb/s. That is,

if the available bandwidth on the bottleneck link was 21 Mb/s or more, the flow was receive window (rwnd) limited,

otherwise it was congestion window (cwnd) limited. We increased the receive window size because we wanted file

transfers to becwnd limited so we could evaluate our predictor thoroughly under variable throughput conditions.

rwnd-limited transfers have constant throughput for a givenrwnd size, so any reasonable predictor performs well on

rwnd-limited transfers. For this reason, we do not report any results forrwnd-limited flows.

As illustrated in Figure 4.2, measurement traffic in the testbed consisted of file transfers, active measurements of

AB using YAZ [116], and active measurements ofL andQ using BADABING [115]. We used the most accurate active

measurement tools available to us. If tools with greater accuracy become available in the future, their measurements

can seamlessly replace YAZ and BADABING measurements in the SVR analysis. We also measuredAB, L andQ

passively based on packet traces gathered using the instrumentation described in Section 4.2.1. All measurements are

aggregates for all flows on the path.
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8MB File Transfer
One Yaz Measurement: Active

 Measurement (AM) value of AB 

30 second Badabing
Measurement: Active 
Measurement (AM) 
values of L and Q

Oracular Passive 
Measurements

(OPM): AB, Q, and L obtained 
from packet trace taken 

during file transfer

Oracular Measurements:
during file transfer

Practical Measurements:
before file transfer

Practical
Passive Measurement
(PPM) of AB: obtained

from packet trace taken
during Yaz measurement

Practical Passive 
Measurement (PPM) of L 

and Q: obtained from 
packet trace taken 
during 30 second 

Badabing measurement Trace-based values of AB, Q, and L, both
oracular and practical, are aggregates for all 
TCP traffic, not just the foreground TCP flow 

time

Figure 4.2: Measurement traffic protocol, and oracular and practical path measurements used for SVR-based through-

put prediction.
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AB is defined as the spare capacity on the end-to-end path. YAZ estimatesAB using an iterative method, so

the time required to produce a singleAB estimate can vary from a few seconds to tens of seconds.The passive mea-

surement value ofAB is computed by subtracting the observed traffic rate on the link from the realizable OC3 link

bandwidth.

BADABING requires the sender and receiver to be time-synchronized. To accommodate our wide area experiments,

the BADABING receiver was modified to reflect probes back to the sender, where they were timestamped and logged

as on the original receiver. Thus, the sender clock was used for all probe timestamps. BADABING reports loss in terms

of loss episode frequencyand loss episode duration, defined in [115]. Although we refer toloss frequencyand loss

durationtogether asL or loss for expositional ease, these two metrics are two different features for SVR.Q is defined

as the difference between the RTT of the current BADABING probe and the minimum probe RTT seen on the path.

We set the BADABING probe probability parameterp to 0.3. Other BADABING parameters were set as described in

Section 4.5. Passive values ofQ andL are computed using the same definitions as above, except that they are applied

to all TCP traffic on the bottleneck link instead of only BADABING probes.

As shown in Figure 4.2, the measurement protocol is the following:

1. Run BADABING for 30 seconds.

2. Run YAZ to obtain an estimate of the available bandwidth.

3. Transfer a file.

In the remainder of this chapter, we refer to the above series of steps as a singleexperiment, and to a number of

consecutive experiments as a series. Experiments in the wide area omit the available bandwidth measurement. Indi-

vidual experiments in a series are separated by a 30 second period. Series of experiments differ from each other in

that either the background traffic is different between series, or the distribution of file sizes transferred is different, or

the experiments are conducted over different physical paths. Each series of experiments is divided into two mutually

exclusive training and test sets for the SVR. The SVR mechanism does not require that the sets of experiments that

form the training and test set be consecutive or contiguous in time. In contrast, history-based prediction methods

generally require consecutive historical information since they rely on standard timeseries-based forecasting models.

In our evaluation we use contiguous portions for training and test sets,i.e. the beginning part of a series becomes the

training set and the rest the test set. The number of experiments in training and test sets may be the same or different.

Notions of separate training and test data sets are not required for history-based methods; rather, predictions are made

over continuous notion of distant and recent history. In our evaluation of history-based methods, we use the final

prediction of the training set as the starting point for the test set.
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From each series of experiments, we gather three different sets of measurements. The first set, which we call

Oracular Passive Measurements (OPM), areAB, Q andL measurements during a file transfer that we obtain from

packet traces. We refer to these measurements asoracular because they give us essentially perfect information about

network conditions. In practice, this oracular information would not be available when making a prediction. We

use this information to establish the best possible accuracy of our prediction mechanism. The second set,Active

Measurements (AM), are the measurements from our active measurement tools. Note that, unlike theOPM, theAM

provideAB, Q andL values before the actual transfer. The third set,Practical Passive Measurements (PPM), are

trace-based measurements ofAB, Q andL taken at the same time asAM are taken. Their purpose is to show how

much better the prediction accuracy would be if the active measurements taken before a target transfer had perfect

accuracy. It should be noted that all passive measurements are aggregates for conditions on the path rather than being

specific to any single TCP flow.

We use theSV M light package [63] to construct our SVR-based predictor. The input features for the SVR-based

predictors areAB, Q, L and file size, and the target value is the TCP throughput. We scale orstandardizeeach input

feature by subtracting the feature mean and then dividing by the feature standard deviation The goal of standardization

is to prevent features with a larger original scale from having a bigger impact on the solution than those with a smaller

scale. We use a Radial Basis Function (RBF) kernel (Chapter 3, Section 3.5) because RBF kernels tend to have the

best accuracy in practice when the relationship between input features and the target value are known to be non-linear.

We set theSV M light parameterC from Equation 3.34 to3.162 and the RBF kernel parameterγ to 0.3162 based on

ten-fold cross-validation of our laboratory data. We have found these values to result in high preduction accuracy for

a variety of wide-area paths in addition to our laboratory environment.

For experiments in the wide area, we created a tool called PATHPERF. This tool, designed to run between a pair

of end hosts, initiates TCP file transfers and path property measurements (using our modified version of BADABING ),

and produces throughput estimates using our SVR-based method. It can be configured to generate arbitrary file size

transfers for both training and testing and initiates retraining when level shifts are identified as described in Section 4.5.

4.2.3 Evaluating Prediction Accuracy

We denote the actual throughput byR and the predicted throughput bŷR. We use the metricrelative prediction

error E introduced in [54] to evaluate the accuracy of an individual throughput prediction.Relative prediction error

is defined as

E =
R̂−R

min(R̂, R)

In what follows, we use the distribution of the absolute value ofE to compare different prediction methods.
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4.3 Building a Robust Predictior

This section describes how we developed, calibrated, and evaluated our prediction mechanism through an extensive

set of tests conducted in our lab test-bed.

4.3.1 Calibration and Evaluation in the High Traffic Scenario

The first step in developing our SVR-based throughput predictor is to find the combination of training features

which lead to the most accurate predictions over a wide variety of path conditions. We trained predictors using

features vector that contained different combination of our set of target path measurements (AB, Q, L) and the

measured throughput. We then compare the accuracy of the different predictors.

We also compare the accuracy of SVR to the exponentially weighted moving average (EWMA) History-Based

Predictor (HB) described in [54]:

R̂i+1 = αRi + (1− α)R̂i

with anα value of 0.3.

We do not report detailed results from tests with low utilization on the bottleneck link,i.e., receive window bound

flows, because in the low utilization scenarios there is very little variance in throughput of flows. Our SVR-based

predictor generated 100% accurate forecasts for these tests. However, any reasonable prediction method can forecast

throughput quite accurately in this scenario. For example, the formula-based predictor used in [54], which is based

on [98], performs poorly in high utilization scenarios, but is accurate in low utilization scenarios.

For most of the results reported, we generated an average of 140 Mb/s of background traffic to create high utiliza-

tion on our OC3 (155 Mb/s) bottleneck link. We used one set of 100 experiments for training and another set of 100

experiments for testing. In our initial experiments we transfer 8 MB files because this transfer size is large enough

to make slow-start an insignificant factor in throughput for our receive window size of 128 KB. In later sections we

consider smaller file sizes where slow-start has a bigger impact on overall throughput.

Figures 4.3a to 4.3l show scatter plots comparing the actual and predicted throughput using different prediction

methods as discussed below. A point on the diagonal represents perfect prediction accuracy; the farther a point is from

the diagonal, the greater the prediction error.

4.3.1.1 Using Path Measurements from an Oracle

Figure 4.3a shows the prediction accuracy scatter plot for the HB method. Figures 4.3b to 4.3h show the prediction

error with SVR usingOracular Passive Measurements (OPM)for different combinations of path measurements in the

feature vector. For example,SVR-OPM-Queuemeans that only queuing delay measurements were used to train and

test the predictor, whileSVR-OPM-AB-Queuemeans that both available bandwidth and queuing delay measurements

were used.
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(d) SVR-OPM-Queue

Figure 4.3: Comparison of prediction accuracy of HB, SVR-OPM, SVR-PPM and SVR-AM for the high background

traffic scenario.
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(f) SVR-OPM-AB-Queue
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(h) SVR-OPM-AB-Loss-Queue

Figure 4.3: Comparison of prediction accuracy of HB, SVR-OPM, SVR-PPM and SVR-AM for the high background

traffic scenario, continued.
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(k) SVR-AM-Loss-Queue

0 5 10 15 20

0
5

10
15

20

Actual Throughput (Mb/s)

P
re

di
ct

ed
 T

hr
ou

gh
pu

t (
M

b/
s)

(l) SVR-AM-AB-Loss-Queue

Figure 4.3: Comparison of prediction accuracy of HB, SVR-OPM, SVR-PPM and SVR-AM for the high background

traffic scenario, continued.
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Table 4.1 shows relative prediction errors for HB forecasting and forSVM-OPM-based predictions. Values in the

table indicate the fraction of predictions for a given method within a given accuracy level. For example, the first two

columns of the first row in Table 4.1 mean that 32% of HB predictions have relative prediction errors of 10% or smaller

while 79% ofSVR-OPM-ABpredictions have relative prediction errors of 10% or smaller. We present scatter plots in

addition to tabular data to provide insight into how different path properties contribute to throughput prediction in the

SVR method.

From Figure 4.3a, we can see that the predictions for the HB predictor are rather diffusely scattered around the

diagonal, and that predictions in low-throughput conditions tend to have large relative error. Figures 4.3b, 4.3c,

and 4.3d show the behavior of the SVR predictor using a single measure of path properties in the feature vector—AB,

L, andQ respectively. TheAB andQ graphs have a similar overall trend: predictions are accurate (i.e., points are

close to the diagonal) for high actual throughput values, but far from the diagonal, almost in a horizontal line, for lower

values of actual throughput. TheL graph has the opposite trend: points are close to the diagonal for lower values of

actual throughput, and form a horizontal line for higher values of actual throughput.

The explanation for these trends lies in the fact that file transfers with low actual throughput experience loss, while

file transfers with high actual throughput do not experience any loss. When loss occurs, the values ofAB andQ for

the path are nearly constant.AB is almost zero, andQ is the maximum possible value (which depends on the amount

of buffering available at the bottleneck link in the path). In this case, throughput depends on the value ofL. Hence,

L appears to be a good predictor when there is loss on the path, andAB andQ, being constants in this case, have no

predictive power, resulting in horizontal lines,i.e., a single value of predicted throughput. On the other hand, when

there is no loss,L is a constant with value zero, soL has no predictive power, whileAB andQ are able to predict

throughput quite accurately.

Figures 4.3e to 4.3h show improvements on the prediction accuracy obtained by using more than one path property

in the SVR feature vector. We can see that whenL is combined with eitherAB or Q, the horizontal lines on the graphs

are replaced by points much closer to the diagonal, so combiningL with AB or Q allows the SVR method to predict

accurately in both lossy and lossless network conditions.

Measurements ofAB andQ appear to serve the same function, namely, helping to predict throughput in lossless

conditions. This observation begs the question: do we really need bothAB andQ, or can we use just one of the two and

still achieve the same prediction accuracy? To answer this question, we comparedAB-LossandLoss-Queuepredictions

with each other and withAB-Loss-Queuepredictions (i.e., Figures 4.3e, 4.3g, and 4.3h). The general trend in all three

cases, as seen from the scatter plots, is the same: the horizontal line of points is reduced or eliminated, suggesting that

prediction from non-constant-value measurements is occurring for both lossy and lossless network conditions. If we

compare theAB-LossandLoss-Queuegraphs more closely, we observe two things. First, in the lossless prediction

case, the points are closer to the diagonal in theLoss-Queuecase than in theAB-Losscase. Second, in theLoss-Queue

case, the transition in the prediction from the lossless to the lossy case is smooth,i.e., there is no horizontal line of
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points, while in theAB-Losscase there is still a horizontal line of points in the actual throughput range of 11–14 Mbps.

This suggests thatQ is a more accurate predictor thanAB in the lossless case. The relative prediction error data

of Table 4.1 supports this: SVR with a feature vector containingLoss-Queueinformation predicts throughput within

10% of actual for 87% of transfers, while a feature vector containingAB-Lossmeasurements predicts with the same

accuracy level for 78% of transfers. Finally, there is no difference in accuracy (either qualitatively or quantitatively)

betweenLoss-QueueandAB-Loss-Queue.

The above discussion suggests thatAB measurements are not required for highly accurate throughput prediction,

and that given our framework, a combination ofL andQ is sufficient. This observation is not only surprising, but

rather good news. Prior work has shown that accurate measurements ofAB require at least moderate amounts of

probe traffic [116, 112], and formula-based TCP throughput estimation takes as a given thatAB measurements are

necessary for accurate throughput prediction [54]. In contrast, measurements ofL andQ can be very lightweight

probe processes [115]. We discuss measurement overhead further in Section 4.5.

4.3.1.2 Using Practical Passive and Active Path Measurements

So far, we have considered the prediction accuracy of SVR based on onlyOracular Passive Measurements (OPM).

This gives us the best-case accuracy achievable with SVR, and also provides insight into how SVR uses different

path properties for prediction. Table 4.1 shows that HB predicts 32% of transfers within 10% of actual whileSVR-

OPM-Loss-Queuepredicts 87%, an almost 3-fold improvement. In practice, however, perfect measurements of path

properties are not available, so in what follows we assess SVR using measurements that can be obtained in practice in

the wide area.

We compare HB accuracy withSVR-PPMaccuracy andSVR-AMaccuracy. We focus our discussion onLoss-

QueueandAB-Loss-Queueresults for SVR. We choose these two combinations because we expectAB-Loss-Queue

to have the highest accuracy as it has the most information about path properties, andLoss-Queuebecause it is very

lightweight and has accuracy equal toAB-Loss-Queuefor SVR-OPM.

Figures 4.3i and 4.3j show predicted and actual throughput forSVR-PPMand Figures 4.3k and 4.3l show predicted

and actual throughput forSVR-AM. Table 4.2 presents relative prediction error data for HB,SVR-PPMandSVR-AM.

We wish to examine three issues: first, whether our finding thatLoss-Queuehas the same prediction accuracy as

AB-Loss-Queuefrom theSVR-OPMcase holds for theSVR-PPMandSVR-AMcase; second, whetherSVR-PPMand

SVR-AMhave the same accuracy; and third, howSVR-AMaccuracy compares with HB prediction accuracy.

