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Abstract

Mobile phones are frequently used to determine one's location and

navigation directions, and they can also provide a platform for connecting

tourists with each other. This paper proposes a system that uses a set

of geotagged photos to automatically compute the geographic location of

another photo and then augment that photo with text and images that

enable collaboration and enhance navigation. The system breaks up the

world into smaller regions and then computes a geographic location using

one method and a complete camera pose using a more complex method,

both methods utilize robust local feature matching. Tourists can then add

text and images to objects in a photo which are then augmented onto other

photos viewing the same object, allowing them to share information linked

to speci�c objects in their environment. Navigation information in the

form of arrows are projected onto photos pointing tourists in the direction

of their selected destination. This system is particularly applicable to

places such as malls, museums, and theme parks where photos can provide

more information than GPS, but it can be applied anywhere.

1 Introduction

More people are using mobile phones to retrieve location-based information as
more GPS-enabled mobile phones have become available. Nearly every mobile
phone also comes equipped with a camera. Automated methods of retrieving
geotagged photos from camera-equipped vehicles as well as Internet sites such
as Google Street View and Flickr provide large photo sets that can be used with
computer vision techniques to automatically create models which can provide
information beyond what is provided by GPS.

Using this additional information the proposed system enables linking text
and images to points in the 3D world that are then displayed on new photos
taken of the same points. This allows tourists to collaborate using visual in-
formation linked to the viewed scene. So visitors to a museum can share their
opinions or knowledge about a particular artwork, and a custom application
or external database can provide additional contextual information such as the
history of a particular piece of art. Popular places of interest as well as the path
traveled can be mapped by storing the location photos are taken and what is
photographed. The system is further enhanced by overlaying photos with navi-
gation information in the form of arrows that direct tourists to their destination.
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Consider the example of a theme park where visitors use their mobile phones
to navigate from one desired ride to the next. Using the proposed system visitors
could get a more precise location than GPS, as well as the ability to easily
view and link semantic information such as ride experiences with a particular
part of the ride. Visitors take photos to determine their location and then
the photo can be augmented with gra�ti from other visitors. If the visitor
selects a particular destination the overlay can include an arrow pointing in the
direction of the destination. The proposed system eases the task of navigating
unknown territory and enables the sharing of experiences while traversing the
environment.

2 Related Work

Several techniques have recently been developed for estimating the geographic
location a given photo was taken with varying approaches and results. Im2gps
[6] uses online photo collections to create a model that produces a distribution
of the likelihood of the geographic location of a photo based on a scene matching
algorithm. The scene matching algorithm attempts to match several di�erent
image properties such as color and texton histograms, gist descriptors [13], and
the geometric context of a photo to those of the photos in the model. Instead
of matching global scene information the proposed system uses local feature
descriptors which can provide a more precise matching between views of the
same scene as well as distinctive points in the scene which can be used to easily
augment the photo. Im2gps was the winner of the �Where am I?� Contest [16] at
ICCV'05 where many other algorithms were introduced for location estimation
and recognition, but Johansson and Cipolla [8] developed an approach similar
to the proposed system using local planar features to reconstruct camera pose.

There have been a few e�orts using photos of landmarks to determine lo-
cation. The landmark recognition engine developed by Zheng et al. [17] uses
clusters of registered photos of landmarks from Internet photo collections to rec-
ognize landmarks in other photos. Hile et al. [7] used collections of geotagged
images to provide landmark-based navigation. The underlying structure-from-
motion algorithm [15] used in the later system is also used in the proposed
system.

