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I. Introduction 
 
As clusters of commodity workstations continue to grow in popularity, so does their use 
as high-performance parallel application architectures. Current high-performance 
computing (HPC) clusters have processor counts in the hundreds, and many initiatives 
are already underway that plan to incorporate the use of clusters with thousands to tens of 
thousands of processors. Furthermore, much research is ongoing in the area of 
computational grids, where distributed HPC sites can be used together in order to solve 
ever-increasing size problems. In planning these large-scale systems, most researchers 
have been focusing on the hardware and software infrastructure requirements, while 
projections of application performance on these systems are few. The goal of this project 
is to develop a model of a common HPC parallel benchmark application that will enable 
accurate predictions of the performance of similar applications on these large-scale 
systems.  
 
II. Parallel Application Modeling 
 
One of the largest obstacles in producing an accurate yet generic model of application 
performance is determining which parts of the application and system are critical to the 
model’s accuracy. If one tries to model too much of a particular sample application, the 
model will not be general enough to apply to other applications. On the other hand, 
making the model too general could result in a lack of meaningful observations. In an 
attempt to overcome these extremes, Culler et. al. [1] have created a parallel machine 
model called LogP that captures the essence of the important criteria in modeling parallel 
applications. The characteristics of parallel applications that LogP seeks to represent 
include computational bandwidth, communication bandwidth and delay, and the effects 
of different methods of distributing communication and computation within an 
application. One noted deficiency in LogP is that it only pertains to applications that 
communicate using short messages. In response to that deficiency, the model was further 
enhanced by Alexandrov et. al. [2] in order to allow for longer messages. This updated 
model, LogGP, incorporates the additional characteristic of communication bandwidth 
for long messages. Accounting for long messages becomes important for parallel 
architectures such as the IBM SP that provide increased bandwidth for larger messages. 
 
III. Approach 
 
The approach taken in this project is identical to that used by Sundaram-Stukel and 
Vernon in [3], wherein an analysis using LogGP was performed for predicting the 
performance of the Sweep3D ASCI benchmark on the IBM SP/2. Sweep3D is a three-
dimensional particle transport application that uses MPI for communication. In [3], the 



authors first develop models of the basic MPI send and receive operations as 
implemented in IBM’s MPI. Next, they use simple communication benchmarks to derive 
the LogGP parameters that are used as inputs to the application model. The accuracy of 
the application model is then verified for processor counts up to 128. Finally, the model 
is used to predict the application’s performance for varying problem sizes and much 
larger (up to tens of thousands) processor counts. 
 
In this project, the first step is to once again develop simple models for MPI send and 
receive, this time using the LAM/MPI [4] implementation as the reference. LAM/MPI is 
a freely available implementation of MPI currently being developed at Indiana 
University. The reasons for choosing LAM/MPI as the reference implementation include 
the freely available source code and the added insight that can be gained from its authors, 
with whom I am personally acquainted. The models are then verified against performance 
measures obtained using the simple communication benchmarks from [3].  
 
Once the accuracy of the MPI model is sufficient, the values for the LogGP parameters of 
the application model can be derived.  The application to be modeled in this study is the 
LU application benchmark included with the NAS Parallel Benchmark 2.0 Suite [5]. The 
LU application is a simulated computational fluid dynamics (CFD) code that solves a 
block lower triangular-block upper triangular system of equations produced by an 
unfactored implicit finite-difference discretization of the Navier-Stokes equations in three 
dimensions. LU is similar to Sweep3D in that it uses diagonal pipelining method, also 
known as a “wavefront”  method, to perform communication of partition boundaries. As a 
result of this similarity, the resulting LogGP application model is expected to be very 
similar to the one produced in [3]. 
 
The model will then be used to predict application performance for small processor 
counts from four to thirty-two. The accuracy of the model will then be verified against 
actual application performance as shown when running the LU application on the 
departmental Linux cluster. If the model proves to be accurate, the final step will be to 
predict the performance of LU, and by generality any similar wavefront type application, 
on much larger processor counts. 
 
