Clustering Gene Expression Data

(Sidesthanksto Dr. Mark Craven)



Gene Expression Profiles

o we'll assume we have a2D matrix of gene expression
measurements

— rows represent genes

— columns represent different experiments, time points,
Individuals etc. (what we can measured using one*
microarray)

o we'll refer to individual rows or columns as profiles
— arow isaprofile for agene

* Depending on the number of genes being considered, we might actually
use severa arrays per experiment, time point, individual.



Expression Profile Example

* rowsrepresent genes

e columns represent people
with leukemia
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Task Definition: Clustering Gene
Expression Profiles

given: expression profiles for a set of genes or
experiments/individual s'time points (whatever columns
represent)

do: organize profiles into clusters such that

— Instances in the same cluster are highly ssmilar to each
other

— Instances from different clusters have low similarity to
each other



Motivation for Clustering

o exploratory data analysis
— understanding general characteristics of data
— visualizing data

e generalization

— Infer something about an instance (e.g. agene) based on
how it relates to other instances

e everyoneelseisdoing it



The Clustering Landscape

 thereare many different clustering algorithms
 they differ along several dimensions
— hierarchical vs. partitional (flat)

— hard (no uncertainty about which instances belong to a
cluster) vs. soft clusters

— digunctive (an instance can belong to multiple clusters)
VvS. non-digunctive

— deterministic (same clusters produced every timefor a
given data set) vs. stochastic

— distance (similarity) measure used



Distance/Similarity Measures

many clustering methods employ a distance (similarity)
measure to assess the distance between

— apair of instances
— acluster and an instance
— apair of clusters

given adistance value, it is straightforward to convert it

Into asimilarity value
1

1+dist(x,y)

not necessarily straightforward to go the other way
we' |l describe our algorithms in terms of distances

sm(x,y) =



Distance Metrics

e properties of metrics
dist(x,%;)=20

dist(x,, %) =0
dist(x,x;) = dist(x;, )
dist(x,x;) < dist(x, %) +dist(x,, ;)

e some distance metrics

Manhattan ~ dist(x,X;) =

Xi,e_Xj,e

Fudlidean  dist(X,X;) = \/Z (%o =x.f

e ranges over the individual measuremm




distance scale

Hierarchical Clustering:

A Dendogram

height of bar indicates
degree of distance
within cluster

.

_‘lliiilll

leaves represent instances (e.g. genes)



Hierarchical Clustering

e can do top-down (divisive) or bottom-up (agglomerative)

e Ineither case, we maintain amatrix of distance (or
similarity) scores for all pairs of

— Instances
— clusters (formed so far)
— Instances and clusters



Distance Between Two Clusters

e the distance between two clusters can be determined in
several ways

— single link: distance of two most similar instances
dist(c,,c,) = min{dist(a,b) |alc,,bOc,}

— complete link: distance of two least similar instances
dist(c,,c,) = max{dist(a,b) |alc,,bOc,}

— average link: average distance between instances

dist(c,,c,) = ave{dist(a,b) |alc,,bOc,}



Complete-Link vs.
Single-Link Distances

complete link single link




Updating Distances Efficiently

o if wejust merged Cu and & into Cj , We can determine
distance to each other cluster Gy asfollows

— singlelink:
dist(c;,c,) = min{dist(c,,c,), dist(c,, ¢, )}

— complete link:
dist(c;,c,) = max{dist(c,,c,),dist(c,,c,)}

— average link:
|Cu |xdiSt(Cu’Ck) +|Cv |xdiSt(Cv’Ck)

dist(c.,c, )=
(6,60 lc, [+]c, |



Dendogram for Serum
Stimulation of Fibroblasts

SWTL

o ol e A

o AL

signaling & cell cholesterol
angiogenesis cyle biosynthesis



Partitional Clustering

o divideinstancesinto digoint clusters
— flat vs. tree structure

* key issues
— how many clusters should there be?
— how should clusters be represented?



