
 1

An Analysis of iSCSI for Use in Distr ibuted File System Design

Mike Br im and George Kola

Abstract

We evaluate the performance of iSCSI for use in design of a distributed file system. We perform a
detailed full system characterization of a client using iSCSI. Using the analysis ,we identify the
overheads associated with iSCSI and compare and contrast it with local disk access and NFS file
access. Understanding the overheads associated with iSCSI, we attempt to tune the system to
optimize iSCSI performance and show the impact of various parameters. Using insights gleaned
from the analysis, we design a distributed file system optimized for use with iSCSI. We point out
the class of applications which would benefit from such a distributed file system. We also report
the status of our implementation.

1. Introduction

Internet SCSI, or iSCSI, is an IETF draft standard [J03] for a protocol to transmit Small
Computer Systems Interface (SCSI) commands over existing TCP/IP-based networks. The iSCSI
protocol has two halves to it - the initiator resides on a client computer, and sends commands to
the iSCSI target. The target performs the work requested by the initiator, and sends a reply back.
All communications take place via TCP/IP. There has been much interest lately in the role of
iSCSI [VS01][SV02], as it provides lower overall cost and higher scalability than current Storage
Area Networks that rely on Fiber Channel technology and the characteristics of TCP/IP networks
are better understood.

In this project, we look at various aspects of iSCSI that are important in the design of a
distributed file system. In our distributed file system, we allow clients to directly access the iSCSI
device. This is different from normal usage of iSCSI where only a few servers access the iSCSI
device and there is no sharing between them. We also discuss the implications of such a design
and also point out the advantages of such a design.

We present an in-depth analysis of iSCSI protocol and the overhead associated with it. We also
do a full system characterization of an iSCSI initiator. Such a full system characterization would
be useful for network card manufacturers, kernel developers and system builders. We also
compare and contrast iSCSI access with that of local disk access and remote NFS file access.
This comparison would be useful for storage planners who are thinking of using iSCSI. During
the analysis of iSCSI, we provide specific insights into key performance characteristics that
would affect the performance of a distributed file system built on top of iSCSI. Using these
insights, we describe the design and current implementation status of a simple, application-
specific distributed file system optimized for use with iSCSI.

The rest of the paper is organized as follows. In Section 2 we provide an overview of work
related to our own. Section 3 describes our experimental environment. Section 4 details our
performance analysis of iSCSI, including comparisons to local disk and NFS performance.
Section 5 provides a description of the distributed file system we designed using insights gained
from our analysis of iSCSI, as well as current implementation status. In Section 6, we provide
concluding remarks and Section 7 relates our directions for future work.

 2

2. Related Work

Our evaluation of the performance implications of using iSCSI in the context of a distributed file
system touches on many areas presented in current literature. These areas include iSCSI
performance evaluation, various network-based storage architectures, and distributed file system
design.

In the area of iSCSI performance evaluation, our work is most similar to the evaluations
presented in [AGPW03] and [TMI]. In [AGPW03]1, iSCSI is evaluated as a competitor to Fiber
Channel for use in Storage Area Networks (SANs) in four different configurations: two using a
commercial grade SAN employing Fiber Channel and real iSCSI target hardware, and two using
iSCSI implemented completely in software. Their work looks at network and iSCSI throughput
and did not look at the impact on the client operating system and the load on the CPU. We feel
that understanding where time is being spent in processing iSCSI at the client side (iSCSI
initiator) is very important and would be useful for the research community trying to optimize
iSCSI or developing new protocols and we address that. We agree to their statement that using
jumbo packets improves performance. We go a step further and find out the impact of jumbo
packet on the sender and receiver and explain the reason for the performance gain. The work
presented in [TMI] provides a comparison with NFS for various storage access patterns. Their
analysis shows that iSCSI outperforms NFS for access patterns including data streaming,
transactions, and other small-file accesses. They make a broad statement that iSCSI is useful only
for applications that do not require file sharing. We attempt to address that limitation by building
a distributed file system on top of iSCSI.

