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Problem Overview (1)

• Given 𝑛 arms with mean rewards 𝜇1 > 𝜇2 ≥ … ≥ 𝜇𝑛 where 𝜇𝑖∗ = 𝜇1

• 𝜇𝑖 ∈ 0,1 , Δ𝑖 = 𝜇1 − 𝜇𝑖 for 𝑖 = 2,… , 𝑛

• Fixed confidence: Given confidence 𝛿, find the best arm with probability at least 1 − 𝛿. 
Algorithm satisfies

• Fixed budget: Given budget 𝑇, do not exceed sample budget and identify best arm with 
as highest probability possible.

• Paper focuses on fixed confidence setting.

• Summarizes three main strategies: action elimination (AE), upper confidence bound 
(UCB), lower UCB (LUCB). 

• Uses similar framework to prove sample complexity of each. 

• Showcases experimental behavior. 
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Problem Overview (2)

• Given 𝑛 arms with mean rewards 𝜇1 > 𝜇2 ≥ … ≥ 𝜇𝑛 where 𝜇𝑖∗ = 𝜇1

• 𝜇𝑖 ∈ 0,1 , Δ𝑖 = 𝜇1 − 𝜇𝑖 for 𝑖 = 2,… , 𝑛

• 𝑋𝑖,𝑡 is a sample from arm 𝑖 at time step 𝑡. 𝐸 𝑋𝑖,𝑡 = 𝜇𝑖

• 𝑎 ≤ 𝑋𝑖,𝑡 ≤ 𝑏 with 𝑏 − 𝑎 ≤ 1. (𝑋𝑖,𝑡−𝜇𝑖) is a sub-Guassian with 𝜎 ≤ 0.5

• 𝑇𝑖 𝑡 denotes the number of samples/pulls from arm 𝑖 at time 𝑡.

• Ƹ𝜇𝑖,𝑇𝑖(𝑡) is empirical mean of arm 𝑖 at time 𝑡.

• Define: 

• 𝐶𝑖,𝑇𝑖 𝑡 derived from tail bond, depends on 𝑡, 𝑇𝑖 𝑡 , 𝑛, 𝛿
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Definitions and Lemmas (1) 

1. SubGaussian RV: 

if 𝑋 is a subGaussian RV with scale parameter 𝜎, then
• 𝐸 𝑋 = 0

• 𝐸 𝑒𝑡𝑋 ≤ exp
𝜎2𝑡2

2
, ∀𝑡 ∈ 𝑅

• 𝑃 |𝑋| > 𝑡 ≤ 2 exp −
𝑡2

2𝜎2
, ∀𝑡 ∈ 𝑅

If 𝑎 ≤ 𝑋 ≤ 𝑏 then take 𝜎 =
(𝑏−𝑎)

2
via Hoeffding’s: 𝐸 𝑒𝑡𝑋 ≤ exp

(𝑏−𝑎)2𝑡2

8
, ∀𝑡 ∈ 𝑅
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Definitions and Lemmas (2) 

2. Finite LIL Bound Lemma: see [10]

Let 𝑋1, 𝑋2, … be i.i.d 𝑠𝑢𝑏𝐺𝑎𝑢𝑠(𝜎2). For any 𝜖 ∈ (0, 1) and 𝛿 ∈ (0,
log 1+𝜖

𝑒
) then 

∀𝑡 ≥ 1:

𝑃( ) ≥
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Definitions and Lemmas (3) 

3. Restated Finite LIL Bound Lemma: 

For arm 𝑖 with mean 𝜇𝑖, let 𝑋1, 𝑋2, … be i.i.d draws from arm 𝑖. We assumed 
that 𝑋𝑠 − 𝜇𝑖 is 𝑠𝑢𝑏𝐺𝑎𝑢𝑠(𝜎2) with 𝜎 ≤ 0.5. For any 𝜖 ∈ (0, 1) and 𝛿 ∈

(0,
log 1+𝜖

𝑒
) then ∀𝑡 ≥ 1: 
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Definitions and Lemmas (4) 

4. Apply Lemma: 
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Definitions and Lemmas (4) 

5. Useful Inequality: see (1) in [10] 
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Definitions and Lemmas (4) 

6. Useful Inequality: see (2) in [10] 



Algorithms
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General Strategy Algorithm Sample Complexity Year