All the scatter plots from Figures 4.3i to 4.3l are qualitatively very similar. This is encouraging because it sug-

gests two things. First,Loss-Queuehas prediction accuracy similar toAB-Loss-Queue, i.e., the observation from

SVR-OPMstill holds, so we can achieve good prediction accuracy without having to measureAB. The relative pre-

diction error data in Table 4.2 supports this graphical observation:AB-Loss-Queuehas only slightly better accuracy

thanLoss-Queuefor both SVR-PPMandSVR-AM. Second,SVR-AMhas accuracy similar toSVR-PPM, i.e., using
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Table 4.1: Relative accuracy of history-based (HB) throughput prediction and SVR-based predictors using different

types of oracular passive path measurements (SVR-OPM) in the feature vector. Table values indicate the fraction of

predictions within a given accuracy level.

Relative Error HB AB L Q AB-L AB-Q L-Q AB-L-Q

10% 0.32 0.79 0.54 0.87 0.78 0.87 0.86 0.86

20% 0.67 0.87 0.86 0.87 0.87 0.87 0.90 0.90

30% 0.80 0.87 0.92 0.87 0.91 0.87 0.90 0.90

40% 0.87 0.87 0.94 0.87 0.92 0.87 0.93 0.93

50% 0.88 0.88 0.95 0.89 0.97 0.89 0.96 0.96

60% 0.88 0.88 0.97 0.92 0.97 0.92 0.97 0.97

70% 0.89 0.89 0.97 0.94 0.97 0.94 0.98 0.98

80% 0.92 0.91 0.98 0.95 0.98 0.95 0.99 0.99

90% 0.92 0.92 0.98 0.96 0.98 0.96 0.99 0.99
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Table 4.2: Relative accuracy of history-based (HB) throughput prediction and SVR-based predictors using trace-based

passive path measurements (PPM) or active path measurements (AM). Table values indicate the fraction of predictions

within a given accuracy level.

Relative Error HB PPM AM

L-Q AB-L-Q L-Q AB-L-Q

10% 0.32 0.49 0.53 0.49 0.51

20% 0.67 0.77 0.81 0.78 0.76

30% 0.80 0.86 0.86 0.86 0.86

40% 0.87 0.86 0.89 0.86 0.86

50% 0.88 0.88 0.89 0.86 0.87

60% 0.88 0.90 0.89 0.88 0.87

70% 0.89 0.90 0.91 0.88 0.88

80% 0.92 0.91 0.94 0.90 0.90

90% 0.92 0.92 0.95 0.92 0.92
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Table 4.3: Relative accuracy of history-based (HB) and SVR-based throughput predictors using oracular path mea-

surements (OPM) and active measurements (AM) when predictors are subjected to shifts in average background traffic

volume.

Relative HB OPM-L-Q OPM-Loss-Queue AM-Loss-Queue

Error TrainLowTestHigh

10% 0.29 0.00 0.62 0.52

20% 0.40 0.00 0.72 0.61

30% 0.52 0.00 0.81 0.69

40% 0.55 0.00 0.84 0.73

50% 0.62 0.00 0.88 0.77

60% 0.64 0.00 0.90 0.78

70% 0.66 0.00 0.91 0.80

80% 0.71 0.00 0.92 0.83

90% 0.74 0.00 0.92 0.84
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Table 4.4: Comparison of relative accuracy of SVR-based throughput prediction using active measurements (AM) and

different numbers of training samples. 40 training samples are used inAM-Loss-Queue, 5 samples forAM-L-Q-5, and

10 samples forAM-L-Q-10. Background traffic consists of shifts in average traffic volume between 120 Mb/s and 160

Mb/s.

Relative Error AM-Loss-Queue AM-L-Q-5 AM-L-Q-10

10% 0.52 0.44 0.45

20% 0.61 0.49 0.53

30% 0.69 0.51 0.55

40% 0.73 0.55 0.59

50% 0.77 0.58 0.62

60% 0.78 0.60 0.65

70% 0.80 0.62 0.67

80% 0.83 0.65 0.73

90% 0.84 0.67 0.73
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Table 4.5: Relative accuracy ofSVR-based predictor using oracular passive measurements (OPM) and training sets

consisting of 1, 2, 3, 6, or 8 distinct file sizes.

Relative Error No. of distinct file sizes in training

1 2 3 6 8

10% 0.06 0.24 0.49 0.35 0.34

20% 0.16 0.40 0.57 0.48 0.51

30% 0.18 0.52 0.64 0.54 0.54

40% 0.19 0.61 0.66 0.59 0.61

50% 0.22 0.64 0.67 0.65 0.66

60% 0.24 0.67 0.68 0.66 0.67

70% 0.24 0.69 0.68 0.67 0.67

80% 0.29 0.71 0.69 0.68 0.68

90% 0.30 0.72 0.70 0.68 0.68
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Table 4.6: Relative accuracy ofSVR-based predictor using active measurements (AM) and training sets consisting of

1, 2, 3, 6, or 8 distinct file sizes.

Relative Error No. of distinct file sizes in training

1 2 3 6 8

10% 0.10 0.29 0.40 0.29 0.29

20% 0.15 0.41 0.51 0.47 0.47

30% 0.16 0.53 0.59 0.52 0.55

40% 0.19 0.58 0.64 0.57 0.61

50% 0.23 0.64 0.65 0.62 0.64

60% 0.23 0.66 0.66 0.64 0.65

70% 0.26 0.70 0.67 0.64 0.66

80% 0.28 0.70 0.68 0.64 0.67

90% 0.31 0.71 0.69 0.65 0.68
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active measurement tools to estimate path properties yields predictions almost as accurate as having ground-truth

measurements. Similar accuracy betweenSVR-PPMpredictions andSVR-AMpredictions is important because in real

wide-area Internet paths instrumentation is not available for providing accurate passive measurements.

Finally, we compare HB withSVR-AM. Although Figures 4.3a, 4.3k and 4.3l are qualitatively similar,SVR-AM

has a tighter cluster of points around the diagonal for high actual throughput than HB. Thus,SVR-AMappears to have

higher accuracy than HB. As Table 4.2 shows,SVR-AM-Loss-Queuepredicts throughput within 10% of actual accuracy

49% of the time, while HB does so only 32% of the time. Hence, for high traffic scenarios,SVR-AM-Loss-Queue,

the practically deployable lightweight version of the SVR-based prediction mechanism, significantly outperforms HB

prediction.

The above observations raise the question of why SVR performs so much better than HB at high accuracy levels.

HB is a weighted average that works on the assumption that transfers close to each other in time will have similar

throughputs. HB loses accuracy when there are rapid and large changes in throughput, because in that case there is a

large difference between the weighted average and individual throughputs. SVR predicts throughput by constructing

a function mapping path properties to throughput values. Due to the use of kernels (Chapter 3, Section 3.5), this

function is able to capture complex non-linear relationships between the path properties and throughput. As long as

the mapping between path properties and resulting throughput is consistent, SVR can predict throughput accurately,

regardless of the variation between the throughput of neighboring transfers. SVR accuracy breaks down only when the

mapping between path properties and throughput becomes inconsistent,e.g., when path conditions are so volatile that

they change between the active path measurement and the file transfer, or when an aggregate path measure does not

hold for the tranfer, such as when there is loss on the bottleneck link but the file transfer experiences more or less loss

than the aggregate traffic. Thus, SVR outperforms HB because(a) it has access to additional information, in the form

of path properties such asAB, L, andQ, while HB has access only to past throughputs, and(b) it constructs a much

more sophisticated functional mapping of path properties to throughput compared to the simple time-series analysis

that HB uses. The fact that SVR’s supremacy over HB is limited to high accuracy levels, and HB catches up with SVR

for lower accuracy levels (predicted throughput within 40%-90% of actual, Table 4.2), is a feature of the distribution

of throughputs in our test set. We can see from the graphs in Figure 4.3a- 4.3k that the average throughput of the

test set is between 10 and 15 Mb/s. We expect the HB prediction to be around the average throughput. Figure 4.3a

shows that this is indeed the case: all HB predictions are between 10 and 15 Mb/s. All but one transfers have actual

throughput between 5 Mb/s and 18 Mb/s, so the relative error is 100% or less (10−5
5 ∗100 = 100) for low throughputs

(all predictions within a factor of two of actual) and 80% or less (18−10
10 ∗100 = 80) for high throughputs. If the range

of actual throughputs had been wider but the average had been the same, HB would have been less able to match SVR

accuracy for relative error values of 40%-90%.

A remaining question is whyQ is a better predictor of throughput thanAB. When we compareAB and Q

prediction behavior in Figures 4.3b and 4.3d, we see that as throughput decreases,i.e., as the network moves from
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lossless to lossy conditions,AB loses its predictive power sooner thanQ does, around 15 Mb/s instead of 11 Mb/s for

Q. As soon as the link experiences loss,AB is zero. WhileQ eventually reaches a maximum value under sufficiently

high congestion, under light loss it retains its resolution becauseQ will be different depending on the percentage of

packets that experience the maximum possible queuing delay and those which experience less than the maximum.

HenceQ is a better predictor of throughput thanAB most likely because it can be measured with better resolution for

a wider range of network conditions.

4.3.1.3 The Nature of Prediction Error

Lu et al. [81] observed in their study that throughput prediction errors were approximately normal in distribu-

tion. As the authors noted, normality would justify standard computations of confidence intervals. We examined the

distribution of errors in our experiments and also found evidence suggestive of normality.

Figure 4.4 shows two normal quantile-quantile (Q-Q) plots forSVR-OPM-Loss-Queue(Figure 4.4a) andSVR-AM-

Loss-Queue(Figure 4.4b). Samples that are consistent with a normal distribution form approximately a straight line

in the graph, particularly toward the center. In Figures 4.4a and 4.4b, we see that the throughput prediction samples

in each case form approximately straight lines. These observations are consistent with normality in the distribution

of prediction errors. Error distributions from predictors based on other combinations of measurements were also

consistent with the normal distribution. We further discuss the issues of retraining and of detecting estimation problems

in Section 4.5.

4.3.2 Evaluation of Prediction Accuracy with Level Shifts in Background Traffic

In the previous section, we considered SVR and HB prediction accuracy under variable but stationary background

traffic. In this section, we consider the case where there is a shift in average load of background traffic.

We configure our traffic generation process to cycle between 120 Mb/s and 160 Mb/s average offered loads. With

120 Mb/s traffic, there is virtually no loss along the path and the throughput is bound by the receive window size.

With 160 Mb/s traffic, the OC3 bottleneck is saturated and endemic loss ensues. The procedure is to run 120 Mb/s

background traffic for 75 minutes, followed by 160 Mb/s of traffic for 2 hours 15 min, repeating this cycle several

times. We follow the measurement protocol in Section 4.2.2 for collectingAB, L, Q, and throughput measurements.

We first train our SVR predictor in the 120 Mb/s environment, and test it in the 160 Mb/s environment. The column

labeledOPM-L-Q TrainLowTestHighin Table 4.3 shows the results. Clearly, the prediction accuracy is very poor: all

predictions are off by a factor of two or more. Next, we train the predictor on one whole cycle of 120 Mb/s and 160

Mb/s, and test it on a series of cycles. The last two columns of Table 4.3,OPM-Loss-QueueandAM-Loss-Queue,

and Figures 4.5a and 4.5b show the results from these experiments. The x-axis in Figures 4.5a and 4.5b represents

time in terms of the number of completed file transfers, and the y-axis is throughput. In this case, bothSVR-OPMand
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SVR-AMpredict throughput with high accuracy.SVR-OPMpredicts throughput within 10% of actual 62% of the time,

andSVR-AM52% of the time.

For comparison, the first column of Table 4.3 and Figure 4.5c present results for the history-based predictor. HB

accuracy is significantly lower than SVR accuracy, only about half as much asSVR-OPM. Figure 4.5c explains this

disparity. Every time there is a level-shift in the background traffic, the HB predictor takes time to re-adapt. In contrast,

there is no adaptation time required for the SVR predictor if it has already been trained on the range of expected traffic

conditions.

One issue regarding shifts in average traffic volume is how many samples from a new, previously unseen traffic

level are needed to adequately train the predictor. To examine this issue, we train our predictor on two new kinds of

average traffic loads: a step constituting 75 minutes of 120 Mb/s traffic followed by 10 minutes of 160 Mb/s traffic

resulting in 5 experiments at the higher traffic level, and a step constituting of 75 minutes of 120 Mb/s traffic followed

by 20 minutes of 160 Mb/s traffic resulting in 10 experiments at the higher traffic level. We call these conditionsSVR-

AM-L-Q-5 andSVR-AM-L-Q-10respectively. The prediction accuracy of these schemes is presented in Table 4.4.

As can be seen in the table, these training schemes yield most of the accuracy ofSVR-AM-L-Q, which trains at the

160 Mb/s level for approximately 40 experiments. These results demonstrate that fairly small training sets from new

traffic levels are needed for accurate prediction. A comparison of time series plots from these experiments provides

further insight into how prediction accuracy improves with larger training sets. BothSVR-AM-L-Q-5andSVR-AM-

L-Q-10 have periods where the predicted throughput is virtually constant even though the actual throughput is not.

Such periods are shorter forSVR-AM-L-Q-10compared toSVR-AM-L-Q-5. SVR-AM-L-Q(Figure 4.5b) has no such

periods. The reason for this effect is that predictors incorporating fewer samples may not include a broad enough

range of possible network conditions. However, the SVR prediction mechanism can still yield high accuracy using a

small set of training samples if the samples are representative of the range of network conditions along a path.

4.3.3 Evaluation of Prediction Accuracy for Different File Sizes

Thus far, we have predicted throughput only for bulk transfers of 8 MB. However, our goal is accurate prediction

for a range of file sizes, not just bulk transfers, so in this section we evaluate prediction accuracy for a broad range of

file sizes, something not considered in prior HB prediction studies.

We conducted experiments using background traffic at an average offered load of 135 Mb/s. We used 9 different

training sets, each of size 100, consisting of between 1 and 9 unique file sizes. The file sizes for the training sets were

between 32 KB (215bytes) and 8 MB (223bytes). The first training set consisted of 100 8 MB files, the second of 50

32 KB files and 50 8 MB files, the third of 33 each of 32 KB (215bytes), 512 KB (219bytes) and 8 MB (223bytes) files,

the fourth of 25 each of215, 217.66,220.33, and223 byte files, and so on, dividing the range of the exponent, 15 to 23,

into more numerous but smaller intervals for each subsequent training set.
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Test sets for our experiments consist of 100 file sizes between 2 KB (211bytes) and 8 MB (223bytes). To generate

file sizes for the test set, uniformly distributed random numbersr between 11 and 23 were generated. The file size was

set to2r bytes, rounded to the closest integer. This log-based distribution of file sizes contains a much greater number

of smaller files than a uniform linear distribution of file sizes from 2 KB to 8 MB would. The bias towards smaller

file sizes is important for proper evaluation of predictor performance for small files because it generates a more even

distribution between files that spend all their transfer time in slow-start, those which spend some time in slow-start

and some in congestion avoidance, and those which spend a negligible amount of time in slow-start. If the uniform

linear distribution had been used, most of the file sizes generated would have spent a negligible amount of time in

slow-start. We also use a wider range of small files in the test set compared to the training set – the test set starts with

2 KB files while the training set starts with 32 KB – because we want to see how well our predictor extrapolates for

unseen ranges of small file sizes.

