Stochastic MABs Ranking

MOAYAD ALNAMMI

Problem Overview (1)

- Given *n* arms with mean rewards $\mu_1 > \mu_2 \ge ... \ge \mu_n$ where $\mu_{i_*} = \mu_1$
- $\mu_i \in [0,1], \quad \Delta_i = \mu_1 \mu_i \text{ for } i = 2, ..., n$
- Fixed confidence: Given confidence δ , find the best arm with probability at least 1δ . Algorithm satisfies $\sup_{\mu_1,...,\mu_n} P(\hat{i} \neq i_*) \leq \delta$
- **Fixed budget:** Given budget *T*, do not exceed sample budget and identify best arm with as highest probability possible.
- Paper focuses on fixed confidence setting.
- Summarizes three main strategies: action elimination (AE), upper confidence bound (UCB), lower UCB (LUCB).
- Uses similar framework to prove sample complexity of each.
- Showcases experimental behavior.

Problem Overview (2)

- Given *n* arms with mean rewards $\mu_1 > \mu_2 \ge ... \ge \mu_n$ where $\mu_{i_*} = \mu_1$
- $\mu_i \in [0,1], \quad \Delta_i = \mu_1 \mu_i \text{ for } i = 2, ..., n$
- $X_{i,t}$ is a sample from arm *i* at time step *t*. $E[X_{i,t}] = \mu_i$
- $a \le X_{i,t} \le b$ with $(b a) \le 1$. $(X_{i,t} \mu_i)$ is a sub-Guassian with $\sigma \le 0.5$
- $T_i(t)$ denotes the number of samples/pulls from arm i at time t.
- $\hat{\mu}_{i,T_i(t)}$ is empirical mean of arm *i* at time *t*.
- Define: $h_t = \arg \max_{i \in [n]} \mu_{i, \hat{T}_i(t)}$ $\ell_t = \arg \max_{i \in [n] \setminus h_t} \hat{\mu}_{i, \hat{T}_i(t)} + C_{i, T_i(t)}$
- $C_{i,T_i(t)}$ derived from tail bond, depends on $t, T_i(t), n, \delta$

Definitions and Lemmas (1)

1. SubGaussian RV:

if X is a subGaussian RV with scale parameter σ , then

• E[X] = 0

•
$$E[e^{tX}] \le \exp\left(\frac{\sigma^2 t^2}{2}\right), \forall t \in R$$

•
$$P(|X| > t) \le 2 \exp\left(-\frac{t^2}{2\sigma^2}\right), \forall t \in R$$

If
$$a \le X \le b$$
 then take $\sigma = \frac{(b-a)}{2}$ via Hoeffding's: $E[e^{tX}] \le \exp\left(\frac{(b-a)^2t^2}{8}\right)$, $\forall t \in R$

Definitions and Lemmas (2)

2. Finite LIL Bound Lemma: see [10]

Let X_1, X_2, \dots be i.i.d $subGaus(\sigma^2)$. For any $\epsilon \in (0, 1)$ and $\delta \in (0, \frac{\log(1+\epsilon)}{e})$ then $\forall t \ge 1$:

$$P\left(\sum_{s=1}^{t} X_s \le (1+\sqrt{\varepsilon})\sqrt{2\sigma^2(1+\varepsilon)t\log\left(\frac{\log((1+\varepsilon)t)}{\delta}\right)}\right) \ge 1 - \frac{2+\varepsilon}{\varepsilon} \left(\frac{\delta}{\log(1+\varepsilon)}\right)^{1+\varepsilon}$$

ECE 901

Definitions and Lemmas (3)

3. Restated Finite LIL Bound Lemma:

For arm *i* with mean μ_i , let X_1, X_2 , ... be i.i.d draws from arm *i*. We assumed that $(X_s - \mu_i)$ is $subGaus(\sigma^2)$ with $\sigma \le 0.5$. For any $\epsilon \in (0, 1)$ and $\delta \in (0, \frac{\log(1+\epsilon)}{e})$ then $\forall t \ge 1$:

$$P\left(\left|\frac{1}{t}\sum_{s=1}^{t} X_s - \mu_i\right| \le U(t,\delta)\right) \ge 1 - \frac{2+\epsilon}{\epsilon/2} \left(\frac{\delta}{\log(1+\epsilon)}\right)^{1+\epsilon}$$

$$U(t,\delta) = (1+\sqrt{\epsilon})\sqrt{\frac{(1+\epsilon)\log(\frac{\log((1+\epsilon)t)}{\delta})}{2t}}$$

Definitions and Lemmas (4)

4. Apply Lemma:

 $P(\bigcap_{i=1}^{n} |\hat{\mu}_{i,T_{i}(t)} - \mu_{i}| \leq U(T_{i}(t), \delta/n)) \geq \sum_{i=1}^{n} P(\ldots) - n + 1$ $\geq n(1 - \frac{2+\epsilon}{\epsilon/2} \left(\frac{\delta/n}{\log(1+\epsilon)}\right)^{1+\epsilon}) - n + 1$ $= 1 - \frac{2+\epsilon}{\epsilon/2} \left(\frac{1}{\log(1+\epsilon)}\right)^{1+\epsilon} \delta(\delta/n)^{\epsilon}$ $\geq 1 - \frac{2+\epsilon}{\epsilon/2} \left(\frac{1}{\log(1+\epsilon)}\right)^{1+\epsilon} \delta$ Definitions and Lemmas (4)