A number of methods have been developed for location-based image anno-
tation transfers. The LOCAL [12] system uses geographic distance to transfer
text between geotagged photos. The proposed system, similar to Photo Tourism
[14], links annotations to local feature points so that annotations can be linked
not only to geographic regions but to objects in the scene. Utilizing local feature
points the system can display annotations on photos from various viewpoints as
well as when the annotated object is partially occluded. The proposed system
enhances these annotations by allowing both text and images to be arbitrary
placed on a photo without the prior selection of a region. With the 3D scene
reconstruction from the structure-from-motion algorithm annotations can exist
in 3D space similar to work done by Feiner et al. [4].
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Augmented reality has had a lot of interest lately in part due to the rise is
in high-powered mobile phones with cameras and GPS. Augmented reality has
been used for navigation directions by Hile et al. [7] where 3D arrows in the
direction of the destination are projected onto photos taken by navigating users.
Whereas their system uses a path for navigation and sophisticated arrows the
proposed system is simpler in nature, though enhanced arrows and directions
can easily be applied.

3 System Overview

The objective of the proposed system is to automatically generate models that
can be used to determine the geographic location of photos taken of the same
scene, and then use the computed location and local features to display and
modify an overlay containing additional information. This section describes
the details of the proposed system. In order to reduce complexity and try to
avoid feature collision the world is segmented into smaller regions described
in Section 3.1. Once a region is selected, a simple method using local feature
correspondence and stereo vision algorithms can be used to compute the location
of a new photo taken in that region, as described in Section 3.2 which lays
a foundation for a more sophisticated method using structure-from-motion as
described in Section 3.3. Using the local features from the model photos and new
photo, the collaborative user interface referred to as scene gra�ti and described
in Section 3.4 allows users to view and modify text and images linked to local
features. Finally, arrows can be displayed on the new image pointing in the
direction of a destination, as described in Section 3.5.

3.1 World Segmentation

A critical issue with local feature-based algorithms is the sheer complexity of
modeling the entire world's distinctive features. Even with massive paralleliza-
tion, reconstructing an entire city from a collection of photos can take days [1].
Another issue is that the number of false positive matches increase as the num-
ber of photos increase. To overcome these limitations the world is segmented
into regions which are then modeled independently. For this paper, regions are
de�ned as all views of a street from one intersection to the next. The regions
cover most of the space traversed by people moving from one place to another
and also provide visual overlap between neighboring regions. Regions can also
be de�ned as a particular self-contained place such as a museum or theme park.
This type of selection could be useful for such places where destinations such as
art displays and rides are named and can be easily searched for.

Each region is independently modeled using one of the two methods de-
scribed in Sections 3.2 and 3.3. The creation of models and their modi�cation
can be an o�ine or live process. For this paper models are created o�ine using
images from Google Street View which are tagged with GPS locations. How-
ever, other sets of geotagged photos which have many di�erent viewpoints of
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the same scene could be used as well. Once the models are created they are
stored for later queries using new photos.

In order to query the system for the geographic location of a new photo a
region must �rst be selected. Regions can be selected in many di�erent ways.
For this paper regions are selected in one of two ways, either via GPS or the
user. For arbitrary locations, GPS data is used to select a region. If the GPS
location lies inside a region, for example on a street, that region is selected. If
the GPS location does not lie inside of a region, for example a backyard when
using street-de�ned regions, the region closest to the location is selected. This
increases the chances that a photo taken by the user will have local features
that correctly match local features in the region's model photos.

There are several ways a user can select a region, some more intuitive than
others. A simple example is that of a custom application provided by a museum
for their visitors to use as they navigate from one display to the next. In this case
the region is the museum and has been preselected for the user. Since the region
is small, geotagged photos covering the entire region can be easily taken and the
number of local feature points is reasonable. When the user must directly select
the region it could be selected from a list of regions or more intuitively from a
map. The model associated with the selected region is then queried with new
photos taken within or near the region to compute the geographic location using
the method described in Section 3.2 or a geographic location and orientation
using the method described in Section 3.3.

3.2 Local Feature Correspondence

The �rst method for using a geotagged photos to compute a geographic location
simply consists of matching local feature descriptors and then determining their
relative motion in order to �nally compute a geographic location using the GPS
coordinates of the top two matching model photos. Each photo in the model
is represented by its local feature points and GPS coordinates. The feature
descriptors of each pair of photos are then matched and only the points that
correspond to points in at least two photos are stored as the model for later
matching against new photos. Local features in a new photo are extracted when
the photo is queried against the model. Then the top two matching photos are
determined by matching the local features of the new photo against those in the
model using approximate nearest neighbor search. Using the top two photos, an
essential matrix is computed and the GPS location is triangulated. This method
can be useful when speed is of high importance, model data is precise, and the
camera intrinsics are known, or simply when orientation is not necessary.

