
Markov Chain Models
(Slides courtesy of Dr. Mark Craven)

Motivation for Markov Models in
Computational Biology

• there are many cases in which we would like to represent
the statistical regularities of some class of sequences

– genes

– various regulatory sites in DNA (e.g. where RNA
polymerase and transcription factors bind)

– proteins in a given family

• Markov models are well suited to this type of task

.34
.16

.38

.12

transition probabilities

12.0)|Pr(

38.0)|Pr(

34.0)|Pr(

16.0)|Pr(

1

1

1

1

===

===

===

===

−

−

−

−

gxtx

gxgx

gxcx

gxax

ii

ii

ii

ii

A Markov Chain Model

A

TC

G

begin

state

transition

Markov Chain Models

• a Markov chain model is defined by

– a set of states

• some states emit symbols

• other states (e.g. the begin state) are silent

– a set of transitions with associated probabilities

• the transitions emanating from a given state define a
distribution over the possible next states

Markov Chain Models
• given some sequence x of length L, we can ask how

probable the sequence is given our model

• for any probabilistic model of sequences, we can write this
probability as

)Pr()...,...,|Pr(),...,Pr

),...,,Pr()Pr(

112111

11

xxxxx|x(x

xxxx

LLLL

LL

−−−

−

=

=

• key property of a (1st order) Markov chain: the probability
of each depends only on the value of

)|Pr()Pr(

)Pr()|Pr()...|Pr()Pr)Pr(

1
2

1

112211

−
=

−−−

∏=

=

i

L

i
i

LLLL

xxx

xxxxx|x(xx
ix 1−ix

The Probability of a Sequence for
a Given Markov Chain Model

A

TC

G

begin

)Pr)|Pr()|Pr()Pr()Pr((t|gggcgccggt =

Markov Chain Models

begin end

A

TC

G

• can also have an end state; allows the model to represent

– a distribution over sequences of different lengths

– preferences for ending sequences with certain symbols

Markov Chain Notation
• the transition parameters can be denoted by where

• similarly we can denote the probability of a sequence x as

where represents the transition from the begin state

)|Pr()Pr(1
2

1
2

11 −
==
∏∏ =

− i

L

i
i

L

i
xxx xxxaa
iiB

)|Pr(11 −=
− iixx xxa

ii

ii xxa 1−

1x
aB

Example Application

• CpG islands

– CG dinucleotides are rarer in eukaryotic genomes than
expected given the marginal probabilities of C and G

– but the regions upstream of genes are richer in CG
dinucleotides than elsewhere – CpG islands

– useful evidence for finding genes

• could predict CpG islands with Markov chains

– one to represent CpG islands

– one to represent the rest of the genome

Estimating the Model Parameters

• given some data (e.g. a set of sequences from CpG
islands), how can we determine the probability parameters
of our model?

• one approach: maximum likelihood estimation

– given a set of data D

– set the parameters to maximize

– i.e. make the data D look likely under the model

)|Pr(θD
θ

Maximum Likelihood Estimation
• suppose we want to estimate the parameters Pr(a), Pr(c),

Pr(g), Pr(t)

• and we’re given the sequences

accgcgctta

gcttagtgac

tagccgttac

• then the maximum likelihood estimates are

267.0
30

8
)Pr(

233.0
30

7
)Pr(

==

==

t

g

3.0
30

9
)Pr(

2.0
30

6
)Pr(

==

==

c

a

Maximum Likelihood Estimation
• suppose instead we saw the following sequences

gccgcgcttg

gcttggtggc

tggccgttgc

• then the maximum likelihood estimates are

267.0
30

8
)Pr(

433.0
30

13
)Pr(

==

==

t

g

3.0
30

9
)Pr(

0
30

0
)Pr(

==

==

c

a

do we really want to set this to 0?

