
Clustering Gene Expression Data

(Slides thanks to Dr. Mark Craven)



Gene Expression Profiles
• we’ ll assume we have a 2D matrix of gene expression 

measurements
– rows represent genes
– columns represent different experiments, time points, 

individuals etc. (what we can measured using one*
microarray)

• we’ ll refer to individual rows or columns as profiles
– a row is a profile for a gene

* Depending on the number of genes being considered, we might actually 
use several arrays per experiment, time point, individual.



Expression Profile Example

• rows represent genes

• columns represent people 
with leukemia



Task Definition: Clustering Gene 
Expression Profiles

• given: expression profiles for a set of genes or 
experiments/individuals/time points (whatever columns 
represent)

• do: organize profiles into clusters such that

– instances in the same cluster are highly similar to each 
other

– instances from different clusters have low similarity to 
each other



Motivation for Clustering

• exploratory data analysis

– understanding general characteristics of data

– visualizing data

• generalization

– infer something about an instance (e.g. a gene) based on 
how it relates to other instances

• everyone else is doing it



The Clustering Landscape

• there are many different clustering algorithms
• they differ along several dimensions

– hierarchical vs. partitional (flat)
– hard (no uncertainty about which instances belong to a 

cluster) vs. soft clusters
– disjunctive (an instance can belong to multiple clusters) 

vs. non-disjunctive
– deterministic (same clusters produced every time for  a 

given data set) vs. stochastic 
– distance (similarity) measure used



Distance/Similarity Measures

• many clustering methods employ a distance (similarity) 
measure to assess the distance between

– a pair of instances

– a cluster and an instance

– a pair of clusters

• given a distance value, it is straightforward to convert it 
into a similarity value

• not necessarily straightforward to go the other way

• we’ ll describe our algorithms in terms of distances
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Distance Metrics
• properties of metrics

• some distance metrics
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Hierarchical Clustering: 
A Dendogram

leaves represent instances (e.g. genes)

height of bar indicates 
degree of distance 
within cluster
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Hierarchical Clustering

• can do top-down (divisive) or bottom-up (agglomerative)

• in either case, we maintain a matrix of distance (or 
similarity) scores for all pairs of

– instances

– clusters (formed so far)

– instances and clusters



Distance Between Two Clusters 

• the distance between two clusters can be determined in 
several ways

– single link: distance of two most similar instances

– complete link: distance of two least similar instances

– average link: average distance between instances
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Complete-Link vs. 
Single-Link Distances

complete link single link
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Updating Distances Efficiently 
• if we just merged        and        into         , we can determine 

distance to each other cluster         as follows

– single link:

– complete link:

– average link:
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Dendogram for Serum 
Stimulation of Fibroblasts
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Partitional Clustering

• divide instances into disjoint clusters

– flat vs. tree structure

• key issues

– how many clusters should there be?

– how should clusters be represented?



Partitional Clustering Example



Partitional Clustering from a 
Hierarchical Clustering

cutting here results
in 2 clusters

cutting here results
in 4 clusters

• we can always generate a partitional clustering from a 
hierarchical clustering by “cutting” the tree at some level



K-Means Clustering
• assume our instances are represented by vectors of real 

values

• put k cluster centers in same space as instances

• each cluster is represented by a vector

• consider an example in which our vectors have 2 dimensions
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K-Means Clustering
• each iteration involves two steps

– assignment of instances to clusters

– re-computation of the means
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K-Means Clustering: 
Updating the Means

• for a set of instances that have been assigned to a cluster     , 
we re-compute the mean of the cluster as follows 
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K-Means Clustering
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K-means Clustering Example
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K-means Clustering Example 
(Continued)
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EM Clustering

• in k-means as just described, instances are assigned to one 
and only one cluster

• we can do “soft” k-means clustering via an Expectation 
Maximization (EM) algorithm

– each cluster represented by a distribution (e.g. a Gaussian)

– E step: determine how likely is it that each cluster 
“generated” each instance

– M step: adjust cluster parameters to maximize likelihood 
of instances



Representation of Clusters

• in the EM approach, we’ ll represent each cluster using an 
m-dimensional multivariate Gaussian
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EM Clustering

• the EM algorithm will try to set the parameters of the 
Gaussians,       , to maximize the log likelihood of the   
data, X
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EM Clustering

• the parameters of the model,       , include the means, the 
covariance matrix and sometimes prior weights for each 
Gaussian

• here, we’ ll assume that the covariance matrix and the prior 
weights are fixed; we’ ll focus just on setting the means

Θ



EM Clustering: the E-step

• recall that         is a hidden variable which is 1 if       
generated        and 0 otherwise

• in the E-step, we compute        , the expected value of this 
hidden variable
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EM Clustering: the M-step

• given the expected values       , we re-estimate the means of 
the Gaussians

• can also re-estimate the covariance matrix and prior 
weights, if we’ re varying them
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EM and K-Means Clustering

• both will converge to a local maximum

• both are sensitive to initial positions (means) of clusters

• have to choose value of k for both



Evaluating Clustering Results

• given random data without any “structure” , clustering 
algorithms will still return clusters

• the gold standard: do clusters correspond to natural 
categories?

• do clusters correspond to categories we care about?    
(there are lots of ways to partition the world)



Evaluating Clustering Results
• some approaches

– external validation

• E.g. do genes clustered together have some common 
function?

– internal validation

• How well does clustering optimize intra-cluster 
similarity and inter-cluster dissimilarity?

– relative validation

• How does it compare to other clusterings using these 
criteria?

• E.g. with a probabilistic method (such as EM) we 
can ask: how probable does held-aside data look as 
we vary the number of clusters.



Comments on Clustering

• there many different ways to do clustering; we ‘ve
discussed just a few methods

• hierarchical clusters may be more informative, but they’ re 
more expensive to compute

• clusterings are hard to evaluate in many cases


