Markov Chain Models

(Slides courtesy of Dr. Mark Craven)

Motivation for Markov Models in
Computational Biology

 there are many cases in which we would like to represent
the statistical regularities of some class of sequences

— genes

— various regulatory sites in DNA (e.g. where RNA
polymerase and transcription factors bind)

— proteins in a given family

« Markov models are well suited to this type of task

A Markov Chain Model

transition probabilities
Pr(x, =a|x,_, =g)=0.16
Pr(x, =c|x,_,=g)=0.34
Pr(x, =g[x,_, =g)=0.38
Pr(x, =t|x_, =g)=0.12

transition

Markov Chain Models

e a Markov chain model 1s defined by
— a set of states
e some states emit symbols
* other states (e.g. the begin state) are silent
— a set of transitions with associated probabilities

e the transitions emanating from a given state define a
distribution over the possible next states

Markov Chain Models

e given some sequence x of length L, we can ask how
probable the sequence 1s given our model

 for any probabilistic model of sequences, we can write this
probability as

Pr(x) = Pr(x,,x,_ ..., X;)

=Prx,|x, .., x)Pr(x,_ | x, 5,0 ;). . Pr(X))

* key property of a (15t order) Markov chain: the probability
of each X. depends only on the value of X, |

Pr(x) =Pr(x,|x,) Pr(x,_ [x,_,)...Pr(x, | x,) Pr(x,)

= Pl‘(xl)ﬁ Pr(x; | x;_)

The Probability of a Sequence for
a Given Markov Chain Model

Sl

beg

&

Pr(cggt) =Pr(c)Pr(g|c)Pr(g | g)Pr(t|g)

Markov Chain Models

« can also have an end state; allows the model to represent
— a distribution over sequences of different lengths

— preferences for ending sequences with certain symbols

begin end

Markov Chain Notation

* the transition parameters can be denoted by 4, . where

axl-_lxl- - Pr(‘xi | xi—l)

« similarly we can denote the probability of a sequence x as

L

L
anl 1_[axi_lxl- = Pr(xl)n Pr(xi | xi—l)
=2

=2

where Qg, represents the transition from the begin state

Example Application

* CpG 1slands

— CG dinucleotides are rarer in eukaryotic genomes than
expected given the marginal probabilities of C and G

— but the regions upstream of genes are richer in CG
dinucleotides than elsewhere — CpG islands

— useful evidence for finding genes
e could predict CpG 1slands with Markov chains
— one to represent CpG i1slands

— one to represent the rest of the genome

Estimating the Model Parameters

e given some data (e.g. a set of sequences from CpG
1slands), how can we determine the probability parameters
of our model?

e one approach: maximum likelihood estimation
— given a set of data D

— set the parameters @ to maximize
Pr(D |0)

— 1.e. make the data D look likely under the model

Maximum Likelihood Estimation

e suppose we want to estimate the parameters Pr(a), Pr(c),

Pr(g), Pr(t)
e and we’re given the sequences

accgcgctta
gcttagtgac
tagccgttac

* then the maximum likelihood estimates are

Pr(a) = % =0.2 Pr(g) = % =0.233
9 8

Pr(c)=—=0.3 Pr(¢) =
(¢) 20 (¢) 20

=0.267

Maximum Likelihood Estimation

e suppose instead we saw the following sequences
gecegegcettg
gettggtggc

tggccgttge
* then the maximum likelihood estimates are

0 13
Pr(a)=— =0 Pr(g) = — = 0.433
(a) . (g) 20
Pr(c)—i—os Pr(f)—ﬁ—ozm
30 30

do we really want to set this to 0?