Action Elimination 
(AE)

Successive 
elimination

2002 [4]

2004 [5]

PRISM 2013 [8]

*Exp-gap 
elimination

2013 [9]

Upper confidence 
bounds (UCB)

*Lil’ UCB Late 2013 [10]

Lower UCB (LUCB) LUCB 2012 [7] 
m-best arms



Action Elimination Strategy
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1. Let Ω1 = [1, 2, … , 𝑛] , t=1

2. While |Ω𝑡| > 1:

3. Sample from each arm 𝑖 ∈ Ω𝑡, 𝑟𝑡 times

4. Compute reference arm 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈[𝑛] Ƹ𝜇𝑖,𝑇𝑖(𝑡) + 𝐶𝑖,𝑇𝑖(𝑡)

5. Update Ω𝑡+1 = 𝑖 ∈ Ω𝑡: Ƹ𝜇𝑎,𝑇𝑎 𝑡 − 𝐶𝑎,𝑇𝑎 𝑡 < ෝ𝜇𝑖,𝑇𝑖 𝑡 + 𝐶𝑖,𝑇𝑖 𝑡

6. t=t+1

7. Return last 𝑖 ∈ Ω𝑡

Arm eliminated when UCB <= reference arm’s LCB 
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PRISM – Jamieson et. al (2013) https://arxiv.org/abs/1306.3917  

Conservative PRISM: 

https://arxiv.org/abs/1306.3917
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AE Termination (1)

1. Let 𝑟𝑘 = 1 for 𝑘 = 1, 2, …. So 𝑇𝑖 𝑘 = 𝑘 for 𝑖 ∈ Ωk.

2. Let 𝐶𝑖,𝑘 = 2𝑈(𝑘,
𝛿

𝑛
) and 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈Ω𝑘

Ƹ𝜇𝑖,𝑇𝑖(𝑡)

3. At epoch 𝑘, if 𝑖∗ ∈ Ω𝑘 then:

4. Thus 𝑖∗ ∈ Ω𝑘+1 since Ω𝑘+1 = 𝑖 ∈ Ω𝑘: ො𝜇𝑎,𝑘 − ෝ𝜇𝑖,𝑘 < 𝐶𝑎,𝑘 + 𝐶𝑖,𝑘

5. Induction ∀𝑘 ≥ 1, 𝑖∗ ∈ Ω𝑘. 

6. If AE terminates then last arm is 𝑖∗(with prob. at least …)



AE Sample Bound (1)
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1. Ω𝑘+1 = 𝑖 ∈ Ω𝑘: ො𝜇𝑎,𝑘 − ෝ𝜇𝑖,𝑘 < 𝐶𝑎,𝑘 + 𝐶𝑖,𝑘

2. At epoch 𝑘, for arm 𝑖 ∈ Ω𝑘:

3. Arm 𝑖 ∉ Ω𝑘+1 if Ƹ𝜇𝑎,𝑘 − ෝ𝜇𝑖,𝑘 ≥ 𝐶𝑎,𝑘 + 𝐶𝑖,𝑘 = 2𝑈(𝑘, 𝛿/𝑛)

4. Arm 𝑖 guaranteed to be thrown out when LB in (2) exceeds UB in condition.

5. I.e worst case: arm 𝑖 in play as long as:

6. Solve for 𝑘:  
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AE Sample Bound (2)
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1. Sum over suboptimal arm bounds:

2. Account for optimal arm:

3. Complexity:

4. Can’t remove log(n) term due to choice of reference arm. PRISM and exp-
gap use median elimination, but pays for it in constants.

