
SLEEPY: Sampling User-Level Execution via EIPs Profiled
Continuously

Michelle Joy Moravan Margaret Ann Richey

May 10, 2005

Abstract

Understanding where the system is spending its time is
necessary for debugging and optimizing applications. As
such, we present an analysis tool with the intent to contin-
uously take measurements on every timer interrupt dur-
ing a sampling period. The end result is a collection of
data samples that have been aggregated to display what
instruction pointers are seen most often. These aggregates
can be viewed on an instruction level, an instance of an
application, a subset of the running applications, or on
the system as a whole. Based on the benchmarks, the ma-
jority of the results are verifiable and the sampling itself
is extremely efficient with minimal overhead (0.01 - 0.9
percent). The overhead of the system utilizing the worst
case backup scheme is three to six percent.

1 Introduction

Understanding the behavior of applications is essential to
obtaining optimal performance. However, this is often
hard to determine. Is poor performance the result of the
poor design of an application or is there a problem with
the interaction between multiple applications?

SLEEPY endeavors to answer these questions through
the use of continuous profiling. Our implementation pro-
vides an accurate and efficient way of determining where
processes spend their time. By taking samples of the in-
struction pointer (EIP) of the currently running process
on every timer interrupt, an overall system view can be
obtained. The number of times each EIP is sampled is
proportional to the time the CPU spends executing that in-
struction. Thus, after a sampling period has taken place,

a front end takes the samples and aggregates the results to
display the percentage each EIP occurred.

In addition, SLEEPY has the ability to aggregate on
different granularities. This is especially important when
zeroing in on certain applications, functions, or even in-
structions. The additional view of the system-wide per-
formance gives the effect of multiple applications inter-
acting with each other versus simulating the performance
of a system without taking into account the timesharing
nature of modern operating systems. Both views are im-
portant in determining the bottlenecks within system and
application performance.

Profiling can also determine memory requirements of
applications. The amount of memory used and the areas
accessed most often can be determined by looking at the
instruction pointer. Again, this can impact the design of
data structures or access patterns of data during runtime.

Therefore, the use of such a profiling system is mani-
fold. This profiling enables application and systems engi-
neers to find bottlenecks within their work. SLEEPY can
be used as a debugging and optimizing analysis tool.

It should also be mentioned that SLEEPY is focusing
on user-level events. The Linux kernel already provides a
profiler for kernel operations.

Our main contributions are the methods used to enable
sampling. In this paper, we explore techniques for effi-
ciently and accurately measuring statistics on every timer
interrupt. The rest of the paper is organized as follows.
Section 2 gives a brief outline of the infrastructure for
building and testing the tool and describes the methodol-
ogy used to build (name here). In Section 3, we report our
results. We present future directions to extend the scope
of the tool in Sections 4 and 7. The related work is dis-
cussed in Section 5 and we conclude in 6.

1

2 Implementation

We limit the scope of this work to continuously profiling
the x86 architecture in a Linux environment. Toward this
end, we extended the 2.4.21 kernel of Red Hat 7.2. As we
proceed, bear in mind that the final output of the kernel
portion of our software consists of a stream of pairs, each
of which indicates the application that was running and
which EIP it was about to execute when our code recorded
that sample. In the subsequent subsections, we will de-
scribe the usage, control flow, and data structures of our
implementation.

2.1 Usage

Despite the original goal of continuous profiling, we allow
the user to enable and disable sampling at will. This of-
fers several benefits. Primarily, this interface incurs sam-
pling overheads only when the user actually wishes to ob-
tain profiling information. It also expedited our perfor-
mance experiments by allowing us to use the same kernel
to benchmark execution times with and without sampling.
This eliminated the recompilations and reboots that would
otherwise have been necessary.

Thus typical interaction with our profiler involves three
programs: start , stop , and Parse . The user exe-
cutesstart to begin a profiling session. When he is
done running the programs of interest, he executesstop .
To facilitate interpretation of the resultant output stream,
we provide theParse program, which takes as an argu-
ment the name of a file written by our sampler.Parse
produces two similar streams, except that one aggregates
on both application and EIP, while the other aggregates on
only application. The former lets the user see where par-
ticular applications spent their time, while the latter more
clearly shows how the various applications divided CPU
time.