A Bayesian Approach

* 1nstead of estimating parameters strictly from the data, we
could start with some prior belief for each

» for example, we could use Laplace estimates

Pr(a) = -
() E (n,- N 1) pseudocount

l
* where #; represents the number of occurrences of
character 1

« using Laplace estimates with the sequences

gcegegettg Pr(a) = 0+1

gcttggtgoc 34
9+1

tggccgttgc Pr(c) _

34

A Bayesian Approach

* amore general form: m-estimates

n,+ p;fl\ prior probability of a

Sn|+m
. X __— number of “virtual” instances

l

Pr(a) =

e with m=8 and uniform priors
gecegegcettg
cttggtggc 9+0.25x8 11
gelgelee p I‘(C) _ _

tggeegttge 30+ 8 - %

Estimation for 15t Order Probabilities

* to estimate a 1% order parameter, such as Pr(c|g), we count

the number of times that g follows the history ¢ in our

given sequences

gecegegcettg
gettggtgoc
tggccgttgc

0+1

Pr(a =
(@) =172
T+1
Pr(c =
(cl8)=173
3+1
Pr =
(glg) >4
2+1
Pr(t]| g) =

12+4

« using Laplace estimates with the sequences

Pr(al|c) =
M

0+1

7

+4

Markov Chain Models

« can also have an end state; allows the model to represent
— a distribution over sequences of different lengths

— preferences for ending sequences with certain symbols

begin end

A Simple HMM

A4 G A4 G
V' N V' N
v v D 4

e given say a 7 in our input sequence, which state emitted it?

Hidden State

e we’ll distinguish between the observed parts of a problem
and the hidden parts

* 1n the Markov models we’ve considered previously, it 1s
clear which state accounts for each part of the observed
sequence

« 1n the model above, there are multiple states that could
account for each part of the observed sequence

— this 1s the hidden part of the problem

The Parameters of an HMM

* as in Markov chain models, we have transition
probabilities

ay =Prim, =17, =k)

probability of a transition from state & to /

JU represents a path (sequence of states) through
the model

» since we’ve decoupled states and characters, we might also
have emission probabilities

e, (b) =Pr(x, =b|m, =k)

probability of emitting character b 1n state &

A Simple HMM

a5 probability of a transition from state 1 to state 3

e, (A) probability of emitting character 4 in state 2

o.2<)

HQ QP

WINPRE B

begin

H----

0/5'
0 I

0.5

HQ QP

IS

N WWD

B----

e I S

end

Three Important Questions

How likely 1s a given sequence?
the Forward algorithm

What 1s the most probable “path” for generating a given
sequence?

the Viterbi algorithm

How can we learn the HMM parameters given a set of
sequences”?

the Forward-Backward (Baum-Welch) algorithm

How Likely 1s a Given Sequence?

the probability that the path Vi A 0 1S mkﬁn and the sequence
1s generated:
& X X;

L
Pr(x,..x;,my.. 7T) = a, Henl_ (x,)a,

(assuming begin/end are the only silent states 0%1=plath)

i it

WIN PR B

H----

0.2
A
C
G
0.5, |T
begin
0.5

(DINe N4

S

0.

0.40

8

HQ O P

B----

N WWNDN

0.6

S

0.8

B----

0

.2

@O P

O o0ooo
e I S

7

&

0.1

How Likely Is A Given Sequence?

end

Pr(AAC,t)=a, xe (A)xa, xe(A)xa,xe,(C)xa,;

=0.5%0.4x0.2x0.4%x0.8x0.3x0.6

How Likely 1s a Given Sequence?

 the probability over all paths 1s:

Pr(x,...x;) = E Pr(x,...x, ,7,..0T)

JC

 but the number of paths can be exponential in the length of
the sequence...

e the Forward algorithm enables us to compute this
efficiently

How Likely 1s a Given Sequence:
The Forward Algorithm

. define J, k (7) to be the probability of being 1n state k
having observed the first i characters of x

« we want to compute [, (L), the probability of being in
the end state having observed all of x

 can define this recursively

The Forward Algorithm

« because of the Markov property, don’t have to explicitly enumerate
every path — use dynamic programming instead

o.2<\4 0-4<\4
A 0.4———|a 0.2
c 0.1 98 Jc 0.3
G 0.2 G 0.3
0.6
0-/5v T 0.3 T 0.2\
begin end
o [e
0.5 A 0.4 »|A 0.1 go.9
c 0.1 92 |c 0.4
G 0.1 G 0.4
</T 0.4 N T 0.1
A
1

0.8 0

« e.g.compute f,(i) using f (i-1), f,(i-1)

The Forward Algorithm

e 1nitialization:

f (O) =] probability that we’re in start state and
0 have observed 0 characters from the sequence