Tables 4.5 and 4.6 present prediction accuracy for training sets consisting of 1, 2, 3, 6, or 8 distinct file sizes for

SVR-OPMandSVR-AM. Graphs in Figure 4.6 presentSVR-AMresults for one, two, and three file sizes in the training

set. We do not include graphs for remaining training sets because they are similar to those for two and three file

sizes in the training set. The first observation is that for the single file size in training, the prediction error is very

high. This inaccuracy is expected because the predictor has been given no information about the relationship between

size and throughput for small files. The second observation is that for more than one file size, prediction becomes

dramatically more accurate,i.e., the predictor is able to successfully extrapolate from a handful of sizes in training to

a large number of sizes in testing. The third observation is that relative error is low for large file sizes (corresponding

to high actual throughput) while it is higher for small files (low actual throughput), or, in other words, predicting

throughput accurately for small files is more difficult than for large files. For small files, throughput increases rapidly

with file size during TCP’s slow-start phase due to the doubling of the window every RTT. Also, packet loss during

the transfer of a small file has a larger relative impact on throughput. Due to the greater variability of throughput for

small files, predicting throughput accurately is more difficult. The fourth observation is that for small file sizes (i.e.,

small actual throughput), the error is always that of over-prediction. The smallest file in the training set is 32 KB while

the smallest file in the test set is 2 KB. This difference is the cause of over-prediction errors: given the high variability

of throughput for small file sizes due to slow-start effects and losses having a greater relative impact on throughput,

without a broader training set, the SVR mechanism is unable to extrapolate accurately for unseen ranges of small file

sizes.

A final observation is that prediction accuracy reaches a maximum at three file sizes in the training set, and there

is no clear trend for four to nine file sizes in the training set. The number of transfers in our training set is always

constant at 100, so for the single training size, there are 100 8 MB transfers, for the two training sizes, there are 50

32 KB transfers and 50 8 MB transfers, and so on. We believe that accuracy is maximum at three training sizes in our

experiments because there is a trade-off between capturing a diversity of file sizes and the number of samples for a
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single file size. We would not see maximum accuracy occurring at three file sizes and would instead see an increase in

accuracy with increasing number of file sizes in the training set if we kept the number of samples of a single file size

constant at 100 in the training set and allowed the size of the training set to increase from 100 to 200, 300, etc., as we

increase the number of file sizes in the training set.

4.4 Wide-Area Results

To further evaluate our SVR-based TCP throughput prediction method we created a prototype tool called PATH-

PERF that can generate measurements and make forecasts on wide area paths. We used PATHPERF to conduct experi-

ments over a set of paths in the RON testbed [13]. This section presents the results of our wide area experiments.

4.4.1 The RON Experimental Environment

The RON wide area experiments were conducted in January 2007 over 18 paths between 7 different node loca-

tions. Two nodes were in Europe (in Amsterdam and London), and the remainder were located at universities in the

continental United States (Cornell, Maryland, New Mexico, NYU, and Utah). Of the 18 paths, two are trans-European,

9 are trans-Atlantic, and 7 are trans-continental-US. The RON testbed has a significantly larger number of available

nodes and paths, but two considerations limited the number of nodes and paths that we could use. The first consid-

eration was that the nodes should have little or no other CPU or network load while our experiments were running:

this is required for BADABING to measure loss accurately. The second issue was that we could not use any nodes

running FreeBSD 5.x because the TCP throughput history caching feature in FreeBSD 5.x, controlled by the variable

net.inet.tcp.inflight.enable, is on by default, and interfered with our experiments. Consequently, we were restricted to

using nodes running FreeBSD 4.7, which does not have the throughput history caching feature.

We use the following convention for path names: A-B means that A is the TCP sender and B is the receiver,i.e., the

TCP data flow direction is from A to B, and TCP ack flow is in the reverse direction. A-B and B-A are considered two

different paths, because routing and background traffic level asymmetry between the forward and reverse directions

can lead to major differences in throughput.

The wide area measurement protocol was the following:

1. Run BADABING for 30 seconds,

2. Transfer a 2 MB file,

3. Sleep 30 seconds, and

4. Repeat the above 200 times.
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In Section 4.3.1.1, we showed that available bandwidth measurements are not required for accurate TCP throughput

prediction, so we omit running YAZ in the wide area. Thus, the wide area prediction mechanism is theSVR-AM-Loss-

Queueprotocol from Section 4.3.1.2. We reduced the size of the file transfers from 8MB in the lab experiments to 2

MB in the wide area experiments because the typical throughput in the wide area was an order of magnitude lower

compared to the typical throughput in the lab (1-2 Mbps versus 10-15 Mbps).

The measurements were carried out at different times of the day for different paths depending upon when the nodes

were available,i.e.,when the nodes had little or no other CPU and network activity in progress. Depending again on

node availability, we ran a single set of experiments on some paths, and multiple sets on others. We can only conduct

active measurements in the wide area because the infrastructure required for passive measurements is not present.

Table 4.7 lists the minimum round trip times observed on the wide area paths over all BADABING measurements

taken on each path. The shortest paths have a minimum RTT of 8ms and the longest a minimum RTT of 145 ms.

In Table 4.7 we ignore path directions,e.g.,we list Amsterdam-London and London-Amsterdam as a single entry,

because minimum RTT is the same in both directions.

4.4.2 Wide Area Results

Figure 4.7 compares the accuracy of the SVR and HB throughput predictions for the 18 wide area paths. The

results in Figure 4.7 are obtained by dividing the 200 measurements gathered for each path into two consecutive sets

of 100, and using the first 100 as the training set and the second 100 as the test set. Some paths feature more than once

because node availability allowed us to repeat experiments on those paths.
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Table 4.7: Minimum RTTs for the 18 RON Paths used for wide-area experiments

Paths (Abbreviations) Minimum RTT (ms)

Amsterdam-London (A-L, L-A) 8

Cornell-Amsterdam (C-A) 92

Cornell-London (C-L) 83

Cornell-NYU (C-NY) 8

Cornell-Utah (C-U, U-C) 71

London-Maryland (L-M) 81

London-NYU (L-NY, NY-L) 72

London-Utah (L-U, U-L) 145

New Mexico-Maryland (NM-M) 106

New Mexico-Cornell (NM-C) 87

NYU-Amsterdam (NY-A) 80

NYU-London (NY-L) 62

NYU-Utah (NY-U, U-NY) 67
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(a) Q-Q PlotSVR-OPM-Loss-Queue.
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(b) Q-Q Plot forSVR-AM-Loss-Queue.

Figure 4.4: Normal Q-Q Plots for prediction errors with oracular (a) and active (b) measurements ofLoss-Queue.
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We observe two major trends from Figure 4.7. First, for the majority of experiments, prediction accuracy is

very high for both HB and SVR: most paths have greater than 85% of predictions within 10% of actual throughput.

Second, for 5 out of the 26 experiments – Cornell-Amsterdam, London-Maryland-1, London-Utah-2, London-Utah-5

and NYU-Amsterdam – the SVR prediction accuracy is quite low, as low as 25% for London-Utah-2. The reasons for

this poor accuracy will be analyzed in detail in Section 4.4.3.

Next, we take a more detailed approach to assessing prediction accuracy. We divide the 200 samples into sets ofk

and200−k for values ofk from 1 to 199. The firstk samples are used for training, and the remaining200−k samples

are used for testing. This allows us to understand the trade-off between training set size and prediction accuracy,

which is important for a practical online prediction system where it is desirable to start generating predictions as

soon as possible. This analysis also allows us to identify the points in a trace where an event that has an impact on

prediction accuracy, such as a level shift, occurs, and whether retraining helps maintain prediction accuracy in the face

of changing network conditions. We present this data for SVR only, as for HB, there is no division of data into training

and test sets because retraining occurs after every measurement.

Figure 4.8 presents the SVR prediction accuracy fork = 1, 5, and 10 for those experiments in Figure 4.7 that

had high prediction accuracy fork = 100. For all but three of the experiments in Figure 4.8, there is little difference

between prediction accuracy for training set sizes of 1, 5, 10, and 100. This is because there is little variation in the

throughput observed during the experiments. A path with little or no variation in observed throughput over the course

of an experimental run is the easy case for both SVR and HB throughput predictors, so these experiments will not

be discussed any further in this paper. For three experiments in Figure 4.8, Amsterdam-London, London-Utah-1, and

Utah-Cornell, the prediction accuracy fork values of 1, 5, and 10 is significantly lower compared to that fork = 100.

The reason for this poor accuracy will be discussed in detail in Section 4.4.3.

4.4.3 Detailed Analysis of Wide Area Results

In this section we analyze the reasons for poor SVR prediction accuracy for 5 paths from Figure 4.7 (Cornell-

Amsterdam, London-Maryland-1, London-Utah-2, London-Utah-5, and NYU-Amsterdam) and 3 paths from Fig-

ure 4.8 (Amsterdam-London, London-Utah-1, and Utah-Cornell). We find that there are two dominant reasons for

poor SVR prediction accuracy, background traffic level shifts and changes in background traffic on small timescales.

We find that retraining can improve prediction accuracy for level shifts but not for changes in network conditions on

small timescales.

In the analysis that follows, we use a pair of graphs per experiment to illustrate the details of each experiment.

Consider Figures 4.9a and 4.9b for London-Utah-5. The first graph, thethroughput profile, is a time series represen-

tation of the actual throughput observed during the experiment. The second graph,prediction accuracy, is a more

detailed version of the bar graphs of Figure 4.8, incorporating all possible values ofk. At anx value ofk, the firstk

of the 200 samples are used as the training set, and the remaining200 − k samples as the test set. They value is the
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Figure 4.9: London-Utah-5: an example of a wide area path with level shifts. Time on the x-axis is represented in

terms of file transfer number
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fraction of samples in the test set of200 − k whose predicted throughput is within 10% of the actual throughput. As

the value ofk increases, the training set becomes larger compared to the test set, because the total number of samples

is fixed at 200. For values ofk close to 200, the test set is very small, and thus the prediction accuracy values, whether

they are high or low, are not as meaningful.

4.4.3.1 Level Shifts

Level shifts were responsible for poor prediction accuracy in four experiments: Utah-Cornell, London-Utah,

London-Utah-2, and London-Utah-5. We discuss London-Utah-5 in detail as a representative example.

Figures 4.9a and 4.9b are thethroughput profileandprediction accuracygraphs for London-Utah-5. Figure 4.9a

shows that a level shift from a throughput of 1.4 Mbps to 0.6 Mbps occurs after 144 file transfers, and a level shift

from 0.6 Mbps back to 1.4 Mbps occurs after 176 transfers. Figure 4.9b shows that prediction accuracy decreases

from 0.84 at 1 file transfer to a global minimum of 0.40 at 144 file transfers, and then increases very rapidly to 1.00

at 145 file transfers. This result can be explained by the fact that the level shift is not included in the training data.

Thus, the prediction function will generate samples at the first throughput level accurately, and those at the second

throughput level inaccurately. Prediction accuracy decreases from 1 to 144 because there are relatively fewer samples

at the first level and more at the second level in the test set as the value ofx increases, and thus an increasing fraction of

inaccurate predictions, leading to a decreasing trend in prediction accuracy. If the division into training and test sets is

at the level shift boundary, in this case the first 144 file transfers, the training set consists only of measurement samples

before the level shift and the test set of samples after the level shift. All predictions will be inaccurate (assuming

the level shift changes the throughput by more than 10%, our threshold) because the prediction function has never

encountered the new throughput level. Hence, we observe minimum prediction accuracy at the level shift boundary,

i.e., 144 transfers. If the division into training and test set includes a level shift, some samples with the new network

conditions and resultant new throughput are included in the training set. The prediction function is now aware of the

new network conditions, and is able to make better predictions in the new conditions. In our example, including only

onesample from after the level shift in the training set, the 145th sample, is sufficient to allow all throughputs at the

lower levels to be predicted accurately. That is, the SVR predictor needs the minimum possible training set size (one

single sample) for the new network conditions before it can generate accurate predictions.

Figures 4.10a and 4.10b compare the behavior of SVR and HB predictors for a level shift. The training set for SVR

consisted of the first 145 samples,i.e.,144 samples at the first throughput level and 1 sample at the second throughput

level. The test set consisted of the remaining 55 samples. For HB, recall that there is no separation into training and test

sets, and retraining occurs after every measurement sample. Comparing Figures 4.10a (SVR) and 4.10b (HB), we see

that the SVR predicted throughput follows the actual throughput very closely, while the HB predicted throughput takes

some time to catch up with actual throughput after a level shift. If the SVR predictor has knowledge of the level shift,

its prediction accuracy is much better than that of HB. After the second level shift (176 samples) no further training of
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the SVR predictor is required to predict the remaining 23 correctly. The predicted throughput in Figure 4.10a follows

the actual throughput closely at the level shift after 176 transfers even though the training set consists of only the first

146 samples.

The above example shows that the SVR predictor has two advantages over the HB predictor. First, it can adapt

instantaneously,i.e., after a single training sample, to a level shift, while the HB predictor takes longer. Second, it

shows that unlike the HB predictor, the SVR predictor needs to be trained only once for a given set of conditions. The

results for the other three wide area experiments that contained level shifts are similar to those of the London-Utah-5

experiment.

4.4.3.2 Changes Over Small Timescales

Changes in network conditions over small timescales reduced SVR prediction accuracy for Amsterdam-London,

Cornell-Amsterdam, London-Maryland-1, and NYU-Amsterdam. We consider London-Maryland-1 as a representa-

tive example.

Figures 4.11a and 4.11b present the throughput profile and prediction accuracy of the London-Maryland-1 exper-

iment. Figure 4.11a shows that until about the 60th file transfer, throughput is fairly steady around 2.7 Mbps, after

which it starts to vary widely in the range between approximately 1.2 Mbps and 2.7 Mbps. Figure 4.11b shows that

prediction accuracy is at a maximum of 65% at one file transfer, decreases in accuracy between 1 and 60 transfers, and

varies between 50% and 60% between 60 and 180 transfers.

Unlike for level shifts, after the throughput profile changes and measurement samples of the new network condi-

tions are included in the training set, prediction accuracy does not improve. Recall that we measure network conditions

using BADABING for 30 seconds, and then transfer a file. In this experiment, after the 60th transfer, the network con-

ditions vary so rapidly that they change between the BADABING measurement and the file transfer. Consequently,

there is no consistent mapping between the measured network conditions and the transfer throughput, so a correct

SVR predictor cannot be constructed, leading to poor prediction accuracy.

The HB predictor also performs poorly in these conditions. As shown in Figure 4.7, for 100 training samples

for London-Maryland-1, HB has a prediction accuracy of 59% while SVR has an accuracy of 55%. When network

conditions vary as rapidly as in the above example, it is not possible to predict throughput accurately using either SVR

or HB because of the absence of a consistent relationship in network conditions just before and during a file transfer.

One difference we observed in experiments with level shifts versus experiments with throughput changes on

small timescales was that level shifts occurred under lossless network conditions while throughput changes on small

timescales occurred under conditions of sustained loss. Thus if only the average queuing delay on a network path

changes, we observe a level shift; if a network goes from a no-loss state to a lossy state, we observe throughput

changes on small timescales. A possible explanation is that if the network is in a lossy state, a particular TCP flow

may or may not experience loss. Since TCP backs off aggressively after a loss, flows that do experience loss will have
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significantly lower throughput compared to those that do not experience loss, leading to large differences in throughput

of flows. However, if only average queuing delay on a path changes, every flow on the path (unless it is extremely

short) experiences the change in queuing delay, leading to a change in throughput of all flows,i.e.,a level shift, on the

path.

4.5 Practical Deployment

In this section, we provide an overview of the implementation of PATHPERF and address three key issues related

to running PATHPERF in operational settings. PATHPERF is openly available for download at

http://wail.cs.wisc.edu/waildownload.py.

The PATHPERF distribution has three main components. The first is BADABING -RT, which measures packet loss

and queuing delay on a path. The second is the main PATHPERF module. It initiates active measurements of path

properties and file transfers, and preprocesses measurements forSV M light, the third component, which is a popular

C-language implementation of Support Vector Machines.

