Markov Chain Models

(Slides courtesy of Dr. Mark Craven)

Motivation for Markov Models in Computational Biology

- there are many cases in which we would like to represent the statistical regularities of some class of sequences
- genes
- various regulatory sites in DNA (e.g. where RNA polymerase and transcription factors bind)
- proteins in a given family
- Markov models are well suited to this type of task

A Markov Chain Model

transition probabilities
$\operatorname{Pr}\left(x_{i}=a \mid x_{i-1}=g\right)=0.16$
$\operatorname{Pr}\left(x_{i}=c \mid x_{i-1}=g\right)=0.34$
$\operatorname{Pr}\left(x_{i}=g \mid x_{i-1}=g\right)=0.38$
$\operatorname{Pr}\left(x_{i}=t \mid x_{i-1}=g\right)=0.12$

Markov Chain Models

- a Markov chain model is defined by
- a set of states
- some states emit symbols
- other states (e.g. the begin state) are silent
- a set of transitions with associated probabilities
- the transitions emanating from a given state define a distribution over the possible next states

Markov Chain Models

- given some sequence x of length L, we can ask how probable the sequence is given our model
- for any probabilistic model of sequences, we can write this probability as

$$
\begin{aligned}
\operatorname{Pr}(x) & =\operatorname{Pr}\left(x_{L}, x_{L-1}, \ldots, x_{1}\right) \\
& =\operatorname{Pr}\left(x_{L} \mid x_{L-1}, \ldots, x_{1}\right) \operatorname{Pr}\left(x_{L-1} \mid x_{L-2}, \ldots, x_{1}\right) \ldots \operatorname{Pr}\left(x_{1}\right)
\end{aligned}
$$

- key property of a ($1^{\text {st }}$ order) Markov chain: the probability of each x_{i} depends only on the value of x_{i-1}

$$
\begin{aligned}
\operatorname{Pr}(x) & =\operatorname{Pr}\left(x_{L} \mid x_{L-1}\right) \operatorname{Pr}\left(x_{L-1} \mid x_{L-2}\right) \ldots \operatorname{Pr}\left(x_{2} \mid x_{1}\right) \operatorname{Pr}\left(x_{1}\right) \\
& =\operatorname{Pr}\left(x_{1}\right) \prod_{i=2}^{L} \operatorname{Pr}\left(x_{i} \mid x_{i-1}\right)
\end{aligned}
$$

The Probability of a Sequence for a Given Markov Chain Model

$\operatorname{Pr}(c g g t)=\operatorname{Pr}(c) \operatorname{Pr}(g \mid c) \operatorname{Pr}(g \mid g) \operatorname{Pr}(t \mid g)$

Markov Chain Models

- can also have an end state; allows the model to represent
- a distribution over sequences of different lengths
- preferences for ending sequences with certain symbols

Markov Chain Notation

- the transition parameters can be denoted by $a_{x_{i-1} x_{i}}$ where

$$
a_{x_{i-1} x_{i}}=\operatorname{Pr}\left(x_{i} \mid x_{i-1}\right)
$$

- similarly we can denote the probability of a sequence x as

$$
a_{\mathrm{B} x_{1}} \prod_{i=2}^{L} a_{x_{i-1} x_{i}}=\operatorname{Pr}\left(x_{1}\right) \prod_{i=2}^{L} \operatorname{Pr}\left(x_{i} \mid x_{i-1}\right)
$$

where $a_{\mathrm{B} x_{1}}$ represents the transition from the begin state

Example Application

- CpG islands
- CG dinucleotides are rarer in eukaryotic genomes than expected given the marginal probabilities of C and G
- but the regions upstream of genes are richer in CG dinucleotides than elsewhere - CpG islands
- useful evidence for finding genes
- could predict CpG islands with Markov chains
- one to represent CpG islands
- one to represent the rest of the genome