In addition to the EIP, our user might also like to obtain
the actual instruction and the method containing it . Given
the program binary, she can easily do so by running the
shell commandobjdump -d <bin> . This produces
an assembly version of the program organized as a se-
quence of instructions, each keyed by its corresponding
EIP. Theobjdump command also associates groups of
instructions with their enclosing method.

We achieved this on-off functionality by making all

places where the kernel called our profiling code depen-
dent on a global variable. We then added two system calls,
which toggle the value of this conditional. These calls
also perform some data structure maintenance, which we
will discuss further below. Ourstart andstop pro-
grams are simply C invocations of these syscalls; users
are free to supply additional programmatic interfaces.

2.2 Infrastructure

The methodon hard interrupt comprises the core
of our software; the kernel calls it each time the hardware
timer expires (ten times per second). This event triggers
many activities, which the kernel handles in one of two
ways: as a hard or a soft interrupt. Hard interrupt code
executes immediately, and no other interrupts may occur
until it completes. In contrast, a soft interrupt only uses
the hard interrupt to reschedule the actual activity for a
later time. To prevent the application from terminating
before we sample it, and to permit access to the correct
EIP, the entirety of our profiling operation must occur as
a hard interrupt.

The body of onhard interrupt primarily serves to note
the application and corresponding EIP at regular inter-
vals. Doing so requires maintenance of a few data struc-
tures, and efficiency further behooves it to provide a batch
mechanism for periodically dumping this data to file.
Having presented a high-level overview of our strategy,
we next explore the details of the data structures we chose
to accomplish these goals.

2.3 Appids

The first challenge involves naming. To correctly interpret
his results, our user must differentiate different applica-
tions, and also distinct instances of the same application,
which may run simultaneously. The kernel solves this
by using the process ID (PID) to provide unique names.
When an application ends, however, the kernel may reuse
its PID. Our application cannot allow this, as it must “re-
member” old applications that have completed, and store
their profiling data separately from that of newer applica-
tions. We thus introduce the concept of anappid to pro-
vide unique names through the lifetime of a profiling ses-
sion. As Figure 1 shows, an appid consists of thenameof
the application’s binary as well as aninstance , which

2

appid

name

instance

char*

int

Figure 1:The appid data structure represents a unique name
within the context of a sampling session. The name field contains
the name of the binary, while the instance field encapsulates the
number of times that binary has executed.

data

appid_table_entry*

appid

next

appid_table_entry

Figure 2:An appid table entry represents the largest instance
seen for a particular application. Since it is accessed through a
linked list, it contains a pointer to the next entry.

indicates how many times that particular application has
run during the current session.

2.4 Max Appid Table

To implement this naming scheme, we must provide a
means of generating new appids. Toward this end, we
introduce themax appid table , a hash table probed
with an application name. Conflicts create linked lists in
the buckets, so we use for each element a struct consist-
ing of a piece of appiddata and a pointer to thenext
element in the bucket. In this context, the instance field
of each appid corresponds to the instance number of the
most recently created instance of that application. Figures
2 and 3 show these structures schematically.

The maxappid table supports three main operations.
The kernel calls the most frequently used,increment ,
whenever it needs to generate a new unique name. This
function usesELFHash [4] to probe the table for the
name of a given application. If found, the code increments

.

.

.

name

appid_table_entry

Figure 3: The max appid table hashes application names to
the largest existing instance number. Synonyms are handled by
creating linked lists in conflicting buckets.

the corresponding instance; otherwise, it adds a new ap-
pid to the table, initialized with an instance of zero. Either
way, the new instance value is returned for use in con-
structing a new appid.

The user must also initialize the table before sampling
begins; the start system call accomplishes this. Similarly,
the stop system call deallocates maxappid table entries.

2.5 Pid Appid Table

When the timer triggers onhard interrupt, the kernel pro-
vides two pieces of information: the current PID and the
corresponding EIP. Before our code can record this data,
it must first convert the PID to an appid. A second hash ta-
ble, thepid appid table , orchestrates this. This hash
table maps a PID to an appid, again using ELFHash. Like
the maxappid table, the pidappid table handles conflicts
by generating linked lists. As shown in Figure 4, each
element thus contains fields for thepid , the correspond-
ing appid , and a pointer to thenext element. Figure 5
shows these entries in the context of the entire table.