V. Modeling MPI Communication 
 
i) Analysis of LAM/MPI 

 
Before running the microbenchmarks to document actual MPI send/recv performance, the 
LAM/MPI code was first analyzed to determine the mechanisms used for sending and 
receiving messages of various sizes. For each message sent, LAM/MPI has the notion of 
an envelope, which is a specialized header that contains all the information necessary for 
distinguishing between messages received at some destination. In addition, LAM/MPI 
distinguishes between message sizes by having two categories of messages, short and 
long. LAM/MPI defines a short message to be any message less than or equal to 65536 
bytes in length. For short messages, a call to MPI_Send will result in the sending of the 
envelope and the corresponding message all at once. For long messages, the envelope is 



sent to the destination rank first, and only after the destination has acknowledged the 
envelope will the source then send the message contents. Calls to MPI_Recv result in 
polling the local envelope buffer to determine if the correct message envelope has been 
received, and then receiving the message once the envelope has been posted. For long 
messages, the receiving rank first sends an acknowledgment of the envelope to the source 
rank before beginning to receive the message contents. 
 
ii) Benchmarking MPI Communication 
 
In order to benchmark the performance of the LAM/MPI implementation, the same 
communication microbenchmarks used in [3] were obtained. The microbenchmarks, 
implemented in both C and Fortran, provide performance results for two types of 
communication, send only and ping-pong. In the send only tests, various sized blocks of 
data are sent from one rank using MPI_Send to another who receives the data using 
MPI_Recv.  In the ping-pong tests, various block sizes are once again sent and received, 
but the receiver additionally sends the data back to the sender. Both tests report total 
latency for each block size. The results from running the MPI microbenchmarks are 
shown in Figure 1. For both the send only and full ping-pong benchmarks, the C and 
Fortran benchmarks perform similarly. The interesting observation to be made from the 
send plots is that there are three sections with respect to the underlying message size. The 
first section of the plots corresponds to message sizes that can be transmitted in a single 
Ethernet packet (~1500bytes) with the additional envelope header as well as TCP and IP 
headers, and thus messages within the range of 0 to 1400B incur almost constant latency. 
The next section of the send plots corresponds to messages between 1400B and 64KB. 
Thus this section of the plots corresponds to short messages that require multiple packets 
to be sent. The final section corresponds to long messages. In the case of the ping-pong 
plots, there is much less distinction between the various message sizes. 
 

Figure 1: MPI Microbenchmarks

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000 1000000

Bytes

L
at

en
cy

 (
u

s)

C send-only
F send-only
C ping-pong
F ping-pong

 



 
iii) MPI Communication Model 
 
Given the results from the microbenchmarks, the following model of MPI 
communication was developed. Due to the one-packet phenomena, two separate values 
are used for the processing overhead (o) to denote whether the message is smaller (os) or 
larger (ol) than 1400B. Similarly, the Gap per byte (G) parameter is modeled separately 
for each of the three message size sections (<1400B, 1400B-64KB, >64KB) discussed 
previously. The values for the G parameters are derived from the slopes of the curves 
shown in the above figure. 
 
For messages smaller than 64KB, the envelope is sent at the same time as the message 
contents. Thus, the total communication can be modeled as the following, where o & G 
depend upon whether the message is smaller or larger than 1KB: 
 
Total Comm = o + (message size * G) + L + o 

 
For message larger than 64KB, an extra round trip needs to be modeled to account for the 
sending of the envelope separate from the message contents and the extra 
acknowledgment from the receiver. Thus, the total communication can be modeled as: 
 
Total Comm = os + L + os + os + L + ol + (message size * Gc) + L + ol 

 
The following tables show the values for the model parameters for Fortran and C 
obtained from solving the three equations for total communication for messages less than 
1400B (Ga), between 1400B and 64KB (Gb), and greater than 64KB (Gc). Rather than 
deriving the latency from the equations, the measured value of 60 microseconds was used 
to help derive the values for os and ol. The accuracy of the model is shown in Figure 2. 
 

