
Deep
Reinforcement Learning

5/3/2019 ECE 901 1

BLAKE MASON & MOAYAD ALNAMMI

References
1. Reinforcement Learning An Introduction 2nd ed. 2018. Sutton and Barto.

2. An Introduction to Deep Reinforcement Learning. Lavet et. al. https://arxiv.org/pdf/1811.12560.pdf

3. Policy Gradient Methods Summaries: https://lilianweng.github.io/lil-log/2018/04/08/policy-
gradient-algorithms.html#Proof-of-Policy-Gradient-Theorem

4. David Silver’s slides on RL: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

5/3/2019 ECE 901 3

https://arxiv.org/pdf/1811.12560.pdf
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html#Proof-of-Policy-Gradient-Theorem
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Part 1:
Problem Overview

5/3/2019 ECE 901 4

5/3/2019 ECE 901 5

Problem Overview (1)

• Assume the problem is a Markovian decision process (MDP):

Figure from [1]

5/3/2019 ECE 901 6

Problem Overview (2)

• The dynamics of the system fully specified by: p(s’, r | s, a).

1. State-transitions:

2. Expected rewards:

• Goal is to find a policy 𝜋(𝑎|𝑠) that maximizes expected return (state-value function):

• Action-value function. Action at current state already made:

• Bellman equation:

• Optimal policies:

5/3/2019 ECE 901 7

Problem Overview (3)

Reward of action made at current
state; can be sub-optimal.

Reward of following optimal policy
from next state onward.

• Bellman optimality equations:

• Optimal policy given optimal value functions:

5/3/2019 ECE 901 8

Problem Overview (4)

• The dynamics are known: p(s’, r | s, a).

• Policy evaluation (Iterative):

• Policy Improvement:

• Policy iteration:

• Value iteration combines policy iteration and improvement using Bellman optimality eq.

5/3/2019 ECE 901 9

Dynamic Programming Summary (1)

• No need for system dynamics. Applied to episodic tasks.

• Does not bootstrap: estimate of one state does not use estimates of other states.

5/3/2019 ECE 901 10

Monte Carlo Methods Summary (1)

Ensures all (s, a) pairs are visited

Sum returns in reverse order

Evaluate current policy

Improve policy

Generated from current policy

Figure from [1]

• Without exploring starts, need to use eps-soft policies to ensure all (s,a) are visited.

• Same idea of evaluation -> improvement.

5/3/2019 ECE 901 11

Monte Carlo Methods Summary (2)

Evaluate current policy

Improve policy

Figure from [1]

• Update estimate towards a target at every time-step t:

• Recall:

• Monte-Carlo update:

• Dynamic-Prog. Update:

• MC target -> no bootstrapping. DP target -> bootstraps using V(St+1) estimate.

• TD(0) update combines these:

5/3/2019 ECE 901 12

Temporal-Difference (TD) Methods Summary (1)

Sample

Bootstrap estimate

5/3/2019 ECE 901 13

Temporal-Difference (TD) Methods Summary (2)

Policy evaluation + improvement

On-policy because A’ selected using Q and
Q(S’, A’) used in update. i.e. following current policy.

Figure from [1]

5/3/2019 ECE 901 14

Temporal-Difference (TD) Methods Summary (3)

Off-policy because next action uses greedy policy maxaQ(S’, a) in
update. i.e. assuming greedy policy is followed.

Figure from [1]

Approximates q* directly to satisfy bellman opt.
equation.

5/3/2019 ECE 901 15

Temporal-Difference (TD) Methods Summary (5)

• TD methods do not require system dynamics and can be run in the online setting.

• TD-target biased but lower variance than MC-target. In practice, TD methods converge
faster. From Sutton & Barto pg. 124 no proof as of yet.

• Difference between SARSA and Q-Learning:

“As in all on-policy methods, we continually estimate 𝑞𝜋 for the behavior policy 𝜋, and at
the same time change 𝝅 toward greediness with respect to 𝒒𝝅.” – SARSA Sutton & Barto
pg.129

‘’ In this case, the learned action-value function, Q, directly approximates q*, the optimal
action-value function, independent of the policy being followed.’’ – Q-Learning Sutton &
Barto pg.131

• Other types of targets: n-step target and lambda-return targets/eligibility traces. We will
show these later on. Requires more computation than TD(0), but converges faster.