With respect to network-based storage architectures, the goals of our research are most closely
related to both Storage Area Networks (SANs) and Network Attached Storage (NAS)
architectures. In SANs, networked-storage devices provide a block-level interface to hosts on a
Fiber Channel network. The networked-storage device used in our analysis is conventionally
targeted towards a SAN environment, and provides a SCSI interface as required for use with
iSCSI. NAS environments differ in that the networked-storage devices provide a filesystem
abstraction to clients attached to a standard network such as Ethernet. Network-Attached Secure
Disks [G97], or NASD, is a research NAS architecture where the networked-storage devices have
special processing abilities in order to provide access authentication on file objects. Clients in a
NASD environment must obtain capabilities and file data object location information for specific
files from a filesystem meta-data manager host before directly requesting the objects from the
storage devices. The storage devices then assert that the capabilities provided are valid before
granting any file data object requests. However, such NASD devices are not currently available
and show no signs of appearing in the near future. We do not assume an object-based interface for
our storage devices, instead focusing on the devices widely-available for SAN environments.

Distributed file system design is a broad area of research due to the various operational
environment targets and performance requirements, thus we focus here on work that is
specifically related to ours in some aspect. Data Reservoir [KIT02] is an environment which uses
iSCSI for large-file transfers for sharing between scientific applications in a wide-area Gigabit
network. Although we do focus on large-file sharing, our analysis is strictly confined to a local-
area investigation. Slice [ACV00] is a distributed file system for use with network-attached

1 We would like to mention that this work was released only a few days ago and was not available before
our work started.

 3

storage that provides an object-based interface similar to that used in the NASD work. Slice uses
a proxy embedded in the network stack of clients to transform and encode standard NFS requests
into object requests for the network-attached storage devices. We believe that a distributed file
system using iSCSI should be tailored to its specific behavior, and thus do not attempt to
virtualize NFS.

3. Exper imental Environment

The research presented herein was performed in its entirety in a live environment, the Wisconsin
Advanced Internet Laboratory (WAIL) at the University of Wisconsin-Madison. WAIL is a self-
contained networking laboratory that enables recreation of all portions of the Internet, including
end hosts, last-hop hardware, enterprise and backbone routers, enterprise-class networked-
storage, and various other hardware too numerous to mention. Given that the focus of our
research was performance of iSCSI in the context of a local-area network, we obviously did not
make full use of the breadth of equipment available. Figure 1 shows our experimental hardware
setup. As shown in the figure, the environment includes multiple end hosts to serve as clients and
a server, two Ethernet switches, an iSCSI gateway device, and an enterprise-class networked-
storage device. Each end host runs Linux kernel version 2.4.20 and the iSCSI driver version
2.1.2.9 from the linux-iscsi SourceForge project. Each host also has the same hardware
configuration: a 2.0 GHz Intel Pentium4 processor, 1 GB RAM, an Intel Pro/1000T Gigabit
Ethernet adapter, a 3Com 3C905-TX-M Ethernet adapter, and a 40 GB IDE hard disk. The two
Ethernet switches are a 100BaseT Cisco Catalyst 2950 used for standard communication between
the end hosts and a 1000BaseT Cisco Catalyst 6500 for communication with the iSCSI gateway.
The iSCSI gateway is a Cisco SN5428 Storage Router, and is connected using Fiber Channel-
Arbitrated Loop (FC-AL) to the EMC Symmetrix 3830 networked-storage device.

Figure 1 – Exper imental Environment

4. iSCSI Per formance Evaluation

4.1 Profiling iSCSI

Server

Clients

Cisco
Catalyst 6500

EMC
Symmetrix
3830

Cisco SN5428
iSCSI Gateway

Cisco
Catalyst
2950

 4

In order to get a good understanding of iSCSI as a protocol, we wanted to be able to answer the
following questions:

1) What role does block size play on performance?
2) What are the overheads associated with iSCSI protocol?
3) How much of the overhead is because of the Gigabit Ethernet interconnect?
4) What parts of the kernel get stressed out when using iSCSI?
5) How do we tune a system employing iSCSI?
6) What effects o the different tuning parameters have?