The RT in BADABING -RT stands forround-trip, because we modify the original BADABING one-way loss mea-

surement tool to reflect probe packets back from the receiver to the sender. We make this change for two reasons. First,

the original BADABING implementation assumes that the clocks at the sending and receiving host are synchronized, an

assumption that generally does not hold. Reflecting the probe back to the sender allows loss to be measured without the

need for synchronized sender and receiver clocks. Also, probe reflection allows queuing delay to be measured without

the introduction of any additional measurement traffic. The method for computingloss frequencyand loss duration,

the two loss metrics that BADABING reports, based on probe traces, remains unchanged. The main challenge in the

use of BADABING -RT for PATHPERF was finding a set of default values for the BADABING -RT parametersα andτ

(see [115] for detailed descriptions) that would work well over a diverse set of paths. This is important for making

PATHPERF easy to use out-of-the-box. We were able to find such a set of default operating parameters by examining

how parameter settings affect the computation of theloss frequencyandloss durationvalues for a variety of laboratory

traces. The default value ofα is 0.0001, and that ofτ is 0.005.

The main PATHPERF module is2500 lines of C code. It performs several tasks. The first is to conduct

BADABING -RT active measurements and file transfers based on user-specified input parameters such as the duration

of the BADABING -RT run and the file transfer size distribution. The second is to preprocess the active measurements

for use bySV M light. This step involvesnormalizingeach input feature by subtracting the mean of each feature from

the respective feature values and then dividing by the standard deviation. Normalization places all input features on

the same scale, thus preventing features with a larger original scale from biasing the solution. The third is to call

SV M light at the appropriate times in the experiment to construct or update the predictor and to generate predictions.

The final is to maintain records of all steps, from the active measurements to the prediction generation. In cases where
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prediction accuracy is low, these records help the user to determine whether the low accuracy is due to excessive

short-term variation in path conditions or poor choice of configuration parameters such as the retraining frequency.

We do not make any changes to theSV M light package for use with PATHPERF, and it is included in the distribu-

tion in its original form.SV M light constructs a predictor using a training set, and then generates predictions using test

sets, as described in Section 4.2. The main decisions associated with using SVR are(a) the choice of input features,

(b) the choice of kernel and(c) the choice of kernel parameters, if any. We use file size, queuing delay and loss as

our input features, and find that the addition of available bandwidth as an input feature does not improve prediction

accuracy, as described in Section 4.3. We use a Radial Basis Function (RBF) kernel because it is known to perform

best in practice when the relationship between the input features and the target value is known to be non-linear. We

computed the parameters for the RBF kernel using cross-validation on our laboratory data as described in Section 4.2.

Network Load Introduced by PATH PERF. Traffic introduced by active measurement tools is a concern because

it can skew the network property being measured. Furthermore, network operators and engineers generally wish to

minimize any impact measurement traffic may have on customer traffic.

For history-based TCP throughput estimation methods, the amount of traffic introduced depends on the measure-

ment protocol. For example, two approaches may be taken. The first method is to periodically transfer fixed-size

files, and the second is to allow a TCP connection to transfer data for a fixed time period. The second approach was

taken in the history-based evaluation of Heet al. [54]. To estimate the overhead of a history-based predictor using

fixed-duration transfers, assume that(1) the TCP connection is notrwnd-limited, (2) that the fixed duration of data

transfer is 50 seconds (as in [54]),(3) throughput measurements are initiated every 5 minutes, and(4) throughput

closely matches available bandwidth. For this example, assume that the average available bandwidth for the duration

of the experiment is approximately 50 Mb/s. Over a 30 minute period, nearly 2 GB in measurement traffic is produced,

resulting in an average bandwidth of about 8.3 Mb/s.

In the case of PATHPERF, measurement overhead in training consists of file transfers and queuing/loss probe

measurements. In testing, overhead consists solely of loss measurements. Assume that we have a 15 minute training

period followed by a 15 minute testing period. Assume that file sizes of 32 KB, 512 KB, and 8 MB are transferred

during the training period, using 10 samples of each file, and that each file transfer is preceeded by a 30 second

BADABING measurement. With a probe probability of 0.3, BADABING traffic for each measurement is about 1.5 MB.

For testing, only BADABING measurements must be ongoing. Assume that a 30 second BADABING measurement

is initiated every three minutes. Thus, over the 15 minute training period about 130 MB of measurement traffic is

produced, resulting in an average bandwidth of about 1.2 Mb/s for the first 15 minutes. For the testing period, a total of

7.5 MB of measurement traffic is produced, resulting in a rate of about 66 Kb/s. Overall, PATHPERFproduces 633 Kb/s

on average over the 30 minute measurement period, dramatically different from a standard history-based measurement

approach. Even if more conservative assumptions are made on the history-based approach, the differences in overhead
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are significant. Again, the reason for the dramatic savings is that once the SVR predictor has been trained, only

lightweight measurements are required for accurate predictions.

Detecting Problems in Estimation.An important capability for throughput estimation in live deployments is to detect

when there are significant estimation errors. Such errors could be indicative of a change in network routing, causing

an abrupt change in delay, loss, and throughput. It could also signal a pathological network condition, such as an

ongoing denial-of-service attack leading to endemic network loss along a path. On the other hand, it may simply be a

measurement outlier with no network-based cause.

As discussed in Section 4.3.1.3, normality allows us to use standard statistical machinery to compute confidence

intervals (i.e., using measured variance of prediction error). We show that prediction errors are consistent with a

normal distribution and further propose using confidence intervals as a mechanism for triggering retraining of the SVR

as follows. Assume that we have trained the SVR predictor overn measurement periods (i.e., we haven throughput

samples andn samples ofL andQ). Assume that we then collectk additional throughput samples, making predictions

for each sample and recording the error. We therefore havek error samples between what was predicted and what was

subsequently measured. Given a confidence level,e.g., 95%, we can calculate confidence intervals on the sample error

distribution. We can then, with low frequency, collect additional throughput samples to test whether the prediction

error exceeds the interval bounds. (Note that these additional samples may be application traffic for which predictions

are used.) If so, we may decide that retraining the SVR predictor is appropriate. A danger in triggering an immediate

retraining is that such a policy may be too sensitive to outliers regardless of the confidence interval chosen. More

generally, we can consider a thresholdm of consecutive prediction errors that exceed the computed confidence interval

bounds as a trigger for retraining.

Predictor Portability Thus far, since we have only considered predictors trained and tested on the same path, a number

of features, such as the identity of a path and MTU, are implicit. This makes SVR simpler to use for path-specific

prediction, because a lot of path details that would be required by other approaches, such as formula-based prediction,

can safely be hidden from the user.

If two paths are similar in all features, implicit and explicit, then a predictor trained on one path using only Q and

L (and possibly AB) can be used directly for the other path. If paths differ in implicit features, then those features

will have to be added explicitly to the predictor to allow the predictor to be portable. Fortunately, SVR extends

naturally to include new features. If a complete set of features effecting TCP throughput can be compiled, and there

is a wide enough set of consistent training data available, then auniversalSVR predictor that works on just about any

wireline Internet path might be a possibility. A potential challenge here is identifying and measuring all factors – path

properties, TCP flavors, operating system parameters – that might affect throughput. However, this challenge can be

surmounted to quite an extent by active path measurements, using TCP header fields, and parsing operating systems

configuration files to include operating parameters as SVR features.
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Figure 4.10: London-Utah-5: Comparison of SVR and HB prediction accuracy for background traffic with level shifts.

The x axis is the file transfer timeline starting at 145. The y axis is throughput.
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Figure 4.11: London-Maryland-1: An example of a wide area path with throughput changes on small timescales
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Chapter 5

Wireless Throughput Prediction

5.1 Overview

Over the past decade, there has been a great increase in the deployment of WiFi Access Points (APs) in homes,

neighborhoods, and public areas. The increasing density of WiFi APs has enabled a new model of wireless network

connectivity, where a guest user passing through the range of one or more APs can gain temporary Internet access.

This type of access is commonly referred to asopportunistic networking. While the users of these opportunistic

networks can be either stationary or mobile and vehicular, many research efforts in the past five years have focused on

developing protocols and applications for vehicular opportunistic networks (Chapter 2 Section 2.2.2).

A forecast of the throughput an application can expect in a given opportunistic wireless environment can be quite

valuable. It can help adaptive applications adjust their parameters according to prevailing network conditions. It can

tell the guest user whether bandwidth-intensive and time-sensitive applications such as voice over IP and live video

will be able to operate successfully in a given network environment. In dense wireless environments, knowledge

of expected throughput can allow clients to select the best AP,i.e., the highest throughput AP, if more than one AP

is within range. TCP throughput prediction can provide the guest user with the TCP-friendly rate, which is useful

for limiting non-TCP traffic that the guest can introduce to levels that are not disruptive for the network. This is

an important application, because bounding guest traffic to benign levels is essential to the success of opportunistic

networks. Guest users have an incentive to respect this bound, because if they do not, it is unlikely that APs will allow

the open access required for opportunistic networking, and the opportunistic networking paradigm will fail.

Throughput prediction for wireless networks is more challenging than throughput prediction for wireline networks.

The wireless network environment is much more complex at the physical (PHY) and medium access control (MAC)

layers than the wireline environment. In wireline networks, packet loss is mainly due to congestion and consequent

buffer overflow at routers. In wireless networks, the dominant types of losses are radio losses and interference losses.

Radio losses occur due to high bit error rates (BER) caused by poor channel quality. Channel quality is determined

by the signal-to-noise ratio (SNR) of the link. If the signal strength is high compared to the background noise, the

receiver can decode the transmission successfully with high probability. If, however, the signal is weak,i.e., its

strength is similar to the background noise level, the BER increases, so the probability of successfully decoding the
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signal decreases, resulting in a higher packet loss rate. Interference losses occur when multiple sources within range

of each other transmit at the same time in the same frequency band. The presence of these PHY and MAC layer

phenomena, and of mechanisms for mitigating loss at the PHY and MAC layer such as rate adaptation and RTS-

CTS, in addition to congestion and transport protocol behavior, means that a large number of factors effect wireless

throughput in complicated ways, making the task of accurately predicting throughput very difficult. The difference in

the wireline and wireless environments means that the techniques developed for wireline throughput prediction cannot

be applied to the wireless environment because the assumptions on which wireline path measurement tools are based

do not hold for the wireless environment. The presence of mobile vehicular clients makes throughput prediction still

more difficult for two reasons. First, the network environment becomes more dynamic and variable and hence less

predictable. Second, the throughput prediction has to be generated very quickly to be useful because a vehicular client

is within the range of any given AP for only a short period of time.

As discussed in Chapter 1 Section 1.1, network performance studies aim to maximize analysis accuracy while

dealing with the often competing requirements of analysis comprehensiveness, extensibility and maintenance, ro-

bustness, agility, and practicality. For 802.11 capacity modeling and throughput prediction efforts to date, such

as [47, 97, 105, 103, 68, 92, 80], analysis comprehensiveness and practicality have been the primary challenges.

Analysis comprehensiveness has been a major challenge for wireless throughput modeling and prediction efforts

because the complexity of wireless environment has prevented the modeling of fully general wireless networks. The

earliest of the above-listed efforts [47] considered only interference-free broadcast traffic. Subsequent studies also

made several simplifying assumptions, such as considering only binary interference instead of an arbitrary number of

interference sources, modeling the use of a single 802.11 transmission rate instead of the presence of rate adaptation

algorithms, and assuming constant bit rate traffic instead of handling the presence of a transport layer protocol such

as TCP. Analysis comprehensiveness increased with each model, with the latest and most complete, [80], handling an

arbitary number of sources of interference interference, unicast traffic, and TCP. Hence analysis comprehensiveness

in the prior work has been achieved via a laborious incremental process.

For the above-listed 802.11 throughput prediction techniques, the issue of practicality arises in the form of as-

sumptions about(a) system opaqueness and(b) permissible measurement delay. System opaqueness is a challenge

because the studies assume extensive knowledge of the network topology, such as the number of interfering sources,

their traffic demands, and pairwise measurements of the quality of the channel between the interfering sources. This

information cannot be gathered without the cooperation of all the nodes in the network. Since clients in real wireless

networks are autonomous, their cooperation cannot be assumed. While minimizing the measurement delay required

to generate throughput predictions is desirable in any scenario, it is essential for opportunistic vehicular networks

because studies such as [40] show that at normal driving speeds most vehicles spend 10 seconds or less within range

of an AP, so to be useful to an application, throughput prediction have to be generated in considerably less than 10

seconds. However, the throughput modeling and prediction techniques in prior work require pairwise measurements
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between all the nodes in the network,i.e., requireO(n2) measurements for ann-node network, a process that takes

tens of seconds, so these techniques cannot be applied to vehicular wireless networks.

Our approach uses a set of short active probes to measure network path characteristics. We use Support Vector

Regression (SVR) to construct a prediction based on the relationship between the active probe measurements and

path throughput. Our measurements are conducted between the target client (the client that requests the throughput

prediction) and the AP and do not involve any other nodes in the network, so they surmount the system opaqueness

challenge. Our approach can generate predictions with useful accuracy using probes that are only 0.3 seconds long,

so unlike prior work techniques our approach overcomes the measurement delay challenge and is rapid enough even

for vehicular opportunistic networks. A major strength of our approach is the ease with which it handles analysis

comprehensiveness. The combination of simple and short active measurements and SVR-based prediction allows our

approach to predict TCP throughput for fully general wireless networks and does not require us to make any simpli-

fying assumptions regarding the number of sources of interference in the network or the protocols and optimizations

deployed. This is in contrast to the prior work, which had to go through a long process of building incrementally more

complete models to achieve analysis comprehensiveness.

We consider the problem of TCP throughput prediction empirically by taking measurements of wireless client and

AP interactions over a broad range of operating conditions including varying number of APs in the network, conduct-

ing experiments indoors and outdoors, with client stationary or moving at walking or driving speeds. In each case, third

party interference is created by systems running load generators that emulate web-like, bursty cross traffic.The predic-

tion accuracy of our method is cause for cautious optimism. We find that for all wireless environment configurations,

wireless throughput prediction accuracy is lower than the accuracy of our wireline SVR-based predictor (Chapter 4,

which is the most accurate wireline throughput predictor in the literature. We find in most of our experiments that only

10% to 30% of predictions are within 10% of actual throughput. In comparison, for our SVR-based wireline predictor,

50% or more of predictions are within 10% of actual: this is a factor of 2 to 5 better than wireless prediction accuracy.

However, we also find that 80% to 100% of predictions are within a factor of two of actual throughput. The factor

of two bound on accuracy means that predictions are useful for certain (but not all) applications. A major strength

of our approach is that it can be used in the vehicular scenario because it can achieve this bound on accuracy using

measurements lasting for as little as 0.3 seconds, and because this bound holds even when nodes are driving at speeds

of 15-25 mph.

To gain some insight into the disparity between wireline and wireless TCP throughput prediction accuracy, we

compare the SVR-based predictor with a predictor based on Exponentially Weighted Moving Averages (EWMA),

a standard time series forecast. We find that the EWMA-based predictor has accuracy similar to the SVR-based

predictor. 1. The fact that both predictors have similar accuracy suggests that greater inherent variability in wireless

1In spite of comparable accuracy between the two, the SVR-based predictor remains the predictor of choice because the EWMA-based predictor
cannot generate predictions quite as rapidly, as discussed in Section 5.4
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environments is responsible for the disparity in achievable wireline and wireless TCP throughput prediction accuracy.

We conclude by providing evidence in support of this hypothesis.

5.2 Experimental Setup

In this section we present our indoor (laboratory) and outdoor (drive-by) experimental environments, and the

measurements we conducted in these environments to construct a wireless throughput predictor.

5.2.1 Experimental Environment

We use 802.11a for our experiments: this allows us to avoid interference with our department’s and other depart-

ments’ 802.11b/g networks. We use 802.11a channel 36 for all our experiments.