5/3/2019 ECE 901 16

Function Approximation of Value Functions (1)

• Previous methods use tables for storing value functions; one entry for each state or state-
action pair.

• Some tasks have a large state-space and/or action-space. Memory issue, but also
experience issue. Many states/actions may never be visited.

• Solution: approximate the value function using supervised learning.

• With gradient descent based methods, we minimize the MSE:

• In practice, we don’t know q* , so we approximate it via a target.

5/3/2019 ECE 901 17

Function Approximation of Value Functions (2)

TD(0) target; biased estimate of current policy: qπ,t(S’, A’).
If MC target Gt is used, then it is unbiased; no dependence on w

Figure from [1]

Part 2:
Neural Networks
Quick Overview

5/3/2019 ECE 901 18

Fully-Connected Network (FCN)

5/3/2019 19

Introduce Non-Linearity via activations:

Single neuron unit:

Multi-layer FCN

5/3/2019 20

From: https://arxiv.org/pdf/1703.09039.pdf

https://arxiv.org/pdf/1703.09039.pdf

Convolutional-Neural-Network (CNN) (1)

5/3/2019 21

Image from: http://neuralnetworksanddeeplearning.com/chap6.html

Simple summation. Introduces spatial-locality and reduces number of weights/parameters

Convolution-Layer

http://neuralnetworksanddeeplearning.com/chap6.html

5/3/2019 22

Convolutional-Neural-Network (CNN) (2)

Summarizes spatial information -> extract high-level features

Pooling-Layer

Image from: http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/

5/3/2019 23

Convolutional-Neural-Network (CNN) (4)

Image from: https://www.jeremyjordan.me/convnet-architectures/

https://www.jeremyjordan.me/convnet-architectures/

5/3/2019 24

Recurrent-Neural-Network (RNN) (1)

Image from: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Introduce dependencies in temporal/sequence domain.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Part 3:
Value-based methods in

Deep-RL

5/3/2019 ECE 901 25

5/3/2019 ECE 901 26

Fitted Q-Learning (Riedmiller 2005)

• The samples are of the form: < s, a, r, s’ >.

• Approximate q* by a function: 𝑄(𝑠, 𝑎; 𝜃𝑘)

• Target is:

• Minimize the MSE using gradient descent:

• Update is applied after each sample. Can lead to slow convergence or instability.

“One reason for this is, that if weights are adjusted for one certain state action pair, then
unpredictable changes also occur at other places in the state-action space.” – Riedmiller 2005

State Features

Neural Network Layers

Q(s,a1) Q(s,a2) Q(s,am). . .

Network output

5/3/2019 ECE 901 27

Deep Q-Networks (Mnih et al. 2015)

• Successfully applied to ATARI games. To limit instabilities, it does:

1. Network weights 𝜃𝑘 are updated every iteration, but the target uses an “older” network
via older weights 𝜃𝑘

−. Every 𝐶 iterations, we set 𝜃𝑘
− = 𝜃𝑘.

2. In online setting, maintain a replay memory of 𝑁𝑅 past samples. To update, it samples a
mini-batch randomly from this memory. Helps reduce variance of updates compared to
single sample.

3. Clips rewards between +1 and -1. Reasoning:

“As the scale of scores varies greatly from game to game, we clipped all positive rewards at 1 and all negative
rewards at -1, leaving 0 rewards unchanged. Clipping the rewards in this manner limits the scale of the error
derivatives and makes it easier to use the same learning rate across multiple games.” – Mnih et. Al. 2015

• Deep learning techniques used: image preprocessing, normalization, CNN architectures,
and optimizers.

5/3/2019 ECE 901 28

Double DQN (Van Hasselt et al. 2016)

• Problem with this target:

• A maximum over estimates is used as an estimate for the maximum -> positive bias.

• Example: true q(s, a) = 0 for all a, but ො𝑞 𝑠, 𝑎 noisy about 0 -> max is positive.

• Solution: decouple the selection of the maximum action and the estimation of the value
of the maximum action.

