
Markov Chain Models
(Slides courtesy of Dr. Mark Craven)



Motivation for Markov Models in
Computational Biology

• there are many cases in which we would like to represent
the statistical regularities of some class of sequences

– genes

– various regulatory sites in DNA (e.g. where RNA
polymerase and transcription factors bind)

– proteins in a given family

• Markov models are well suited to this type of task
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Markov Chain Models

• a Markov chain model is defined by

– a set of states

• some states emit symbols

• other states (e.g. the begin state) are silent

– a set of transitions with associated probabilities

• the transitions emanating from a given state define a
distribution over the possible next states



Markov Chain Models
• given some sequence x of length L, we can ask how

probable the sequence is given our model

• for any probabilistic model of sequences, we can write this
probability as
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• key property of a (1st order) Markov chain: the probability
of each       depends only on the value of
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The Probability of a Sequence for
a Given Markov Chain Model
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Markov Chain Models

begin end
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• can also have an end state; allows the model to represent

– a distribution over sequences of different lengths

– preferences for ending sequences with certain symbols



Markov Chain Notation
• the transition parameters can be denoted by             where

• similarly we can denote the probability of a sequence x as

where          represents the transition from the begin state
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Example Application

• CpG islands

– CG dinucleotides are rarer in eukaryotic genomes than
expected given the marginal probabilities of C and G

– but the regions upstream of genes are richer in CG
dinucleotides than elsewhere – CpG islands

– useful evidence for finding genes

• could predict CpG islands with Markov chains

– one to represent CpG islands

– one to represent the rest of the genome



Estimating the Model Parameters

• given some data (e.g. a set of sequences from CpG
islands), how can we determine the probability parameters
of our model?

• one approach: maximum likelihood estimation

– given a set of data D

– set the parameters       to maximize

– i.e. make the data D look likely under the model
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Maximum Likelihood Estimation
• suppose we want to estimate the parameters   Pr(a), Pr(c),

Pr(g), Pr(t)

• and we’re given the sequences

accgcgctta

gcttagtgac

tagccgttac

• then the maximum likelihood estimates are
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Maximum Likelihood Estimation
• suppose instead we saw the following sequences

gccgcgcttg

gcttggtggc

tggccgttgc

• then the maximum likelihood estimates are
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A Bayesian Approach
• instead of estimating parameters strictly from the data, we

could start with some prior belief for each
• for example, we could use Laplace estimates

• where       represents the number of occurrences of
character i
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• using Laplace estimates with the sequences
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A Bayesian Approach

• a more general form: m-estimates
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gccgcgcttg

gcttggtggc

tggccgttgc

number of  “virtual” instances

prior probability of a

38

11

830

825.09
)Pr( =

+

×+
=c



Estimation for 1st Order Probabilities
• to estimate a 1st order parameter, such as Pr(c|g), we count

the number of times that g follows the history c in our
given sequences

• using Laplace estimates with the sequences

gccgcgcttg

gcttggtggc

tggccgttgc

412

12
)|Pr(

412

13
)|Pr(

412

17
)|Pr(

412

10
)|Pr(

+

+
=

+

+
=

+

+
=

+

+
=

gt

gg

gc

ga

M
47

10
)|Pr(

+

+
=ca



Markov Chain Models

begin end
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• can also have an end state; allows the model to represent

– a distribution over sequences of different lengths

– preferences for ending sequences with certain symbols



A Simple HMM
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• given say a T in our input sequence, which state emitted it?



Hidden State

• we’ll distinguish between the observed parts of a problem
and the hidden parts

• in the Markov models we’ve considered previously, it is
clear which state accounts for each part of the observed
sequence

• in the model above, there are multiple states that could
account for each part of the observed sequence

– this is the hidden part of the problem



The Parameters of an HMM

• since we’ve decoupled states and characters, we might also
have emission probabilities
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probability of emitting character b in state k

probability of a transition from state k to l

       represents a path (sequence of states) through
the model

• as in Markov chain models, we have transition
probabilities

π



A Simple HMM
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Three Important Questions

• How likely is a given sequence?

the Forward algorithm

• What is the most probable “path” for generating a given
sequence?

the Viterbi algorithm

• How can we learn the HMM parameters given a set of
sequences?

the Forward-Backward (Baum-Welch) algorithm



How Likely is a Given Sequence?