5. Useful Inequality: see (1) in [10]

For
$$t \ge 1, \epsilon \in (0, 1), c > 0, 0 < \delta \le 1$$
:
 $c \le \frac{1}{t} \log\left(\frac{\log((1+\epsilon)t)}{\delta}\right) \implies t \le \frac{1}{c} \log\left(\frac{2\log((1+\epsilon)/(c\delta))}{\delta}\right)$ (1)

Definitions and Lemmas (4)

6. Useful Inequality: see (2) in [10]

For
$$t \ge 1, s \ge 3, \epsilon \in (0, 1), c \in (0, 1], 0 < \delta \le 1$$
:

$$\frac{1}{t} \log \left(\frac{\log((1 + \epsilon)t)}{\delta} \right) \ge \frac{c}{s} \log \left(\frac{\log((1 + \epsilon)s)}{\delta} \right)$$

$$\implies t \le \frac{s}{c} \frac{\log\left(2\log\left(\frac{1}{c\delta}\right)/\delta\right)}{\log\left(1/\delta\right)} \qquad (2)$$

Algorithms

General Strategy	Algorithm	Sample Complexity	Year
Action Elimination (AE)	Successive elimination	$O(\sum_{i \neq i_*} \Delta_i^{-2} \log(n \Delta^{-2}))$	2002 [4]
		$\Omega(\sum_{i \neq i_*} \Delta_i^{-2})$	2004 [5]
	PRISM	$O(\sum_{i \neq i_*} \Delta_i^{-2} \log \log(\sum_{j \neq i_*} \Delta_j^{-2})) \text{ or } O(\sum_{i \neq i_*} \Delta_i^{-2} \log(\Delta_i^{-2}))$	2013 [8]
	Exp-gap elimination	$O(\sum_{i \neq i_} \Delta_i^{-2} \log \log(\Delta_i^{-2}))$	2013 [9]
Upper confidence bounds (UCB)	*Lil' UCB	$O(\sum_{i \neq i_*} \Delta_i^{-2} \log \log(\Delta_i^{-2}))$	Late 2013 [10]
		$\Omega(\sum_{i \neq i_*} \Delta_i^{-2} \log \log(\Delta_i^{-2}))$	
Lower UCB (LUCB)	LUCB	$O(\sum_{i \neq i_*} \Delta_i^{-2} \log(\sum_{j \neq i_*} \Delta_j^{-2}))$	2012 [7] m-best arms

Action Elimination Strategy

- **1.** Let $\Omega_1 = [1, 2, ..., n]$, t=1
- **2.** While $|\Omega_t| > 1$:
- 3. Sample from each arm $i \in \Omega_t$, r_t times
- 4. Compute reference arm $a = argmax_{i \in [n]} \hat{\mu}_{i,T_i(t)} + C_{i,T_i(t)}$
- 5. Update $\Omega_{t+1} = \{i \in \Omega_t : \hat{\mu}_{a,T_a(t)} C_{a,T_a(t)} < \hat{\mu}_{i,T_i(t)} + C_{i,T_i(t)}\}$
- 6. t=t+17. Return last $i \in \Omega_t$ Arm eliminated when UCB <= reference arm's LCB

Input
$$\delta$$
. Let $A_1 = \{0, 1, \dots, n\}$, $n_\ell = \ell 2^\ell$, and $\varepsilon_\ell = \sqrt{\frac{\log(1/\delta)}{2^\ell}}$.
For each phase $\ell = 1, 2, \dots$,

(1) Let i_{ℓ} be the output of Median Elimination [10] run on A_{ℓ} with accuracy $(\varepsilon_{\ell}, \delta^{\ell})$.

(2) For each arm $i \in A_{\ell}$, sample n_{ℓ} times arm i and let $\hat{\mu}_i(\ell)$ be the corresponding average.

(3) Let

$$A_{\ell+1} = \{ i \in A_{\ell} : \widehat{\mu}_i(\ell) \ge \widehat{\mu}_{i_{\ell}} - 2\varepsilon_{\ell} \}.$$

Stop when A_{ℓ} contains a unique element \hat{i} and output \hat{i} .

Figure 2: PRISM algorithm for the best arm identification problem.

$$O\left(\log(1/\delta)\left[\mathbf{H}\log(\log(1/\delta)) + \sum_{i=1}^{n} \Delta_i^{-2}\log_2(\Delta_i^{-2})\right]\right)$$

Conservative PRISM:
$$O\left(\mathbf{H}\log\left(\frac{\log(\mathbf{H})}{\delta}\right)\right)$$

AE Termination (1) $P(\bigcap_{i=1}^{n} |\mu_{i,T_{i}(t)} - \mu_{i}| \leq U(T_{i}(t), \delta/n)) \geq 1 - \frac{2+\epsilon}{\epsilon/2} \left(\frac{1}{\log(1+\epsilon)}\right)^{1+\epsilon} \delta$ $U(t,\delta) = (1+\sqrt{\epsilon}) \sqrt{\frac{(1+\epsilon)\log(\frac{\log((1+\epsilon)t)}{\delta})}{2t}}$

- 1. Let $r_k = 1$ for $k = 1, 2, \dots$. So $T_i(k) = k$ for $i \in \Omega_k$.
- 2. Let $C_{i,k} = 2U(k, \frac{\delta}{n})$ and $a = argmax_{i \in \Omega_k} \hat{\mu}_{i,T_i(t)}$
- 3. At epoch k, if $i_* \in \Omega_k$ then:

$$\hat{\mu}_{a,k} - \hat{\mu}_{i_*,k} = (\hat{\mu}_{a,k} - \mu_a) + (\mu_{i_*} - \hat{\mu}_{i_*,k}) - \Delta_a$$
$$\leq U(T_a(k), \delta/n) + U(T_{i_*}(k), \delta/n) - \Delta_a$$
$$= 2U(k, \delta/n) - \Delta_a < 2U(k, \delta/n) = C_{a,k} + C_{i_*,k}$$

- 4. Thus $i_* \in \Omega_{k+1}$ since $\Omega_{k+1} = \{i \in \Omega_k: \hat{\mu}_{a,k} \hat{\mu}_{i,k} < C_{a,k} + C_{i,k}\}$
- 5. Induction $\forall k \geq 1, i_* \in \Omega_k$.
- 6. If AE terminates then last arm is i_* (with prob. at least ...)