• “Overestimation combined with bootstrapping then has the pernicious effect of propagating the wrong
relative information about which states are more valuable than others, directly affecting the quality of the
learned policies.” – Van Hasselt et. al. 2016

• “The idea of Double Q-learning is to reduce overestimations by decomposing the max operation in the
target into action selection and action evaluation.” – Van Hasselt et. al. 2016

Selection of maximum action using current weights

Estimation of selected maximum using old weights

5/3/2019 ECE 901 29

Dueling Network Architecture (1) (Wang et al. 2015)

• Makes use of Advantage function: 𝐴 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 − 𝑉 𝑠 . How much better is it
perform action a in state s versus following the policy?

• Network uses same target as DQN:

• Writes Q as:
Equal when a = argmax Q(s, a’)

Get closer to maximum advantage action

5/3/2019 ECE 901 30

Dueling Network Architecture (2) (Wang et al. 2015)

Figure from [2]

5/3/2019 ECE 901 31

Dueling Network Architecture (3) (Wang et al. 2015)

• For stability uses this in practice:

Get closer to mean advantage action

5/3/2019 ECE 901 32

Multi-step Targets

• Recall the DQN Target that uses bootstrapping:

• n-step Target:

• Weighted combination of multi-step targets called truncated TD(𝝀) target:

• For more details see Chapters 7 and 12 in Sutton & Barton book.

i-step target
Weight given to
ith-step target

Normalizing so all
weights sum to 1

5/3/2019 ECE 901 33

5/3/2019 ECE 901 34

Summary

• Hessel et al., 2017 achieved state-of-the-art performance with DQNs on ATARI
benchmarks by combining the previous techniques: Double DQN, replay memory
(prioritized), Dueling networks, multi-step targets, etc.

• Limitations of DQNs: large action spaces, continuous action spaces, explicit stochastic
policies.

• Relatively simple to implement with open source frameworks: OpenAI Gym, Keras,
Tensorflow. Demo at the end for DDQN with replay memory.

• For continuous action spaces, have seen networks that approximate Q(s, a) with states
and actions as inputs into the network.

Network output

State Features

Neural Network Layers

Q(s,a)

Action Features

Part 4:
Policy-based methods in

Deep-RL

5/3/2019 ECE 901 35

5/3/2019 ECE 901 36

Policy Gradient Methods Intro (1)

• Model the policy with a parametrized function: 𝜋𝜃(𝑎|𝑠)

• Maximize the objective function for episodic:

• Policy Gradient Theorem:

n(s) is avg number of times state s is
encountered in episode.

𝜇 𝑠 is stationary distribution of policy:
𝜇 𝑠 = lim

𝑡→∞
Pr 𝑠𝑡 = 𝑠 𝑠0, 𝜋𝜃)

5/3/2019 ECE 901 37

Policy Gradient Methods Intro (2)

• This tells us that the gradient of the objective function can be estimated from samples.
We just need to be able to compute 𝑞𝜋𝜃(𝑠, 𝑎) and 𝛻𝜃ln 𝜋𝜃(𝑎|𝑠).

• Detailed derivation of policy gradient theorem in Ch. 13 Sutton and Barto pg. 325. For
continuous case, uses avg. rate of reward per step, but same conclusion on pg. 333.

• Even more detailed derivation at: https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html#Proof-of-Policy-Gradient-Theorem

Note: Constant of proportionality is 1 in the
continuous case, and average length of episode
in episodic case. – see Ch. 13 Sutton and Barto

https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html#Proof-of-Policy-Gradient-Theorem

5/3/2019 ECE 901 38

REINFORCE Algorithm (1)

• Replace q by the return and use MC:

Sampled quantity that equals gradient in expectation.

Figure from [1]

5/3/2019 ECE 901 39

REINFORCE with Baseline (1)

• Problem: some states always have similar returns regardless of action. Thus gradient
estimate will be similar for all actions. Couple this with variance problem of MC, makes it
hard to differentiate between actions in states with similar rewards.

• Solution: subtract baseline performance. Gradient estimates still unbiased but reduces
the variance.

• A common baseline is 𝑏 𝑠 = 𝑉(𝑠) the state-value function. Which we estimate by
another parameter say: 𝑤.

5/3/2019 ECE 901 41

REINFORCE with Baseline (2)

Update state-value function approximation

Update policy function approximation

v used as baseline.