Figure 5.1 illustrates the experimental setup for our laboratory experiments. There are four primary components

to the setup: the wireline nodes, the wireless nodes, two commodity access points (APs), and a monitor node.

The wireline and wireless nodes are connected in a dumbbell topology via the APs and a switch. The APs are Cisco

AP1200, running IOS version 12.3(8), with single Rubber Duck antenna, and integrated 802.11a module/antenna. The

switch is a commodity LinkSys 10/100 16-port Workgroup Hub. The wireline nodes and switch are connected to the

AP via 100Mbps Ethernet connections. The maximum data rate for 802.11a is 54Mbps; having 100 Mbps wireline

links insures that the wireless, rather than the wireline, part of the network is the throughput bottleneck.

The wireline nodes are identically configured Sun 4200 AMD Opteron 275 (dual Core) nodes, with 4 GB RAM,

Intel 82546EB (e1000) chips, running CentOS 5.0. The wireless nodes are MacBooks and MacBook Pros with default

vendor configurations. For the wireless network interfaces, for both indoor and outdoor experiments, the defaults

were(a) no RTS/CTS,(b) rate adaptation enabled, and(c) no mac layer fragmentation. We used the default network

interface configurations because in production opportunistic networks the client nodes will to be heterogeneous and

independently configured by users and/or vendors.

The monitor node is located next to the foreground wireless node for all experiments. This node is a Dell 700M,

1.6Ghz P4, with a Cisco CB21AG 802.11a/b/g cardbus adapter. The monitor node does not transmit any packets, but

captures all the packets it sees on a specified channel. The traces thus collected are used for throughput prediction.

Figure 5.2 illustrates the setup for the drive-by experiments. The outdoor setup is different from the indoor setup in

three ways. First, we replaced the Sun 4200 AMD Opteron nodes (the wired nodes) with Powerbook G4 and MacBook

Pros because the Sun nodes were rack-mounted machines and hence not portable. Second, instead of using a MacBook

Pro as the foreground wireless node, we used a 1 Ghz VIA Nehemiah node, with 512MB RAM, Netgear WAG311 with

integrated 5 DBi antenna, running Gentoo 1.12.9, which is a 2.6.20.7 Linux kernel. The antenna extended the range of

the wireless signal sufficiently to allow us to communicate with the AP while driving to a distance of approximately

400 ft in each direction. Third, we mounted the AP 20 feet above the ground to stay within line of sight of the car for

a greater distance.
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We used a portable generator to power our stationary nodes, which we placed halfway along our driving path,

which was between two parking lots. The wireless foreground node and the monitoring node were placed in the car;

the wireless foreground node’s 5 DBi antenna was placed on the roof of the car to prevent the body of the car from

lowering the signal strength.

We ran two sets of indoor experiments. In the first set, the foreground wireless node was stationary; in the second

set, the foreground node was moved around in the hallway next to our lab at walking speed over a distance of 100 ft.

The position of the foreground node in both these scenarios is illustrated in Figure 5.1. How far we could move the

foreground node was restricted by the layout of the hallway.

For the outdoor experiments, we drove along a stretch of road between two parking lots that were approx. 850 ft

apart at speeds between 15 and 25 mph. An athletic field bordered the road on one side; the other side was bordered

by a residential area. We chose this particular location because its low vehicular traffic volume allowed us to maintain

driving speeds for 15-25 mph, and having an open field on one side allowed us to maintain line of sight, and hence

association with the AP, for approximately 400 ft on either side, compared to approximately 50 ft on either size in the

indoor experiments. We limit the driving distance from the AP such that we always stay associated with the AP. When

we experimented with driving far enough to get out of range and then coming back into range, the re-association time

was high: we spent over 80% of our driving time trying to associate, because the client was scanning channels on all

APs it was receiving beacons from. For vehicular networking to be feasible, significantly faster association techniques

will be required. Developing fast association techniques is beyond the scope of this paper, but [40] has presented ways

to speed up association for vehicular opportunistic networks.

5.2.2 Experimental Protocol

In our experiments, communication between wireless and wireline nodes is pairwise,i.e., during an experiment,

each wireless node sends data to a single, pre-assigned, wireline node and vice versa. One wireline-wireless pair is

designated the foreground pair: we predict throughput from the perspective of this node. The other two node pairs

generate background traffic.

We experiment with three different data flow scenarios. First, we download data from the wireline nodes to the

wireless nodes: in this case, the principle direction of TCP data flow is from the AP to the wireless nodes, and only

TCP ACKs travel in the reverse direction. This is how wireless clients are typically used. Second, we upload data from

the wireless nodes to the wireline nodes. This maximizes contention for the wireless medium in a single-AP wireless

network. In the upload case, there are three nodes, the wireless nodes, transmitting, while in the download case only

the access point is transmitting for the most part, so in the upload case there is greater contention for the medium.

Third, we use the 2-AP setup. Here, two APs are within range of each other, so even in the download case, there is

contention for the medium. For our indoor experiments, in the 2-AP setup, the background traffic nodes are associated

with the AP inside the lab (AP1), and the foreground node is associated with the AP in the hallway (AP2), which is



97

mounted on the ceiling of the hallway (Figure 5.1). In the single AP upload and download cases, AP2 is turned off

and all nodes are associated with AP1.

We use Harpoon [114], a flow-level network traffic generator, to generate background traffic. The traffic is open

loop on/off TCP traffic, with file sizes drawn from a Pareto distribution and the time between transfers drawn from an

exponential distribution, a pattern that closely resembles actual Internet traffic [36]. Each background node pair runs 0-

6 data transfer threads at any given time: this represents a user doing a few different things on a laptop simultaneously,

such as browsing the web and downloading software. We set the maximum number of threads per background node to

6. This varies the background traffic enough to make prediction non-trivial without overloading the wireless network

to the point of congestion collapse and near-zero throughput.

Figure 5.3 presents the active probes we run on the foreground nodes. We run a series of Iperf transferst seconds

long separated byw seconds of wait time. Since our focus is on predicting throughput quickly, we uset andw values

of 0.31, 0.42, 0.63, and1.25 seconds. However, we also experiment with larger values for comparison. Background

traffic runs continuously, during both the transfer phase and the wait phase of the foreground traffic.

5.3 Building a Robust Predictor

In this section, we describe how we construct wireless TCP throughput predictors using active measurements from

Section 5.2.2. We then present an extensive evaluation of the accuracy of these predictors.

5.3.1 Predictor Construction

To construct the SVR-based predictor, we use a a Radial Basis Function (RBF) kernel (Chapter 3, Section 3.5)

because RBF kernels tend to have the best accuracy in practice. We set the RBF kernel parameterγ for different series

of experiments using cross-validation. We set the parameterC from Equation 3.34 using cross-validation as well. We

use theSV M light package [63] to construct our SVR-based predictor.

For comparison with SVR-based accuracy, we used the exponentially weighted moving average (EWMA), a time

series-based predictor, stated below. We used anα value of 0.3.

R̂i+1 = αRi + (1− α)R̂i

For each of the values0.31, 0.42, 0.63, and1.25 seconds oft andw for our active probes (Section 5.2.2), we

collect 200 measurement samples. For EWMA, the moving average of the throughputs of the firstk transfers serves

as the prediction for the(k+1)th transfer. For SVR, the training set is every set ofk consecutive transfers and the test

set is the(k+1)th transfer. So, given the 200 training/test sample sequence, the first training set is made of samples 1

to k and the test set of samplek+1, the second training set of samples 2 tok+1 and the test set of samplek+2, and so

on. We usek = 100 for our analysis.
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We use two schemes for SVR, calledSVR-InterTransferandSVR-IntraTransfer, as illustrated in Figure 5.3. In

SVR-InterTransfer, the input feature to the SVR is the throughput of thekth transfer, and the target,i.e., the value to be

learned, is the throughput of the(k+1)th transfer. InSVR-IntraTransfer, the throughput of the first half of a transfer is

the input feature, and the throughput of the second half is the target value. We divide the transfer into halves in terms

of time elapsed rather than bytes transferred.

We use the metricrelative prediction error Eintroduced in [54] to evaluate the accuracy of an individual through-

put prediction. We denote the actual throughput byR and the predicted throughput bŷR. Relative prediction erroris

defined as

E =
R̂−R

min(R̂, R)

Throughout this paper, we use the distribution of the absolute value ofE to report our results.

5.3.2 Evaluation of Prediction Accuracy

Figures 5.4–5.6 present the results of our experiments. We obtain the relative error of an individual prediction

using the relative error metric presented in Section 5.3.1. We present our results as cumulative distributions of relative

error. Thex-axis of each graph is the relative prediction error, and they-axis is the fraction of predictions with relative

error ofx or lower. A highery value for a givenx value means better prediction accuracy than a lowery value.

We begin by looking at the general trends in Figures 5.4–5.6, and then look at error distribution values in detail.

We first consider the error distribution for each individual graph. Different lines in a given graph represent com-

binations of data flow setups (downstream, downstream2AP, upstream), and the length of the TCP transfer (0.31,

0.42, 0.63, or 1.25 seconds).2 The overall trend is that, in each graph, all lines are clustered relatively close together.

This means that at a given speed and for a given predictor (EWMA, SVR-InterTransfer, or SVR-IntraTransfer), traffic

direction, number of APs, and transfer duration have little impact on prediction accuracy.

Next, we compare the different graphs in two ways: the speed of the wireless client (stationary, walking, or

driving), and the predictor used.

The three graphs in each individual figure 5.4–5.6 represents increased client speed for a given predictor. The

general trend in each figure as we go from(a) to (c), i.e., as client speed increases, is that the gradient of the lines

becomes less steep,i.e., prediction accuracy decreases. This is consistent with intuition: as the client speed increases,

the wireless environment becomes more dynamic, so predicting throughput becomes more difficult.

Next we consider the accuracy of different predictors for fixed client speeds,i.e., we compare graphs(a) in Fig-

ures 5.4–5.6 with each other, graphs(b) with each other, and so on. The general trend in this grouping is that there

is little difference in the gradient of lines,i.e., prediction accuracy does not change significantly with a change in

2We present results for only 0.63 and 1.25 second transfers for the stationary and walking case to limit the number of graphs and maintain clarity;
results for 0.31 and 0.42 second transfers were similar. We present only upstream traffic results for drive-by experiments because our downstream
traffic traces turned out to be corrupted.
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predictors. This observation is surprising: we had expected SVR-based predictors to do better than EWMA because

they are quicker to respond to level shifts in background traffic. We also expectedSVR-IntraTransferto perform better

thanSVR-InterTransfer, because it has more current information about network conditions. One possible reason for

SVR-IntraTransferdoing no better thanSVR-InterTransfercould be TCP slow-start having a large impact on through-

put because our TCP transfers are short, 1.25 seconds or less. To investigate this possibility, we experimented with

larger timescales to minimize the effect of slow-start on throughput. Specifically, we used 8MB transfers separated by

15 second wait times. The results are presented in Figure 5.7. Once again, we observe thatSVR-IntraTransferdoes

no better thanSVR-InterTransfer, so we can rule out slow-start effects as being the reason why the relative prediction

accuracy ofSVR-InterTransferandSVR-IntraTransferis contrary to expectation.

Next, we consider the absolute prediction accuracy that is achieved. Here, there is cause for cautious optimism.

The prediction accuracy for wireless opportunistic networks using our methods is not comparable to the high pre-

diction accuracy for wireline networks using the SVR-based predictor from Chapter 4. For the opportunistic wireless

case, typically, 10% to 30% of predictions are within 10% of actual throughput, and 30% to 70% of predictions are

within 20% of actual throughput. In comparison, for the wireline case using SVR, 50% or more of predictions are

within 10% of actual [86], which is a factor of2 to 5 better than the results we obtain for the wireless case.

However, in all cases, 80% to 100% of predictions are within a factor of two of the actual throughput. This

bound on prediction accuracy means that predictions can still be useful for some purposes, such as TCP-friendly rate

calculation. Applications wishing to use the TCP-friendly rate can be conservative and assume a factor of two over-

prediction, and still be able to get a reasonable throughput without overloading the network. The alternative would

be knowing only that available bandwidth is somewhere between1 and 54 Mbps in an 802.11a or g network, which

is a factor of54, so a factor of two bound is considerably more useful to an application. Also, the prediction can be

made with a measurement lasting only0.3 seconds, which is essential if the node is mobile, because(a) the factor of

two bound holds even for nodes driving at speeds of 15-25 mph, and(b) the prediction time is short enough to allow

almost all the time within range of an AP can be devoted to transferring application data. On the other hand,predictions

are not useful for applications such as highest-throughput access point selection, because the difference in achievable

throughput between candidate APs is generally less than a factor of two (see, for example, [91]).

Next, we try to understand why it is difficult to achieve prediction accuracy comparable to the wireline case. We

look at how throughput varies with time in Figure 5.8, for both stationary and driving nodes. Time is represented on

thex-axis in terms of transfer numbers, and they-axis shows the actual throughput for a particular transfer number.

The main difference between the two graphs in the figure is that, on average, throughput is higher for the stationary

case compared to the driving case. This is to be expected, because the average distance between the node and the

AP is greater in the driving case. What is similar about the two graphs is the high variability of TCP throughput over

time, represented by the sharp peaks and valleys in both graphs. While there is observable decrease in prediction

accuracy as the speed of a node increases (observe the decreasing gradient from graphs(a) to (c) for each individual



100

Figure 5.4–5.6) this decrease is not very large. For stationary nodes, 30% to 70% of predictions are typically within

20% of actual throughput, for walking nodes 30% to 60%, and for driving nodes 20% to 40%, so the decrease in

accuracy due to movement is about a factor of1.5. In comparison, the decrease in accuracy relative to wireline TCP

throughput prediction is a factor of2 to 5. Also, SVR-IntraTransferdoes no better thanEWMAor SVR-InterTransfer,

even though it has up-to-date path information available to it. All these observations suggest that TCP throughput in

the wireless environment is inherently variable, regardless of whether nodes are stationary or mobile.

5.4 Practical Deployment

There is currently no tool available for predicting TCP throughput for mobile wireless networks. The results

presented in this chapter provide the basis for the construction of such a tool. In this section, we discuss additional

practical deployment issues relating to the development of a mobile wireless TCP throughput prediction tool.

Given the time constraints in the wireless opportunistic scenario where most clients are within the range of an AP

for 10 seconds or less [40], clients require that the prediction be generated as soon as possible, ideally under1 second,

so it can be of use to applications. To enable generating a prediction within the0.31–1.25 second window that we have

evaluated, we envision a scenario where the predictor is pre-computed and maintained by the AP. In this case, only

one active measurement between the AP and target client is required to generate a prediction using the pre-computed

predictor. The AP can acquire the training set needed to pre-compute a predictor using past history based on past

prediction requests and passive measurements of application traffic. To improve accuracy, different predictors can be

maintained based on the type of interface card, rate adaptation algorithm used, and other well-known parameters that

vary between clients. Geographic information, such as the road and direction of travel of the vehicular client, can also

be used to augment the predictors, because studies such as [83] have reported that the behavior of the RF environment

at specific locations tends to be predictable.