AE Sample Bound (1)

1.
$$\Omega_{k+1} = \{i \in \Omega_k: \ \hat{\mu}_{a,k} - \hat{\mu}_{i,k} < C_{a,k} + C_{i,k}\}$$

2. At epoch k, for arm $i \in \Omega_k$:

$$\hat{\mu}_{a,k} - \hat{\mu}_{i,k} \ge \hat{\mu}_{i_*,k} - \hat{\mu}_{i,k} + \Delta_i - \Delta_i$$
$$\ge -2U(k,\delta/n) + \Delta_i$$

3. Arm $i \notin \Omega_{k+1}$ if $\hat{\mu}_{a,k} - \hat{\mu}_{i,k} \ge C_{a,k} + C_{i,k} = 2U(k, \delta/n)$

4. Arm i guaranteed to be thrown out when LB in (2) exceeds UB in condition. $-2U(k,\delta/n)+\Delta_i\geq 2U(k,\delta/n)$

5. I.e worst case: arm i in play as long as: $\Delta_i/4 < U(k, \delta/n)$

6. Solve for k:

$$\Delta_i/4 < (1+\sqrt{\epsilon})\sqrt{\frac{(1+\epsilon)\log\left(\frac{\log((1+\epsilon)k)}{\delta/n}\right)}{2k}}$$

 $P(\bigcap_{i=1}^{n} |\mu_{i,\hat{T}_{i}(t)} - \mu_{i}| \leq U(T_{i}(t), \delta/n)) \geq 1 - \frac{2+\epsilon}{\epsilon/2} \left(\frac{1}{\log(1+\epsilon)}\right)^{1+\epsilon} \delta$

 $U(t,\delta) = (1+\sqrt{\epsilon})\sqrt{\frac{(1+\epsilon)\log(\frac{\log((1+\epsilon)t)}{\delta})}{2t}}$

AE Sample Bound (2)

$$P(\bigcap_{i=1}^{n} |\mu_{i,T_{i}(t)} - \mu_{i}| \leq U(T_{i}(t), \delta/n)) \geq 1 - \frac{2+\epsilon}{\epsilon/2} \left(\frac{1}{\log(1+\epsilon)}\right)^{1+\epsilon} \delta$$
$$U(t,\delta) = (1+\sqrt{\epsilon}) \sqrt{\frac{(1+\epsilon)\log(\frac{\log((1+\epsilon)t)}{\delta})}{2t}}$$

$$\Delta_i/4 < (1+\sqrt{\epsilon}) \sqrt{\frac{(1+\epsilon)\log\left(\frac{\log((1+\epsilon)k)}{\delta/n}\right)}{2k}}$$
$$\implies \frac{\Delta_i^2}{\gamma} < \frac{1}{k}\log\left(\frac{\log((1+\epsilon)k)}{\delta/n}\right)$$

where
$$\gamma = 8((1 + \sqrt{\epsilon})^2(1 + \epsilon))$$

$$\implies k < \frac{\gamma}{\Delta_i^2} \log\left(\frac{2\log(\gamma \Delta_i^{-2}(1+\epsilon)(n/\delta))}{\delta/n}\right)$$
$$\leq \frac{\gamma}{\Delta_i^2} \log\left(\frac{2^2\log(\gamma \Delta_i^{-2}(1+\epsilon))^2}{\delta^2/n^2}\right)$$

Using (1) with
$$t = k, \delta = \delta/n, c = \frac{\Delta_i^2}{\gamma}$$

since
$$\gamma > 8$$
 and $\frac{n}{\delta} \log\left(\frac{n}{\delta}\right) \le \frac{n^2}{\delta^2}$

$$= \frac{2\gamma}{\Delta_i^2} \log\left(\frac{2\log(\gamma \Delta_i^{-2}(1+\epsilon))}{\delta/n}\right)$$

AE Sample Bound (3)

1. Sum over suboptimal arm bounds:

$$\sum_{i \neq i_*} k_i < \sum_{i \neq i_*} \frac{2\gamma}{\Delta_i^2} \log\left(\frac{2\log(\gamma \Delta_i^{-2}(1+\epsilon))}{\delta/n}\right)$$

2. Account for optimal arm:
$$k_{i_*} < \max_{i \neq i_*} \frac{2\gamma}{\Delta_i^2} \log\left(\frac{2\log(\gamma \Delta_i^{-2}(1+\epsilon))}{\delta/n}\right)$$

 $< \sum_{i \neq i_*} \frac{2\gamma}{\Delta_i^2} \log\left(\frac{2\log(\gamma \Delta_i^{-2}(1+\epsilon))}{\delta/n}\right)$

3. Complexity:
$$O\left(\sum_{i \neq i_*} \Delta_i^{-2} \log\left(\frac{n \log(\Delta_i^{-2})}{\delta}\right)\right)$$

4. Can't remove log(n) term due to choice of reference arm. PRISM and expgap use median elimination, but pays for it in constants.