Estimating the Model Parameters

- given some data (e.g. a set of sequences from CpG islands), how can we determine the probability parameters of our model?
- one approach: maximum likelihood estimation
- given a set of data D
- set the parameters θ to maximize

$$
\operatorname{Pr}(D \mid \theta)
$$

- i.e. make the data D look likely under the model

Maximum Likelihood Estimation

- suppose we want to estimate the parameters $\operatorname{Pr}(\mathrm{a}), \operatorname{Pr}(\mathrm{c})$, $\operatorname{Pr}(\mathrm{g}), \operatorname{Pr}(\mathrm{t})$
- and we're given the sequences
accgegctta
gcttagtgac
tagcegttac
- then the maximum likelihood estimates are

$$
\begin{array}{ll}
\operatorname{Pr}(a)=\frac{6}{30}=0.2 & \operatorname{Pr}(g)=\frac{7}{30}=0.233 \\
\operatorname{Pr}(c)=\frac{9}{30}=0.3 & \operatorname{Pr}(t)=\frac{8}{30}=0.267
\end{array}
$$

Maximum Likelihood Estimation

- suppose instead we saw the following sequences gccgegcttg gcttggtggc tggccgttgc
- then the maximum likelihood estimates are

A Bayesian Approach

- instead of estimating parameters strictly from the data, we could start with some prior belief for each
- for example, we could use Laplace estimates

$$
\operatorname{Pr}(a)=\frac{n_{a}+1 R}{\sum_{i}\left(n_{i}+1\right)} \quad \text { pseudocount }
$$

- where n_{i} represents the number of occurrences of character i
- using Laplace estimates with the sequences
gccgcgettg
gcttggtggc

$$
\operatorname{tggccgttgc}
$$

$$
\begin{aligned}
& \operatorname{Pr}(a)=\frac{0+1}{34} \\
& \operatorname{Pr}(c)=\frac{9+1}{34}
\end{aligned}
$$

A Bayesian Approach

- a more general form: m-estimates

$$
\operatorname{Pr}(a)={\frac{n_{a}+p_{a} m}{\left(\sum_{i} n_{i}\right)+m_{\text {prior probability of } a}} \text { number of "virtual" instances }}_{\text {nes }}^{\text {ner }}
$$

- with $\mathrm{m}=8$ and uniform priors
gccgcgcttg gcttggtggc tggccgttgc

$$
\operatorname{Pr}(c)=\frac{9+0.25 \times 8}{30+8}=\frac{11}{38}
$$

Estimation for $1^{\text {st }}$ Order Probabilities

- to estimate a $1^{\text {st }}$ order parameter, such as $\operatorname{Pr}(c \mid g)$, we count the number of times that g follows the history c in our given sequences
- using Laplace estimates with the sequences
gccgcgettg
gcttggtggc

$$
\begin{array}{ll}
\operatorname{Pr}(a \mid g)=\frac{0+1}{12+4} & \operatorname{Pr}(a \mid c)=\frac{0+1}{7+4} \\
\operatorname{Pr}(c \mid g)=\frac{7+1}{12+4} & \mathrm{M} \\
\operatorname{Pr}(g \mid g)=\frac{3+1}{12+4} & \\
\operatorname{Pr}(t \mid g)=\frac{2+1}{12+4} &
\end{array}
$$

Markov Chain Models

- can also have an end state; allows the model to represent
- a distribution over sequences of different lengths
- preferences for ending sequences with certain symbols

A Simple HMM

- given say a T in our input sequence, which state emitted it?

Hidden State

- we'll distinguish between the observed parts of a problem and the hidden parts
- in the Markov models we've considered previously, it is clear which state accounts for each part of the observed sequence
- in the model above, there are multiple states that could account for each part of the observed sequence
- this is the hidden part of the problem

The Parameters of an HMM

- as in Markov chain models, we have transition probabilities

$$
a_{k l}=\operatorname{Pr}\left(\pi_{i}=l \mid \pi_{i-1}=k\right)
$$

probability of a transition from state k to l
π represents a path (sequence of states) through the model

- since we've decoupled states and characters, we might also have emission probabilities

$$
e_{k}(b)=\operatorname{Pr}\left(x_{i}=b \mid \pi_{i}=k\right)
$$

probability of emitting character b in state k

A Simple HMM

$a_{13} \quad$ probability of a transition from state 1 to state 3
$e_{2}(\mathrm{~A})$ probability of emitting character A in state 2

Three Important Questions

- How likely is a given sequence?
the Forward algorithm
- What is the most probable "path" for generating a given sequence?
the Viterbi algorithm
- How can we learn the HMM parameters given a set of sequences?
the Forward-Backward (Baum-Welch) algorithm

How Likely is a Given Sequence?