Figure from [1]

5/3/2019 ECE 901 42

Online learning with Actor-Critic methods (1)

• So, advantage helps reduce the variance. Idea: estimate q and v functions with function
approximations (parameters w, z) using TD(0). Then use those estimates to update the
policy. 𝐴𝜋𝜃 𝑠, 𝑎 = 𝑞𝑤 𝑠, 𝑎 − 𝑣𝑧 𝑠 . Problem: requires two set of parameters: w, z.

• Note that the TD(0) error with the true v(s) is an unbiased estimate of advantage:

• This means we can use samples of the TD(0) target in the online setting to est. advantage.

• We only need to function appr. the state-value function v; i.e. one set of parameters
instead of two. Recall that since we are using estimates of v(s), the TD(0) target will be
biased, but with reduced variance.

TD(0)-target baseline

5/3/2019 ECE 901 43

Online learning with Actor-Critic methods (2)

Sample action from stochastic policy; implicit exploration.

Update v-function; critic

Update policy; actor

Figure from [1]

5/3/2019 ECE 901 44

Actor-Critic: Using Deep Learning

• We can approximate the policy with a neural network. A number of methods have been
developed to limit instabilities, in addition to using replay memory and batch update. The
gradient estimate given by:

• From Schulman et. al. [2017]: “… empirically it often leads to destructively large policy
updates (see Section 6.1; results are not shown but were similar or worse than the “no
clipping or penalty” setting).”

• To limit instabilities, methods were proposed that limit/constrain parameter updates
every step.

Empirical avg. over minibatch Estimate of Advantage function
(e.g. another network)

5/3/2019 ECE 901 46

Actor-Critic: Trust Region Optimization (TRPO) [Schulman et. al. 2015]

• Maximization with no constraint can lead to large policy updates.

• Uses constraint on KL-divergence to limit the update of parameters so that they don’t
move away too much from the old policy.

• In paper proves monotonic improvement and speaks more on practical implementation.

On-policy version

Conservative Policy Iteration Objective [Kakade 2002]

5/3/2019 ECE 901 47

Actor-Critic: Proximal Policy Optimization (PPO) [Schulman et. al. 2017]

• Simpler than TRPO, but achieves similar performance.

• The clip function limits the amount of change away from 1. The min function takes a
pessimistic lower bound for the objective. Ignores high improvements to the objective.

Conservative-Policy-Iteration
objective

Figure from
[Schulman et. al. 2017]

5/3/2019 ECE 901 48

Actor-Critic: Proximal Policy Optimization (PPO) [Schulman et. al. 2017]

• Uses a single network with shared parameters to output: 𝑉(𝑠) and 𝜋 𝑎 𝑠 .

Policy surrogate Value function error Entropy term to ensure sufficient
exploration: −σ𝑎 𝜋 𝑎 𝑠 log(𝜋 𝑎 𝑠)
Prevents policy from getting stuck in
local minima and maximizing certain
actions according to papers.

Network output

State Features

Neural Network Layers
(shared)

𝑉(𝑠) 𝜋(𝑎|𝑠)

5/3/2019 ECE 901 49

Actor-Critic: Proximal Policy Optimization (PPO) [Schulman et. al. 2017]

From [Schulman et. al. 2017]

5/3/2019 ECE 901 51

Other policy gradient methods (1)

• Deterministic policy methods like Deterministic policy gradient (DPG) [Silver et. al. 2014]
and Deep DPG [Lillicrap et. al. 2015]. Sutton and Barto book state that stochastic policies
will approach deterministic policies (if they are optimal) asymptotically [pg. 322].

• Parallel policy training via simultaneous agents: Asynchronous Advantage Actor-Critic
(A3C) [Mnih et al., 2016] and A2C (synchronous version). Speeds up training; agents can
experience different parts of environment (on-policy); without replay memory.

Figure from [3]

Part 5:
Frameworks and Success stories

5/3/2019 ECE 901 53

5/3/2019 ECE 901 54

Some success stories

• Some success stories with Deep RL:
• Human level performance on ATARI games [Mnih et al 2015]

• DeepMind’s AlphaZero for Chess, Shogi and Go [Silver et al 2017]

• OpenAI’s Five neural networks for playing DOTA game. See details: https://openai.com/blog/openai-five/

https://openai.com/blog/openai-five/

5/3/2019 ECE 901 55

OpenAI’s Five