Fortran Parameters 
Ga 0.372917
Gb 0.183877
Gc 0.212738
os 41.26
ol 159.84
L 60
 

C Parameters 
Ga 0.374008
Gb 0.182775
Gc 0.216644
os 39.03
ol 163.43
L 60



Figure 2: MPI Model Validation
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VI. Modeling the NAS LU Application Benchmark 
 
i) Analysis of LU Application 
 
The operation of the LU application can be described as having three distinct phases. The 
first phase corresponds to all the work needed for initializing the application, which 
includes the times for setting up the MPI environment, partitioning the three-dimensional 
grid across a two-dimensional grid of processors, and initializing various data structures. 
The second phase is when the real work of the application is performed, and consists of a 
predetermined number of symmetric successive over-relaxation (SSOR) iterations in 
which sweeps are made from one corner to another on the z-plane. During each iteration, 
there are two sweeps. The first is a northeast to southwest sweep to compute the block 
lower triangular solution, and the second is a southwest to northeast sweep to compute 
the block upper triangular solution. Both sweeps communicate using a “wavefront”  
pattern The wavefront communication pattern is a result of the slicing of the z-dimension 
in order to help pipeline the computation. After each processor has computed its portion 
of the z-dimension slice and communicated the boundary values to its neighbors, it can 
begin computation of the next slice while other processors are still working on the 
previous one. The final phase is used to verify the results obtained in the second phase 
versus the accepted values. Since the time spent in the first and third phases is 
insignificant in comparison to the time spent in SSOR iterations, the model of LU 
developed herein focuses strictly on the second phase. 
 
ii) LogGP Model Construction 
 
Using the results from the analysis described in the previous section, the following model 
of the LU application was constructed. 
 



(1) Wi,j = it * jt * Wgridpt 
(2) Tjacld = it * jt * Wjacld 

(3) Tjacu = it * jt * Wjacu 

(4) StartPi,j = max(StartPi-1,j + Wi-1,j + Tsend + Tcomm ,  

                   StartPi,j-1 + Wi,j-1 + Tcomm + Trecv) 

(5) Tblts = StartPn,m + K*Wn,m + (K-1)*(Tjacld + 2*Trecv) 

(6) Tbuts = StartPn,m + K*Wn,m + (K-1)*(Tjacu + 2*Trecv) 

(7) TSSOR = #iterations * (Tblts + Tbuts) 

(8) TLU = Tinit + TSSOR + Tverify 
 

Equation 1 represents the time required be a single processor to compute an it *  jt *  1 
portion of the grid, corresponding to the work performed during one slice of the lower or 
upper block triangular solutions.  Equations 2 and 3 correspond to the work done by a 
processor during one slice to compute the lower or upper triangular values of the jacobian 
matrix used in computing the solutions.  
 
Equation 4 is a recursive equation used to determine the time when a processor is 
expected to begin its work. Since a processor cannot begin until receiving the boundary 
values from its north and west neighbors, the time at which it starts computation can be 
calculated as the maximum value of two parts. The first part is used to describe the 
situation when the boundary values from the west neighbor are last to arrive at 
processori,j. In this case, the time when the processor can begin is approximately equal to 
the starting time of its west neighbor plus the computation performed by the neighbor 
plus the time for the neighbor to send boundary values to its south neighbor plus the total 
time spent communicating boundary values with this processor. The second part is 
similar and corresponds to when the boundary values from the north neighbor are last to 
arrive. Thus, the starting time for this processor is approximately the starting time of its 
north neighbor plus the computation performed by the neighbor plus the time for the 
neighbor to send boundary values to this processor plus the time that this processor needs 
to receive the boundary values from the west neighbor.  
 
Equations 5 and 6 represent the total time required for a single iteration of the block 
lower or upper triangular solution. The estimated total time for the lower triangular 
solution, Tblts, is shown in Equation 5. This equation is intuitive in that it represents the 
total time for the sweep as the starting time of the lower-right processor plus the work 
required by that processor for all K z-dimension slices plus the time for intermediate 
computation and receiving boundary values K-1 times. Since the sweep for computing 
the upper triangular solution is symmetric with the lower triangular sweep, the same 
equation is used and the appropriate values (Wbuts and Tjacu) are substituted. 
 