The SIFT algorithm [10] is used to detect and create local feature descrip-
tors for this paper because of its wide use and ability to independently detect
the same distinctive features from a wide range of views. Also current imple-
mentations of SIFT exist1 that are easy to extend and integrate with more

1The SIFT binary used for this paper can be downloaded from
http://www.cs.ubc.ca/~lowe/keypoints/

4



complex systems. However, other local descriptors could be used such as as
those compared by Mikolajczyk et al. [11] and SURF [3], a relatively e�cient
Hessian-based feature extractor that creates descriptors similar to those from
SIFT. SIFT feature extraction is also e�cient, creating thousands of descriptors
for a typical photo in less than a second. SIFT uses a di�erence-of-Gaussian
function to create scale and orientation invariant descriptions of the points and
the area around them. This description can then be easily matched across views
of di�erent scale, rotation, illumination, and weather.

When a user takes a new photo it is queried against the model and its lo-
cal features are matched against those of the photos in the model to �nd two
other views of the same scene which are then used to determine the location
the photo was taken. The approximate nearest neighbors algorithm by Arya et
al. [2] is used to match feature descriptors between pairs of photos. For each
pair of photos in the model, a k-d tree is constructed to store the 128-dimension
descriptors from one photo. Then the tree is searched for a neighboring de-
scriptor using the match constraint that the Euclidean distances between the
two nearest neighbors must have a ratio less than 0.6, as described by Lowe and
Snavely et al. [15, 10]. Using the distance ratio constraint instead of a threshold
increases the chances of �nding matches without a substantial increase in the
number of incorrect matches. The two model photos with the most matches are
then used to compute a location for the query photo.

Given the pair-wise matched feature descriptors from the query photo and
the top two matching model photos, the system can determine the relative
motion between the three views to �nally compute a location. The relative
motion between a pair of photos is encoded in their essential matrix. So the
essential matrix is computed for each pair of the three photos.

The essential matrix maps normalized coordinates of a point in one photo
to the normalized coordinates of the same point in another photo [5]. Normal-
ized image coordinates are image coordinates with the speci�c camera details
removed. Given the camera intrinsics matrix K, the normalized coordinates
are x̂ = K−1x, where x is the coordinate vector of a point in an image and x̂
is the normalized image coordinate vector. The eight-point algorithm is used
with RANSAC to compute the essential matrix E using at least eight matching
feature points [5]. Then to ensure the internal constraints of the essential ma-
trix are met, that is its tow singular values must be the same and det(E) = 0,
the singular value decomposition (SVD) of E is modi�ed by replacing the two
singular values with their average to give the closest essential matrix in Frobe-
nius norm [5]. Although photos with known intrinsics where employed for the
method in this paper, there are many techniques for estimating the camera pa-
rameters, some of which are detailed by Hartley and Zisserman [5]. However,
part of the speed and simplicity of this method is based on the assumption that
the intrinsics are known and do not have to be computed.

Since the essential matrix is composed of the rotation and translation be-
tween the two photos E = [t]×R, where [t]× is the matrix representation of the
cross-product with t, SVD can be used to compute the motion [5]. The SVD of
E = UΣV T where all three matrices are 3 by 3 and U and V are orthogonal.

5



Then with the matrix

W =
0 −1 0
1 0 0
0 0 1

the rotation between the two cameras R = UW−1V T , and the translation t
is the last column of U . However, the solution is not unique because the sign
of E cannot be computed directly and thus there are four possible motions:
(R, t), (−R, t), (R,−t), and (−R,−t). Fortunately, there is only one solution
which projects the same point in both photos into the 3D scene in front of both
cameras [5]. So the relative motion between each pair of cameras is determined
using one of the matched feature points appearing in both photos.