The onhard interrupt code must always probe the
pid appid table to effect a PID to appid translation. If the
PID does not hit, onhard interrupt is sampling a new pro-
cess for the first time. It thus uses the maxappid table to
generate a new appid to represent this PID incarnation,
and inserts this into the pidappid table for future refer-

3

pid

pid_appid_table_entry

int

pid_appid_table_entry*

next

appid
appid

Figure 4: A pid appid table entry associates a PID with an
appid. It requires the PID for verifying hits, as multiple PID’s
may hash to the same bucket. Similarly, the next pointer indi-
cates further conflicting entries, if any.

.

.

.

pid

pid_appid_table_entry

Figure 5: The pid appid table maps unique kernel names,
PID’s, to unique sampling session names, appids, for the life-
time of its component PID’s. If the kernel reuses a PID, the
pid appid table may contain different mappings for the same
PID at different times, because the same PID can represent mul-
tiple different processes through time.

ence. To avoid confusing incarnations, we must remove
mappings from the pidappid table as soon as a process
dies and its PID becomes available for reuse. The kernel
therefore calls apid appid table delete routine in
???

Like the maxappid table, the pidappid table also re-
quiresinit andfree functions, which the start and stop
system calls invoke, respectively.

2.6 Summary of Kernel Changes

We implemented the majority of the code for the above
structures outside of the kernel, and performed integration
by merely adding the header files tolinux/include/
and the C files tolinux/kernel . However, as men-
tioned previously, some of our code did require changes
and additions to existing files. We briefly summarize these
here.

First, to implement our start and stop system
calls, we added entries to thesys call table in
linux/include/asm/unistd.h and call number
stubs tolinux/include/asm/unistd.h . We in-
corporated the call implementations into one of our origi-
nal C files,interface.c .

Second, while our code creates pidappid table en-
tries on demand in onhard interrupt, correctness requires
us to remove cached values as soon as the kernel can
reuse a PID, or on process deletion. Thus we added a
call to ouron process delete function, which calls
pid appid table delete if sampling is enabled, to
do exit in linux/kernel/exit.c , which handles
other process delete functionality.

Finally, we needed the kernel to call onhard interrupt
on every timer interrupt. The kernel al-
ready includes some profiling mechanisms
(see Section 5), namelyx86 do profile in
linux/include/asm/hw irq.h . This function let
us distinguish interrupts occurring in kernel space from
those is user space. However, determining this condition
required use of the argumentregs . While the variant of
2.4.21 on our personal machines provided this as the argu-
ment to x86do profile, the version on our Crash and Burn
disk did not. Thus we also ended up changing the caller
of this function, smp local timer interrupt
in arch/i386/kernel/time.c . This function
fortunately had access to regs, so we merely changed
the argument to x86do profile. In addition to deciding
whether or not to sample, we also use regs to obtain
the user-level EIP at the time of the interrupt. The final
argument that onhard interrupt needs, the PID, we
access via thecurrent struct.

4

2.7 On Hard Interrupt

We close our discussion of our implementation with a
brief outline of the body of onhard interrupt, which
x86 do profile passes the current user-level PID and EIP.
If the user has not enabled sampling, this method does
nothing. Otherwise, it first probes the pidappid table
with the pid argument to determine the corresponding
appid. If the probe does not hit, onhard interrupt gener-
ates a new appid using the maxappid table, and caches
this value in the pidappid table for next time. It then
utilizes a relic of our attempts at buffering (see Section
7). In essence, onhard interrupt only exports data to
/var/log/messages via printk everyn samples,
wheren is a constant chosen on compilation. For our ex-
periments we used 11, because as a prime, it gave even
hash behavior when used as a buffer size, and because it
was small enough to cause frequent dumps.

Thus, on each sample, onhard interrupt inserts the
current sample into a buffer of this size,active buf .
When it fills the last slot, it executes a routine to empty
the buffer,background process . For this implemen-
tation, backgroundprocess actually executes within the
hard interrupt and merely prints the contents of the buffer
to printk, and then re-initializes it. Section 7 explains why
the implementation we have just presented does not use
real buffering, and also describes the several designs and
strategies we attempted.

3 Evaluation

We next evaluate the implementation just described, in
terms of correctness and performance. For both aspects,
we used three benchmarks.