The need for a pre-computed predictor to meet the time constraints of vehicular opportunistic networks means

that only the SVR-based predictor can be used in practice, and the EWMA-based predictor cannot. EWMA requires

temporally contiguous data, and needs at least a few training samples to generate accurate predictions. SVR does

not require temporally contiguous data. The time constraints in vehicular opportunistic networks do not allow for the

creation of a training set on-the-fly, hence making the use of EWMA impractical.
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Figure 5.1: Laboratory (indoor) setup for stationary-node and walking-node experiments.
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Figure 5.3: The foreground node measurement protocol used for all experiments.
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Figure 5.4: Prediction accuracy using the EWMA predictor for stationary, walking, and driving wireless nodes.
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Figure 5.6: Prediction accuracy using EWMA and SVR predictors for stationary, walking, and driving wireless nodes.
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Figure 5.7: Prediction accuracy using EWMA and SVR Predictors for Large (8MB) transfers from a Stationary Wire-

less Node.
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Chapter 6

Fingerprinting 802.11 Rate Adaptation Algorithms

6.1 Overview

802.11 supports multiple data transmission rates at the physical layer to allow senders to maximize throughput

based on channel conditions. The modulation schemes used to encode data at lower rates are more robust to channel

noise that those used for higher rates. If the channel quality is good,i.e., the signal-to-noise ratio (SNR) is high,

then higher data rates will maximize throughput because the bit-error rate (BER) will be low. If the channel is noisy,

lower data rates will maximize throughput because the high BER at higher data rates will lead to increased loss and

MAC-layer backoffs, resulting in poor throughput.

Designing algorithms that allow wireless senders to converge to the optimal rate for prevailing channel conditions

in a timely fashion is challenging due to the difficulty of determining the cause of packet loss [104], limitations of the

PHY/MAC interface in commodity wireless cards [129], and the assumption that a higher transmission rate always

results in higher loss for a given RF environment not always being true [24]. Many attempts have been made to

address this challenge, resulting in a large number of rate adaptation algorithms, with different algorithms performing

best under different network conditions.

In this paper, we describe a method for identifying orfingerprinting the rate adaptation algorithms used in an

802.11 environment. We envision this capability as being part of a toolkit for automated performance analysis and

debugging of production networks. The need for automated analysis and debugging has become increasingly urgent

as 802.11 networks have grown to support large user populations. Client devices set their own configurations and

connect and disconnect at will. Wireless network administrators have little control over, and knowledge of, network

configurations, and cannot rely on cooperation from clients for performance analysis and debugging. Thus, practical

performance analysis and debugging efforts for large-scale wireless networks such as [32, 82] are typically based

entirely on passive monitoring, which requires no support or participation from clients. The presence of multiple rate

adaptation algorithms introduces a new dimension of variability into 802.11 wireless networks. However, to the best

of our knowledge, none of the passive monitoring-based performance analysis and debugging efforts in the literature

consider the impact of 802.11 rate adaptation algorithms, despite the fact that the choice of rate adaptation algorithms
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can have a major impact on network throughput. The rate adaptation algorithm fingerprinting capability will provide

additional information to passive monitoring systems to facilitate wireless network performance analysis.

We begin by investigating the details of the four open source rate adaptation algorithms from the popular MadWifi

driver [9] that constitute the test cases for our study. Manual examination of implementations shows that the algorithms

can result in many possible rate change permutations depending on the timing and pattern of packet transmissions and

losses. The large space of permutations precludes a fingerprinting approach based on explicitly enumerating all possi-

ble cases of an algorithm’s behavior and suggests the need for a learning-based approach for algorithm classification.

We develop a rate adaptation algorithm classifier based on Support Vector Machines using carefully selected input

features from passive packet traces. We then conduct extensive experiments in a laboratory environment to identify

combinations of features that result in the most accurate classification capability. Our results show that a classifier

trained with a robust set of features can exhibit classification accuracy as high as 95%-100%. We show that careful

selection of input features is necessary for achieving high classification accuracy. We also demonstrate that a classifier

generated in one set of network conditions can identify algorithms in a different set of network conditions as long as

the training data includes a sufficiently broad sampling of an algorithm’s behavior.

Our method meets all the criteria of a useful performance analysis technique discussed in Chapter 1 Section 1.1.

With a classification accuracy of 95%-100%, it comfortably meets the high accuracy criterion. It meets the analysis

comprehensiveness requirement because we do not make any simplifying assumptions and evaluate our method under

realistic network operating conditions. When a new rate adaptation algorithm needs to be added to the classification set,

due to the use of SVM for classification, all that is required is the potential addition of input features, a task significantly

easier than building a new explicit model to identify each new algorithm, so the method meets the extensibility and

maintenance requirement. The discussion of the factors that effect classification accuracy in Section 6.4 illustrates that

classification robustness can be achieved as long as the training set contains a comprehensive sampling of algorithm

behavior in a wide range of conditions. The method is practical because it is based entirely on passive network traces

and assumes no cooperation or active participation from the wireless clients in a network. The method is agile,i.e., it

can begin accurate classification in new or changing network environments without any delay, because pre-computed

classifiers can be deployed, since we have demonstrated in Section 6.4 that classifiers are portable.

6.2 Rate Adaptation Algorithms

The development of our classifier is based on the four 802.11 rate adaptation algorithms implemented by the latest

version (0.9.4) of the popular open-source MadWifi driver [9]. We chose an open source driver so we could gain

insight into algorithm behavior and validate the results of the classifier based on manual algorithm inspection. In this

section we summarize the MadWifi rate adaptation algorithms. Our objective is to highlight the complexities of an

algorithm’s behavior, in particular the fact that an algorithm’s behavior can change dramatically depending on the
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prevailing network conditions. The need for a learning-based classifier arises because the large number of packet rate

and retransmission patterns that can occur with a given algorithm would be very difficult to enumerate explicitly.

The MadWifi driver is designed for wireless cards using Atheros chips, which implement multi-rate retries [8].

The Hardware Abstraction Layer (HAL) exports aretry chain, consisting of 4 ordered pairs ofrate/countvalues,r0/c0

throughr3/c3. The hardware makesc0 attempts to transmit a given packet at rater0, c1 attempts to transmit a packet

and rater1, and so on. Once the packet is successfully transmitted, the remainder of the retry chain is discarded.

The rate adaptation algorithms have three tasks,(a) to select rater and countc values for the retry chain,(b) to

determine the conditions under which the retry chain values are updated, and(c) to determine how often to check for

the update condition. In the remainder of this section, we outline how the four algorithms perform these tasks. We

present the algorithms in increasing order of complexity.

Onoe[3] tries to maximize throughput by selecting the highest transmission rate that results in loss rate below a

certain threshold. It uses a system ofcredits to decide whether to change the current rater0. The credit associated

with r0 is increased by one if less than 10% of packets in the last interval need retries, andr0 is increased to the next

highest rate when the credit exceeds 10. The credit associated withr0 is decreased if more than 10% of packets need

retries.r0 is decreased to the next lowest rate if the average number of retries per packet exceeds one. The interval for

evaluating loss rate and updating credits is 0.5–1.0 seconds.r1 andr2 are set to the two rates consecutively below the

currentr0, andr3 is set to the lowest possible rate (6 Mbps in 802.11a/g).c0 is set to 4, andc1, c2andc3are set to 2.

Sincer0 is updated indirectly based on credits, and the retry chain is 10 packets long,Onoeis rather slow to adapt to

changing network conditions.

AMRR [74], like Onoe, tries to maximize throughput by selecting the highest transmission rate that results in loss

rate below a certain threshold. If less than 10% of packets are lost in the last interval, the currentr0 is increased to

the next highest rate, and if greater than 30% of packets are lost, it is decreased to the next lowest rate, otherwise it

remains unchanged. Loss rate is evaluated every 10 packets. If a rate increase is attempted and it results in a loss, the

interval for attempting the next increase is enlarged exponentially, up to a maximum of 50 packets. This is done to

prevent unnecessary losses if the current transmission rate is the highest possible for the target loss rate.r1 andr2 are

set to the two rates consecutively below the currentr0, andr3 is set to the lowest possible rate.c0, c1, c2andc3 are

all set to 1 to make the retry chain shorter and the algorithm more responsive compared toOnoe.

Sample Rate[24] selectsr0 by explicitly computing the rate most likely to maximize throughput in the prevailing

network conditions, unlikeOnoeandAMRR, which use the combination of loss minimization and rate maximization

to estimate the best rate.OnoeandAMRRassume that a higher transmission rate will always result in a higher loss

rate in a given environment. However, [24] shows this assumption to be incorrect, and shows that loss rate at a higher

transmission rate may be lower depending on the modulation and encoding of the rates and the amount of noise in

the RF environment. Motivated by these observations,Sample Rateexplicitly computes throughput for a given rate

based on the number of successful and failed transmissions and 802.11 parameters such as inter-frame spacing and
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ACK transmission time.Sample Ratechangesr0 when another rate begins to yield better throughput. Since a rate

other than the next highest or next lowest from the currentr0 may yield the best throughput, the algorithm has to

periodically sample all other rates. 10% of transmission time is used for sampling alternate rates. Rates for sampling

are selected intelligently, with rates more likely to improve throughput selected more frequently.r0 is changed if

sampling indicates that another rate will result in higher throughput.r1 andr2 are no longer set to the two next lowest

rates afterr0, rather they are set to rates with the next lowest throughputs. Throughput is reevaluated for the current

r0 and other candidate rates periodically and is smoothed using EWMA, with 5% of the weight coming from the last

evaluation interval.r0 is changed if another rate’s EWMA throughput is greater.

Minstrel [2] is the most advanced rate adaptation algorithm implemented by the MadWifi driver. It improves

on two aspects ofSample Rate. First, it setsc0, c1, c2andc3 based onr0, r1, r2 and r3 such that the retry chain

completes within 26 ms, a time limit selected to minimize TCP performance deterioration in case of losses. Second,

it was noted that even withSample Rate’sintelligent selection, sampling alternate rates resulted in use of low rates

and low throughput.Minstrel tries to avoid this problem by more sophisticated sampling rate selection, the complete

details of which can be found in [2]. The throughput is calculated in a manner similar toSample Rate. It is reevaluated

for the currentr0 and other candidate rates every 100ms. The value is smoothed using EWMA, with 25% of the weight

coming from the latest 100ms interval, andr0 is changed if another rate’s EWMA throughput is greater.

6.3 Experimental Setup

In this section we describe our experimental testbed and how we used it to generate packet traces for building the

SVM-based 802.11 rate adaptation algorithm classifier.

6.3.1 Experimental Environment

Figure 6.1 illustrates the experimental testbed that we used to collect traces for classification. There are four pri-

mary components to the setup: wireline nodes, wireless nodes, one commodity access point (AP), and a monitor node.

The wireline and wireless nodes are connected in a dumbbell topology via the APs and a switch. The AP is a Cisco

AP1200, running IOS version 12.3(8), with single Rubber Duck antenna, and integrated 802.11a module/antenna. The

switch is a commodity LinkSys 10/100 16-port Workgroup Hub. The wireline nodes and switch are connected to the

AP via 100Mbps Ethernet connections. The maximum data rate for 802.11a is 54Mbps. Having 100Mbps wireline

links insures that the wireless, rather than the wireline, part of the network is the throughput bottleneck.

The wireline and wireless nodes are identically configured Sun 4200 AMD Opteron 275 (dual Core) nodes, with 4

GB RAM, Intel 82546EB (e1000) chips, running CentOS 5.2. The wireless nodes are installed with R52-350 mini-PCI

cards (Atheros 5414 chip). We used default wireless interface configurations for our experiments. These were:(a) no

RTS/CTS, and(b) no MAC layer fragmentation.
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Communication between wireless and wireline nodes is pairwise,i.e., during an experiment, each wireless node

sends data to a single, pre-assigned, wireline node and vice versa. One wireline-wireless pair is designated the mea-

surement pair. Algorithm classification is done for packet traces from the measurement node pair. The other two node

pairs generate background traffic. We refer to them as background pair one and background pair two. The monitor, an

AirPcapNxadapter [1] is located next to the measurement node for all experiments. We use 802.11a channel 36 for all

our experiments.

6.3.2 Experimental Protocol

The measurement node transferred 8MB files with 5 seconds between transfers. There were three levels of back-

ground traffic: no background traffic, one node pair generating background traffic, and two node pairs generating

background traffic. The first background node pair transfers 4MB files with an interval of 2 seconds between transfers,

and the second pair transfers 512KB files with 1 second between transfers. Both background nodes useSample Rate,

the default MadWifi rate adaptation algorithm.

For each background traffic level, 100 files per rate algorithm were transferred for each of the four algorithms. The

file transfers for the different algorithms were interleaved in sets of 25 to compensate for possible external interference

that could effect the integrity of classification.

We process packet traces for rate adaptation algorithm classification in the following manner. We generate a

training/test feature vector for every instance where the transmission rate of thekth andk+1th 802.11 data packet

transmitted by the measurement node is different. The rate transition is the center of the packet window over which

we compute features. The feature values were normalized by subtracting the mean of each feature from the respective

feature values and then dividing by the standard deviation before training and testing.

The training set consists of 10% of feature vectors selected uniformly at random from the first half of the transfers

at each background traffic level. The test set consists of all feature vectors from the second half of transfers at each

background traffic level. We constructed 5 different training sets via random sampling, and tested all of them using

the second half of the transfers. The classification accuracy values in Section 6.4 are the averages of the five runs.

In Section 6.4, we present algorithm classification accuracy in terms of two metrics,transfer classification accu-

racyandsample classification accuracy. The primary accuracy metric istransfer classification accuracy. After all the

feature vectors from an 8MB transfer in the test set have been classified, we determine the algorithm class of the ma-

jority of the feature vectors and designate that as the algorithm class for the whole transfer. Thetransfer classification

accuracyvalues presented in Figures 6.2–6.5 refer to the percentage of 8MB transfers in the test set that are classified

accurately, averaged over the 5 different training and test runs. We chose a metric that reports classification accuracy at

the granularity of whole transfers rather than individual feature vectors for two reasons. First, the use of the majority

vote based on a larger number of feature vectors increases robustness compared to classification based on a single

feature vector. Second, in practice, algorithm classification is likely to be done for a complete user session or transfer,
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so our use of the majority vote to boost robustness does not require us to make any unrealistic assumptions. However,

consideration of classification accuracy at the granularity of individual feature vectors cannot be ignored entirely for

the following reason. A transfer classification is considered correct whether 100% of feature vectors from the transfer

are classified correctly, or (assuming 4 algorithms) whether 25.1% of the feature vectors are classified correctly and

the incorrect classifications split evenly between the remaining 74.9% feature vectors. However, the confidence in the

classification is clearly much more in the first case. To guard against this accuracy confidence inflation, we also report

individual feature vector classification accuracy. Thesample classification accuracy1 metric in Figures 6.6–6.9 refers

to the fraction of individual feature vectors in the test set that are classified accurately, averaged over the 5 different

training and test runs.

6.4 Building a Robust Classifier

In this section, we first describe the input features we used to construct the SVM-based classifier for algorithm

identification. We then present results to demonstrate the high accuracy of our classifier, and discuss how feature

selection affects accuracy. We conclude the section by providing evidence that the classifiers are portable,i.e., that a

classifier trained in one RF environment can successfully identify algorithms in a different RF environment.

6.4.1 Feature Selection for Algorithm Classification

For each rate transition event in the packet trace,i.e., each time the transmission rate of thekth andk+1th packet

differs, we compute two feature sets, detailed below, over windows of varying sizes. The difference in the feature sets

is that they represent information at varying levels of granularity for training and testing.Feature Set 1aggregates the

information in the feature vector window, whileFeature Set 2exposes detailed packet trace information. The results

in Section 6.4 will show that having packet trace information at varying levels of granularity is essential for accurate

classification.

Feature Set 1: The following features are computed for a window of sizem1 around a rate transition event.

Features(1)–(4) are computed once for the entire window, and(5)–(12)are computed individually for each of the

eight 802.11a data rates. Each feature in the list below corresponds to two distinct features, one computed for a

window of sizem1 before the rate transition event, and the second for a window of sizem1 after the rate transition

event.