To find the effect of block size on performance, we found the time taken to read and write a 1 GB
file. The choice of file size was motivated by the idea that a distributed file system built on top of
iSCSI would be suitable candidate for the Condor Checkpoint server, and typical checkpoint sizes
for large applications are close to 1 GB. Similar file sizes are also seen in multimedia
encoding applications. The results for various block sizes are shown in Figures 2 and 3.

Read Block Size vs Time

0

10

20

30

40

50

Block Size

T
im

e
in

 S
ec

o
n

d
s

User(s)

System(s)

Elapsed(s)

CPU Utilization(%)

User(s) 0.42 0.32 0.11 0.05 0.02 0.02 0.02

System(s) 2.37 2.02 1.76 1.71 1.93 1.84 2.34

Elapsed(s) 44.04 43.79 43 43 43.77 43.6 44.02

CPU
Utilization(%)

6 5 4 4 4 4 5

1K 2K 4K 8K 16K 32K 64K

Figure 2: Effect on Block Size on iSCSI Read Per formance (1GB Read)

 5

Write Block Size vs. Time

0

5

10

15

20

25

30

Block Size

T
im

e
in

 S
ec

o
n

d
s

User(s)

System(s)

Elapsed(s)

CPU(%)

User(s) 0.57 0.14 0.07 0.05 0.04 0.01 0.02

System(s) 3.53 3.45 3.27 3.16 3.25 3.28 3.12

Elapsed(s) 26.34 25.85 25.88 25.59 25.66 25.83 25.67

CPU(%) 15 13 12 12 12 12 12

1K 2K 4K 8K 16K 32K 64K

Figure 3: Effect of Block Size on iSCSI Wr ite Per formance (1GB Written)

In both these experiments, the MTU was left at the default of 1500B. As shown in the figures, the
optimal block size for both read and write is 8KB. The CPU utilization shown here shows the
general trend. The actual CPU utilized was actually higher in each case. The reason for this is that
we used the Unix time command to get the CPU utilization and the Linux kernel does not account
the time spent in iSCSI processing and TCP and network interrupt handling to the process that is
making the iSCSI request.

We wanted to get a full system level profile including the time spent in the different functions in
the kernel code. However, we did not want to perturb the measurement. Direct tracing of the
kernel would slow down the whole system and the numbers obtained would not be realistic. To
avoid such perturbation, the profiler we chose to use is Oprofile, which is based on the Digital
Continuous Profiling Infrastructure (DCPI) [A97]. The difference between the two is that
Oprofile is for the x86 architecture and uses the hardware counters available on the Pentium
family of processors, while DCPI uses the hardware counters available on the Alpha architecture.

Before describing the results obtained, we first provide a brief overview on Oprofile’s operation.
On the Pentium4, if we set the event to ‘Global Power Events’ and set the mask to ‘CPU cycles
unhalted’ then the counter value gets incremented every active clock cycle. When the counter
overflows (max counter value is set by us), the counter overflow interrupt occurs. Oprofile in the
kernel handles the interrupt and records the value of the Instruction Pointer when the interrupt
occurred. The Instruction Pointer gives the function which was executing at that point. Oprofile
counts the number of times the interrupt occurs in each function. Over long time periods this has
the effect of finding the relative percentage of time spent in various functions (both kernel and
user). Since we did not want the kernel to halt the CPU when idle (we wanted to find the
percentage of time the CPU was idle), we passed the idle=poll option to the Linux kernel to use
the idle loop instead of halting the CPU. We used a counter value of 996,500 for the results
presented here. On the 2 GHz Pentium4 that we used, this has the effect of the counter overflow
interrupt occurring every 498 µsec. A lower counter value increases accuracy and overhead. We

 6

tried the experiment with different counter values between 400,000 and 996,500, but the results
obtained were the same. Thus, we used the higher counter value to reduce the overhead. The
accuracy of the profiling increases if the experiment is performed for long durations. We ran each
of the experiments for at least four hours and for different time durations, trying to see the
correlation between the readings. During the experiments the machine was idle except for the
standard Linux daemons. The results presented here were all verified by multiple-run correlation.
The occasional non-conforming reading was found to correspond to situations in which we
mistakenly kept using the machine during the experiment, and thus recorded the time spent doing
other things.