- the probability that the path is generated: $x_{1} \ldots x_{L}$

$$
\operatorname{Pr}\left(x_{1} \ldots x_{L}, \pi_{0} \ldots \pi_{N}\right)=a_{0 \pi_{1}} \prod_{\substack{i=1 \\ \text { (assuming begin/end are the only silent states on path) }}}^{L} e_{\pi_{i}}\left(x_{i}\right) a_{\pi_{i} \pi_{i+1}}
$$

How Likely Is A Given Sequence?

$$
\begin{aligned}
\operatorname{Pr}(\mathrm{AAC}, \pi) & =a_{01} \times e_{1}(\mathrm{~A}) \times a_{11} \times e_{1}(\mathrm{~A}) \times a_{13} \times e_{3}(\mathrm{C}) \times a_{35} \\
& =0.5 \times 0.4 \times 0.2 \times 0.4 \times 0.8 \times 0.3 \times 0.6
\end{aligned}
$$

How Likely is a Given Sequence?

- the probability over all paths is:

$$
\operatorname{Pr}\left(x_{1} \ldots x_{L}\right)=\sum_{\pi} \operatorname{Pr}(x_{1} \ldots x_{L}, \underbrace{\left.\pi_{0} \ldots \pi_{N}\right)}_{\pi}
$$

- but the number of paths can be exponential in the length of the sequence...
- the Forward algorithm enables us to compute this efficiently

How Likely is a Given Sequence: The Forward Algorithm

- define $f_{k}(i)$ to be the probability of being in state k having observed the first i characters of x
- we want to compute $f_{N}(L)$, the probability of being in the end state having observed all of x
- can define this recursively

The Forward Algorithm

- because of the Markov property, don't have to explicitly enumerate every path - use dynamic programming instead

- e.g. compute $f_{4}(i)$ using $f_{2}(i-1), f_{4}(i-1)$

The Forward Algorithm

- initialization:

$$
f_{0}(0)=1
$$

probability that we're in start state and
have observed 0 characters from the sequence
$f_{k}(0)=0, \quad$ for k that are not silent states

The Forward Algorithm

- recursion for emitting states $(i=1 \ldots L)$:

$$
f_{l}(i)=e_{l}(i) \sum_{k} f_{k}(i-1) a_{k l}
$$

- recursion for silent states:

$$
f_{l}(i)=\sum_{k} f_{k}(i) a_{k l}
$$

The Forward Algorithm

- termination:

$$
\operatorname{Pr}(x)=\operatorname{Pr}\left(x_{1} \ldots x_{L}\right)=f_{N}(L)=\sum_{k} f_{k}(L) a_{k N}
$$

probability that we're in the end state and have observed the entire sequence

Forward Algorithm Example

- given the sequence $x=$ TAGA

Forward Algorithm Example

- given the sequence $x=$ TAGA
- initialization

$$
f_{0}(0)=1 \quad f_{1}(0)=0 \mathrm{~K} \quad f_{5}(0)=0
$$

- computing other values

$$
\begin{aligned}
f_{1}(1)= & e_{1}(T) \times\left(f_{0}(0) \times a_{01}+f_{1}(0) a_{11}\right)= \\
& 0.3 \times(1 \times 0.5+0 \times 0.2)=0.15 \\
f_{2}(1)= & 0.4 \times(1 \times 0.5+0 \times 0.8) \\
f_{1}(2)= & e_{1}(A) \times\left(f_{0}(1) \times a_{01}+f_{1}(1) a_{11}\right)= \\
& 0.4 \times(0 \times 0.5+0.15 \times 0.2)
\end{aligned}
$$

$$
\operatorname{Pr}(T A G A)=f_{5}(4)=\left(f_{3}(4) \times a_{35}+f_{4}(4) a_{45}\right)
$$

Forward Algorithm Note

- in some cases, we can make the algorithm more efficient by taking into account the minimum number of steps that must be taken to reach a state

- e.g. for this HMM, we don't need to initialize or compute the values

$$
\begin{aligned}
& f_{3}(0), f_{4}(0), \\
& f_{5}(0), f_{5}(1)
\end{aligned}
$$

Three Important Questions

- How likely is a given sequence?
- What is the most probable "path" for generating a given sequence?
- How can we learn the HMM parameters given a set of sequences?