(1) The number of packets in the window.

(2) The packet reception probability, defined as the number of non-retry packets divided by the total number of packets

in the window.

1In the remainder of this chapter we use the termsindividual feature vectorandsampleinterchangeably, based on ease of exposition
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(3) The fraction of packets in the window that are unique, defined as the number of distinct 802.11 sequence numbers

observed divided by the total number of packets.

(4) The trace accuracy, which is defined as1−# of missing 802.11 sequence numbers
total # of packets .

(5) The number of packets with each rate in the window.

(6) The number of packets with each rate that are retries in the window.

(7,8,9)The minimum, median, and maximum distance in packets for packets with each rate from the center of the

window. Distance in packets is calculated in terms of the number of packets in the trace rather than packet sequence

numbers. When a packet of a particular rate does not occur in a window, distance is set to a constant high value.

(10, 11, 12)The minimum, median, and maximum distance in packets for a retry packet with each rate from the center

of the window.

Hence, for any value ofm1, there are a total of 136 features,2 ∗ 4 for the four features (1–4) before and after the

center of the window, and8 ∗ 8 ∗ 2 for the eight features (5–12) for each of the eight rates before and after the center

of the window.

We consider the following different values ofm1: 100ms, 200ms, 300ms, 400ms, 500ms, 10 packets, 20 packets,

30 packets, 40 packets, 50 packets, 1-5 802.11 retries around a packet transition event.

Feature Set 2: For this set, the following three features corresponding to each packet in a window of sizem2 are

included in the feature vector:

(1) The transmission rate of the packet.

(2) A binary value indicating whether the packet is a retry.

(3) The difference in sequence numbers between the packet and the center of the window.

We use the following values ofm2: 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 packets. In this case, since there are 3

features per packet and the window size ism2 packets before and after a rate transition, the total number of features

per feature vector is3 ∗ ((2 ∗m2) + 1)2.

Finally, we constructed anall featuresvector, which is the concatenation of feature vectors for all window sizes for

both feature sets, and contains 3720 features. In Section 6.4, we present classification accuracy results forall features,

all window sizes forSet 2, and 10, 20, 30, 40 and 50 packet window sizes forSet 1, because these feature sets yielded

the most interesting results.

We use the multi-label SVM software SVMmulticlass [4], with a linear kernel and default parameters, for algorithm

classification.

6.4.2 Evaluation of Classification Accuracy

We conducted two sets of experiments one week apart, which we refer to asExperiment 1andExperiment 2, both

using the protocol described in Section 6.3.2. For results presented in this section, training and test sets were drawn

2+1 for the packet at the center of the window.
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from the same experiment. For results presented in the next section, the classifier trained on data fromExperiment 1

was tested on data fromExperiment 2and vice versa to investigate the portability and robustness of the classifier.

Figures 6.2–6.5 present our results in terms of thetransfer classification accuracymetric. The stacked histograms

illustrate the fraction of transfers classified for each algorithm forExperiment 1andExperiment 2. In each case, the

training and test set were drawn from the same experiment. The figure labels indicate the experiment number and the

correct algorithm. Thex-axis indicates the feature set (1 or 2) and window size used. They-axis indicates the fraction

of transfers classified for a certain algorithm and feature set,e.g., in Figure 6.4b,Set 1, 20 pktsfor Experiment 2,

Onoeshows that approximately 70% of transfers were classified correctly asOnoe, 25% were classified incorrectly as

Minstrel and 5% were classified incorrectly asAMRR. Algorithms are indicated in the key with the first letter in their

name.

We present results from two different runs of the same experiment, conducted in the same laboratory environment

but one week apart, because wireless network conditions are difficult to replicate due to external interference effects.

Table 6.1 presents the distribution of transmission rates for the two experiments, and it can be seen that there is a

significant difference in the distributions in many cases.

Figures 6.2–6.5 show that for all algorithms exceptOnoe(Figure 6.4) the classification accuracy forall features

is high, ranging from 95% to 100%. Also, for all cases exceptExperiment 1, Onoe(Figure 6.4a), the accuracy for

all featuresis very close to that of the highest accuracy individual feature set for each experiment. Both observations

support our learning-based approach. Their combination means two things. First, classification accuracy is high.

Second, feature set and window size selection are simplified because the concatenation of all feature sets and window

sizes inall featuresresults in accuracy equal to that of the most accurate individual feature set. This occurs even

though the most accurate feature set varies by algorithm and experimental run.

The classification accuracy forOnoeis lower than all other algorithms across all feature sets. This is explained

by considering theRate Changecolumn of Table 6.1. This column indicates the rate change frequency,i.e., the

percentage of times two consecutive packets in a trace have different transmission rates.Onoehas the lowest rate

change frequency, 4.1% to 7.7%.Sample Ratehas the next lowest rate change frequency, 9.7% to 13.2%, roughly

twice that ofOnoe. This difference means that over a given packet window, aSample Ratetrace will provide SVM with

twice as much information to generate a distinguishing signature compared toOnoe, resulting in higher classification

accuracy forSample Rate. The fact thatOnoehas by far the lowest rate change frequency is consistent with what

we know about the four algorithms.Onoeis the slowest to change rates because of its use of credits to calculate rate

change. Also, it has the longest and slowest-to-change retry chain with ac0 value of 4, which further reduces the

frequency of rate change and hence the information content of packet traces. All other algorithms change rates at a

frequency of roughly 11%-30% due to shorter retry chains and properties such as sampling alternate rates or trying

a higher rate after every 10 successful packet transmissions at a given rate, yielding traces with a higher information

content and therefore better classification accuracy.
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Figure 6.2: Transfer classification accuracy forAMRR
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Figure 6.3: Transfer classification accuracy forMinstrel
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Figure 6.6: Sample classification accuracy forAMRR
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Figure 6.7: Sample classification accuracy forMinstrel
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Figure 6.8: Sample classification accuracy forOnoe
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Figure 6.9: Sample classification accuracy forSample Rate
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Figure 6.10: Stacked histogram showing the fraction of transfers classified correctly and incorrectly for each algorithm,

training set and test set combination. This figure illustrates the potential for the portability of the classifier. All results

presented are for theall featuresset. The x-axis indicates the correct algorithm and the training and test sets,e.g., a,

2–1 indicates that AMRR is the correct algorithm, the training set consisted of data fromExperiment 2and the test set

consisted of data fromExperiment 1, while m, both–2indicates that Minstrel is the correct algorithm, the training set

consisted of data from bothExperiments 1 and 2, and the test set consisted of data fromExperiment 2.
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Table 6.1: Distribution of packets across transmission rates for four target algorithms. The first column indicates

the algorithm (algorithms are identified by the first letter in their names), the background traffic level (nobg for no

background traffic, bg1 for one background node pair generating traffic, and bg2 for two background node pairs

generating traffic), and the experiment number (1 or 2). The columns labeled with rates indicate the percentage of

packets in each experiment transmitted at that rate.Rate Changeindicates the percentage of times two consecutive

packets were transmitted at different rates.Retry indicates the percentage of packets that were retries.Consecutive

Retryindicates the percentage of times thek+1th packet was a retry given that thekth packet was a retry. This is an

estimate of how far down the retry chain the algorithm had to go in case of a loss. The last three values are measures

of the information content of a packet trace. Algorithms that have higher values are likely to be classified with higher

accuracy because they provide SVM with a larger amount of information over a given time window, enabling SVM to

generate a better distinguishing signature. All values are aggregates for all transfers in a given experiment.

Experiment 6Mbps 9Mbps 12Mbps 18Mbps 24Mbps 36Mbps 48Mbps 54Mbps Rate Retry Consecutive

Change Retry

a, nobg, 1 0.3 0.0 0.1 0.7 9.6 78.1 11.1 0.0 31.8 16.5 6.2

a, nobg, 2 0.4 0.1 0.6 1.3 15.3 77.2 5.0 0.0 30.3 15.7 6.2

a, bg1, 1 0.3 0.1 1.3 6.7 37.7 51.2 2.8 0.0 28.6 15.4 9.8

a, bg1, 2 0.6 0.6 2.8 8.7 35.7 50.0 1.6 0.0 29.1 15.7 10.9

a, bg2, 1 0.3 0.7 1.4 5.4 31.3 55.4 5.5 0.0 30.7 16.4 9.2

a, bg2, 2 0.6 0.5 2.4 8.1 48.7 39.4 0.3 0.0 31.6 17.0 11.0

m, nobg, 1 0.0 0.0 0.1 0.2 0.5 92.4 4.0 2.8 7.4 14.2 42.9

m, nobg, 2 0.3 0.0 0.0 0.6 2.8 89.7 3.9 2.5 10.3 23.0 46.8

m, bg1, 1 0.2 0.1 0.1 0.3 2.8 88.9 5.1 2.6 13.1 24.6 44.9

m, bg1, 2 0.5 0.1 0.2 1.5 15.5 75.9 3.9 2.4 13.4 27.8 47.8

m, bg2, 1 0.4 0.0 0.1 0.5 1.9 89.5 4.9 2.6 10.5 22.7 41.3

m, bg2, 2 0.6 0.1 0.3 1.2 12.6 78.5 4.3 2.4 14.9 30.3 50.8

o, nobg, 1 0.0 0.0 0.0 0.0 4.9 94.8 0.2 0.0 4.1 10.9 32.8

o, nobg, 2 0.2 0.0 0.0 0.5 46.7 52.6 0.0 0.0 5.8 15.1 38.7

o, bg1, 1 0.2 0.0 0.0 0.7 33.0 66.2 0.0 0.0 7.7 18.8 30.4

o, bg1, 2 0.3 0.0 0.1 1.8 81.8 16.0 0.0 0.0 5.4 17.3 26.8

o, bg2, 1 0.3 0.0 0.0 1.4 56.1 42.1 0.0 0.0 5.8 17.2 26.6

o, bg2, 2 0.3 0.0 0.1 1.9 82.4 15.2 0.0 0.0 5.1 17.2 26.7

s, nobg, 1 0.2 0.0 0.2 2.9 41.5 54.5 0.7 0.1 9.7 8.2 23.9

s, nobg, 2 0.4 0.0 0.5 11.9 61.7 25.2 0.2 0.0 10.7 9.0 25.9

s, bg1, 1 1.1 0.0 2.9 18.9 49.2 27.4 0.4 0.1 11.6 16.8 25.5

s, bg1, 2 0.8 0.0 4.5 24.7 57.2 12.7 0.1 0.0 11.3 16.3 25.3

s, bg2, 1 1.7 0.0 4.6 17.1 40.3 36.0 0.2 0.1 13.2 17.9 29.7

s, bg2, 2 0.9 0.0 4.7 22.5 54.6 17.0 0.1 0.0 11.8 16.6 25.8
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Another observation from Figures 6.2–6.5 is that different window sizes and feature representations (Set 1versus

Set 2) have different classification accuracies for the different algorithms and even for different experiments with the

same algorithm. For example,Set 1has high classification accuracy for both experiments withMinstrel, while Set 2

has high accuracy only forExperiment 2(Figure 6.3). Also, forSample Rate, [Set 2, 5 pkts]is the only feature set and

window combination that has high accuracy forExperiment 1(other thanall features), while a number of feature set

and window combinations have high accuracy forExperiment 2(Figure 6.5).

To explain why different window sizes and feature representations result in different classification accuracy, we

have to consider how transmission rate changes between two successive packets. One reason for rate change is retry

chain traversal due to packet loss. The second is sampling of other candidate rates, as inSample RateandMinstrel.

The third is due to the algorithm deciding that the currentr0 is suboptimal and picking a newr0. Rate change due

to the traversal of the retry chain occurs at the finest time granularity, from one packet to the next, for the length of

the retry chain. Rate change due to sampling occurs at the second finest granularity (10 packets). Rate change due to

computation of a new optimalr0 occurs at the coarsest granularity (tens of packets, 1 or more seconds).

Consider a hypothetical algorithm that changes rates only due to retry chain traversal. Such an algorithm’s dis-

tinguishing signature would be captured most effectively by highly detailed information over a small window, such

as[Set 2, 5 pkts], because all rate changes would occur at the granularity of individual packets. IfSet 1and a larger

window are used, the fine-grained information that is the algorithm’s signature will be lost. Consider another hypothet-

ical algorithm that only changes rate based on long-term loss and throughput feedback,i.e., when it re-evaluates the

optimal rate, it sets all rates in the retry chain to that one optimal value. Such an algorithm’s distinguishing signature

would be captured most effectively by features that(a) are computed over longer windows, and(b) can filter out short

term variations and capture longer term throughput, loss and rate change behavior, such as[Set 1, 50 pkts].

Practical algorithms change rates at all three time granularities, so features computed at varying levels of detail at

a range of time granularities are necessary to comprehensively capture an algorithm’s signature. This is whyall fea-

tures, a concatenation of all feature set and window size combinations, always has the highest classification accuracy.

However, in a given run for an algorithm, rate might change for one particular reason more often than for others. If

the dominant cause of change is retry chain traversal, we expect[Set 2, 5 pkts]to be the most accurate classifier, as for

Sample Rate, Experiment 1. If, however, the dominant cause of change is reevaluation of the optimal rate, we expect

Set 1classifiers to be more accurate thanSet 2classifiers, as forMinstrel, Experiment 1(Figure 6.3a). Based only on

passive packet traces, it is difficult to identify with certainity the cause of rate change from one packet to the next.

Next, we consider thesample classification accuracyresults to ensure that there is no serious accuracy confidence

inflation (Section 6.3.2) when the majority vote of sample classification is used for transfer classification. These results

are presented in Figures 6.6–6.9. Each stacked histogram in Figures 6.6–6.9 corresponds to the histogram with the

same label in Figures 6.2–6.5. We compare the transfer and sample accuracy forall features, the feature set with

the highest transfer classification accuracy, for the cases where the transfer classification is correct,i.e., for AMRR,
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Minstrel andSamplefor bothExperiment 1andExperiment 2, andOnoefor Experiment 2. We find that in all cases

while sample accuracy is slightly less than transfer accuracy in the case of correct classification (e.g., for Sample,

Experiment 1the sample accuracy is 75% while the transfer accuracy is 99%), there are no major accuracy distortions

due to considering accuracy at the granularity of transfers.

6.4.3 Evaluation of Classifier Portability

We investigate the portability of classifiers by testing the classifier trained onExperiment 1on transfers from

Experiment 2and vice versa. We conclude that classifier portability depends on the relative information content in

the training and test data. If the training data’s information content is greater than or equal to that of the test data, the

classifier is as accurate for the test data from the other experimental run as it is for test data from its own experimental

run, otherwise it is less accurate.

Figure 6.10 illustrates the classification accuracy when a classifier trained on data from one experiment is tested

on data from the second experiment. The classification accuracy forOnoeis low across all training and test sets due

to low information content of traces, as discussed above. The classification accuracy forAMRRandSample Rateis

high (70% or higher) in all cases. Table 6.1 shows that this is the case even though the distribution of packets by

transmission rate is different for the two experimental runs for each algorithm. What is similar about the two runs for

each algorithm is the information content of the traces measured in terms of the last three metrics in Table 6.1.

The interesting case in Figure 6.10 isMinstrel, where the classifier trained on data fromExperiment 1performs

poorly on test data fromExperiment 2(casem, 1–2) with an accuracy of only 40%, but the classifier trained on

Experiment 2performs very well onExperiment 1(casem, 2–1) with an accuracy of 100%. Table 6.1 shows that for

all the three measures reported,Set 2has higher information content thanSet 1. This means that the classifier trained

on Experiment 1captures a limited set of the algorithm behavior compared to that present inExperiment 2test data,

resulting in poor classifier accuracy. However, when the classifier is constructed with data from bothExperiment 1and

Experiment 2, its accuracy onExperiment 2tests increases dramatically, suggesting that enhancing a ported classifier

with current data is beneficial.