Partitional Clustering Example
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Partitional Clustering from a
Hierarchical Clustering

e we can aways generate a partitional clustering from a
hierarchical clustering by “cutting” the tree at some level

cutting here results
iIn2clusters — - - - - - - - —

cutting here results
IN4clusters = - - o e e e e e e e e o o




K-Means Clustering

assume our instances are represented by vectors of real
values

put k cluster centers in same space as instances
each cluster is represented by avector f j
consider an example in which our vectors have 2 dimensions

~—T Cluster center




K-Means Clustering

e each iteration involves two steps
— assignment of instances to clusters
— re-computation of the means

+\"/+ +T +
+\/:. +‘\

assignment re-computation of means



K-Means Clustering:
Updating the Means

o for aset of instances that have been assigned to a cluster C

we re-compute the mean of the cluster as follows

> %

X Lc;

I |

H(C;) =



K-Means Clustering

given:aset X ={X,...X .} of instances

select kinitial cluster centers f,...f,
while stopping criterion not true do
for all clusters c, do

/[ determine which instances are assigned to this cluster

¢, ={x |0f, dist(%, f )< dist (%, F, )}

iv 1
for all means f do

/[ update the cluster center

f, = u(c,)



K-means Clustering Example

Given the following 4 instances and 2 clustersinitialized as
shown. Assume the distance functionis dist(x,X;) = Z‘)g,e — X ¢

x4 ’o
dist(x,, f,) =2, dist(x, f,) =5 // 1:1:<4+4’1L3>:<4,2>
dist(x,, f,) =2, dist(x,, f,)=3 / 2 2
v
X212 dist(x,, f,) =3 dist(x, f,) =2 [ _[6+8 248\ .
° ° 1 ® ° 2 2 ' o < ’>
fl e ° dist(x,, f,) =11, dist(x,, f,) =6 ./ ./
. X3 .
X1
[ ] /.

dist(x, f,) =1, dist(x, f,)=7

*—

o dist(x,, f,) =1, dist(x,, f,) =5

dist(x,, f,) =2, dist(x,, f,) =4

o o dist(x, f,)=10, dist(x,, f,)=4

.—».f—,
;




K-means Clustering Example

o—’of—o

(Continued)

fo(AFT4%0 14342 = (4.67,2)
! 3 3

assignments remain the same,
so the procedure has converged



EM Clustering

INn k-means as just described, instances are assigned to one
and only one cluster
we can do “soft” k-means clustering via an Expectation
Maximization (EM) agorithm
— each cluster represented by a distribution (e.g. a Gaussian)
— E step: determine how likely isit that each cluster
“generated” each instance
— M step: adjust cluster parameters to maximize likelihood
of Instances



Representation of Clusters

e inthe EM approach, we'll represent each cluster using an
m-dimensional multivariate Gaussian

N, (%)= exp —= (% — 1) (% — 1)
Jemriz| L 2

where

S

H; isthe mean of the Gaussian =

> j isthe covariance matrix

thisis arepresentation of a Gaussian in a 2-D space



EM Clustering

e the EM agorithm will try to set the parameters of the
Gaussians, © , to maximize the log likelihood of the
data, X

log likelihood(X | ®) =log |‘1| Pr(X )
n Kk
=log N.(X)
[N

=Y 109" N, (X)



EM Clustering

» the parameters of the model, @ , include the means, the
covariance matrix and sometimes prior weights for each
Gaussian

* here, we'll assume that the covariance matrix and the prior
weights are fixed; we'll focus just on setting the means



EM Clustering: the E-step

recall that Z; isahidden variablewhichis1if N,
generated X, and O otherwise

In the E-step, we compute h the expected value of this
hidden variable

hj :E(Zij | %) =

0.3 ,©®
+(
0.7

assignment




EM Clustering: the M-step

e given the expected values h j » we re-estimate the means of
the Gaussians

> hx
IB; — 1=1

e can also re-estimate the covariance matrix and prior
weights, if we're varying them



EM and K-Means Clustering

* Dboth will converge to alocal maximum
* both are sensitive to initial positions (means) of clusters
* haveto choose value of k for both



Evaluating Clustering Results

e given random data without any “structure’, clustering
algorithnms will still return clusters

 thegold standard: do clusters correspond to natural
categories?

 do clusters correspond to categories we care about?
(there are |l ots of ways to partition the world)



Evaluating Clustering Results

e some approaches
— external validation
 E.g. do genes clustered together have some common
function?
— Internal validation
 How well does clustering optimize intra-cluster
similarity and inter-cluster dissimilarity?
— relative validation
* How does it compare to other clusterings using these
criteria?
 E.g. with a probabilistic method (such as EM) we

can ask: how probable does held-aside data look as
we vary the number of clusters.



Comments on Clustering

there many different waysto do clustering; we ‘ve
discussed just afew methods

hierarchical clusters may be more informative, but they’re
more expensive to compute

clusterings are hard to evaluate in many cases