A Bayesian Approach
• instead of estimating parameters strictly from the data, we

could start with some prior belief for each
• for example, we could use Laplace estimates

• where represents the number of occurrences of
character i

∑ +

+
=

i
i

a

n

n
a

)1(

1
)Pr(

• using Laplace estimates with the sequences

gccgcgcttg

gcttggtggc

tggccgttgc

34

19
)Pr(

34

10
)Pr(

+
=

+
=

c

a

pseudocount

in

A Bayesian Approach

• a more general form: m-estimates

mn

mpn
a

i
i

aa

+

+
=

∑
)Pr(

• with m=8 and uniform priors

gccgcgcttg

gcttggtggc

tggccgttgc

number of “virtual” instances

prior probability of a

38

11

830

825.09
)Pr(=

+

×+
=c

Estimation for 1st Order Probabilities
• to estimate a 1st order parameter, such as Pr(c|g), we count

the number of times that g follows the history c in our
given sequences

• using Laplace estimates with the sequences

gccgcgcttg

gcttggtggc

tggccgttgc

412

12
)|Pr(

412

13
)|Pr(

412

17
)|Pr(

412

10
)|Pr(

+

+
=

+

+
=

+

+
=

+

+
=

gt

gg

gc

ga

M
47

10
)|Pr(

+

+
=ca

Markov Chain Models

begin end

A

TC

G

• can also have an end state; allows the model to represent

– a distribution over sequences of different lengths

– preferences for ending sequences with certain symbols

A Simple HMM

A

TC

G A

TC

G

• given say a T in our input sequence, which state emitted it?

Hidden State

• we’ll distinguish between the observed parts of a problem
and the hidden parts

• in the Markov models we’ve considered previously, it is
clear which state accounts for each part of the observed
sequence

• in the model above, there are multiple states that could
account for each part of the observed sequence

– this is the hidden part of the problem

The Parameters of an HMM

• since we’ve decoupled states and characters, we might also
have emission probabilities

)|Pr()(kbxbe iik === π

)|Pr(1 kla iikl === −ππ

probability of emitting character b in state k

probability of a transition from state k to l

 represents a path (sequence of states) through
the model

• as in Markov chain models, we have transition
probabilities

π

A Simple HMM

0.8

)A(2e
13a

probability of emitting character A in state 2

probability of a transition from state 1 to state 3

0.4

A 0.4
C 0.1
G 0.2
T 0.3

A 0.1
C 0.4
G 0.4
T 0.1

A 0.2
C 0.3
G 0.3
T 0.2

begin end

0.5

0.5

0.2

0.8

0.6

0.1

0.9
0.2

0 5

4

3

2

1

A 0.4
C 0.1
G 0.1
T 0.4

Three Important Questions

• How likely is a given sequence?

the Forward algorithm

• What is the most probable “path” for generating a given
sequence?

the Viterbi algorithm

• How can we learn the HMM parameters given a set of
sequences?

the Forward-Backward (Baum-Welch) algorithm

How Likely is a Given Sequence?

• the probability that the path is taken and the sequence
is generated:

(assuming begin/end are the only silent states on path)

∏
=

+
=

L

i
iNL iii
axeaxx

1
001 11

)()...,...Pr(ππππππ

Lxx ...1

Nππ ...0

How Likely Is A Given Sequence?

A 0.1
C 0.4
G 0.4
T 0.1

A 0.4
C 0.1
G 0.1
T 0.4

begin end

0.5

0.5

0.2

0.8

0.4

0.6

0.1

0.9
0.2

0.8

0 5

4

3

2

1

6.03.08.04.02.04.05.0

)C()A()A(),AACPr(35313111101

××××××=

××××××= aeaeaeaπ

A 0.4
C 0.1
G 0.2
T 0.3

A 0.2
C 0.3
G 0.3
T 0.2

How Likely is a Given Sequence?

• the probability over all paths is:

)...,...Pr()...Pr(011 ∑=
π

ππ NLL xxxx

• but the number of paths can be exponential in the length of
the sequence...

• the Forward algorithm enables us to compute this
efficiently

π

How Likely is a Given Sequence:
The Forward Algorithm

• define to be the probability of being in state k
having observed the first i characters of x

)(ifk

• we want to compute , the probability of being in
the end state having observed all of x

• can define this recursively

)(LfN

The Forward Algorithm
• because of the Markov property, don’t have to explicitly enumerate

every path – use dynamic programming instead

)(4 if)1(),1(42 −− ifif• e.g. compute using

A 0.4
C 0.1
G 0.2
T 0.3

A 0.1
C 0.4
G 0.4
T 0.1

A 0.4
C 0.1
G 0.1
T 0.4

A 0.2
C 0.3
G 0.3
T 0.2

begin end

0.5

0.5

0.2

0.8

0.4

0.6

0.1

0.90.2

0.8

0 5

4

3

2

1

The Forward Algorithm

• initialization:

1)0(0 =f

statessilent not are that for ,0)0(kfk =

probability that we’re in start state and
have observed 0 characters from the sequence

