
TBŌN-FS Namespace

Demonstrations

All the World’s a File

Group File Operations

/proc

read(1024)

rc data

/proc

read(1024)

rc data

/proc

read(1024)

rc data

/proc

read(1024)

rc data

Scalable Distributed Process Group Control and Inspection via the File System
Michael J. Brim

Advisor: Barton P. Miller
Computer Sciences

University of Wisconsin-Madison

TBŌN-FS ArchitectureResearch Overview
Scalable Tools and Middleware are Crucial

Run, analyze, debug, and improve applications & systems
Require group operations on distributed files and processes

Problems at scale
1. How to access files on thousands or millions of hosts?
2. How to efficiently operate over large file groups?
3. How to handle the data explosion for large file groups?

Solutions
1. Access: TBŌN-FS Distributed File System

• Provides global namespace that combines remote file systems
• Uses Tree-Based Overlay Network (TBŌN) for scalability

2. Operate: Group File Operation Idiom
• Eliminates explicit iteration imposed by file system interface

3. Data Explosion: Data Aggregation
• Explicit semantics for aggregation in group file operations
• TBŌN-FS architecture for scalable distributed aggregation

Problem: Current File System API Forces Serial Access

Solution: Group File Operation Idiom

Virtual
File System

File
Systems

vfs_read()

fs_read()

User-Kernel Trap (T)

Local Processing (L)

Remote Communication
& Processing (R)

System
Calls

sys_read()

/proc

GroupRead(…)
{
foreach(member)

read(fd,…);
}

Tool-level group operations must
iterate over distributed files.

Cost ≈ GroupSize × (T + L + R)

int rc = read(gfd, databuf, 1024)

int gfd = gopen(“directory”, flags)

Group File Descriptor - Use with POSIX file
operations to act on all group members.

gopen - Open all files in directory.

Status Aggregation

(e.g., SUM)

Data Aggregation

(e.g., CONCATENATE)

gloadaggr(…)
Users can load custom
aggregations they have

written.

gbindaggr(…)
Bind aggregations for

use with operations on a
specific group.

Aggregation
functions are used
to combine status

and data results into
group status and

group data results.
Intuitive default
aggregations are
provided for each

file operation.

group
status

group
data

Goal: Abstract user-defined functions (UDFs) as files

Enables use with group file operations
UDFs with file interface: Previous work exists
1. Plan9 operating system: 9P file service protocol
2. FUSE: user-level file systems

Good: Arbitrary code for file system calls
Bad: Too much file system specific code, requires kernel support

Our Approach: Synthetic Files
• Similar to FUSE: UDFs for file system calls
• No kernel support required: UDFs execute in TBŌN-FS server

Example: Process Group Control and Inspection
File access for all control and inspection operations
• read / write process memory or registers
• handle signals and exceptions (e.g., breakpoints)
• stop, continue, step
• thread control and inspection

Three Components
1.Portable process control and inspection layer
2.Synthetic File for each control / inspection operation

• additional control file for process execution (a la Xcpu)
– capture standard I/O streams as files too

3.Custom FiNAL namespace
• combine new synthetic files with existing files (i.e., /proc)

1. Define groups

2. Stop all processes

3. Set a group
breakpoint

4. Continue all
processes

5. Wait for processes
to hit breakpoint

6. Read program
variable, generate
equivalence classes
for current values

mkdir(“grp_ctl_dir”); mkdir(“grp_mem_dir”);
foreach(member in `/tbonfs/proc/[1-9]*`) {

symlink(“member/signal”, “grp_ctl_dir”);
symlink(“member/mem”, “grp_mem_dir”);

}
ctl_gfd = gopen(“grp_ctl_dir”, O_WRONLY);
mem_gfd = gopen(“grp_mem_dir”, O_RDWR);

write(ctl_gfd, SIGSTOP, 4);
lseek(mem_gfd, brkpt_addr, SEEK_SET);
write(mem_gfd, brkpt_code_buf, code_sz);
write(ctl_gfd, SIGCONT, 4);
WaitForAll(ctl_gfd);

lseek(mem_gfd, var_addr, SEEK_SET);
gbindaggr(mem_gfd, OP_READ, EQUIV_CLASS_AGGR, …);
read(mem_gfd, grp_var_classes, var_sz);

Example Code: Distributed Debugger

1.

2.

3.

4.
5.

6.

TBŌN

RRD
Cluster

Aggregation

TBŌN

RRD
Grid

Aggregation

TBŌN

RRD
Cluster

Aggregation

gmetad
TBŌN-FS Client

TBŌN-FS
Server

TBŌN-FS
Server

TBŌN-FS
Server

TBŌN-FS
Server

Web Client

Client Namespace Aggregates Server Namespaces
Ideal Namespace: directories already contain desired file groups

FiNAL: File Namespace Aggregation Language
• Goal: allow users to specify interesting groups with custom namespace

• Operators on FS hierarchies: insert, remove, replace, move, merge

TBŌN provides scalable aggregation and name resolution

Example: Global Linux /proc
Contains files providing system and process information

• System Files: cpuinfo, loadavg, meminfo, modules, ...
• Processes: directory per unique process id

– Files: cmdline, environ, mem, stat, statm, ...

/tbonfs/proc:
serverA/

/cpuinfo
/1/…
/4/…

…
serverZ/

/cpuinfo
/1/…

Simple
Directory per Server

/tbonfs/proc:
cpuinfo/

/serverA
/…
/serverZ

1/
/serverA/…
/…
/serverZ/…
4/
/serverA/…

Merge
Common Files ⇒ Directory

(per server files)
Common Directories

(per server sub-directories)

/tbonfs/proc:
cpuinfo/

/serverA
/…
/serverZ

1/
/cmdline/

/serverA
/…
/serverZ

4/…

Deep Merge
Start merge at leaves of
common sub-hierarchy,

rather than root

Virtual
File System

File
Systems

vfs_read()

TBON-FS

System
Calls

sys_read()

Tool
Application

TBŌN-FS
Client

User
Level

/dev/tbonfs

read(gfd,…)

TBŌN
Aggregation

F(x1, … , xn)

x1 x2 x3 xn

TBŌN-FS
Server

File Systems

Standard
File Access

TBŌN-FS
Server

File Systems

Standard
File Access

TBŌN-FS Servers
Act as simple file access proxies
for file systems visible on servers

TBŌN-FS Client
Transforms TBON-FS
file system requests

into scalable
group file operations

TBŌN Processes

Provide scalable
request distribution

and response aggregation

System Administration: Parallel Linux commands
ptop : host & process monitor
pgrep : parallel text search

• identify configuration differences

ptail : parallel log monitoring
• with --follow option

pcp, psync : file distribution
• send whole file, or only changes

System Monitoring: Ganglia
Original System
• gmetad cluster / Grid aggregation processes

– store data to round-robin database (RRD)
• gmond monitoring daemons

– multicast data updates within cluster
– linear memory / CPU / network overhead

Ganglia-tbonfs
• top-level gmetad TBŌN-FS client
• scalable TBŌN-FS aggregation
• gmonds replaced by TBŌN-FS servers

– eliminates overhead due to multicast

For each update, ptop reads data from seven
groups containing over 1,000,000 files.