 $P(\bigcap_{i=1}^{n} |\mu_{i,\hat{T}_{i}(t)} - \mu_{i}| \leq U(T_{i}(t),\delta/n)) \geq 1 - \frac{2+\epsilon}{\epsilon/2} \left(\frac{1}{\log(1+\epsilon)}\right)^{1+\epsilon} \delta$

 $U(t,\delta) = (1+\sqrt{\epsilon})\sqrt{\frac{(1+\epsilon)\log(\frac{\log((1+\epsilon)t)}{\delta})}{2t}}$

UCB Strategy

- **1.** Let $h_t = argmax_{i \in [n]} \hat{\mu}_{i,T_i(t)}$ and $\ell_t = argmax_{i \in [n] \setminus h_t} \hat{\mu}_{i,T_i(t)} + C_{i,T_i(t)}$
- 2. Sample from each arm $i \in \Omega$, 1 time. t=n+1
- 3. while $\hat{\mu}_{h_t, T_{h_t}(t)} C_{h_t, T_{h_t}(t)} < \hat{\mu}_{\ell_t, T_{\ell_t}(t)} + C_{\ell_t, T_{\ell_t}(t)}$
- 4. Sample from $argmax_{i \in [n]} \hat{\mu}_{i,T_i(t)} + C_{i,T_i(t)}$
- 5. t=t+1
- 6. output h_t
- 7. Stop when $\exists i \in [n]: T_i(t) > \alpha \sum_{j \neq i} T_j(t)$ output $argmax_i T_i(t)$
- 8. Intuition of stop condition 2: There is an arm that was sampled relatively more than the other arms. This means that this arm had consistently highest UCB.

Lil'UCB – Jamieson et. al (2013) http://proceedings.mlr.press/v35/jamieson14.pdf

<u>lil' UCB</u>

input: confidence $\delta > 0$, algorithm parameters ε , λ , $\beta > 0$ initialize: sample each of the *n* arms once, set $T_i(t) = 1$ for all *i* and set t = nwhile $T_i(t) < 1 + \lambda \sum_{j \neq i} T_j(t)$ for all *i*

sample arm

$$I_t = \operatorname*{argmax}_{i \in \{1,...,n\}} \left\{ \widehat{\mu}_{i,T_i(t)} + (1+\beta)(1+\sqrt{\varepsilon})\sqrt{\frac{2\sigma^2(1+\varepsilon)\log\left(\frac{\log((1+\varepsilon)T_i(t))}{\delta}\right)}{T_i(t)}} \right\}$$

set $T_i(t+1) = T_i(t) + 1$ if $I_t = i$, otherwise set $T_i(t+1) = T_i(t)$. else stop and output $\arg \max_{i \in \{1,...,n\}} T_i(t)$

Figure 1: The lil' UCB algorithm.

$$\mathbf{H}_1 = \sum_{i \neq i^*} \frac{1}{\Delta_i^2} \quad \text{and} \quad \mathbf{H}_3 = \sum_{i \neq i^*} \frac{\log \log_+(1/\Delta_i^2)}{\Delta_i^2}$$

$$c_1\mathbf{H}_1\log(1/\delta) + c_3\mathbf{H}_3$$

UCB Termination (1)

$$U(t,\delta) = (1+\sqrt{\epsilon})\sqrt{\frac{(1+\epsilon)\log(\frac{\log((1+\epsilon)t)}{\delta})}{2t}}$$

Stop condition: $\exists i \in [n] : T_i(t) > \alpha \sum_{j \neq i} T_j(t)$

1. Let $C_{i,t} = (1 + \beta)U(T_i(t), \delta/n)$

2. Let
$$\alpha = \left(\frac{2+\beta}{\beta}\right)^2 \left(1 + \frac{\log(2\log((\frac{2+\beta}{\beta})^2 n/\delta))}{\log(n/\delta)}\right)$$

- 3. At time t, if arm $i \neq i_*$ is sampled: $i = \arg \max_{i \in [n]} \hat{\mu}_{i,T_i(t)} + (1+\beta)U(T_i(t), \delta/n)$
 - $\mu_{i} + (2+\beta)U(T_{i}(t), \delta/n) \ge \hat{\mu}_{i, T_{i}(t)} + (1+\beta)U(T_{i}(t), \delta/n) \ge \hat{\mu}_{i_{*}, T_{i_{*}}(t)} + (1+\beta)U(T_{i_{*}}(t), \delta/n)$ $\ge \mu_{i_{*}} + \beta U(T_{i_{*}}(t), \delta/n)$

$$\Rightarrow (2+\beta)U(T_i(t), \delta/n) \ge \beta U(T_{i_*}(t), \delta/n) \text{ since } \mu_{i_*} > \mu_i$$

$$\Rightarrow T_i(t) \le T_{i_*}(t) \frac{(2+\beta)^2}{\beta^2} \frac{\log\left(2\log\left(\frac{n(2+\beta)^2}{\delta\beta^2}\right)/(\delta/n)\right)}{\log\left(n/\delta\right)} \text{ using } (2) \ t = T_i(t), s = T_{i_*}(t), \delta = \delta/n, c = \frac{\beta^2}{(2+\beta)^2}$$

$$= \alpha T_{i_*}(t)$$

$$\Rightarrow T_i(t) \le \alpha \sum T_j(t)$$

 $j \neq i$

UCB Termination (2)

$U(t,\delta) = (1+\sqrt{\epsilon})\sqrt{\frac{(1+\epsilon)\log(\frac{\log((1+\epsilon)t)}{\delta})}{2t}}$ Stop condition: $\exists i \in [n] : T_i(t) > \alpha \sum_{j \neq i} T_j(t)$

$$\implies T_i(t) \le \alpha \sum_{j \ne i} T_j(t)$$

- 1. From stop condition, UCB won't terminate on suboptimal arm (with
 probability at least ...).
- 2. Note: if we sample i_* at time t, then only $T_{i_*}(t)$ increases and the above holds for the remaining suboptimal arms.