1,(0)=0, for k that are not silent states

The Forward Algorithm

* recursion for emitting states (i =1...L):

f,()=¢ (z’)Z f(i-Da,

e recursion for silent states:

J,) = Z Jfie@Day

The Forward Algorithm

e termination:

Pr(x) = Pr(x,..x,) = f,, (L) = Z fi(L)ayy,

probability that we’re in the end state and
have observed the entire sequence

Forward Algorithm Example
0. 2<\4 0. 4<\4

HQ QP

\o
_
W

o O OO
WN R DS

begin end

oI

HQ QP
O O O O
o e
&
HOOOO
El

0.8 0.1

« given the sequence x = TAGA

Forward Algorithm Example

« given the sequence x = TAGA

e initialization

fo(0)=1 £,(0)=0K £(0)=0

e computing other values

Ji(D)=e(T)x(f,(0O)xay + f,(0)a,,) =
0.3x(1x0.5+0%x0.2)=0.15

(1) =04x(1x0.5+0x0.8)

S1(2) =e(Dx(fy(Dxa, + fi(Da,,) =
0.4%x(0x0.5+0.15%0.2)

Pr(TAGA) = f5(4) = (f3(d) x a5 + f,(d)ay,s)

begin

Forward Algorithm Note

in some cases, we can make the algorithm more efficient by taking into
account the minimum number of steps that must be taken to reach a

state

&

(‘4

H

>

i :

: |

N
e

|

e ¢.g. for this HMM, we don’t
need to initialize or compute

the values
£3(0), 1,(0),

eﬁ‘ /5(0), fs(D)

Three Important Questions

How likely 1s a given sequence?

What 1s the most probable “path” for generating a given
sequence?

How can we learn the HMM parameters given a set of
sequences”?

Finding the Most Probable Path:
The Viterb1 Algorithm

define v, (i) to be the probability of the most probable
path accounting for the first i characters of x and ending in
state k

we want to compute Vv, (L) , the probability of the most
probable path accounting for all of the sequence and
ending in the end state

can define recursively
can use DP to find v, (L) efficiently

Finding the Most Probable Path:
The Viterb1 Algorithm

e 1nitialization:
Vo (O) =1

v,(0) =0, for k that are not silent states

The Viterb1 Algorithm

* recursion for emitting states (i =1...L):

() = € (x,) max]y, (i - Da,

ptr, (i) = arg max[vk (i-1a, :I keep track of most
k probable path

e recursion for silent states:

v, (i) = mlf‘X[Vk (i)akl:l

ptr, (i) = arg inax[vk (Day,]

The Viterb1 Algorithm

e termination:

Pr(x,m) = mgx (vk (L)akN)

), =argmax (Vk (L)ayy)
k

 traceback: follow pointers back starting at T,

Forward & Viterb1 Algorithms

* Forward/Viterbi algorithms effectively consider all
possible paths for a sequence

— Forward to find probability of a sequence
— Viterbi to find most probable path

» consider a sequence of length 4...

—

begin end

N
Y

(/
|
B S4 S

Three Important Questions

How likely 1s a given sequence?

What 1s the most probable “path” for generating a given
sequence?

How can we learn the HMM parameters given a set of
sequences”?

Learning Parameters

if we know the state path for each training sequence, learning the
model parameters is simple

— no hidden state during training

— count how often each parameter 1s used

— normalize/smooth to get probabilities

— process is just like it was for Markov chain models

if we don’t know the path for each training sequence, how can we
determine the counts?

— key insight: estimate the counts by considering every path
weighted by its probability

Learning without Hidden State

* learning 1s simple 1f we know the correct path for each
sequence 1n our training set

—
— \
begin | ﬂ / end
-

e estimate parameters by counting the number of times each
parameter 1s used across the training set

Learning with Hidden State

« 1f we don’t know the correct path for each sequence in our
training set, consider all possible paths for the sequence

==
N

I
L
B 54 S =

e,

begin end

e estimate parameters through a procedure that counts the
expected number of times each parameter 1s used across
the training set

Learning Parameters:
The Baum-Welch Algorithm

a.k.a the Forward-Backward algorithm
an Expectation Maximization (EM) algorithm

— EM 1s a family of algorithms for learning probabilistic
models 1n problems that involve hidden state

in this context, the hidden state 1s the path that best
explains each training sequence