Finding the Most Probable Path: The Viterbi Algorithm

- define $v_{k}(i)$ to be the probability of the most probable path accounting for the first i characters of x and ending in state k
- we want to compute $v_{N}(L)$, the probability of the most probable path accounting for all of the sequence and ending in the end state
- can define recursively
- can use DP to find $v_{N}(L)$ efficiently

Finding the Most Probable Path: The Viterbi Algorithm

- initialization:

$$
\begin{aligned}
& v_{0}(0)=1 \\
& v_{k}(0)=0, \quad \text { for } k \text { that are not silent states }
\end{aligned}
$$

The Viterbi Algorithm

- recursion for emitting states $(i=1 \ldots L)$:

$$
\begin{array}{ll}
v_{l}(i)=e_{l}\left(x_{i}\right) \max _{k}\left[v_{k}(i-1) a_{k l}\right] \\
\operatorname{ptr}_{l}(i)=\underset{k}{\arg \max }\left[v_{k}(i-1) a_{k l}\right] & \begin{array}{l}
\text { keep track of most } \\
\text { probable path }
\end{array}
\end{array}
$$

- recursion for silent states:

$$
\begin{aligned}
& v_{l}(i)=\max _{k}\left[v_{k}(i) a_{k l}\right] \\
& \operatorname{ptr}_{l}(i)=\underset{k}{\arg \max }\left[v_{k}(i) a_{k l}\right]
\end{aligned}
$$

The Viterbi Algorithm

- termination:

$$
\begin{aligned}
& \operatorname{Pr}(x, \pi)=\max _{k}\left(v_{k}(L) a_{k N}\right) \\
& \pi_{\mathrm{L}}=\arg \max _{k}\left(v_{k}(L) a_{k N}\right)
\end{aligned}
$$

- traceback: follow pointers back starting at π_{L}

Forward \& Viterbi Algorithms

- Forward/Viterbi algorithms effectively consider all possible paths for a sequence
- Forward to find probability of a sequence
- Viterbi to find most probable path
- consider a sequence of length $4 \ldots$

Three Important Questions

- How likely is a given sequence?
- What is the most probable "path" for generating a given sequence?
- How can we learn the HMM parameters given a set of sequences?

Learning Parameters

- if we know the state path for each training sequence, learning the model parameters is simple
- no hidden state during training
- count how often each parameter is used
- normalize/smooth to get probabilities
- process is just like it was for Markov chain models
- if we don't know the path for each training sequence, how can we determine the counts?
- key insight: estimate the counts by considering every path weighted by its probability

Learning without Hidden State

- learning is simple if we know the correct path for each sequence in our training set

- estimate parameters by counting the number of times each parameter is used across the training set

Learning with Hidden State

- if we don't know the correct path for each sequence in our training set, consider all possible paths for the sequence

- estimate parameters through a procedure that counts the expected number of times each parameter is used across the training set

Learning Parameters: The Baum-Welch Algorithm

- a.k.a the Forward-Backward algorithm
- an Expectation Maximization (EM) algorithm
- EM is a family of algorithms for learning probabilistic models in problems that involve hidden state
- in this context, the hidden state is the path that best explains each training sequence

Learning Parameters: The Baum-Welch Algorithm

- algorithm sketch:
- initialize parameters of model
- iterate until convergence
- calculate the expected number of times each transition or emission is used
- adjust the parameters to maximize the likelihood of these expected values

The Expectation Step

- we want to know the probability of producing sequence x with the i th symbol being produced by state k (for all x, i and k)

The Expectation Step

- the forward algorithm gives us $f_{k}(i)$, the probability of being in state k having observed the first i characters of x

> C A G T

The Expectation Step

- the backward algorithm gives us $b_{k}(i)$, the probability of observing the rest of x , given that we're in state k after i characters

C A G T

The Expectation Step

- putting forward and backward together, we can compute the probability of producing sequence x with the i th symbol being produced by state q

The Expectation Step

- first, we need to know the probability of the i th symbol being produced by state k, given sequence x

$$
\operatorname{Pr}\left(\pi_{i}=k \mid x\right)
$$

- given this we can compute our expected counts for state transitions, character emissions

The Expectation Step

- the probability of of producing x with the i th symbol being produced by state k is

$$
\begin{aligned}
\operatorname{Pr}\left(\pi_{i}=k, x\right)= & \operatorname{Pr}\left(x_{1} \ldots x_{i}, \pi_{i}=k\right) \times \\
& \operatorname{Pr}\left(x_{i+1} \ldots x_{L} \mid \pi_{i}=k\right)
\end{aligned}
$$