ISCSI Read Profile

Idle, 60.37%Interrupt
Handling, 20.03%

CopyToUser,
4.23%

IPTable(FireWall),
1.03%

SCSI Processing,
0.70%

Rest of the Kernel
(Mostly TCP

handling), 14%

Figure 4: CPU Utilization for 1 GB Read from an iSCSI Target

Time taken to read 1GB of data was 43.5 seconds, giving a read throughput of 23.54 MBPS. We
find that nearly 40% of the CPU time is used by a single process just reading from the iSCSI
device. In addition, 20% of the time is spent handling the interrupts from the Gigabit Ethernet
adapter. The adapter has hardware checksum enabled, so checksum verification does not consume
any CPU. The SCSI processing was minimal at 0.70%. We also have about 1% of time being
used by IPTables, the Linux kernel firewall module. The firewall software could have been turned
off, but we find that most servers, even those behind a firewall, leave it on as it allows easy
blocking of external-access to certain services. From the results, it appears that the key to
improving the performance would lie in optimizing the interrupt handling. In contrast, we
performed the same experiment on a local IDE disk. We found that the time taken was 43.6
seconds, yielding a read throughput of 23.48 MBPS. However, the CPU utilization was much
lower at only 5.3%. IDE interrupt handling consumes only 3.5% of the CPU. The file_read
function in the kernel takes 1.4% of the time. The copy to user also consumed less CPU since in
the case of local disk, the buffers are aligned.

 7

ISCSI Write Profile

Idle, 62.68%
checksum+Copy,

6.60%

FileWrite, 5.14%

Interrupt, 6.11%

Scsi, 1.58%

IPTables, 0.59%

Rest Of The Kernel,
17.30%

Figure 5: CPU Utilization for 1 GB Write to an iSCSI Target

The time taken to write 1 GB of data was 25.6 seconds, giving a write throughput of 39.6 MBPS.
We found that write performance was much better than read performance. The main reason for
this as seen in the figures is the lower interrupt handling overhead (6.11%). There seems to be a
contradiction as write seems to be transferring more data than read but still incurring a lower
interrupt cost. The reason for this is that multiple packets are transferred in a single DMA
transfer. In the case of read, the Ethernet card tries to coalesce multiple packets and deliver a
single interrupt but it is not effective in doing so. Contrasting the write performance with that of
the local disk, we found that it took 54.6 seconds to write 1 GB of data giving a transfer rate of
18.75 MBPS. The CPU utilization was at 7.5%. IDE DMA was still taking less than 3.5%, and
the kernel file_write function was taking 2.8% of the CPU time. In local disks, write is slower
than read. We find the reverse to be true using the iSCSI devise. The reason for this is that the
EMC box has 8GB of RAM, so all writes just go to memory and the Symmetrix guarantees the
data will be written to the disk at some point.

4.2 Compar ison with NFS

We wanted to compare the performance of iSCSI to that of NFS. It is not a fair comparison since
NFS implements a whole file system whereas iSCSI just gives a block level abstraction. A file
system needs to be built on top of iSCSI in order to provide a more appropriate comparison. In
this study we performed a 1 GB sequential read and write, with the results shown in Figures 6 and
7 respectively. Our motivation in performing this comparison was to find out how NFS handles
such a workload, and how should the distributed file system be designed if it is to handle such a
workload better than NFS. In the experiments, NFS v3 over UDP was used and the read and write
block size was set at 8 KB.

 8

NFS Read Profile

Idle, 35%

Interrupt, 36.57%

Checksum and
Copy, 10.91%

Sun RPC, 2.43%

NFS, 1.50%

C Library, 0.50%

IPTable, 0.46%

Rest, 13%

Figure 6: CPU Utilization for 1 GB Read from NFS server

Time taken to read a 1 GB file was 23.23 seconds, giving a read throughput of 44 MBPS. We find
that 65% of CPU is consumed by a single process doing an NFS read of a 1 GB file. Here again
most of the CPU time is being spent in interrupt handling. We find that for a single file read, NFS
seems to be doing much better than iSCSI. The NFS server has 1 GB memory, thus most of the 1
GB file seems to fit in memory resulting in good performance.