These results have important implications for the practical use of our methods. They show that if the training set

has high enough information content, the resulting classifier is portable, regardless of the difference in the distribution

of packet transmission rates. Classifier portability is a desirable property in general because it reduces training time in

new environments. Classifier portability is essential for wireless networks because the RF environment is constantly

changing, and retraining every time is expensive. The results in this section also show that the accuracy of a poorly-

performing classifier can be improved by updating it with training data from the current environment.
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6.5 Practical Deployment

In this section, we discuss issues relating to the practical deployment of our 802.11 rate adaptation classification

method.

We envision that a pre-computed classifier composed of detailed training sets – training sets that exercise the

rate adaptation algorithms over a wide range of conditions and hence result in the most robust classifier – would be

distributed for use by network analysts and administrators. The setup for trace collection can be exactly the same as the

experimental setup from Section 6.3. The major practical consideration in trace collection is that the monitor should be

located such that it captures a sufficient number of packets from the sender of interest – if too few packets are captured,

classification accuracy will deteriorate. Characterization of the precise relationship between trace completeness and

classification accuracy is a topic for future work.

Our study has considered only open-source rate adaptation algorithms. Wireless clients (and even APs) in produc-

tion networks are unlikely restrict themselves to using only open-source 802.11 drivers, so it is important to identify

closed-source proprietary algorithms as well. Proprietary algorithms can be classified based on their 802.11 driver or

driver version. One potential challenge in trying to classify proprietary algorithms is that no algorithm knowledge is

available to assist in the selection of feature vectors. However, our feature selection (Section 6.3), even though it is

for open-source algorithms, contains features that are based on patterns of rate change visible through 802.11 packet

headers rather than any information that requires explicit algorithm knowledge. Hence we believe that proprietary

algorithms can be classified accurately based on our feature set, and the only potential changes that might be required

would involve increasing the range of packet windows over which features are computed.
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Chapter 7

Summary, Conclusions and Future Directions

In this dissertation, we proposed the use of Support Vector Machines (SVMs), a state-of-the-art machine learning

technique, for problems in computer network performance analysis. SVMs can accurately and efficiently handle prob-

lems with large numbers of variables and complex non-linear relationships between variables. There is an increasingly

urgent need for such a technique for computer network performance analysis as networks become more complex due

to the deployment of increasingly sophisticated technologies and protocols and due to the increase in network size in

terms of users, available bandwidth, and the volume of data transmitted.

To determine whether SVMs are indeed a suitable framework for solving network performance problems in the

face of increasing network complexity, we examine their effectiveness in solving three network analysis problems,

(a) TCP throughput prediction for wireline networks,(b) TCP throughput prediction for wireless networks, and(c)

identification of the 802.11 rate adaptation algorithms deployed in a network. The difficulty of classification and

prediction problems increases with network complexity, so these problems provide appropriate test cases for evaluating

the SVM framework. The difficulty of classification problems increases with network complexity because the more

sophisticated the algorithms and protocols, the harder it becomes to identify them using conventional methods such

as explicit examination of short packet sequences for characteristic packet sizes, packet interarrival times, and other

signature patterns. The difficulty of prediction problems increases with network complexity because the number of

variables that effect the target metric increases, and the relationship between the variables and target metric becomes

more complicated.

The effectiveness of network performance analysis methods is evaluated based on several criteria. The first and

most important criterion is the accuracy of the method. The second criterion isanalysis comprehensiveness, i.e.,

whether the method can handle fully general production networks or whether there is a need for simplifying assump-

tions. The third isextensibility and maintenance, a measure of how easily the method can be updated to accomodate

modified or optimized versions of the environments the method was originally designed for. The fourth isrobustness,

i.e., whether the method can maintain high accuracy over a wide range of operating conditions. The fifth isagility, a

measure of how quickly the method responds when there is a change in operating conditions. The sixth ispracticality,

which considers factors relating to the ease of deployment, such as measurement traffic overhead and the availability

of system information required for the method to work. Ideally, any performance analysis method would meet all
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of the above-mentioned criteria. However, in practice it is not always possible to satisfy all the criteria, so effective

analysis methods often have to make compromises. Our goal in developing SVM-based solutions to network analysis

problems is to minimize such compromises.

In the remainder of this chapter, we recap the results of our investigations, focusing on how far the SVM-based

solutions meet the above-mentioned criteria. We conclude the chapter with a discussion of directions for future work.

7.1 Wireline TCP Throughput Prediction

The first problem for which we devised an SVM-based solution is TCP throughput prediction for wireline paths.

Throughput prediction is useful in scenarios where there are multiple paths between senders and receivers, such as

is the case with overlay networks and multi-homing, because it facilitates selection of the best path,i.e., the highest

throughput path, for a file transfer.

We predict throughput by constructing an SVM-based mapping between TCP throughput and path properties

such as packet loss, available bandwidth and queuing delay. The first step of our investigation was conducted in a

laboratory environment that provided highly accurate passive measurements of network path properties. Using these

high accuracy passive measurements, the SVM-based predictor predicts throughput within 10% of actual 87% of the

time under heavy traffic conditions (90% average utilization on the bottleneck link), a nearly 3-fold improvement on

the most accurate predictor in the prior work. Using active measurements of path properties that can be conducted in

real wide area paths, 49% of SVM-based predictions were within 10% of actual, which, while lower than accuracy

based on perfectly accurae passive measurements, is still a factor of 1.6 better than the best method in prior work.

Hence the SVM-based predictor comfortably meets the high accuracy criterion. Prior methods only handle TCP

throughput prediction for bulk transfers. We show that the SVM-based method can extrapolate with high accuracy

from 3 file sizes in the training set to a wide range of file sizes in the test set.

We found that of the three path properties considered, packet loss and queuing delay were sufficient for this

high accuracy, and that the inclusion of available bandwidth measurements did not improve accuracy any further. This

finding is important because active measurements of available bandwidth are considerably more heavyweight than loss

and queuing delay measurements. The measurement overhead of the SVM-based method using active measurements

is a factor of 13 lower than that of the most accurate method in prior work, so the SVM-based method meets the

practicality criterion.

Prior methods have shown that level shifts in network conditions pose a challenge for TCP throughput prediction,

with predictors often being slow to respond. We show that the SVM-based method needs only one training sample of

new path conditions to resume highly accurate predictions. Hence the SVM-based method meets the agility criterion.

We test the SVM-based method on real wide area paths. These paths include trans-Atlantic and trans-continental-

U.S. paths with RTTs ranging from8 ms to145 ms. Our method demonstrates high accuracy on these paths. The
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fact that our method performs well over a wide range of path conditions is evidence of its robustness. The fact that it

performs well on real wide area paths is evidence that it meets the analysis comprehensiveness criterion.

7.2 Wireless TCP Throughput Prediction

The second problem for which we devise an SVM-based solution is TCP throughput prediction for wireless net-

works. This is a very different and much more complicated problem compared to TCP throughput prediction of

wireline networks because PHY and MAC layer dynamics and environmental factors such as interference and multi-

path effects have a large impact on wireless throughput. Hence wireline TCP throughput prediction methods cannot

be trivially adapted for wireless environments.

Our SVM-based approach is targeted towardsopportunistic wireless networks, particularlyvehicularopportunistic

networks. Opportunistic networking is a connectivity model in which guest clients in the vicinity of open APs utilize

the APs to obtain temporary network access. Vehicular opportunistic networking applications are being explored by

many research efforts because the high density of APs in urban areas provides many network access opportunities to

vehicular clients.

Existing wireless TCP throughput prediction approaches are unsuitable for use in the vehicular scenario for two

reasons. First, these approaches require tens or hundreds of seconds to generate a prediction, and vehicular clients

remain within range of a given AP for only about10 seconds, requiring a prediction to be generated in about1 second

to be of use to applications. Second, these approaches require knowledge about, and cooperation of, all other wireless

senders in the vicinity, when in the vehicular opportunistic scenario only communication between the target client and

the open APs can be assumed. Hence there is a need for a new wireless TCP throughput prediction technique for the

vehicular scenario that(a) is accurate,(b) meets the stringent prediction latency requirements, and(c) is based on

measurements that can be carried out in practice.

Our SVM-based technique predicts wireless throughput using very short (0.3 – 1.25 second) active probes between

the AP and the target vehicular client. It assumes no explicit knowledge or cooperation of any other elements in the

network. We test our method in a wide variety of network conditions, including variable background traffic and using

stationary, walking and driving nodes. We find that, using the0.3 – 1.25 second probes, our method can predict

throughput within a factor of2 of actual 80% to 100% of the time for all our network scenarios. While this accuracy

level is much lower than what we achieved for wireline TCP throughput prediction, this accuracy level is useful for

some, if not all, applications, and the accuracy bound holds even when clients are moving at speeds of15–25 mph.

Hence our SVM-based method yields reasonable accuracy while meeting the stringent time requirements of vehicular

clients and maintaining realistic assumptions,i.e., only relying on communication between the target client and the

AP.
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7.3 802.11 Rate Adaptation Algorithm Fingerprinting

The third and final problem for which we devise an SVM-based solution is identification of the 802.11 rate adapta-

tion algorithms deployed in a network. Rate adaptation algorithms have a large impact on wireless throughput. Many

efforts have focused on developing and understanding the behavior of rate adaptation algorithms in test environments.

However, to our knowledge, there is no work on evaluating the impact of rate adaptation algorithms in production net-

works. The reason for this is that all practical production network studies are based on passive monitoring – wireless

network clients are autonomous and their configurations are under the control of the users rather than under the control

of network administrators, so their active cooperation in network studies cannot be assumed – and there is no way to

identify rate adaptation algorithms based on passive traces. Our work on passive trace based 802.11 rate adaptation

algorithm identification fills this gap.

There is a large body of work on identifying application layer protocols and algorithms. However, these approaches

cannot be easily adapted for the identification of MAC layer algorithms because of the difference in the types of

information available at the MAC layer and the application layer. 802.11 rate adaptation algorithms are complex, so

an identification method based on explicit enumeration of all algorithm states is difficult if not impossible, suggesting

the need for a learning-based approach to the problem.

Our SVM-based approach to 802.11 rate adaptation algorithm identification is based on careful selection of a

large number of features from packet traces. Our approach yields a classification accuracy of 95%–100% for 3 out

of the 4 algorithms implemented in the popular open-source MadWifi wireless driver. We examine the effect of

both feature selection and network dynamics on classification accuracy. We also demonstrate that rate adaptation

algorithm identifiers are portable,i.e., classifiers trained under one set of conditions can be used under a different set

of conditions. This is an important property because it eliminates the latency of new classifier construction.

7.4 Future Directions

In this section, we discuss directions for future work based on the studies in this dissertation.

1. Investigating Wireline TCP Throughput Predictor Portability: In Chapter 4 Section 4.5, we discussed wireline

TCP throughputpredictor portability, i.e., the possibility of using predictors trained on one path for prediction

on another path. Portable predictors are desirable because they eliminate the need for training on each new path,

i.e., eliminate both the training latency and the measurement traffic introduced, so this is an important direction

of future research.

To facilitate predictor portability, we would have to identify features that are currently implicit in our path-

specific predictors. There are two different sets of implicit features. The first set is host-specific features,

such as flavors of TCP and various operating system parameters. The second set is path-specific features, such
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as routes and queuing disciplines. In addition to identifying the implicit features, future work would have to

address the issue of determining the feature values using lightweight, practically feasible techniques.

2. Improving Wireless TCP Throughput Prediction Accuracy: As discussed in Chapter 5 Section 5.3, while our

technique for wireless TCP throughput prediction is practical and has useful accuracy, its accuracy is consider-

ably lower than what we have been able to achieve for wireline throughput prediction. Hence investigating ways

to improve prediction accuracy while maintaining our method’s other desirable features, such as low latency and

practicality, is a useful direction for future work.

We believe that future efforts to improve prediction accuracy should follow two directions, one for the vehicular

client scenario and the other for the stationary or walking node scenario.

For vehicular clients, a promising direction for future work is augmenting the predictor with information such

as the location, trajectory and speed of a vehicular client while it is within range of an AP. The inclusion of

such additional information is likely to improve prediction accuracy because [83] has shown that RF behav-

ior patterns for vehicular wireless clients at specific locations persist over time. Including location, trajectory

and speed information would also allow prediction of the total volume of data that can be transferred while the

vehicular client is within range of an AP. Such a prediction is more useful in the vehicular context than an instan-

taneous throughput prediction because(a) unlike for stationary clients, instantaneous throughput varies widely

for vehicular clients as distance from an AP changes, so the utility of instantaneous throughput is short-lived

and(b) knowing how much data can be transferred during a connection will give applications the opportunity

to prioritize data transmission and make the most of connection opportunities.

For stationary or slow-moving clients where the time constraints are not as stringent as for vehicular clients, a

promising direction of future work is looking at packet trace based features in greater detail to improve prediction

accuracy. Our work on 802.11 rate adaptation algorithm classification, which followed our work on wireless

TCP throughput prediction, has shown that a large number of detailed and carefully chosen features yield high

accuracy. Based on our experience with rate adaptation algorithm classification, an approach for improving TCP

throughput prediction accuracy that suggests itself is the use of fine-grained active probe features such as packet

rate and interarrival time in place of coarse-grained probe metrics such as probe throughput.

3. Toolkit for Automated WLAN Performance Analysis

As stated in Chapter 6 Section 6.1, we envision the 802.11 rate adaptation algorithm identification capability

being part of a toolkit for automated WLAN performance analysis and debugging.

Such a toolkit must also provide the capability to determine whether wireless packet loss is due to channel

noise or due to interference. Distinguishing between these two causes of packet loss is essential for finding

appropriate remedies to wireless network performance problems. Existing methods of distinguishing between
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the causes of loss are either invasive (e.g., [104] requires modifications to the wireless interface driver, [129]

requires a change in the interface between the wireless interface and the driver) or require blanket network

monitoring and sophisticated techniques for trace merging and analysis (e.g., [82, 32]). Hence a technique that

can identify the cause of packet loss based entirely on passive traces collected using single (or limited) vantage

point monitoring would be a valuable contribution.

The requirements of non-invasiveness and single or limited number of monitoring vantage points suggest SVM-

based classification of passively collected packet traces as a promising approach for identifying the causes

of packet loss1. Such an approach would face two main challenges. The first challenge, also faced by the

SVM-based approach to 802.11 rate adaptation algorithm identification, is that of identifying appropriate input

features and appropriate input feature time scales. 802.11 rate adaptation algorithm identification islocation-

agnostic, i.e., it can be conducted on traces collected at any location as long as the traces contain a reasonable

number of packets from the sender of interest. The second challenge is that unlike rate adaptation algorithm

classification, loss cause identification may not be location-agnostic. Loss events occur at shorter time scales

compared to 802.11 rate adaptation events (rate adaptation events are triggered following at least a handful of

packet losses), so they will have to be identified based on smaller numbers of packets. This means that if a

monitor misses capturing a few packets, it is likely to hurt accuracy much more for loss cause identification than

for rate adaptation algorithm identification. Hence it might be necessary to(a) have multiple monitors, and(b)

place the monitor(s) strategically,e.g. close to the sender and/or receiver. If multiple monitors are needed for

robustness and high classification accuracy, information from all monitors will have to be combined. However,

unlike the inference-intensive explicit trace merging of [82, 32], the SVM-based approach would be able to

combine information from multiple monitors implicitly, in the form of additional input features.

1[38] looks at using SVMs for this problem, however the study is very preliminary and simulation-based.
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