3.1 Benchmarks

The first,loop , contains only a simple for loop that adds
the index of the current iteration to a running total for one
billion iterations. The second,call , has nested for loops.
The outer acts as above, except that it only iterates one
hundred thousand times, and each iteration adds the re-
sult of a procedure call to the running total. The called
procedure takes as an argument the current iteration, and
performs the same summation of the index to a running

total with its argument as the number of inner iterations.
Our final benchmark,btree , executes for three million
iterations. Twenty percent of these perform random in-
serts into the tree, while the remaining eighty percent per-
form look-ups. The B-tree itself implements traversals via
loops and insertions recursively. Nodes do not have parent
pointers.

3.2 Correctness

To determine correctness, we performed three trials for
each of the three benchmarks, with sampling enabled. We
then copied the applicable section of /var/log/messages
into a separate file, and used Parse to aggregate the EIP
counts. We also used objdump to obtain an assembly ver-
sion of each benchmark, for a reality-check.

3.2.1 Loop Benchmark

Figure 6 shows a histogram of the mean counts for each
EIP observed across all three loop benchmark trials. We
expect sampling of loop to yield only a few distinct EIP’s
because the code spends most of its time in a single for
loop, which should correspond to just a few assembly
instructions. Indeed, Figure 6 meets these expectations,
as all 2128 samples (counting all three executions) touch
only six distinct instructions.

However, this data gains far more heft when combined
with knowledge of the actual assembly. The pertinent
fragment of the objdump generated from the loop exe-
cutable follows. We omit the hex translations of the in-
structions for brevity, and include the section label for
context. Note that we also exclude several unreferenced
lines from the beginning of themain section.

...
08048480 <main>:

...
80484a6: mov %esi,%esi
80484a8: mov 0xfffffffc(%ebp),%eax
80484ab: cmp 0xfffffff8(%ebp),%eax
80484ae: jl 80484b4 <main+0x34>
80484b0: jmp 80484c4 <main+0x44>
80484b2: mov %esi,%esi
80484b4: mov 0xfffffffc(%ebp),%eax
80484b7: lea 0xffffffec(%ebp),%edx

5

Figure 6: EIP distribution from sampling the loop bench-
mark. Even though our software took well over seven hundred
samples while running this benchmark, all were of one of six
EIP’s. This strongly supports our thesis that our software sam-
ples correctly: since this program spends the majority of its time
within a single for loop, we expect only a small range of EIP’S
to appear, and these to come frequently.

80484ba: add %eax,(%edx)
80484bc: lea 0xfffffffc(%ebp),%eax
80484bf: incl (%eax)
80484c1: jmp 80484a8 <main+0x28>
80484c3: 90 nop

...

Most importantly, this code shows that all measured
EIP’s do occur in themain section of the disassembly;
correctness demands this as no other section in such a
simple program could contain programmer-defined code.
Second we see that all six measured instructions occur
between the destination of ajmp and the actual jmp in-
struction. This strongly suggests we do indeed observe
the part of the code that actually comprises the loop. For
comparison, the corresponding C fragment follows.

for (index = 0; index < MAX_ITERATION;
index++) {

sum += index;
}

3.2.2 Call Benchmark

We performed an analogous experiment for the slightly
more complex benchmark, call. Figure 7 shows the his-

Figure 7: EIP distribution from sampling the call bench-
mark. This histogram shows the mean number of references for
each bucket among the three trials. The call benchmark showed
more variance among its trials than loop did; there were three
EIP’s that were measured only once, and only in one bench-
mark. Averaged, then, these buckets were empty. This explains
the presence of the empty buckets in the graph.

togram. Here we see more variation among the trials. The
buckets that appear empty in the figure each held only a
single sample, and that from only one benchmark. (These
anomalies were distributed across the benchmarks, how-
ever). Like loop, on the other hand, samples remain con-
centrated among a few EIP’s.

To better understand this data, we next examine the
corresponding disassembly. We first discuss instructions
sampled from theloop routine.