NFS Write Profile

Idle, 90%

Interrupt, 3%

Checksum_and_Co
py, 1.93%

File Write, 1.64%

Rest, 3%

Figure 7: CPU Utilization for 1 GB Write to NFS server

 9

Time taken to write a 1 GB file was 1 min 44 seconds, yielding a write throughput of 9.85 MBPS.
The reason writes are performing badly in NFS is that before a write to an NFS server returns, the
data should have made it to disk. The overall CPU utilization is quite low, around 10%.

Read Scalability

0

20

40

60

80

100

120

140

160

1 Client 2 Client 3 Client

Number of Clients

T
im

e
in

 S
ec

o
n

d
s

NFS Read

iSCSI Read

Figure 8: NFS and iSCSI Read Scalability

Figure 8 shows the results of our limited analysis of NFS versus iSCSI scalability. Ideally, we
would have liked more machines with which to test, but we had a total of 3 machines. For NFS,
one of the machines was used as a server leaving only 2 client machines for the scalability study.
For iSCSI, all 3 machines participated as clients in the scalability study. For the NFS scalability,
the NFS server CPU utilization is shown in parentheses. We find that NFS performance drops as
the number of client increases, the reason being that each client is accessing a different file and
the nearly 1 GB server side cache is not that effective. Most of the NFS server time is spent
waiting for I/O to complete. iSCSI seems more scalable and we think that the trend will continue
as the number of clients increases.

(36.6%)

(13.2%)

 10

Write Scalability

0

20

40

60

80

100

120

140

1 Client 2 Client 3 Client

Number of Clients

T
im

e
in

 S
ec

o
n

d
s

NFS Write

iSCSI Write

Figure 9: NFS and iSCSI Wr ite Scalability

Figure 9 shows the scalability of NFS and iSCSI for writes. As can be seen in the figure, iSCSI
performs much better on writes than NFS and appears more scalable.

4.3 Tuning iSCSI

Using the information gleaned in the previous analysis, we attempted to tune the performance of
iSCSI. We had found that the interrupt handling was the biggest overhead during reads. The first
improvement attempted was to use jumbo packets on the Gigabit Ethernet interface. We hoped
that a six fold increase in packet size (from 1500 to 9000 bytes) would reduce the number of
interrupts on the receiver. We additionally wanted to see what effect it had on NFS performance.
Although there was some difficulty enabling the MTU of 9000 on the CISCO SN-5428, the
option was finally set. We also had to enable jumbo packets in the Gigabit Ethernet switch. After
enabling jumbo packets along the path, the experiments were rerun to find the new profile for
iSCSI.

(8.51%)

(20.16%)

 11

ISCSI Read Profile with Jumbo Packet Option

Idle, 80.98%

Interrupt Handling, 6.00%

CopyToUser, 5.05%

IPTable(FireWall), 0.22%

SCSI Processing, 0.55%

File Read, 1.30%

Rest of the Kernel (Mostly
TCP handling), 6%

Figure 10: CPU Utilization for 1 GB Read from an iSCSI target using Jumbo Packet

By making the iSCSI gateway send jumbo packets (9000 bytes) instead of normal packets (1500
bytes), we find that we have essentially halved the CPU utilization compared to original. Also the
read rate improved by 1.25 MBPS. The interrupt processing has become one-third of the original.
The CPU usage by other TCP functions also dropped considerably as the number of packets
processed dropped to one-sixth of the original. Looking at the packet trace, we found all the
incoming data packets were of MTU size.

ISCSI Write Profile with Jumbo Packet Enabled

Idle, 59.51%

checksum+Copy,
6.22%

FileWrite, 5.16%

Interrupt, 7.76%

skb_copy_bits,
3.34%

Scsi, 1.66%

IPTables, 0.34%

Rest Of The Kernel,
16.01%

Figure 11: CPU Utilization for 1 GB Wr ite to an iSCSI target using Jumbo Packet

 12

Looking at the CPU profile we find that using jumbo packets seems to be increasing the CPU
utilization. The reason for this is the skb_copy_bits function, which is taking 3.34% of the CPU.
Using jumbo packets, the iSCSI driver sends out MTU sized packets. The data for these packets
have to be taken from multiple pages requiring a copy for some of the bytes in the packet. We are
not sure if the card supports scatter/gather DMA operations.