UCB Bound (1)

$U(t,\delta) = (1+\sqrt{\epsilon})\sqrt{\frac{(1+\epsilon)\log(\frac{\log((1+\epsilon)t)}{\delta})}{2t}}$ Stop condition: $\exists i \in [n] : T_i(t) > \alpha \sum_{j \neq i} T_j(t)$

- $\mu_i + (2+\beta)U(T_i(t), \delta/n) \ge \mu_{i_*} + \beta U(T_{i_*}(t), \delta/n)$
- $\implies (2+\beta)U(T_i(t),\delta/n) \beta U(T_{i_*}(t),\delta/n) \ge (\mu_{i_*} \mu_i) = \Delta_i$
- $\implies (2+\beta)U(T_i(t),\delta/n) \ge \Delta_i$

$$\implies T_i(t) \le 1 + \frac{2\gamma}{\Delta_i^2} \log\left(\frac{2\log(\gamma(1+\epsilon)\Delta_i^{-2})}{\delta/n}\right) \text{using (1) with } t = T_i(t), \\ \delta = \delta/n, \\ c = \frac{\Delta_i^2}{\gamma} \qquad \gamma = (2+\beta)^2 (1+\sqrt{\epsilon})^2 (1+\epsilon)/2$$

1. Gives UB on suboptimal pulls. Algorithm stops when:

$$T_{i_*} = t - \sum_{i \neq i_*} T_i(t) > \alpha \sum_{i \neq i_*} T_i(t) \implies t > (1+\alpha) \sum_{i \neq i_*} T_i(t)$$

- 2. From before: $(1+\alpha)\sum_{i\neq i_*} T_i(t) \le (1+\alpha)\sum_{i\neq i_*} \left(1+\frac{2\gamma}{\Delta_i^2}\log\left(\frac{2\log(\gamma(1+\epsilon)\Delta_i^{-2})}{\delta/n}\right)\right)$
- 3. In other words: $t \le O\left(\sum_{i \ne i_*} \Delta_i^{-2} \log\left(\frac{n \log(\Delta_i^{-2})}{\delta}\right)\right)$
- 4. Author remark: $\beta = 1.66$ optimizes bound, but smaller works in practice.

LUCB Strategy

1. Let $h_t = argmax_{i \in [n]} \hat{\mu}_{i,T_i(t)}$ and $\ell_t = argmax_{i \in [n] \setminus h_t} \hat{\mu}_{i,T_i(t)} + C_{i,T_i(t)}$

2. Sample from each arm $i \in \Omega$, 1 time. t=n+1

3. while
$$\hat{\mu}_{h_t, T_{h_t}(t)} - C_{h_t, T_{h_t}(t)} < \hat{\mu}_{\ell_t, T_{\ell_t}(t)} + C_{\ell_t, T_{\ell_t}(t)}$$

4. Sample from h_t and ℓ_t Remark: Better exploration than UCB, e.g. 2-arms case. 5. t=t+1

6. output h_t

$U(t,\delta) = (1+\sqrt{\epsilon})\sqrt{\frac{(1+\epsilon)\log(\frac{\log((1+\epsilon)t)}{\delta})}{2t}}$ $LUCB \text{ Termination (1)} \qquad \text{Stop condition: } \hat{\mu}_{h_t,T_{h_t}(t)} - C_{h_t,T_{h_t}(t)} \ge \hat{\mu}_{\ell_t,T_{\ell_t}(t)} + C_{\ell_t,T_{\ell_t}(t)}$ $h_t = \arg\max_{i \in [n]} \hat{\mu}_{i,T_i(t)}$ $\ell_t = \arg\max_{i \in [n] \setminus h_t} \hat{\mu}_{i,T_i(t)} + C_{i,T_i(t)}$

2. At time t, if $h_t = i \neq i_*$ then:

 $\hat{\mu}_{i} - U(T_{i}(t), \delta/n) \le \mu_{i} \le \mu_{i_{*}} \le \hat{\mu}_{i_{*}} + U(T_{i_{*}}(t), \delta/n) \le \hat{\mu}_{\ell} + U(T_{\ell}(t), \delta/n)$

3. From stop condition, LUCB won't terminate on suboptimal arm (with probability at least ...).

$U(t,\delta) = (1+\sqrt{\epsilon})\sqrt{\frac{(1+\epsilon)\log(\frac{\log((1+\epsilon)t)}{\delta})}{2t}}$ Stop condition: $\hat{\mu}_{h_t,T_{h_t}(t)} - C_{h_t,T_{h_t}(t)} \ge \hat{\mu}_{\ell_t,T_{\ell_t}(t)} + C_{\ell_t,T_{\ell_t}(t)}$

- **1.** Define: $c = (\mu_1 + \mu_2)/2$
- 2. Define event: i_* is BAD if $\hat{\mu}_{i_*,T_{i_*}(t)} U(T_{i_*}(t),\delta/n) < c$.
- 3. Define event: $i \neq i_*$ is BAD if $\hat{\mu}_{i,T_i(t)} + U(T_i(t), \delta/n) > c$.
- 4. Claim for all $t \ge 1$:

 $\cap \{ \hat{\mu}_{h_t, T_{h_t}(t)} - C_{h_t, T_{h_t}(t)} < \hat{\mu}_{\ell_t, T_{\ell_t}(t)} + C_{\ell_t, T_{\ell_t}(t)} \} \Longrightarrow \{ h_t \text{ is } BAD \} \cup \{ l_t \text{ is } BAD \}$

- 5. Proof by contradiction in appendix. $\neg(p \implies q) \equiv (p \land \neg q)$
- 6. If LUCB hasn't terminated yet, then either h_t or ℓ_t is BAD.
- 7. By contraposition, if both h_t and ℓ_t are NOT BAD, then LUCB has terminated. So when does this happen?