08048480 <loop>:
8048480: push %ebp
8048481: mov %esp,%ebp
8048483: sub $0x8,%esp
8048486: movl $0x0,0xfffffff8(%ebp)
804848d: movl $0x0,0xfffffffc(%ebp)
8048494: mov 0xfffffffc(%ebp),%eax
8048497: cmp 0x8(%ebp),%eax
804849a: jl 80484a0 <loop+0x20>
804849c: jmp 80484b0 <loop+0x30>
804849e: mov %esi,%esi
80484a0: mov 0xfffffffc(%ebp),%eax
80484a3: lea 0xfffffff8(%ebp),%edx
80484a6: add %eax,(%edx)

6

80484a8: lea 0xfffffffc(%ebp),%eax
80484ab: incl (%eax)
80484ad: jmp 8048494 <loop+0x14>
80484af: nop

The first “empty” EIP refers to the first instruction of
the loop function, the procedure called inside the outer
loop. The next six buckets all correspond to instructions
within this function. Close interpretation of the assembly
again reveals that these instructions comprise the major
work of the code: in this case, the loop within the proce-
dure call. The second anamolous bucket also references
part of the loop function, but in this case a piece outside of
the loop. The final single sample belongs to main, within
the outer loop.

080484b8 <main>:
...
80484e3: cmp 0xfffffff8(%ebp),%eax
80484e6: jl 80484ec <main+0x34>
80484e8: jmp 8048508 <main+0x50>
...
80484f2: call 8048480 <loop>
...
8048504: jmp 80484e0 <main+0x28>
...

The fact that nearly all of the samples were of instruc-
tions comprising the inner loop certainly attests to the cor-
rectness of our implementation. At first, it may seem sur-
prising that we observe so few samples of the outer loop.
However, consider that the inner loop executes five billion
iterations, while the outer loop executes only one hundred
thousand. Given this perspective, the observed ratio of
two out of 11,843 seems more than reasonable. To help
the reader better understand these ratios, we present the
two loop bodies featured in the benchmark.

int loop (int j) {
int i;
int sum = 0;
for (i = 0; i < j; i++) {

sum += i;
}
return sum;

}
...

for (index = 0; index < MAX_ITERATION;
index++) {

sum += loop(index);
}

3.3 B-Tree

Finally, we examine the btree benchmark; Figure 8 shows
the histogram. Our presentation of the btree data differs
significantly from that of loop and call, mostly as a re-
sult of the benchmark’s size: btree references over two
hundred distinct instructions. Thus, instead of bucket-
ing by EIP, we instead bucket by the encompassing func-
tion. Across all three trials, we see samples of instruc-
tions in seven different functions. About ten percent oc-
cur in main, which is responsible for deciding whether to
perform a lookup or an insert, and which must also gen-
erate random input for the inserts. The lookup routine
itself takes about twenty percent of the samples; it iter-
ates through levels of the tree. Insert itself has no sam-
ples, but we expect this, as insert merely calls a recur-
sive insert variant. That has no samples, either, however,
but find child andget parent key together took
about fifteen percent of the samples, and only insert uti-
lizes these routines. This distribution does not appear to
follow the proportional distribution of lookups and inserts
performed; we attribute this to the fact that inserts cost far
more CPU time than do lookups. Finally,find index
takes the most hits, at about fifty percent. As both lookup
and insert require several calls to this function, these re-
sults seem quite reasonable in terms of the code structure.
Like call, btree features one anomaly: a few samples to
the plt section, which the compiler automatically inserts
into all executables.

During the course of instrumenting this data (placing
EIPs into function buckets) we found that all EIPs that
we explicitly examined in fact matched exact entries in
the corresponding binary. Beyond the more qualitative
results we have discussed so far, this adds significant cre-
dence to our claims of correctness. This results directly
from the variable instruction size of the x86 architecture.
Since instructions may vary from one to seventeen bytes
and are not aligned, the probability of our sampler exactly
matching instruction addresses were it incorrect is negli-
gibly small.

Thus far our sampler appears flawless. However, ex-

7

Figure 8: EIP distribution from sampling the btree bench-
mark. This histogram again shows the mean number of refer-
ences for each bucket among the three trials. However, since the
btree code has many more lines than that of call, for this graph
we group code by function, instead of by EIP. The names mostly
explain themselves; plt is section inserted by the compiler at the
beginning of all assembly files.

amining the btree samples in detail did reveal some unex-
plained profiles. Sixty-five percent of the btree samples,
on average, occurred to a set of drastically different, un-
known addresses. (Note that the percentages above were
with respect to known addresses, and that these unmapped
addresses were excluded from the histogram.) While all
addresses that we sampled in loop, call, and the rest of
btree begin with 0x804 and are seven hex digits total,
these addresses begin with 0x400 and are eight hex digits.
Our only hypothesis is that our profiler somehow sampled
system code and attributed it to btree. This seems reason-
able because many of the other applications we sampled
(X and gnome, for instance) had addresses of this length
beginning with 0x4.