Equations 7 represents the total time for all SSOR iterations, corresponding to the second 
phase as described previously. Equation 8 is the final equation for the estimated running 
time for the entire application, and includes all three phases, with a single parameter for 
each phase. Note that the parameters for the time spent in initialization and verification of 
results are insignificant compared to the time spent in the SSOR iterations. As such, these 



values should be obtained using measurement rather than trying to derive model 
equations that adequately describe their behavior. 
 
iii) Verification of LU Model 
 
The running time of the LU application was measured using the LAM/MPI 
implementation of MPI on the departmental c2 cluster. Times were gathered for three 
different problem sizes: class W with a 33x33x33 grid, class A with a 64x64x64 grid, and 
class B with a 102x102x102 grid. The application was run in configurations of 1 to 32 
cluster nodes. Table 1 provides the average values of several parameters obtained from 
instrumentation of the application that were used as inputs to the model. Note that these 
values are consistent across all class and cluster sizes. 
 

Wblts 3.22 � s 
Wbuts 2.85 � s 
Wjacld 4.19 � s 
Wjacu 4.07 � s 

 
Table 1: Work per Grid Pt for Various Computation Phases 

 
As mentioned previously, only the model of TSSOR is validated against measured 
performance. Figure 3 shows the ability of the model to predict application performance 
for the three class sizes and cluster sizes up to 32 nodes.  
 

Figure 3: LU Model Validation

1

10

100

1000

10000

1 10 100

# of processors

T
im

e 
(s

ec
o

n
d

s) W
A
B
W-modeled
A-modeled
B-modeled

 
 
Although at first glance the model looks to be closely correlated with the measured 
performance, closer investigation yields notable discrepancies. For all class and cluster 
sizes, the model under predicts the time required for the SSOR iterations. The relative 
error of the model to the measured performance ranges from around 15 to 65%, which is 



unacceptable for the type of modeling being performed. Furthermore, the relative error 
increases with the size of the cluster, limiting the model’s use as a predictor of 
performance for larger clusters. This error for increasing cluster sizes seems to be 
representative of the model’s inability to correctly predict the attainable speedup of the 
application, as shown in the figure when going from 16 cluster nodes to 32 nodes, where 
the actual performance shows very little speedup while the model continues to predict 
almost linear speedups.  
 
Since the model is obviously insufficient in its current state, it is necessary to propose 
educated guesses as to the source of the discrepancies. One probable source of inaccuracy 
could be unrecognized synchronization effects within the communication patterns of the 
sweeps. Indeed, the model was modified to account for such effects using the methods in 
[3], but the benefits of this extension were negligible. Another possible source for the 
discrepancies might involve some aspect of the computation performed that is not 
captured in the models for Tblts and Tbuts. This type of effect has already been observed 
as the leading cause for error in the first version of the model, where the time spent 
computing the jacobian matrix values (Tjacld and Tjacu) used in computation of the 
block triangular solutions was left out of the equations. The result of this oversight was 
model predictions that were more than a factor of three off from the measured 
performance. It is thus highly likely that computational effects may be a contributing 
factor to the error in the current model. 
 
VII. Conclusions 
 
The motivation for the work performed herein was twofold. First, there was the goal of 
validating the models for MPI communication developed in [3] on a different hardware 
platform. I believe it is clear from the results presented on the MPI models that this goal 
has been met. The second goal was to validate the use of LogGP to accurately predict the 
performance of MPI-based parallel application, specifically those that exhibit a wavefront 
communication pattern. The ease in deriving a new model for LU from the previous 
Sweep3D model described in [3] lends credence to the ability of LogGP to represent 
wavefront communication when combined with computational workload characteristics. 
However, due to the inaccuracy of the model in its present state, it would be unwise to 
use it to predict the performance of the LU application for greater cluster sizes. However, 
it is my belief that with further investigation and tuning of the model, a quite accurate 
version could be produced. If such a model could in fact be produced, it would serve to 
once again show that LogGP is a viable modeling strategy for MPI-based parallel 
applications. 
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