- the first term is $f_{k}(i)$, computed by the forward algorithm
- the second term is $b_{k}(i)$, computed by the backward algorithm

The Backward Algorithm

- initialization:

$$
b_{k}(L)=a_{k N}
$$

for states with a transition to end state

The Backward Algorithm

- recursion $(i=L \ldots l)$:

$$
b_{k}(i)=\sum_{l}\left\{\begin{array}{ll}
a_{k l} b_{l}(i), & \text { if } l \text { is silent state } \\
a_{k l} e_{l}\left(x_{i+1}\right) b_{l}(i+1), & \text { otherwise }
\end{array}\right\}
$$

The Backward Algorithm

- termination:

$$
\operatorname{Pr}(x)=\operatorname{Pr}\left(x_{1} \ldots x_{L}\right)=\sum_{l}\left\{\begin{array}{ll}
a_{0 l} b_{l}(0), & \text { if } l \text { is silent state } \\
a_{0 l} e_{l}\left(x_{1}\right) b_{l}(1), & \text { otherwise }
\end{array}\right\}
$$

The Expectation Step

- now we can calculate the probability of the i th symbol being produced by state k, given x

$$
\begin{aligned}
\operatorname{Pr}\left(\pi_{i}=k \mid x\right) & =\frac{\operatorname{Pr}\left(\pi_{i}=k, x\right)}{\operatorname{Pr}(x)} \\
& =\frac{f_{k}(i) b_{k}(i)}{\operatorname{Pr}(x)} \\
& =\frac{f_{k}(i) b_{k}(i)}{f_{N}(L)}
\end{aligned}
$$

The Expectation Step

- now we can calculate the expected number of times letter c is emitted by state k
- here we've added the superscript j to refer to a specific sequence in the training set

The Expectation Step

- and we can calculate the expected number of times that the transition from k to l is used

$$
n_{k \rightarrow l}=\sum_{x^{\prime}} \frac{\sum_{i} f_{k}^{j}(i) a_{k l} e_{l}\left(x_{i+1}^{j}\right) b_{l}^{j}(i+1)}{\operatorname{Pr}\left(x^{j}\right)}
$$

- or if l is a silent state

$$
n_{k \rightarrow l}=\sum_{x^{\prime}} \frac{\sum_{i} f_{k}^{j}(i) a_{k l} b_{l}^{j}(i)}{\operatorname{Pr}\left(x^{j}\right)}
$$

The Maximization Step

- Let $n_{k, c}$ be the expected number of emissions of c from state k for the training set
- estimate new emission parameters by:

$$
e_{k}(c)=\frac{n_{k, c}}{\sum_{c^{\prime}} n_{k, c^{\prime}}}
$$

- just like in the simple case
- but typically we'll do some "smoothing" (e.g. add pseudocounts)

The Maximization Step

- let $n_{k \rightarrow l}$ be the expected number of transitions from state k to state l for the training set
- estimate new transition parameters by:

$$
a_{k l}=\frac{n_{k \rightarrow l}}{\sum_{m} n_{k \rightarrow m}}
$$

The Baum-Welch Algorithm

- initialize the parameters of the HMM
- iterate until convergence
- initialize $n_{k, c}, n_{k \rightarrow l}$ with pseudocounts
- E-step: for each training set sequence $j=1 \ldots n$
- calculate $f_{k}(i)$ values for sequence j
- calculate $b_{k}(i)$ values for sequence j
- add the contribution of sequence j to $n_{k, c}, n_{k \rightarrow l}$
- M-step: update the HMM parameters using $n_{k, c}, \quad n_{k \rightarrow l}$

Baum-Welch Algorithm Example

- given
- the HMM with the parameters initialized as shown
- the training sequences TAG, ACG

- we'll work through one iteration of Baum-Welch

Baum-Welch Example (Cont)