The iSCSI write performance improved by 1.2 MBPS when sending jumbo packets instead of
normal sized packets while the gateway still sent normal packets. However, we found that if the
gateway also sent jumbo packets, the performance dropped by 1.36 MBPS. We found the reason
to be the sending of ACKs by the gateway. The gateway was advertising a window size of 64 KB,
and the sender is forced to stop waiting for ACKs. The Linux TCP implementation sends an ACK
every two packets. The gateway does not do that. Observing the flow of packets, it seems like the
gateway is following a stop-start protocol. It receives a set of packets and then sends out a set of
ACKs. We think that tuning the advertised window on the gateway would improve performance.
Increasing the TCP buffer size on the client side did not show any improvement. At sizes over 1
MB, we found performance degradation.

For comparison, we wanted to see the maximum throughput that an application can achieve
through the Gigabit Ethernet interface. The maximum throughput was measured using a simple
TCP benchmark application of our own devise. The sender wrote data from memory to a socket.
The receiver just received the data and discarded it, maintaining only statistics of the amount of
data received. Such actions give a realistic measure of the data rate that an application can see as
the entire TCP stack is traversed and there is also a copy from/to user space. With normal sized
packets we found that the maximum we were able to achieve was 72.3 MB/sec2. At this point we
found that the receiver CPU was saturated. The sender CPU utilization was at only 35%.
Enabling jumbo packets on the interface, we found that we achieved a throughput of 99.4 MB/sec
and only 53% receiver CPU utilization. The sender CPU utilization also increased to 54.5%, with
12.5 % used by skb_copy_bits. We feel that using jumbo packets changes the bottleneck from
receiver to sender. We also feel that scatter/gather DMA is a good option for gigabit Ethernet
cards.

When we increased the MTU for NFS server, the read rate seemed to drop. This seemed to deal
with the way requests are sent. NFS v3 over UDP seems to be hand tuned for 100 Mbps local area
network. Using it over Gigabit Ethernet seems to the stressing the UDP parameters in the RPC
library resulting in lower performance. The CPU utilization on receiver client side however did
drop considerably.

5. Distr ibuted File System Design and Implementation Status

Using the implications presented in the previous section, we now describe the design for our
simple, application-specific distributed file system optimized for use with iSCSI. The key insight
of our design is similar to that for NASD, that by allowing clients to access data on networked-
storage directly, you can improve the scalability of a file server tremendously since it no longer
has to perform the disk access. Confirmation of this assumption is shown in limited detail in the
scalability study outlined in the previous section. However, even as in traditional distributed file
systems, the overhead of crossing the network on every access is prohibitive. The situation is
even worse in the case of using iSCSI, due to the very high overhead of interrupt processing from
the Gigabit Ethernet adapter. In order to mitigate such performance overhead, we suggest the use

2 This is the data rate seen over TCP. Actual bits on the wire are higher -- 52 bytes more for every 9000
bytes.

 13

of caching. Caching in our distributed file system would be performed by both clients and the
server. Clients should cache data read from the device, and the server should cache file system
meta-data (e.g., superblock and inode information) that was recently requested by clients. The use
of caching leads us into issues of consistency when dealing with file data writes. As such, our
design includes a form of callbacks similar in spirit to those of AFS [H88], so that whenever a
server sees a write request for a file that may be cached by other clients reading the file, the server
will notify the clients that they must reread their data from the disk. In order to support callbacks,
we have devised a simple request/response protocol that sequences the actions of clients. Before
being able to read or write a file, the client must issue a file request to the server, who responds
with the information necessary for the client to access the networked-storage device. Finally, we
briefly treat the idea of security within the distributed file system. Although the iSCSI
specification does allow for multiple security methods, they only apply to the security of
communication between iSCSI end points. In a distributed file system, we must have a means for
authenticating clients before allowing them access to file data. Thus, there needs to be some
mechanism for the server to authenticate clients before allowing them access to the device. One
option that seems promising is the use of MAC or IP address filtering on the iSCSI gateway,
where the addresses allowed are configured dynamically by the distributed file system server.