Learning Parameters:
The Baum-Welch Algorithm

 algorithm sketch:
— 1nitialize parameters of model
— 1terate until convergence

e calculate the expected number of times each
transition or emission 1s used

* adjust the parameters to maximize the likelihood of
these expected values

The Expectation Step

* we want to know the probability of producing sequence x
with the i th symbol being produced by state & (for all x, i

and k) 0.2<\4 0.4<\4

A 0.4—|a 0.2
c 0.1 98 |c 0.3
G 0.2 G 0.3
0.6
0-/5v T 0.3 T 0.2\
begin n end
o [N e
0.5 0.9

DI N

OoOooo
B

g &
H----
/

N

The Expectation Step

» the forward algorithm gives us £, (7) , the probability of
being 1n state £ having observed the first i characters of x

0.2

Oy
o o0oo
SRS

@Oy
N

0.2<\4 0.4/
A 0.4———|a 0.2
c 0.1 98 [c 0.3
G 0.2 G 0.3
0.6
0-/5v T 0.3 T 0.2\
begin n end
0 ™ / 5
0.
0.
0.

3 &

CAGT

The Expectation Step

« the backward algorithm gives us b, (i) , the probability of
observing the rest of x, given that we’re in state k after i

characters
0. 2<\4 0.4 <\4

A 0.4———|a 0.2
c 0.1 98 |c 0.3
G 0.2 G 0.3
0.6
0-/5v T 0.3 T 0.2\
begin n end
o [e I e
c 0.1 92 |c 0.4
G 0.1 G 0.4
z T 0.4 </T 0.1

CAGT

The Expectation Step

e putting forward and backward together, we can compute
the probability of producing sequence x with the i th
symbol being produced by state g

0. 2<\4 <\4

0.4
N

A 0.4 A 0.2
c 0.1 98 |c 0.3
G 0.2 G 0.3
0.6
0-/5v T 0.3 T 0.2\
begin n end
o [e
0.5 A 0.4 »|A 0.1 po.9
c 0.1 92 |c 0.4
G 0.1 e
:y T 0.4 </T 0.1\

The Expectation Step

 first, we need to know the probability of the i th symbol
being produced by state &, given sequence x

Pr(r, = k | x)

e given this we can compute our expected counts for state
transitions, character emissions

The Expectation Step

the probability of of producing x with the i th symbol being
produced by state £ 1s

Pr(w, = k,x) =Pr(x,..x,,t, = k)x

Pr(x,,,..x, |m, =k)

i+1°
the first term 1s f i (i) , computed by the forward algorithm

the second term 1s bk (1), computed by the backward
algorithm

The Backward Algorithm

e 1nitialization:

b,(L)=a,

for states with a transition to end state

The Backward Algorithm

* recursion (i =L...1):

. ‘a,b, (i), if /1s silent state)
b, (i) = 2 y . .
a,e (x.,)b (i+1), otherwise

The Backward Algorithm

e termination:

(a,,b,(0), if / 1s silent state]

a,e (x,)b,(1), otherwise

Pr(x) = Pr(x,...x,) = Z <

The Expectation Step

* now we can calculate the probability of the i th symbol

Pr(w. =k, x)
Pr(x)

~ fub, (i)
Pr(x)

~ fub, (i)
Sy (L)

Pr(m, = k | x) =

The Expectation Step

* now we can calculate the expected number of times letter ¢
1s emitted by state &k

* here we’ve added the superscript j to refer to a specific
sequence 1n the training set

1 . .
— AV VNS
e = | ey 21 b1 D
x/] r(x) {i|lx! =c}
sum over sum over positions
sequences where ¢ occurs 1n X

The Expectation Step

e and we can calculate the expected number of times that the

transition from k to / 1s used

E / kj (Daye, (xi]-.l-l)blj (i+1)
Pt = E | Pr(x’)

x/

e orif/is a silent state

/i kj (i)aklblj (1)
n, = E E .
! Pr(x’)

x/

The Maximization Step

Let 1, . be the expected number of emissions of ¢ from
state k for the training set

estimate new emission parameters by:

nk,c

€L (C) = E n, .