- determining the forward values for TAG

$$
\begin{aligned}
& f_{0}(0)=1 \\
& f_{1}(1)=e_{1}(T) \times a_{01} \times f_{0}(0)=0.4 \times 1=0.4 \\
& f_{1}(2)=e_{1}(A) \times a_{11} \times f_{1}(1)=0.4 \times 0.8 \times 0.4=0.128 \\
& f_{2}(2)=e_{2}(A) \times a_{12} \times f_{1}(1)=0.1 \times 0.2 \times 0.4=0.008 \\
& f_{2}(3)=e_{2}(G) \times\left(a_{12} \times f_{1}(2)+a_{22} \times f_{2}(2)\right)= \\
& \quad 0.4 \times(0.0008+0.0256)=0.01056
\end{aligned}
$$

 probability

- in a similar way, we also compute forward values for ACG

Baum-Welch Example (Cont)

- determining the backward values for TAG

$$
\begin{aligned}
& b_{3}(3)=1 \\
& b_{2}(3)=a_{23} \times b_{3}(3)=0.9 \times 1=0.9 \\
& b_{2}(2)=a_{22} \times e_{2}(G) \times b_{2}(3)=0.1 \times 0.4 \times 0.9=0.036 \\
& b_{1}(2)=a_{12} \times e_{2}(G) \times b_{2}(3)=0.2 \times 0.4 \times 0.9=0.072 \\
& b_{1}(1)= \\
& \quad a_{11} \times e_{1}(A) \times b_{1}(2)+a_{12} \times e_{2}(A) \times b_{2}(2)= \\
& \quad 0.8 \times 0.4 \times 0.072+0.2 \times 0.1 \times 0.036=0.02376 \\
& b_{0}\left(\begin{array}{l}
\text { (Q) }
\end{array}\right) \\
& \quad \text { probability }
\end{aligned}
$$

- in a similar way, we also compute backward values for ACG

Baum-Welch Example (Cont)

- determining the expected emission counts for state 1

$$
\begin{aligned}
& \text { contribution contribution } \\
& \text { of TAG of ACG } \\
& n_{1, A}=\frac{f_{1}(2) b_{1}(2)}{f_{3}(3)}+\frac{f_{1}(1) b_{1}(1)}{f_{3}(3)}+1 \\
& n_{1, C}= \\
& \frac{f_{1}(2) b_{1}(2)}{f_{3}(3)}+1 \\
& n_{1, G}=\quad 1 \\
& n_{1, T}=\frac{f_{1}(1) b_{1}(1)}{f_{3}(3)} \\
& +1
\end{aligned}
$$

*note that the forward/backward values in these two columns differ; in each column they are computed for the sequence associated with the column

Baum-Welch Example (Cont)

- determining the expected transition counts for state 1 (not using pseudocounts)

$$
\begin{array}{cc}
\begin{array}{c}
\text { contribution } \\
\text { of TAG }
\end{array} & \begin{array}{l}
\text { contribution } \\
\text { of ACG }
\end{array} \\
n_{1 \rightarrow 1}=\frac{f_{1}(1) a_{11} e_{1}(A) b_{1}(2)}{f_{3}(3)}+\frac{f_{1}(1) a_{11} e_{1}(C) b_{1}(2)}{f_{3}(3)}
\end{array}
$$

 counts for state 2

Baum-Welch Example (Cont)

- determining probabilities for state 1

$$
\begin{aligned}
& e_{1}(A)=\frac{n_{1, A}}{n_{1, A}+n_{1, C}+n_{1, G}+n_{1, T}} \\
& e_{1}(C)=\frac{n_{1, C}}{n_{1, A}+n_{1, C}+n_{1, G}+n_{1, T}} \\
& \mathrm{M} \\
& a_{11}=\frac{n_{1 \rightarrow 1}}{n_{1 \rightarrow 1}+n_{1 \rightarrow 2}} \\
& a_{12}=\frac{n_{1 \rightarrow 2}}{n_{1 \rightarrow 1}+n_{1 \rightarrow 2}}
\end{aligned}
$$

Markov Models Summary

- we considered models that varied in terms of order, in/homogeneity, hidden state
- three DP-based algorithms for HMMs: Forward, Backward and Viterbi
- we discussed three key tasks: learning, classification and segmentation
- the algorithms used for each task depend on whether there is hidden state (correct path known) in the problem or not

Comments on Markov Models

- there are many successful applications in computational biology
- gene recognition and associated subtasks
- protein family modeling
- motif modeling
- etc.
- there are many variants of the models/algorithms we considered here (some of these are covered in BMI/CS 776)
- fixed length motif models
- semi-markov models
- stochastic context free grammars
- Gibbs sampling for learning parameters