Throughout the design process, we focused on eliminating any potential source of overhead that
could easily be avoided. One such aspect of our design that follows this principle is the used of
kernel-level threads for implementing the client and server portions of our DFS protocol, in order
to avoid the obvious overhead of context-switching. Both the client and server kernel threads are
implemented by a single Linux module that includes a character device allowing the root user to
control starting and stopping of the threads. The initial implementation creates one thread for
processing client-side requests and six threads for server-side processing, including one thread
devoted to listening for new client connections, and five worker threads that provide client
request service. The number of server worker threads is identical to the number of service threads
provided by default for NFS, thus allowing fairer comparisons. The current design stipulates that
the client connects to the server when its thread is created, and the connection is persistent until
the client thread is stopped. Once again, the idea for maintaining a persistent connection is to
eliminate the overhead of creating and destroying connections per client request. On the server
side, a worker thread is currently assigned to a specific connection for its duration. This decision
effectively limits the number of active clients to five, and remedies to this limitation are under
consideration.

The communication between client and server threads is based on a simple request/response
protocol implemented using TCP. Table 1 shows the types of request and response messages,
including any data arguments sent and a short description of the messages purpose. As can be
seen in the figure, each type of message is associated with a message tag. The tag is used for
demultiplexing the type of message upon receipt in order to determine what argument data should
also be received.

Message Tag Sent By Data Arguments Message Descr iption
Read_Superblock_Req Client Filesystem_id Request fi lesystem superblock
Read_Superblock_Rsp Server Superblock_info_t Return fi lesystem superblock info
Write_Superblock_Req Client Filesystem_id,

Superblock_info_t
Request to overwrite superblock
info for filesystem

Write_Superblock_Rsp Server Success_code Return success status code
Release_Superblock_Req Client Filesystem_id Release client from filesystem users

list
Release_Superblock_Rsp Server Success_code Return success status code

 14

Read_Inode_Req Client Filesystem_id, Inode_no Request inode info, add client
callback

Read_Inode_Rsp Server Inode_info_t Return inode info
Write_Inode_Req Client Filesystem_id, Inode_info_t Request to overwrite inode info,

invoke callbacks of current readers
Write_Inode_Rsp Server Success_code Return success status code
Delete_Inode_Req Client Filesystem_id, Inode_no Request to delete inode, invoke

callbacks of current readers
Delete_Inode_Rsp Server Success_code Return success status code
Release_Inode_Req Client Filesystem_id, Inode_no Release client from inode users list,

breaks callback
Release_Inode_Rsp Server Success_code Return success status code
Break_Callback_Req Server Filesystem_id, Inode_no Request from server to client to

break callback on inode
Break_Callback_Rsp Client Success_code Return success status code

Table 1: Communication Protocol Message Types

In order to describe the usage pattern of the various message types, we will discuss the messages
in the context of the typical usage of the file system by a client. The first thing a client must do to
access the file system is to use the mount command. The file system code for handling the mount
then adds a Read_Superblock_Req to a queue of requests for the client thread, using a
“ uniquified” version of the SCSI device name as the Filesystem_id, and blocks waiting for the
response containing the necessary superblock information. The client next issues a
Read_Inode_Req for inode 0, which is the root directory for the file system. Once the information
for the root directory is returned, the client can now access the storage device to read the contents
of the directory. Any files discovered by the client when accessing the device can then be
accessed by issuing further Read_Inode_Req requests and using the returned information to read
the file from the device. At this point, a client may be interested in writing to the file. To do so,
the client sends a Write_Inode_Req to the server indicating the state of the file as if the write had
already been done in the Inode_info_t argument. Once the server successfully rewrites the inode
information and breaks any callbacks for current readers of the file, a success code is returned to
the client who may then proceed to actually write the data to the device. When a client has
completed its access to a specific file, it issues a Release_Inode_Req to the server to break its
callback for the file. Similarly, when a client unmounts a file system, it sends a
Release_Superblock_Req to the server. The message types presented in the figure but not yet
explicitly described are straightforward in their actions.