• the probability that the path                 is taken and the sequence
is generated:

(assuming begin/end are the only silent states on path)
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How Likely Is A Given Sequence?
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How Likely is a Given Sequence?

• the probability over all paths is:

 )...,...Pr( )...Pr( 011 ∑=
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• but the number of paths can be exponential in the length of
the sequence...

• the Forward algorithm enables us to compute this
efficiently

π



How Likely is a Given Sequence:
The Forward Algorithm

• define              to be the probability of being in state k
having observed the first i characters of x

)(ifk

• we want to compute              , the probability of being in
the end state having observed all of x

• can define this recursively
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The Forward Algorithm
• because of the Markov property, don’t have to explicitly enumerate

every path – use dynamic programming instead

)(4 if )1(  ),1( 42 −− ifif• e.g. compute              using
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The Forward Algorithm

• initialization:
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probability that we’re in start state and
have observed 0 characters from the sequence 



The Forward Algorithm
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• recursion for emitting states (i =1…L):



The Forward Algorithm

• termination:
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Forward Algorithm Example
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Forward Algorithm Example
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• given the sequence x = TAGA

• initialization

• computing other values

( ) 15.02.005.013.0            

))0()0(()()1( 11101011

=×+××

=+××= afafTef

...
( )8.005.014.0)1(2 ×+××=f

( )2.015.05.004.0            

))1()1(()()2( 11101011

×+××

=+××= afafAef

))4()4(()4()Pr( 4543535 afaffTAGA +×==



Forward Algorithm Note
• in some cases, we can make the algorithm more efficient by taking into

account the minimum number of steps that must be taken to reach a
state

begin end
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• e.g. for this HMM, we don’t
need to initialize or compute
the values
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Three Important Questions

• How  likely is a given sequence?

• What is the most probable “path” for generating a given
sequence?

• How can we learn the HMM parameters given a set of
sequences?



Finding the Most Probable Path:
The Viterbi Algorithm

• define            to be the probability of the most probable
path accounting for the first i characters of x and ending in
state k

)(ivk

• we want to compute               , the probability of the most
probable path accounting for all of the sequence and
ending in the end state

• can define recursively

• can use DP to find                efficiently
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Finding the Most Probable Path:
The Viterbi Algorithm

• initialization:
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The Viterbi Algorithm

• recursion for emitting states (i =1…L):
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The Viterbi Algorithm

• traceback: follow pointers back starting at

• termination:
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Forward & Viterbi Algorithms

begin end

• Forward/Viterbi algorithms effectively consider all
possible paths for a sequence

–  Forward to find probability of a sequence

– Viterbi to find most probable path

• consider a sequence of length 4…



Three Important Questions

• How  likely is a given sequence?

• What is the most probable “path” for generating a given
sequence?

• How can we learn the HMM parameters given a set of
sequences?



Learning Parameters

• if we know the state path for each training sequence, learning the
model parameters is simple
– no hidden state during training
– count how often each parameter is used
– normalize/smooth to get probabilities
– process is just like it was for Markov chain models

• if we don’t know the path for each training sequence, how can we
determine the counts?
– key insight: estimate the counts by considering every path

weighted by its probability



Learning without Hidden State

begin end

• learning is simple if we know the correct path for each
sequence in our training set

• estimate parameters by counting the number of times each
parameter is used across the training set



Learning with Hidden State
• if we don’t know the correct path for each sequence in our

training set, consider all possible paths for the sequence

• estimate parameters through a procedure that counts the
expected number of times each parameter is used across
the training set

begin end



Learning Parameters:
The Baum-Welch Algorithm

• a.k.a the Forward-Backward algorithm

• an Expectation Maximization (EM) algorithm

– EM is a family of algorithms for learning probabilistic
models in problems that involve hidden state

• in this context, the hidden state is the path that best
explains each training sequence



Learning Parameters:
The Baum-Welch Algorithm

• algorithm sketch:

– initialize parameters of model

– iterate until convergence

• calculate the expected number of times each
transition or emission is used

• adjust the parameters to maximize the likelihood of
these expected values



The Expectation Step
• we want to know the probability of producing sequence x

with the i th symbol being produced by state k (for all x, i
and k)
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The Expectation Step
• the forward algorithm gives us             , the probability of

being in state k having observed the first i characters of x
)(ifk
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The Expectation Step
• the backward algorithm gives us            , the probability of

observing the rest of x, given that we’re in state k after i
characters

)(ibk
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The Expectation Step
• putting forward and backward together, we can compute

the probability of producing sequence x with the i th
symbol being produced by state q
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The Expectation Step

• first, we need to know the probability of the i th symbol
being produced by state k, given sequence x

)|Pr( xki =π

• given this we can compute our expected counts for state
transitions, character emissions



The Expectation Step
• the probability of of producing x with the i th symbol being

produced by state k is
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• the first term is               , computed by the forward algorithm)(ifk

• the second term is              , computed by the backward
algorithm
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The Backward Algorithm
• initialization:
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 for states with a transition to end state



The Backward Algorithm

• recursion (i =L…1):
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The Backward Algorithm

• termination:
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The Expectation Step
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• now we can calculate the probability of the i th symbol
being produced by state k, given x



The Expectation Step
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• now we can calculate the expected number of times letter c
is emitted by state k

• here we’ve added the superscript j to refer to a specific
sequence in the training set
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The Expectation Step
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• or if l is a silent state

∑
∑

=→
jx

j

j
lkl

i

j
k

lk x

ibaif
n

)Pr(

)()(



The Maximization Step
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ckn ,• Let           be the expected number of emissions of c from
state k for the training set

• estimate new emission parameters by:

• just like in the simple case

• but typically we’ll do some “smoothing”  (e.g. add
pseudocounts)



The Maximization Step
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lkn →• let             be the expected number of transitions from state
k to state l  for the training set

• estimate new transition parameters by:



The Baum-Welch Algorithm

• initialize the parameters of the HMM

• iterate until convergence

– initialize          ,           with pseudocounts

– E-step: for each training set sequence j = 1…n

• calculate            values for sequence j

• calculate            values for sequence j

• add the contribution of sequence j to         ,

– M-step: update the HMM parameters using        ,

ckn , lkn →
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Baum-Welch Algorithm Example
• given

– the HMM with the parameters initialized as shown
– the training sequences TAG, ACG
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Baum-Welch Example (Cont)
• determining the forward values for TAG

• here we compute just the values that represent events with non-zero
probability

• in a similar way, we also compute forward values for ACG
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Baum-Welch Example (Cont)
• determining the backward values for TAG

• here we compute just the values that represent events with non-zero
probability

• in a similar way, we also compute backward values for ACG
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Baum-Welch Example (Cont)
• determining the expected emission counts for state 1
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Baum-Welch Example (Cont)
• determining the expected transition counts for state 1    (not using

pseudocounts)

• in a similar way, we also determine the expected emission/transition
counts for state 2

)3(

)2()()1(
                 

)3(

)2()()1(
   

3

11111

3

11111
11 f

bCeaf

f

bAeaf
n +=→

contribution
of TAG

contribution
of ACG

 
)3(

)3()()2()2()()1(
            

)3(

)3()()2()2()()1(
   

3

2212122121

3

2212122121
21 f

bGeafbCeaf

f

bGeafbAeaf
n

+
+

+
=→



Baum-Welch Example (Cont)
• determining probabilities for state 1
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Markov Models Summary
• we considered models that varied in terms of order, in/homogeneity,

hidden state

• three DP-based algorithms for HMMs: Forward, Backward and Viterbi

• we discussed three key tasks: learning, classification and segmentation

• the algorithms used for each task depend on  whether there is hidden
state (correct path known) in the problem or not



Comments on Markov Models
• there are many successful applications in computational

biology
– gene recognition and associated subtasks
– protein family modeling
– motif modeling
– etc.

• there are many variants of the models/algorithms we
considered here (some of these are covered in
BMI/CS 776)
– fixed length motif models
– semi-markov models
– stochastic context free grammars
– Gibbs sampling for learning parameters