The relative motion is computed up to an unknown scaling. So the abso-
lute scale between the GPS coordinates of the two model images and simple
trigonometry is used to compute the global position. Transforming all three
translation vectors into a common coordinate frame forms a triangle. Finally,
using the geographic distances of the model photos a GPS location can be tri-
angulated for the query photo.

3.3 Structure-from-Motion Reconstruction

The method described in the previous section computes a GPS location, but it
does not compute a global orientation. This requires a more complex algorithm
using structure-from-motion, however it provides the additional bene�t that the
photos can come from cameras with unknown intrinsics. For this method an
open source package by Snavely et al. called Bundler2 is used to reconstruct
each region. The same model photos and local SIFT features from the previous
section are passed to Bundler which then performs 3D registration of the photos.
Since Bundler uses SIFT features to match photos it can register photos from
a wide range of overlapping views. The main advantage to using Bundler is
its use of sparse bundle adjustment to e�ciently re�ne computed camera poses.
Sparse bundle adjustment algorithm by Lourakis and Argyros [9] is implemented
in Bundler using a modi�ed version of another open source package called sba3.
The use of bundle adjustment provides better estimation of camera intrinsics
and distortion which allows the system to use photos from nearly any camera.

Bundler �rst matches the features between each pair of photos in the model
and then prunes geometrically inconsistent features. Then an initial pair of
photos is selected by �rst �nding a homography between each pair of matching
photos using RANSAC. The photo pair with the lowest percent of inliers but
with at least 100 matches is selected as the initial pair [15]. This is to ensure that
the initial pair has a substantial amount of matches but not a narrow baseline
to avoid the case when a pair of photos are identical. Bundler then searches
for the unregistered photo with the most matches to registered feature points
and then registers the photo by estimating the camera's intrinsic and extrinsic

2Bundler can be downloaded from http://phototour.cs.washington.edu/bundler/
3The modi�ed sba is distributed with Bundler.
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parameters using the direct linear transform technique [5]. Each of the photo's
feature points are registered if the point is geometrically consistent and visible
in at least one registered photo.

At each iteration the bundle adjustment algorithm is executed to re�ne each
camera pose. The bundle adjustment algorithm is an optimization problem
that seeks to simultaneously minimize the reprojection error of the registered
feature points and camera poses, thus re�ning the entire 3D scene with the
additional information from each new photo. This is the critical di�erence
between the previous method, providing a re�ned camera pose necessary for
realistic augmentation. The Bundler algorithm continues until no more photos
capture at least twenty registered feature points. Further details of the Bundler
algorithm are described in the paper by Snavely et al. [15].

SIFT features are detected and matched in the same manner as the previ-
ous method when a new photo is taken and queried against the model. The
geographic location can also be computed as was done in the previous method
using the camera poses from Bundler without computing essential matrices for
the query photo. Given the orientation of the �rst model photo R1 and the
rotation between it and the query photo R1q, the orientation of the query photo
R = R1R1q. Another procedure for determining location using this model could
be to register the query photo with Bundler, but the proposed method has been
shown to have similar results using less computation time [7].

3.4 Scene Gra�ti

Scene gra�ti consists of text and images that users can place on photos. The
gra�ti are then automatically displayed on new photos of the same scene or
object by querying the system. Because gra�ti objects are linked to local feature
points, both proposed methods for determining geographic location allow for
scene gra�ti. Since it is assumed that multiple users will be using the system,
the gra�ti is shared when a user photographs an object or scene with gra�ti
added by another user. The gra�ti objects linked to the features in the scene
are displayed on the user's photo. So if a museum visitor has a comment about a
speci�c part of a sculpture, they can place and automatically link the comment
to the speci�c part of the sculpture for visitors to see. This enables collaboration
between users in situations such as �nding a good restaurant, avoiding boring
theme park rides, and exploring a new environment.

