Assignments

· CodeLab #2 due today 11:58 PM

· CodeLab #3 due Wednesday 9/29

· Assignment 1

· There has been a major update to Assignment 1. You must either get a new stationary or download the zip file again.
· Due Friday 10/1
4.1 Defining Instantiable Classes
· Can’t always find a predefined class to match current needs

· Specify class
· How interact with class and instances
· Kinds of instance and class methods should support
· Want to be able to use naturally and logically
· Consider alternative designs
· Merit depends on how the class is used in programs
· Data member can be class/instance variable/constant

· Double preferred real type

· Memory no longer so critical

· Javadoc comments

· Easily produce online documentation

· Similar to other commenting styles

· Makes your code easier for other programmers to read

· Asterisks on the lines betweent he first and the last markers

· No significance

· Visual aid to highlight the comments

· Accepted standard

· Method header comment

· Record the method’s purpose

· List of parameters passed to the method

· Value returned from the method

· Descriptions can go beyond one line

· Instance variable

· Declared within the class declaration

· Outside any method of the class

· PICTURE

· Method declaration syntax EXAMPLE

· static

· Class methods cannot access instance data, only class data

· Instance methods can access both class and instance data

· Defining a class is defining how an instance of that class will behave

· Rarely need class methods

· Return statements

· Use parentheses to clearly dileneate the expression part of the statement

· Class listing convention

· List methods in each section alphabetically

· Irrelevant to java compiler

· For our own ease

· Block comment

· Not needed by javadoc generator

· Include as handy reference for other programmers

· Not javadoc, because only use javadoc for class and its data member/method descriptions

/**

 * This Tire class emulates a tire by keeping track of tire pressure.

 *

 * @author Margaret Richey

 */

public class Tire {

/** the number of pounds of pressure in the tire */

private int pressure;

/**

 * Assign a designated number of pounds in the tire.

 */

private void setPressure(int lbs) {

pressure = lbs;

}

/**

 * Return the number of pounds in the tire.

 *

 * @return the pressure amount

 */

private int getPressure() {

return pressure;

}

/**

 * Add more air pressure in the tire.

 *

 * @param how much air to add to the tire.

 */

public void pump(int lbs) {

setPressure(pressure + lbs);

}

}

4.2 Instantiable Classes and Constructors
· Design robust classes

· Don’t rely on the programmer to use the class correctly

· Constructor

· Must have the same name as its class

· No return type

· Modifier

· Need not be public

· Anything else

· Extremely rare

· Not covered

· Default constructor

· Constructor automatically provided by the compiler if we do not define one

· If do define own, default is not provided

· Constructor purpose

· Initialize object to valid state

· Accomplish by using the constructor to initialize all member data

· EXAMPLE

/**

 * Default constructor

 * Initializes pressure to 0

 */

public Tire() {

 pressure = 0;

}
· Define multiple constructors

· Lets programmer create a new instance of the same class in different ways

· EXAMPLE valid/invalid

· More cleanly

· Have them call each other using this

· Recommend calling line the only line in the constructor

· If use multiple lines, calling line should be first

· EXAMPLE

/**

 * Default constructor

 * Initializes pressure to 0

 */

public Tire() {

 this(0);

}

/**

 * Tire constructor taking an initial pressure

 */

public Tire(int initPressure) {

 pressure = initPressure;

}
4.3 Information Hiding and Visibility Modifiers
· Visibility modifiers designate the accessibility of data members and methods

· Not syntactically required
· Strongly recommended
· Always designate data members and methods as public or private
· Object-oriented design philosophy
· Instantiable class design: designing behavior of instances
· Declare methods public if you want client programmers to be able to use them
· Declare methods private if they involve internal details that should be hidden from client programmers
· Encapsulation mechanism
· Allows easier code modificatiion
· Changes to the internal workings don’t affect client programs
· Need data members to implement methods
· Considered internal details of class because client programmers don’t need to know about them to use the class
· Declare data members private
· Behavior of instances determined by public methods
· Internal details hidden from client programmers implemented with private data members and private methods
· EXAMPLE
· Student object
· Public learn()
· Private energy
· Learn uses changeable internal methods
· Students restore energy in various ways
· If declare an internal detail public, back door created that can break the functionality of the class
· EXAMPLE bank account
· Must declare data members private to ensure class integrity: works because client programmers can only alter the data via public methods
· Class constants can sometimes be declared public in good style
· Constant, so everyone already prohibited from modifying
· Clean way to make certain characteristics of the instances known to the client programmers
· Very common in Java
· Distinguish private and public components in the class diagram
· Plus symbol for public
· Minus symbol for private
· EXAMPLE
public class Taxi {

public static final double START_METER = 0.0;

public static final double DEFAULT_COST_PER_MILE = 0.8;

private static int currentId = 1;

private final int ID;

private final double COST_PER_MILE;

private double tripMeter;

public Taxi (double costPerMile) {

ID = currentId;

COST_PER_MILE = costPerMile;

resetTripMeter();

currentId += 1;

}

public Taxi () {

this(DEFAULT_COST_PER_MILE);

}

public int getId () {

return ID;

}

public double getCostPerMile () {

return COST_PER_MILE;

}

public double getTripMeter () {

return tripMeter;

}

public void go (double miles) {

tripMeter = tripMeter + (miles * COST_PER_MILE);

}

public void resetTripMeter () {

tripMeter = START_METER;

}

}

PAGE
8
CS 302 Lecture 6 0924