'

C

just like 1n the simple case

but typically we’ll do some “smoothing” (e.g. add
pseudocounts)

The Maximization Step

« let "y, be the expected number of transitions from state
k to state / for the training set

e estimate new transition parameters by:

The Baum-Welch Algorithm

 1nitialize the parameters of the HMM
 1terate until convergence
— initialize 7, ., n,_,, with pseudocounts
— E-step: for each training set sequence j = 1...n
» calculate J; (2) values for sequence j
e calculate b, (i) values for sequence ;
* add the contribution of sequencejto 1, ., n,_,,
— M-step: update the HMM parameters using n,, , 1,

Baum-Welch Algorithm Example

e given
— the HMM with the parameters initialized as shown
— the training sequences TAG, ACG

1.0 |A 0.4 0 2 A 0.1 0.9

. ——|C 0.1 - »|C 0.4 ——
begin G 0.1 G 0.4 end
n </T 0.4 </T 0.1

0.8 0.1

« we’ll work through one iteration of Baum-Welch

Baum-Welch Example (Cont)

e determining the forward values for TAG

fo(O) =1
(D =e(T)xa, x f,(0)=0.4x1=0.4
fi(Q)=e(Axa, x (1) =0.4x0.8x0.4=0.128
() =e,(A)xa,x (1) =0.1x0.2x0.4 = 0.008
(3 = e, (G)x(a, x £1(2) + ax, x f>(2)) =

0.4 % (0.0008 + 0.0256) = 0.01056

+ bEsd 3 eodpytxiufss (B)vadds thag DekEhd EventOvl R4 o
probability

e 1n a similar way, we also compute forward values for ACG

Baum-Welch Example (Cont)

determining the backward values for TAG

b,(3)=1

b,(3)=a,;xb,(3)=0.9%x1=0.9

b,(2)=a,,xe,(G)xb,(3) =0.1x0.4x0.9 =0.036

b(2)y=a,,xe,(G)xb,(3)=0.2x0.4%x0.9=0.072

b(1)=a,, xe(A)xb((2)+a,xe,(A)xb,(2) =
0.8x0.4%x0.072+0.2x0.1x0.036 =0.02376

b (hrre v, oseufejoscely (hlues thdd ssfedns QDR IO 0009504
probability

in a similar way, we also compute backward values for ACG

Baum-Welch Example (Cont)

e determining the expected emission counts for state 1

contribution contribution
of TAG of ACG pseudocount

b o AOB@ L AOKO
£:3) £:3)

. LOBR)
15(3)

ne= 1

— ﬂ(l)bl(l) + 1

7
| 13(3)

*note that the forward/backward values in these two columns differ; in each column
they are computed for the sequence associated with the column

Baum-Welch Example (Cont)

« determining the expected transition counts for state 1 (not using

pseudocounts)
contribution contribution
of TAG of ACG
n = Si(Da, e (4)b,(2) + Si(Da,,e,(C)b(2)
- £,3) £.03)

_ fi(Day,e,(A)b,(2) + f,(2)a,,e,(G)b,(3) + fi(Day,e, (C)b,(2) + f,(2)ay,e,(G)b,(3)

Mes =, . : . .
* in a similar way,/W&also determine the expected emission/réhsition

counts for state 2

Baum-Welch Example (Cont)

e determining probabilities for state 1

n
1.4
el(A) =
mya+*nc+ng+n
n
1.C
el(C) =
Myt cthgth o
n
-1
a
n_,+n_,
n
_ 12
d,, =

n_,+n_,

Markov Models Summary

we considered models that varied in terms of order, in/homogeneity,
hidden state

three DP-based algorithms for HMMs: Forward, Backward and Viterbi
we discussed three key tasks: learning, classification and segmentation

the algorithms used for each task depend on whether there is hidden
state (correct path known) in the problem or not

Comments on Markov Models

 there are many successful applications in computational
biology

— gene recognition and associated subtasks
— protein family modeling

— motif modeling

— eftc.

 there are many variants of the models/algorithms we

considered here (some of these are covered 1n
BMI/CS 776)

— fixed length motif models

— semi-markov models

— stochastic context free grammars

— G1bbs sampling for learning parameters