To add text or an image to the scene the user �rst photographs the scene.
Then the user places the image or string of text on the photo at the position
desired. The gra�ti object is then linked to all of the feature points under
the object. A normalized o�set between the top-left pixel of the gra�ti object
and the top-left feature point covered by the object is stored with the object as
well as the normalized width of the region of feature points. The normalized
distances are used to scale the gra�ti object to cover the same region in future
photos. If a gra�ti object is not placed over any feature points the two closest
feature points in the photo are used. At least two feature points are needed to
determine the appropriate scale for the gra�ti. It is assumed that the top-left
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Figure 1: The smiley face was added to the photo on the left and then displayed
on the photo on the right based on matching feature points.

feature point of a linked gra�ti object in one photo will also be the top-left
feature point in another photo. However, this does not account for mirrors,
upside down photos or occluding objects.

When a new photo is taken the set of gra�ti objects associated with the
matched feature points are displayed. Similar to the annotations in the Photo
Tourism system [15], gra�ti is displayed if at least one of its linked feature
points are visible in the photo. Gra�ti is also not displayed if the scale is too
large or too small that it covers the photo or can barely be seen. Gra�ti that are
between �ve and eighty percent of the photo size are displayed. If the top-left
feature is not visible in the photo the gra�ti object is aligned to the top-left
visible feature and the scale is estimated. Gra�ti can than easily be moved
or removed with the changes visible in all new photos. This method avoids
occlusions and handles multiple viewpoints by linking gra�ti objects with a set
of local feature points. Since all of the local features stored in the model appear
in more than one model photo it can be assumed that they represent distinctive
features of objects in the scene, and so linking gra�ti to features is in essence
linking them to objects in the scene.

3.5 Navigation Overlays

To enhance the navigation experience the proposed system includes overlaying
photos with 3D arrows pointing in the direction of the destination. Camera
orientation is needed to provide intuitive navigation directions. Only the second
method for determining the geographic location of a photo, as described in
Section 3.3, provides complete camera pose information. With the resulting
camera pose the direction is computed and arrows are augmented on the photo
in the direction of the destination. The user can continually take photos to
navigate to their destination.

To begin, the user selects a destination from any of the various possible
user interfaces such as a list or a map. A list of destinations were provided by
the system for this paper. Then the user photographs a representative view of
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Figure 2: Arrow augmented on the photo indicating the direction of Cousins
Subs.

the user's location. The photo's geographic location and camera pose is then
estimated using the structure-from-motion method. Then the angle between the
current location and the destination is computed, and using that angle along
with the camera orientation an arrow is projected onto the photo pointing in
the direction of the destination. The camera pose is also used to tilt the arrow
to �t the scene in the photo more realistically as was also done by Hile et al.
[7]. The user can then navigate to their destination using the augmented photo
instead of a map, which alone cannot point a person in the correct direction.

This method does not provide the most intuitive navigation directions be-
cause of the naive direction computation. However, input from a path-�nding
algorithm could inherently be used for more intuitive and useful direction. Since
navigation is not the primary focus of this paper the proposed system does not
include an algorithm for �nding a path from one place to another. Many tech-
niques exist in the literature for �nding paths between two places.

4 Results

The proposed system was implemented on a PC, but SIFT and other detectors
can be e�ciently run on many mobile phones and then the feature descriptors
can be passed to a server running the model. Photos from Google Street View,
with their GPS coordinates stored, were used to build the models because they
are relatively easy to extract versus manually labeling photos and they cover
many ranges of views. The views are of the streets of the UW-Madison campus
in an urban city with more architecture than trees which contains more distinc-
tive features than a more open landscape. The implemented test did not use
GPS to select model regions. Instead the system was given a GPS location to
select a region. So even though a GPS device was not used for this paper one
could easily be used.
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Veri�cation of the implemented system proved di�cult. Ground truth for
geographic locations of photos is di�cult to determine, but the nearly identi-
cal structure-from-motion method employed by Hile et al. was shown to be
su�ciently accurate for navigation and augmentation purposes [7]. The GPS
coordinates of the Street View photos inherently have a level of error due to
the GPS system, though presumably quite small given the manner in which
they are captured. So there is an unknown level of error in the models them-
selves. Bundler could have been aligned to the world using a few �best-�t�
camera GPS locations [7, 14]. However, using automatic methods to capture
higher-resolution photos with more precise GPS coordinates can be used that
do not require re�nement. Over 100 photos were taken using a mobile phone
with a GPS device that automatically tags photos, and those photos were used
as ground truth to test the system.