btree 63.732426 63.181360 −0.865 67.768769 6.333
call 38.906508 38.902799 −0.010 40.228744 3.383

3.08710.800774−0.00810.47655610.477351loop
Control Sampling % Difference Backup % Difference

Figure 9:Profiler Performance. This table gives the execution
time in seconds of the three benchmarks loop, call, and btree, in
three configurations. Control refers to execution without sam-
pling enabled, sampling refers to sampling enabled but backup
commented out of the build, and backup refers to sampling en-
abled with periodic data dumps included. The left percent dif-
ference column compares sampling to control, while the right
one compares backup to control. A negative percent difference
indicates a performance loss relative to the control experiment.
The data given is the median of the three runs taken for each of
the nine configurations.

3.4 Performance

Having convinced ourselves of the correctness of our im-
plementation, we next turn to performance evaluation. We
performed this experiment by measuring the execution
time of all three benchmarks with sampling, with sam-
pling but without dumping the data, and without sam-
pling. As before, we took three runs for each config-
uration. Figure 9 shows the results. First we compare
the performance of the control (sampling disabled) to
that of the configuration described in Section 2: peri-
odically onhard interrupt writes the buffered samples to
/var/log/messages via printk. We see that loop and call
have fairly low overhead at about three percent, but btree
has significantly higher overhead, at six percent. Inter-
estingly, an earlier run of the same set of experiments
showed btree with a significantly lower overhead, at less
than one percent. The latter results make far more sense:
since btree is less CPU-intensive, it should show less over-
head as less execution occurs in user-space and less sam-
pling should therefore occur. Indeed the EIP results above
would support this hypothesis, as while btree runs nearly
twice has long as call, it has less than half as many sam-
ples, even including the unmapped ones. We can only
conclude that the system is quite sensitive to variation,
and that a larger set of tests should be run to gain confi-
dence.

Placing faith in these results nonetheless, we explore
the source of these overheads in more detail by elimi-
nating the most expensive operation in onhard interrupt:

8

dumping the samples to file. The left-hand percent differ-
ence column of Figure 9 shows the results. Strangely, our
measurements show a consistent performance improve-
ment over the base configuration across all three bench-
marks. However, the actual values are so similar, that we
hypothesize the difference between the two configurations
is simply too small to be measured. The variation within a
single set of trials (e.g., loop with sampling disabled) was
more than the difference between trials (e.g. loop with-
out sampling versus loop without the data dump). Again,
a larger body of trials would probably shed light on this
situation.

Finally, we draw attention to the fact that we cannot
evaluate performance by measuring the number of sam-
pling events. This is because the kernel does not call our
code if an interrupt occurs in kernel space. Thus a drop
in user-level samples does not imply an increase in sam-
pling overhead, because an increased percentage of kernel
execution would have the same effect.

To summarize, performance measurements show sig-
nificant variation. Generally, we believe that our profil-
ing method causes relatively little overhead (around three
percent) and that nearly all of this may be attributed to the
dumping mechanism. Thus to reduce overhead with the
current configuration, the user could trade memory space
by arbitrarily increasing the size of the buffer. This would
not affect correctness as the sample stop system call auto-
matically performs a final dump before clearing the buffer.
We have also explored techniques to rotate buffers and
to perform backups outside the hard interrupt via another
thread or process. Section 7 summarizes our strategies
and findings.

4 Future Work

The preliminary results have been promising but there are
a lot of improvements that could be implemented for a
much more efficient and useful analysis tool. The imme-
diate optimizations to improve SLEEPY are described be-
low.

First off, the evaluation and results of sampling with
backup are worst case scenarios. An improvement on
single threading is naturally multithreading so that mul-
tiple buffers could be used. Backup could be differed to
a later time and the hard interrupt would be shorter. This

scheme would also allow for interesting results regarding
what amount of buffering would be optimal for such a
system. Further results would be to compare our imple-
mentation to similar profilers such as OProfile or Prospect
/citetsariounov2002.