AE Sample Bound (3)



UCB Strategy

2/15/2019 ECE 901 17

1. Let ℎt = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈[𝑛] Ƹ𝜇𝑖,𝑇𝑖(𝑡) and ℓt = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈ 𝑛 \ℎ𝑡 Ƹ𝜇𝑖,𝑇𝑖(𝑡) + 𝐶𝑖,𝑇𝑖(𝑡)

2. Sample from each arm 𝑖 ∈ Ω, 1 time. t=n+1

3. while Ƹ𝜇ℎ𝑡,𝑇ℎ𝑡(𝑡)
− 𝐶ℎ𝑡,𝑇ℎ𝑡 𝑡 < Ƹ𝜇ℓ𝑡,𝑇ℓ𝑡 𝑡 + 𝐶ℓ𝑡,𝑇ℓ𝑡 𝑡

4. Sample from 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈ 𝑛 Ƹ𝜇𝑖,𝑇𝑖(𝑡) + 𝐶𝑖,𝑇𝑖(𝑡)
5. t=t+1

6. output ℎ𝑡

7. Stop when ∃𝑖 ∈ 𝑛 : 𝑇𝑖 𝑡 > 𝛼 σ𝑗≠𝑖 𝑇𝑗(𝑡) output 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 𝑇𝑖 𝑡

8. Intuition of stop condition 2: There is an arm that was 
sampled relatively more than the other arms. This means 
that this arm had consistently highest UCB. 
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Lil’UCB – Jamieson et. al (2013) http://proceedings.mlr.press/v35/jamieson14.pdf

http://proceedings.mlr.press/v35/jamieson14.pdf
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UCB Termination (1)

1. Let 

2. Let 

3. At time t, if arm 𝑖 ≠ 𝑖∗ is sampled: 
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1. From stop condition, UCB won’t terminate on suboptimal arm (with 
probability at least …).

2. Note: if we sample 𝑖∗ at time t, then only 𝑇𝑖∗ 𝑡 increases and the above 

holds for the remaining suboptimal arms.

UCB Termination (2)



UCB Bound (1)
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1. Gives UB on suboptimal pulls. Algorithm stops when:

2. From before:

3. In other words:

4. Author remark: 𝛽 = 1.66 optimizes bound, but smaller works in practice.



LUCB Strategy
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1. Let ℎt = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈[𝑛] ො𝜇𝑖,𝑇𝑖(𝑡) and ℓt = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈ 𝑛 \ℎ𝑡 ො𝜇𝑖,𝑇𝑖(𝑡) + 𝐶𝑖,𝑇𝑖(𝑡)

2. Sample from each arm 𝑖 ∈ Ω, 1 time. t=n+1

3. while Ƹ𝜇ℎ𝑡,𝑇ℎ𝑡(𝑡)
− 𝐶ℎ𝑡,𝑇ℎ𝑡 𝑡 < Ƹ𝜇ℓ𝑡,𝑇ℓ𝑡 𝑡 + 𝐶ℓ𝑡,𝑇ℓ𝑡 𝑡

4. Sample from ℎ𝑡 and ℓ𝑡

5. t=t+1

6. output ℎ𝑡

Remark: Better exploration than UCB, 
e.g. 2-arms case. 



LUCB Termination (1)
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1. Let 𝐶𝑖,𝑡 = 𝑈(𝑇𝑖(𝑡), 𝛿/𝑛)

2. At time t, if ℎ𝑡 = 𝑖 ≠ 𝑖∗ then:

3. From stop condition, LUCB won’t terminate on suboptimal arm 
(with probability at least …).



LUCB Bound (1)
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1. Define:

2. Define event: 

3. Define event: 

4. Claim for all 𝑡 ≥ 1:

5. Proof by contradiction in appendix.

6. If LUCB hasn’t terminated yet, then either ℎ𝑡 or ℓ𝑡 is BAD. 

7. By contraposition, if both ℎ𝑡 and ℓ𝑡 are NOT BAD, then LUCB 
has terminated. So when does this happen?



LUCB Bound (2)
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1. Define 

2. For 𝑖 ≠ 𝑖∗ and 𝑠 ≥ 𝜏𝑖:

3. So, if 𝑇𝑖 𝑡 ≥ 𝜏𝑖 then 𝑖 ≠ 𝑖∗ is NOT BAD.

4. For 𝑖∗, set 𝜏𝑖∗ = 𝜏2:

5. So, if 𝑇𝑖∗ 𝑡 ≥ 𝜏2 then 𝑖∗ is NOT BAD.



LUCB Bound (3)
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1. We want both ℎ𝑡 and ℓ𝑡 NOT BAD for termination.