The �rst method for determining geographic location described in Section
3.2 was not as accurate as the method using structure-from-motion described in
Section 3.3. Many times the computed geographic location was over 0.001 degree
(about a city block) from the geotag, but many were also within 0.0001 degree
(several meters). However, building the simple models required substantially
less computation time than the structure-from-motion algorithm, and an entire
correspondence model could be stored and queried on a mobile phone. The
simple pair-wise matching of photos results in a weak estimation of the essential
matrix, which is the basis for the computation of the geographic location. The
second method, using structure-from-motion and bundle adjustment, produces
more precise estimates of the essential matrix, and thus it results in a more
precise geographic location. Every location that could be computed using the
second method was within 0.0001 degree of the geotag.

Neither method worked well with photos taken from alleys and pointing away
from the street. This is due to the fact that there were not enough matching
features in the model photos, and it shows that simply taking photos from streets
will not be enough to provide arbitrary outdoor location information. Neither
method will work with photos that were taken by pointing the camera too high
or too low. There just are not enough features in the sky, and the Google Street
View photos are not of a high enough resolution to detect many features on the
ground. Another limitation with the proposed system is that SIFT and other
similar local feature descriptors cannot be matched beyond approximately 30
degrees.

The photos from Google Street View tended to have very few feature matches,
which resulted in many clusters with few sparse points using Bundler. Bundler
only registers photos that have enough features that match already registered
features. Thus which photos get registered is dependent upon which two photos
are chosen to begin the bundle. If the two photos do not have a wide enough
baseline to cover other views in the model another cluster will be created. Since
the Street View photos had few pair-wise matches several clusters were created
for each model by iteratively running Bundler on unregistered photos until no
more clusters could be reconstructed.

Scene gra�ti transferred to photos well in most cases. The gra�ti-feature
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Figure 3: The location of the photo on the left was correctly computed to be
the location on the map on the right. Most estimations were within meters of
the phone's GPS location.

o�set prevents displayed gra�ti from running o� of the left and top sides of
photos, but it does not account for going o� the right and bottom sides of
photos. Placing gra�ti on regions far from any feature points can produce odd
results. For example, placing gra�ti in the sky on one photo may cause the
gra�ti to be displayed on a particular object in another photo instead of the
sky. However, besides these few cases the gra�ti appeared where expected.

5 Conclusion

This paper proposed a system for both determining a geographic location from
a photo and then augmenting the photo with text, images, and navigation in-
formation. The system is automatically created from a collection of geotagged
photos using local feature descriptors. A simple and e�cient method for deter-
mining GPS location which can be run entirely on a mobile device was shown to
be e�ective enough for when GPS is not available. Building upon that method,
a more complex method was proposed using structure-from-motion and bundle
adjustment to provide a re�ned photo location and orientation. The models
are then extended to include scene gra�ti and augmented navigation directions
that create an environment for social tourism.

The proposed system forms the basis for a fully automated augmented reality
collaboration application. Several enhancements could be made to the system
in the future. The GPS coordinates of the model photos could be re�ned using
Bundler to provide more accurate geographic location estimates. The navigation
overlays could be enhanced by detecting pavement and walkways to project
arrows onto. However, one advantage of the proposed system is that it works
where GPS does not, and it can be more precise than global or landmark photo
approaches. By taking photos of where they have been, users can keep track
of the path they have taken and what they have seen. Then they can visually
share that information and experience with others. This paper shows how these

11



techniques from computer vision can be extended to enhance the collaboration
and navigation experience.
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