LUCB Bound (2)

Stop condition:
$$\hat{\mu}_{h_t, T_{h_t}(t)} - C_{h_t, T_{h_t}(t)} \ge \hat{\mu}_{\ell_t, T_{\ell_t}(t)} + C_{\ell_t, T_{\ell_t}(t)}$$

 $i \neq i_* \text{ is } BAD \text{ if } \hat{\mu}_{i, T_i(t)} + U(T_i(t), \delta/n) > c.$
 $i_* \text{ is } BAD \text{ if } \hat{\mu}_{i_*, T_{i_*}(t)} - U(T_{i_*}(t), \delta/n) < c.$

1. Define
$$\tau_i = \min\{k : U(k, \delta/n) \le \Delta_i/4\}$$
 for $i \ne i_*$

2. For
$$i \neq i_*$$
 and $s \geq \tau_i$:

$$\begin{aligned}
\hat{\mu}_{i,s} + U(s, \delta/n) &\leq \mu_i + 2U(s, \delta/n) \\
&= c + 2U(s, \delta/n) - \frac{\mu_{i*} - \mu_i}{2} + \frac{\mu_i - \mu_2}{2} \\
&\leq c + 2U(s, \delta/n) - \frac{\Delta_i}{2} \quad \text{using } \mu_2 \geq \mu_i \implies \mu_i - \mu_2 \leq 0 \\
&\leq c \quad \text{using } U(s, \delta/n) \leq \Delta_i/4 \text{ for } s \geq \tau_i
\end{aligned}$$

3. So, if $T_i(t) \ge \tau_i$ then $i \ne i_*$ is NOT BAD.

4. For i_* , set $\tau_{i_*} = \tau_2$: $\hat{\mu}_{i_*,s} - U(s,\delta/n) \ge \mu_{i_*} - 2U(s,\delta/n) = c - 2U(s,\delta/n) + \frac{\Delta_2}{2}$ $\ge c$ using $U(s,\delta/n) \le \Delta_2/4$ for $s \ge \tau_2$

5. So, if $T_{i_*}(t) \ge \tau_2$ then i_* is NOT BAD.

 $c = (\mu_1 + \mu_2)/2$

LUCB Bound (3)

Stop condition:
$$\hat{\mu}_{h_t, T_{h_t}(t)} - C_{h_t, T_{h_t}(t)} \ge \hat{\mu}_{\ell_t, T_{\ell_t}(t)} + C_{\ell_t, T_{\ell_t}(t)}$$

$$\min\{k : \Delta_i/4 \ge U(k, \delta/n)\} \le \frac{2\gamma}{\Delta_i^2} \log\left(\frac{2\log(\gamma(1+\epsilon)\Delta_i^{-2})}{\delta/n}\right)$$

$$\gamma = (2+\beta)^2 (1+\sqrt{\epsilon})^2 (1+\epsilon)/2$$

- 1. We want both h_t and ℓ_t NOT BAD for termination.
- 2. Guaranteed when all $i \neq i_*$ are NOT BAD $(T_i(t) \geq \tau_i)$.

 $T_{rounds} = \sum_{t=1}^{\infty} \mathbb{1}\{h_t \text{ is } BAD \text{ or } \ell_t \text{ is } BAD\} \leq \sum_{t=1}^{\infty} \sum_{i=1}^n \mathbb{1}\{\{h_t = i \text{ or } \ell_t = i\} \cap \{i \text{ is } BAD\}\}$ $\leq \sum_{t=1}^{\infty} \sum_{i=1}^n \mathbb{1}\{\{h_t = i \text{ or } \ell_t = i\} \cap \{T_i(t) \leq \tau_i\}\}$ $\tau_i \text{ times until } T_i(t) > \tau_i \text{ for each } i \quad \leq \sum_{i=1}^n \tau_i \quad \leq \sum_{i=1}^n \frac{2\gamma}{\Delta_i^2} \log\left(\frac{2\log(\gamma(1+\epsilon)\Delta_i^{-2})}{\delta/n}\right)$

3. Note we sample 2 per round. Sample complexity:

$$O\left(\sum_{i\neq i_*} \Delta_i^{-2} \log\left(\frac{n\log(\Delta_i^{-2})}{\delta}\right)\right)$$