2. Guaranteed when all 𝑖 ≠ 𝑖∗ are NOT BAD (𝑇𝑖 𝑡 ≥ 𝜏𝑖).

3. Note we sample 2 per round. Sample complexity:

4. Author remarks: not clear how to remove log(n) term with this approach.

𝜏𝑖 times until 𝑇𝑖 𝑡 > 𝜏𝑖 for each 𝑖



Recap of Analysis
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1. Three strategies have similar sample complexities: log(n) term can be 
negligible if n is small (becomes close to optimal complexity). 

2. Using LiL Lemma gave simple proofs and similar complexities.

3. LUCB complexity improves on result of [7].



Algorithms
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General Strategy Algorithm Sample Complexity Year

Action Elimination 
(AE)

Successive 
elimination

2002 [4]

2004 [5]

PRISM 2013 [8]

*Exp-gap 
elimination

2013 [9]

Upper confidence 
bounds (UCB)

*Lil’ UCB Late 2013 [10]

Lower UCB (LUCB) LUCB 2012 [7] 
m-best arms
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Experimental: Qualitative Behavior (1)
1. Setup:

AE: drops arms from the running 
over time in increasing order.

UCB/LUCB identify best arm early on. 
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Experimental: Stopping Time Behavior (1)

1. Define LIL Stopping (LS) Criteria: Ƹ𝜇ℎ𝑡,𝑇ℎ𝑡(𝑡)
− 𝐶ℎ𝑡,𝑇ℎ𝑡 𝑡 > Ƹ𝜇ℓ𝑡,𝑇ℓ𝑡 𝑡 + 𝐶ℓ𝑡,𝑇ℓ𝑡 𝑡 where 

𝐶𝑖,𝑇𝑖 𝑡 = 𝑈(𝑇𝑖 𝑡 , 𝛿/𝑛). Apply to any algorithm, then outputs best arm with 
probability

2. Algorithms:
1. Nonadaptive+LS: randomly permute the arms, then sample in order until LS met.

2. *Exp-Gap Elimination (+LS): AE that uses median elimination. 

3. Successive Elimination: AE with

4. Lil’successive Elimination: AE algorithm in section 2.

5. *Lil’UCB (+LS): UCB with 𝛽 = 1, 𝛼 = 9, 𝛿 =
𝜈𝜖

5 2+𝜖

1/ 1+𝜖
where 𝜈 is confidence. 

6. LUCB1: LUCB with 𝐶𝑖,𝑇𝑖 𝑡 as in ref [12].

7. Lil’LUCB: LUCB algorithm in section 2.

3. Complexity order: Exp-Gap=lil’UCB < lil’SE=lil’LUCB < LUCB1 < SE
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Experimental: Stopping Time Behavior (2)

1. Three problems:
1. 1-sparse with 𝜇1 = 0.25 and 𝜇𝑖 = 0. 𝐻1 = 4𝑛 hardness.

2. 𝛼 = 0.3 scenario with 𝜇0 = 1 and 𝜇𝑖 = 1 − 𝑖/𝑛 𝛼. 𝐻1 ≈ 1.5𝑛 hardness.

3. 𝛼 = 0.6 scenario with 𝜇0 = 1 and 𝜇𝑖 = 1 − 𝑖/𝑛 𝛼. 𝐻1 ≈ 6𝑛1.2 hardness. (superlinear)

2. Run each algorithm 50 times on each problem with increasing 𝑛.
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Experimental: Stopping Time Behavior (2)

• Exp-Gap similar to Non-Adap. due to constants in sample complexity.  See ref[9].
• Vanilla vs. LiL versions (SE and LUCB): LiL versions better than vanilla.
• Lil’UCB+LS good for large sparse problems. But lilLUCB best overall.
• n needs to be large enough to justify lil’UCB+LS.



Main Takeaways
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• Sampling strategies: AE, UCB, LUCB.

• Using LiL Lemma gave simple proofs and similar complexities.

• In practice, need to account for constants in algorithms.
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2. Finite LIL Bound Lemma: see [10]

Let 𝑋1, 𝑋2, … be i.i.d 𝑠𝑢𝑏𝐺𝑎𝑢𝑠(𝜎2). For any 𝜖 ∈ (0, 1) and 𝛿 ∈ (0,
log 1+𝜖

𝑒
) then 

∀𝑡 ≥ 1:

𝑃( ) ≥



2/15/2019 ECE 901 35



2/15/2019 ECE 901 36



2/15/2019 ECE 901 37