Other useful optimizations would be beneficial for us-
ability purposes. A MySQL front end would allow
programmers familiar with database operations to eas-
ily query the samples. In order to allow for instruction
level granularity, instruction translation should be imple-
mented during the timer interrupt. Similarly, queries on
the percentage of time spent within all the instructions
of a method could result in interesting results. A soft-
ware back end could be written to map the EIP to the sys-
tem map of functions on a binary file using nm or some
other mapping utility. Another idea is to incorporate our
user-level profiling with the kernel profiling that is already
present in Linux. Distribution-wise, it would be cleaner
to extract our code from the kernel itself and turn it into a
module.

5 Related Work

System profiling has been the focus of several studies.
Specifically, system calls, processor performance coun-
ters, and sampling have been the methods for determin-
ing system and application bottlenecks. Using this as a
starting point, we implement our own system in the x86
architecture.

When attempting to determine the source of delay in an
application one of the first ideas is I/O. Therefore, if the
system calls of all running applications can be caught and
determined. In particular, Parrot and Bypass are trans-
parent user-level middleware projects, which simplify the
creation of interposition agents between the operating sys-
tem and the CPU so that system calls can be recorded
[6][7]. In addition, by measuring the time each request
was issued and completed, one can gain an accurate pic-
ture of where an application is spending its time in rela-
tion to the rest of the system. However, such a system
limits the profiling to system I/O usage.

Other system profilers use processor chip counters. The
Brink and Abyss suite allows various performance events
to be measured by accessing the performance counters on
the Pentium 4 on a per application basis [5].

9

VTune is Intel’s answer for profiling on their line of
processors [1]. It is a system-wide profiler and it is not
able to easily separate a single process’ information since
other applications are updating the performance counters
at the same time in a sampling period. While perfor-
mance counters are provided with the processors them-
selves, their implementation has proven to be buggy and
the errors in their execution are undocumented.

Other profilers bypass performance counters entirely
and sample the information systematically. DCPI inter-
prets the instruction pointer (EIP) on performance counter
overflows [2]. The sampled EIP must be shifted six cy-
cles into the past for the current EIP. DCPI is also specific
to the Alpha architecture, which is a very clean architec-
ture with a fixed length instruction set. Meanwhile our
profiling is specific to the x86, a variable length instruc-
tion architecture. Instead of creating using a performance
counter interrupt, we utilized the timer interrupt, which
occurred every 10 milliseconds. Therefore the PC did not
have to be shifted to accurately ”interpret” the current in-
struction.

The most similar implementation of profiling is OPro-
file, the Linux system-wide profiler based on DCPI [3].
OProfile first attempts to use performance counters. If
unavailable it defaults to sampling the EIP on timer in-
terrupts. Again, our implementation is based entirely on
sampling the EIP, but our samples are taken within the
kernel, not as a module, so our sampling should incur less
overhead.

6 Conclusions

We have presented SLEEPY, a mechanism for continu-
ously profiling user-level applications when running Red
Hat Linux on an x86 architecture. Our method incurs rel-
atively low sampling overhead (about three percent with
the configuration described in this paper) and can be al-
most completely eliminated by increasing the size of an
in-kernel buffer. We have also created user-level software
that permits enabling and disabling of sampling without
changing the kernel, as well as programs to help interpret
the data generated by our kernel code. One drawback of
our implementation is that it requires modifying and re-
compiling the kernel. However, it can easily be extended
to also perform kernel sampling.

Perhaps the most valuable lesson we learned during this
project was the significance of disabling interrupts. Since
the main body of our code occurs during a hard interrupt,
when no other interrupts may occur, we struggled quite
a bit with finding a way to add a background process to
our implementation. Unfortunately, none of efforts ever
did pan out. We also learned the value of finding and
taking advantage of existing tools and resources: much
of what we achieved would not have been possible with-
out the significant body of unpublished research so readily
available through the Internet.

For further lessons, please see Section 8.

7 Unused (But Attempted) Re-
search Ideas

The main problem encountered is due to working during
the top half of the timer interrupt. The purpose of using
the top half is the ability to sample the EIP from the pre-
viously running process before the its status is saved and
swapped out during a context switch. The problem lies in
the fact that certain activities are prevented from running
during this period.

Our original algorithm for storing the samples involved
a clean buffering scheme. This algorithm depended on
having the ability to create a kernel thread to service a
buffer once it is full. This kernel thread would execute
outside of the timer interrupt, shortening the length of the
timer interrupt. However, it was discovered upon imple-
mentation that kernel threads are not allowed in an inter-
rupt.