The current status of the implementation is that the request/response protocol is implemented, but
not all the functionality implied in the message description field has been finished. Specifically,
we do not currently maintain the client lists for open file systems and files necessary for use with
the callback mechanism, which itself is currently incomplete. We also do no form of caching of
information in the current system on either clients or server. A rough analysis of the time
necessary for a request/response transaction shows our kernel thread based implementation to
perform favorably, as the time required roughly matches the round-trip time between client and
server as reported by the ping utility.

6. Conclusions

We have done an in-depth analysis of iSCSI protocol and a system-level characterization of an
iSCSI initiator. The protocol has quite high overhead. For high performance servers, replacing
server-attached storage with storage accessed via iSCSI may not be a good option. Most of the

 15

overhead is caused by Gigabit Ethernet interrupt handling. Turning on jumbo packet reduces the
read overhead by 50 %. For wide-area use this may not be possible because the path MTU is
usually much less than 9000 bytes. The jumbo packet option does not seem to reduce the
overhead in case of write. We think a detailed analysis of the Gigabit Ethernet driver and the
DMA interface would shed light on why this is the case and what might be done.

We think iSCSI can be used to build a distributed file system in a trusted environment like a
cluster. The performance overhead of iSCSI is comparable to that of NFS and iSCSI scales better
than NFS. To reduce the overhead of network processing, the file system should cache
aggressively and employ a strong consistency model like that of AFS. Such a file system built on
top of iSCSI would be suitable for data intensive applications being run on clusters.

7. Future Work

Although our goals for the project were lofty and we were unable to meet them in the time
allotted, we believe that the work yet to be done is still important. Our top priority for future work
is finishing the distributed file system implementation, including adding support for caching in
the clients and server and implementing the callback mechanism. Once these mechanisms are in
place, we will be able to perform a much fairer comparison with NFS. We would additionally like
to further the scalability study by including more clients, to give more accurate insights into large
scale behavior of our system versus NFS. One last topic that needs more consideration is security
within our distributed file system, which is currently non-existent as all clients that can reach the
iSCSI gateway over the network can access the storage device.

 16

References

[A97] J. Anderson et al., “Continuous Profiling: Where Have All the Cycles Gone?” In

Proceedings of the Symposium on Operating System Principles (SOSP97), 1997.

[ACV00] D. Anderson, J. Chase, and A. Vahdat. “ Interposed request routing for scalable

network storage.” In Fourth Symposium on Operating Systems Design and
Implementation, 2000.

[AGPW03] S. Aiken, D. Grunwald, A. Pleszkun, and J. Willeke. “ A Performance Analysis of

the iSCSI Protocol,” 2003.

[G97] G. Gibson et al. “ File server scaling with network-attached secure disks.” In

Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (Sigmetrics '97), 1997.

[H88] J. H. Howard et al. “ Scale and performance in a distributed file system.” ACM

Transactions on Computer Systems, 6(1):51--81, February 1988.

[HIT02] K. Hiraki, M. Inaba, and J. Tamatsukuri, “Data Reservoir: Utilization of Multi-

Gigabit Backbone Network for Data-Intensive Research,” In Proceedings of
IEEE/ACM SC2002 Conference, Nov. 2002.

[J03] J. Satran et al., “ iSCSI,” IETF Internet Draft, January 2003. Available online at

http://www.ietf.org/internet-drafts/draft-ietf-ips-iscsi-20.txt

[SV02] P. Sarkar, K. Voruganti, "IP Storage: The Challenge Ahead," 10th Goddard

Conference on Mass Storage Systems and Technologies and 19th IEEE Symposium
on Mass storage System, pg. 35-42, 2002.

[TMI] “Performance Comparison of iSCSI and NFS IP Storage Protocols,”

TechnoMages, Inc. White Paper.

[VS01] K. Voruganti, and P. Sarkar, "An Analysis of Three Gigabit Networking

Protocols for Storage Area Networks.” 20th IEEE International Performance,
Computing, and Communications Conference", April 2001.