The Forward Algorithm

∑=
k

klkl aifif)()(

• recursion for silent states:

∑ −=
k

klkll aifieif)1()()(

• recursion for emitting states (i =1…L):

The Forward Algorithm

• termination:

∑===
k

kNkNL aLfLfxxx)()()...Pr()Pr(1

probability that we’re in the end state and
have observed the entire sequence

Forward Algorithm Example

A 0.4
C 0.1
G 0.2
T 0.3

A 0.1
C 0.4
G 0.4
T 0.1

A 0.4
C 0.1
G 0.1
T 0.4

A 0.2
C 0.3
G 0.3
T 0.2

begin end

0.5

0.5

0.2

0.8

0.4

0.6

0.1

0.90.2

0.8

0 5

4

3

2

1

• given the sequence x = TAGA

Forward Algorithm Example

1)0(0 =f 0)0(0)0(51 == ff K

• given the sequence x = TAGA

• initialization

• computing other values

() 15.02.005.013.0

))0()0(()()1(11101011

=×+××

=+××= afafTef

...
()8.005.014.0)1(2 ×+××=f

()2.015.05.004.0

))1()1(()()2(11101011

×+××

=+××= afafAef

))4()4(()4()Pr(4543535 afaffTAGA +×==

Forward Algorithm Note
• in some cases, we can make the algorithm more efficient by taking into

account the minimum number of steps that must be taken to reach a
state

begin end

0 5

4

3

2

1

• e.g. for this HMM, we don’t
need to initialize or compute
the values

)1(,)0(

 ,)0(,)0(

55

43

ff

ff

Three Important Questions

• How likely is a given sequence?

• What is the most probable “path” for generating a given
sequence?

• How can we learn the HMM parameters given a set of
sequences?

Finding the Most Probable Path:
The Viterbi Algorithm

• define to be the probability of the most probable
path accounting for the first i characters of x and ending in
state k

)(ivk

• we want to compute , the probability of the most
probable path accounting for all of the sequence and
ending in the end state

• can define recursively

• can use DP to find efficiently

)(LvN

)(LvN

Finding the Most Probable Path:
The Viterbi Algorithm

• initialization:

1)0(0 =v

statessilent not are that for ,0)0(kvk =

The Viterbi Algorithm

• recursion for emitting states (i =1…L):

[]klk
k

ill aivxeiv)1(max)()(−=

[]klk
k

l aiviv)(max)(=

• recursion for silent states:

[]klk
k

l aivi)(maxarg)(ptr =

[]klk
k

l aivi)1(maxarg)(ptr −= keep track of most
probable path

The Viterbi Algorithm

• traceback: follow pointers back starting at

• termination:

Lπ

()kNk
k

aLv)(maxargL =π

()kNk
k

aLvx)(max),Pr(=π

Forward & Viterbi Algorithms

begin end

• Forward/Viterbi algorithms effectively consider all
possible paths for a sequence

– Forward to find probability of a sequence

– Viterbi to find most probable path

• consider a sequence of length 4…

Three Important Questions

• How likely is a given sequence?

• What is the most probable “path” for generating a given
sequence?

• How can we learn the HMM parameters given a set of
sequences?

Learning Parameters

• if we know the state path for each training sequence, learning the
model parameters is simple
– no hidden state during training
– count how often each parameter is used
– normalize/smooth to get probabilities
– process is just like it was for Markov chain models

• if we don’t know the path for each training sequence, how can we
determine the counts?
– key insight: estimate the counts by considering every path

weighted by its probability

Learning without Hidden State

begin end

• learning is simple if we know the correct path for each
sequence in our training set

• estimate parameters by counting the number of times each
parameter is used across the training set

Learning with Hidden State
• if we don’t know the correct path for each sequence in our

training set, consider all possible paths for the sequence

• estimate parameters through a procedure that counts the
expected number of times each parameter is used across
the training set

begin end

Learning Parameters:
The Baum-Welch Algorithm

• a.k.a the Forward-Backward algorithm

• an Expectation Maximization (EM) algorithm

– EM is a family of algorithms for learning probabilistic
models in problems that involve hidden state

• in this context, the hidden state is the path that best
explains each training sequence

Learning Parameters:
The Baum-Welch Algorithm

• algorithm sketch:

– initialize parameters of model

– iterate until convergence

• calculate the expected number of times each
transition or emission is used

• adjust the parameters to maximize the likelihood of
these expected values

The Expectation Step
• we want to know the probability of producing sequence x

with the i th symbol being produced by state k (for all x, i
and k)

C A G T

A 0.4
C 0.1
G 0.2
T 0.3

A 0.4
C 0.1
G 0.1
T 0.4

A 0.2
C 0.3
G 0.3
T 0.2

begin end

0.5

0.5

0.2

0.8

0.4

0.6

0.1

0.90.2

0.8

0 5

4

3

2

1

A 0.1
C 0.4
G 0.4
T 0.1

The Expectation Step
• the forward algorithm gives us , the probability of

being in state k having observed the first i characters of x
)(ifk

A 0.4
C 0.1
G 0.2
T 0.3

A 0.2
C 0.3
G 0.3
T 0.2

begin end

0.5

0.5

0.2

0.8

0.4

0.6

0.1

0.90.2

0.8

0 5

4

3

2

1

A 0.1
C 0.4
G 0.4
T 0.1

C A G T

A 0.4
C 0.1
G 0.1
T 0.4

The Expectation Step
• the backward algorithm gives us , the probability of

observing the rest of x, given that we’re in state k after i
characters

)(ibk

A 0.4
C 0.1
G 0.2
T 0.3

A 0.2
C 0.3
G 0.3
T 0.2

begin end

0.5

0.5

0.2

0.8

0.4

0.6

0.1

0.90.2

0.8

0 5

4

3

2

1

A 0.1
C 0.4
G 0.4
T 0.1

C A G T

A 0.4
C 0.1
G 0.1
T 0.4

The Expectation Step
• putting forward and backward together, we can compute

the probability of producing sequence x with the i th
symbol being produced by state q

A 0.4
C 0.1
G 0.2
T 0.3

A 0.2
C 0.3
G 0.3
T 0.2

begin end

0.5

0.5

0.2

0.8

0.4

0.6

0.1

0.90.2

0.8

0 5

4

3

2

1

C A G T

A 0.4
C 0.1
G 0.1
T 0.4

A 0.1
C 0.4
G 0.4
T 0.1

The Expectation Step

• first, we need to know the probability of the i th symbol
being produced by state k, given sequence x

)|Pr(xki =π

• given this we can compute our expected counts for state
transitions, character emissions

The Expectation Step
• the probability of of producing x with the i th symbol being

produced by state k is

)|...Pr(

),...Pr(),Pr(

1

1

kxx

kxxxk

iLi

iii

=

×===

+ π

ππ

• the first term is , computed by the forward algorithm)(ifk

• the second term is , computed by the backward
algorithm

)(ibk

The Backward Algorithm
• initialization:

kNk aLb =)(

 for states with a transition to end state

The Backward Algorithm

• recursion (i =L…1):

otherwise),1()(

statesilent is if ,)(
)(

1
∑

+
=

+l lilkl

lkl
k ibxea

liba
ib

The Backward Algorithm

• termination:

otherwise),1()(

statesilent is if ,)0(
)...Pr()Pr(

10

0
1 ∑

==
l lll

ll
L bxea

lba
xxx

The Expectation Step

)(

)()(

)Pr(

)()(

)Pr(

),Pr(
)|Pr(

Lf

ibif

x

ibif

x

xk
xk

N

kk

kk

i
i

=

=

=
==

π
π

• now we can calculate the probability of the i th symbol
being produced by state k, given x

The Expectation Step

∑ ∑

=

=j
k

j
i

k

x

j

cxi

j
jck ibif
x

n)()(
)Pr(

1

}|{
,

• now we can calculate the expected number of times letter c
is emitted by state k

• here we’ve added the superscript j to refer to a specific
sequence in the training set

sum over
sequences

sum over positions
where c occurs in x

The Expectation Step

∑
∑ +

=
+

→
jx

j

j
l

j
ilkl

i

j
k

lk x

ibxeaif
n

)Pr(

)1()()(1

• and we can calculate the expected number of times that the
transition from k to l is used

• or if l is a silent state

∑
∑

=→
jx

j

j
lkl

i

j
k

lk x

ibaif
n

)Pr(

)()(

The Maximization Step

∑
=

'
',

,)(

c
ck

ck
k n

n
ce

ckn ,• Let be the expected number of emissions of c from
state k for the training set

• estimate new emission parameters by:

• just like in the simple case

• but typically we’ll do some “smoothing” (e.g. add
pseudocounts)

The Maximization Step

∑ →

→=

m
mk

lk
kl n

n
a

lkn →• let be the expected number of transitions from state
k to state l for the training set

• estimate new transition parameters by:

The Baum-Welch Algorithm

• initialize the parameters of the HMM

• iterate until convergence

– initialize , with pseudocounts

– E-step: for each training set sequence j = 1…n

• calculate values for sequence j

• calculate values for sequence j

• add the contribution of sequence j to ,

– M-step: update the HMM parameters using ,

ckn , lkn →

)(ifk
)(ibk

ckn , lkn →

ckn , lkn →

Baum-Welch Algorithm Example
• given

– the HMM with the parameters initialized as shown
– the training sequences TAG, ACG

A 0.1
C 0.4
G 0.4
T 0.1

A 0.4
C 0.1
G 0.1
T 0.4

begin end

1.0

0.1

0.90.2

0.8

0 3
21

• we’ll work through one iteration of Baum-Welch

Baum-Welch Example (Cont)
• determining the forward values for TAG

• here we compute just the values that represent events with non-zero
probability

• in a similar way, we also compute forward values for ACG

()

009504.001056.09.0)3()3(

01056.0)0256.00008.0(4.0

)2()2()()3(

008.04.02.01.0)1()()2(

128.04.08.04.0)1()()2(

4.014.0)0()()1(

1)0(

2233

22211222

11222

11111

00111

0

=×=×=

=+×

=×+××=

=××=××=

=××=××=

=×=××=

=

faf

fafaGef

faAef

faAef

faTef

f

Baum-Welch Example (Cont)
• determining the backward values for TAG

• here we compute just the values that represent events with non-zero
probability

• in a similar way, we also compute backward values for ACG

009504.002376.04.00.1)1()()0(

02376.0036.01.02.0072.04.08.0

)2()()2()()1(

072.09.04.02.0)3()()2(

036.09.04.01.0)3()()2(

9.019.0)3()3(

1)3(

11010

221211111

22121

22222

3232

3

=××=××=

=××+××

=××+××=

=××=××=

=××=××=

=×=×=

=

bTeab

bAeabAeab

bGeab

bGeab

bab

b

Baum-Welch Example (Cont)
• determining the expected emission counts for state 1

1
)3(

)1()1(

)3(

)2()2(

3

11

3

11
,1 ++=

f

bf

f

bf
n A

1
)3(

)2()2(

3

11
,1 +=

f

bf
n C

1
)3(

)1()1(

3

11
,1 +=

f

bf
n T

1 ,1 =Gn

contribution
of TAG

contribution
of ACG pseudocount

*note that the forward/backward values in these two columns differ; in each column
they are computed for the sequence associated with the column

Baum-Welch Example (Cont)
• determining the expected transition counts for state 1 (not using

pseudocounts)

• in a similar way, we also determine the expected emission/transition
counts for state 2

)3(

)2()()1(

)3(

)2()()1(

3

11111

3

11111
11 f

bCeaf

f

bAeaf
n +=→

contribution
of TAG

contribution
of ACG

)3(

)3()()2()2()()1(

)3(

)3()()2()2()()1(

3

2212122121

3

2212122121
21 f

bGeafbCeaf

f

bGeafbAeaf
n

+
+

+
=→

Baum-Welch Example (Cont)
• determining probabilities for state 1

M

)(

)(

,1,1,1,1

,1
1

,1,1,1,1

,1
1

TGCA

C

TGCA

A

nnnn

n
Ce

nnnn

n
Ae

+++
=

+++
=

2111

21
12

2111

11
11

→→

→

→→

→

+
=

+
=

nn

n
a

nn

n
a

Markov Models Summary
• we considered models that varied in terms of order, in/homogeneity,

hidden state

• three DP-based algorithms for HMMs: Forward, Backward and Viterbi

• we discussed three key tasks: learning, classification and segmentation

• the algorithms used for each task depend on whether there is hidden
state (correct path known) in the problem or not

Comments on Markov Models
• there are many successful applications in computational

biology
– gene recognition and associated subtasks
– protein family modeling
– motif modeling
– etc.

• there are many variants of the models/algorithms we
considered here (some of these are covered in
BMI/CS 776)
– fixed length motif models
– semi-markov models
– stochastic context free grammars
– Gibbs sampling for learning parameters