Therefore, other means were explored to avoid kernel
threads. Tasklets looked to be a good solution for schedul-
ing an activity to be deferred. In order to use tasklets ker-
nel code had to be separated in order to prevent recur-
sive dependencies on code required by the profiling in the
hard interrupt. The main idea was to associate a tasklet to
each buffer, including the tasklet as a data member in the
buf pool element data structure. This caused problems
since our code relied on interrupt.h while another header
file in the kernel (hwirq.h) relied on samplebuf.h as well
as interrupt.h.

After implementing a tasklet outside of the interrupt to
ensure it worked, the scheduling and enabling was moved

10

inside of the hard interrupt. But during sampling the task
never occurred. Again, the ability to defer backing up of
buffered samples was infeasible through tasklets.

However, we will still present our algorithm for buffer-
ing, which was also implemented, but not present in the
results. At the beginning of the sampling period an ar-
ray of buffers is preallocated. Once a buffer is full, it is
marked as full and not used again until the samples it con-
tains is backed up. Then the buffer with the smallest index
in the array is set as the active buffer. If all the buffers fill
up samples are dropped (not overwritten for simplicity).
Given the state where all the buffers are full, a sample
is taken and the array of buffers is searched to see if a
buffer has been freed. Therefore, dropped samples are
minimized. More interestingly, this allows for easy view-
ing of the largest buffer that has been utilized to deter-
mine the buffer requirements by the system. Statistics can
also be taken on the average number of buffers needed
as emptying buffers in a differed fashion is dependent on
scheduling.

In addition to backup issues, we also wanted to gather
more information during onhard interrupt. In particular,
we wanted to provide a means of dereferencing the EIP to
obtain the hex for the instruction. We could then trans-
late this into assembly during the background process,
largely eliminating the need to use objdump manually.
We did in fact devise an assembly routine to accomplish
this, but like our buffering exploits, what worked outside
of on hard interrupt caused the system hang when placed
inside. Before abandoning this feature, we hypothesized
that virtual memory mappings perhaps do not always en-
dure, thus causing some kind of access error when deref-
erencing the EIP. We further hoped to include informa-
tion about the enclosing function. Had we added these
two pieces of data, the following point would have been
of even greater interest.

We currently provide a Java program to parse the
dumps made by our sampler. However, a MySQL inter-
face that lets the user perform aggregations herself on tu-
ples of interest would make the data we gather far more
useful. Toward accomplishing this, we did install MySQL
on our Crash and Burn disk, but we never got around to
working on accessing a database programmatically with
C. The end result would have been similar to what we
presented in our evaluation, but much of the labor could
have been automated away.

Figure 10:The Crash and Burn Lab is very cold.

8 Final Comments

The memory management comment was noteworthy , but
memorable at a later time when we needed the informa-
tion and remembered the comment. From Linus him-
self: “Fork is rather simple, once you get the hang of
it, but the memory management can be a bitch.” See
’mm/memory.c’: ’copypagerange()’

It seems as though the comments in the kernel are very
descriptive as to the feelings of those who put their life
and soul into the kernel. A graph would be nice if we are
interested in this: Fuck 35 Bitch 15 Shit 27

The crash and burn lab is extremely cold. Every crash
and burn disk should come with a space heater. See Figure
10.

The girl who works nights at Quick Bite scoops up the
largest ”two” scoop waffle cones we have ever seen.

References

[1] Intel Corporation. Vtune.
http://www.intel.com/software/products/vtune/.

[2] J. Anderson et al. Continuous profiling: Where have
all the cycles gone?Proceedings of the 16th ACM
Symposium of Operating Systems Principles, pages
1–14, October 1997.

11

[3] J. Levon. Oprofile.
http://oprofile.sourceforge.net/about/.

[4] Aaron Partow. http://www.partow.net.

[5] B. Sprunt. Managing the complexity of performance
monitoring hardware: The brink and abyss approach,
2004.

[6] D. Thain and M. Livny. Multiple bypass: Interpo-
sition agents for distributed computing.Journal of
Cluster Computing, pages 4:39–47, 2001.

[7] D. Thain and M. Livny. Parrot: Transparent user-level
middleware for data-intensive computing.Proceed-
ings of the Workshop on Adaptive Grid Middleware,
New Orleans, September 2003.

12