4. Author remarks: not clear how to remove log(n) term with this approach.

Recap of Analysis

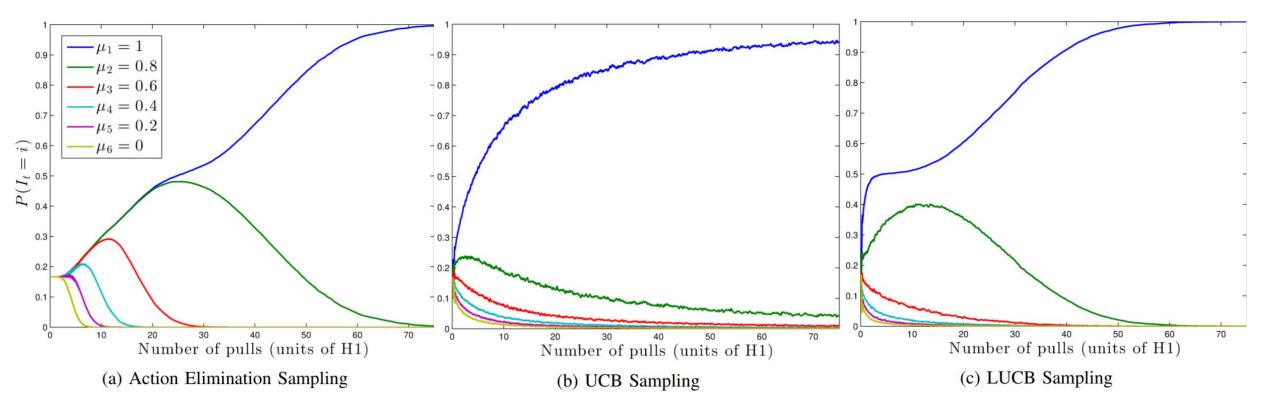
- Three strategies have similar sample complexities: log(n) term can be negligible if n is small (becomes close to optimal complexity).
- 2. Using LiL Lemma gave simple proofs and similar complexities.
- **3**. LUCB complexity improves on result of [7].

Algorithms

General Strategy	Algorithm	Sample Complexity	Year
Action Elimination (AE)	Successive elimination	$O(\sum_{i \neq i_*} \Delta_i^{-2} \log(n \Delta^{-2}))$	2002 [4]
		$\Omega(\sum_{i \neq i_*} \Delta_i^{-2})$	2004 [5]
	PRISM	$O(\sum_{i \neq i_*} \Delta_i^{-2} \log \log(\sum_{j \neq i_*} \Delta_j^{-2})) \text{ or } O(\sum_{i \neq i_*} \Delta_i^{-2} \log(\Delta_i^{-2}))$	2013 [8]
	Exp-gap elimination	$O(\sum_{i \neq i_} \Delta_i^{-2} \log \log(\Delta_i^{-2}))$	2013 [9]
Upper confidence bounds (UCB)	*Lil' UCB	$O(\sum_{i \neq i_*} \Delta_i^{-2} \log \log(\Delta_i^{-2}))$	Late 2013 [10]
		$\Omega(\sum_{i \neq i_*} \Delta_i^{-2} \log \log(\Delta_i^{-2}))$	
Lower UCB (LUCB)	LUCB	$O(\sum_{i \neq i_*} \Delta_i^{-2} \log(\sum_{j \neq i_*} \Delta_j^{-2}))$	2012 [7] m-best arms

Experimental: Qualitative Behavior (1)

1. Setup: n = 6 arms, means = $\{1, 0.8, 0.6, 0.4, 0.2, 0\}, X_{i,s} \sim \mathcal{N}(\mu_i, 0.25), \delta = 0.1, \epsilon = 0.01$



AE: drops arms from the running over time in increasing order.

UCB/LUCB identify best arm early on.

Experimental: Stopping Time Behavior (1)

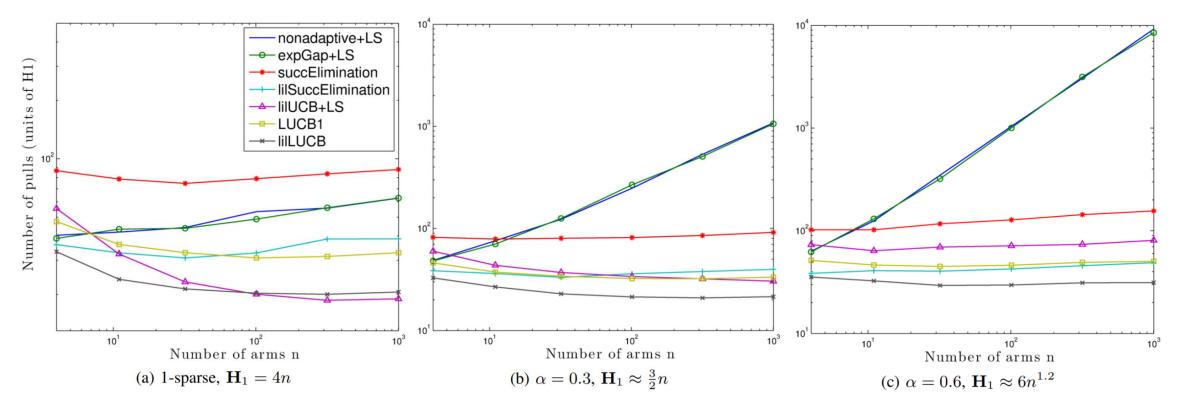
- 1. Define LIL Stopping (LS) Criteria: $\hat{\mu}_{h_t,T_{h_t}(t)} C_{h_t,T_{h_t}(t)} > \hat{\mu}_{\ell_t,T_{\ell_t}(t)} + C_{\ell_t,T_{\ell_t}(t)}$ where $C_{i,T_i(t)} = U(T_i(t), \delta/n)$. Apply to any algorithm, then outputs best arm with probability $\geq 1 \frac{2+\epsilon}{\epsilon/2} \left(\frac{1}{\log(1+\epsilon)}\right)^{1+\epsilon} \delta$
- 2. Algorithms:
 - 1. Nonadaptive+LS: randomly permute the arms, then sample in order until LS met.
 - 2. *Exp-Gap Elimination (+LS): AE that uses median elimination.
 - 3. Successive Elimination: AE with $C_{i,k} = \sqrt{\log(\pi^2/3nk^2/\delta)/k}$
 - 4. Lil'successive Elimination: AE algorithm in section 2.
 - 5. *Lil'UCB (+LS): UCB with $\beta = 1$, $\alpha = 9$, $\delta = \left(\frac{\nu\epsilon}{5(2+\epsilon)}\right)^{1/(1+\epsilon)}$ where ν is confidence.
 - 6. LUCB1: LUCB with $C_{i,T_i(t)}$ as in ref [12].
 - 7. Lil'LUCB: LUCB algorithm in section 2.
- 3. Complexity order: Exp-Gap=lil'UCB < lil'SE=lil'LUCB < LUCB1 < SE

Experimental: Stopping Time Behavior (2)

1. Three problems:

- 1. 1-sparse with $\mu_1 = 0.25$ and $\mu_i = 0$. $H_1 = 4n$ hardness.
- 2. $\alpha = 0.3$ scenario with $\mu_0 = 1$ and $\mu_i = 1 (i/n)^{\alpha}$. $H_1 \approx 1.5n$ hardness.
- 3. $\alpha = 0.6$ scenario with $\mu_0 = 1$ and $\mu_i = 1 (i/n)^{\alpha}$. $H_1 \approx 6n^{1.2}$ hardness. (superlinear)
- 2. Run each algorithm 50 times on each problem with increasing n.

Experimental: Stopping Time Behavior (2)



- Exp-Gap similar to Non-Adap. due to constants in sample complexity. See ref[9].
- Vanilla vs. LiL versions (SE and LUCB): LiL versions better than vanilla.
- Lil'UCB+LS good for large sparse problems. But lilLUCB best overall.
- n needs to be large enough to justify lil'UCB+LS.

Main Takeaways

- Sampling strategies: AE, UCB, LUCB.
- Using LiL Lemma gave simple proofs and similar complexities.
- In practice, need to account for constants in algorithms.

2. Finite LIL Bound Lemma: see [10]

Let X_1, X_2, \dots be i.i.d $subGaus(\sigma^2)$. For any $\epsilon \in (0, 1)$ and $\delta \in (0, \frac{\log(1+\epsilon)}{e})$ then $\forall t \ge 1$:

$$P\left(\sum_{s=1}^{t} X_s \le (1+\sqrt{\varepsilon})\sqrt{2\sigma^2(1+\varepsilon)t\log\left(\frac{\log((1+\varepsilon)t)}{\delta}\right)}\right) \ge 1 - \frac{2+\varepsilon}{\varepsilon} \left(\frac{\delta}{\log(1+\varepsilon)}\right)^{1+\varepsilon}$$

Lemma: Let $X_1, X_2, ...$ be i.i.d zero-mean sub-Gaussian RVs with scale parameter $\sigma > 0$ and let $\delta \in (0, 1)$. Then with probability at least $1 - 4\delta^2$, for all $t \ge 1$:

$$\sum_{s=1}^{t} X_s \le 4\sigma \sqrt{t \log(\log_2(2t)/\delta)}$$

Proof: Assume $\sigma = 1$ and let $S_t = \sum_{s=1}^t X_s$. Recall sub-Gaussian tail bound:

$$P(\bigcup_{t=1}^{m} S_t \ge x) = P(\max_{t=1}^{m} S_t \ge x) \le e^{-\frac{1}{2}x^2/m}$$

Now we want to show Lemma holds for all $t \ge 1$. So consider $t = 2^k$ for $k \ge 0$:

$$P\left(\bigcup_{k\geq 0} S_{2^{k}} \geq 4\sqrt{2^{k} \log(\log_{2}(2^{k+1})/\delta)}\right) \leq \sum_{k\geq 0} e^{-2\log(\log_{2}(2^{k+1})/\delta)}$$
$$= \sum_{k\geq 0} \frac{\delta^{2}}{(k+1)^{2}}$$
$$= \sum_{k\geq 0} \frac{\delta^{2}\pi^{2}}{6}$$
$$\leq 2\delta^{2}$$

Now we look at the gaps:

$$\begin{split} P\left(\bigcup_{t=2^{k+1}}^{2^{k+1}} S_t - S_{2^k} \ge 4\sqrt{t\log(\log_2(2t)/\delta)}\right) &\leq P\left(\bigcup_{t=1}^{2^k} S_t \ge 4\sqrt{2^k\log(\log_2(2^{k+1})/\delta)}\right) \\ &= P\left(\max_{t=1}^{2^k} S_t \ge 4\sqrt{2^k\log(\log_2(2^{k+1})/\delta)}\right) \\ &\leq e^{-2\log(\log_2(2^{k+1})/\delta)} \\ &= \frac{\delta^2}{(k+1)^2} \\ \implies \sum_{k\ge 0} P\left(\bigcup_{t=2^k+1}^{2^{k+1}} S_t - S_{2^k} \ge 4\sqrt{t\log(\log_2(2t)/\delta)}\right) \\ &\leq \sum_{k\ge 0} \frac{\delta^2}{(k+1)^2} \\ &\leq 2\delta^2 \end{split}$$

Adding both:

$$P\left(\bigcup_{t\geq 1} S_t \geq 4\sqrt{t\log(\log_2(2t)/\delta)}\right) \leq P\left(\bigcup_{k\geq 0} S_{2^k} \geq 4\sqrt{2^k\log(\log_2(2^{k+1})/\delta)}\right) + \sum_{k\geq 0} P\left(\bigcup_{t=2^{k+1}} S_t - S_{2^k} \geq 4\sqrt{t\log(\log_2(2t)/\delta)}\right) \leq 2\delta^2 + 2\delta^2 = 4\delta^2$$