SLEEPY: Sampling User-Level Execution via EIPs Profiled
Continuously

Michelle Joy Moravan Margaret Ann Richey
May 10, 2005
Abstract a front end takes the samples and aggregates the results to

display the percentage each EIP occurred.
Understanding where the system is spending its time idn addition, SLEEPY has the ability to aggregate on
necessary for debugging and optimizing applications. A#ferent granularities. This is especially important when
such, we present an analysis tool with the intent to contizeroing in on certain applications, functions, or even in-
uously take measurements on every timer interrupt dgtructions. The additional view of the system-wide per-
ing a sampling period. The end result is a collection dérmance gives the effect of multiple applications inter-
data samples that have been aggregated to display whating with each other versus simulating the performance
instruction pointers are seen most often. These aggregasés system without taking into account the timesharing
can be viewed on an instruction level, an instance of aature of modern operating systems. Both views are im-
application, a subset of the running applications, or oportant in determining the bottlenecks within system and
the system as a whole. Based on the benchmarks, the apglication performance.
jority of the results are verifiable and the sampling itself Profiling can also determine memory requirements of
is extremely efficient with minimal overhead (0.01 - O#pplications. The amount of memory used and the areas
percent). The overhead of the system utilizing the woggicessed most often can be determined by looking at the
case backup scheme is three to six percent. instruction pointer. Again, this can impact the design of
data structures or access patterns of data during runtime.
] Therefore, the use of such a profiling system is mani-
1 Introduction fold. This profiling enables application and systems engi-
neers to find bottlenecks within their work. SLEEPY can
Understanding the behavior of applications is essentialde used as a debugging and optimizing analysis tool.
obtaining optimal performance. However, this is often It should also be mentioned that SLEEPY is focusing
hard to determine. Is poor performance the result of tba user-level events. The Linux kernel already provides a
poor design of an application or is there a problem witirofiler for kernel operations.
the interaction between multiple applications? Our main contributions are the methods used to enable
SLEEPY endeavors to answer these questions throsgmpling. In this paper, we explore techniques for effi-
the use of continuous profiling. Our implementation praiently and accurately measuring statistics on every timer
vides an accurate and efficient way of determining whargerrupt. The rest of the paper is organized as follows.
processes spend their time. By taking samples of the 8ection 2 gives a brief outline of the infrastructure for
struction pointer (EIP) of the currently running procedsuilding and testing the tool and describes the methodol-
on every timer interrupt, an overall system view can lmgy used to build (name here). In Section 3, we report our
obtained. The number of times each EIP is sampledrésults. We present future directions to extend the scope
proportional to the time the CPU spends executing that mi-the tool in Sections 4 and 7. The related work is dis-
struction. Thus, after a sampling period has taken placessed in Section 5 and we conclude in 6.

2 Implementatlon places where the kernel called our profiling code depen-
dent on a global variable. We then added two system calls,

We limit the scope of this work to continuously profilingvhich toggle the value of this conditional. These calls

the x86 architecture in a Linux environment. Toward thigso perform some data structure maintenance, which we

end, we extended the 2.4.21 kernel of Red Hat 7.2. As wll discuss further below. Oustart andstop pro-

proceed, bear in mind that the final output of the kerngtams are simply C invocations of these syscalls; users

portion of our software consists of a stream of pairs, eagfe free to supply additional programmatic interfaces.

of which indicates the application that was running and

which EIP it was about to execute when our code recqrdgsz Infrastructure

that sample. In the subsequent subsections, we will de-

scribe the usage, control flow, and data structures of auie methodon _hard _interrupt comprises the core

implementation. of our software; the kernel calls it each time the hardware
timer expires (ten times per second). This event triggers
2.1 Usage many activities, which the kernel handles in one of two

ways: as a hard or a soft interrupt. Hard interrupt code

Despite the original goal of continuous profiling, we allowxecutes immediately, and no other interrupts may occur
the user to enable and disable sampling at will. This afntil it completes. In contrast, a soft interrupt only uses
fers several benefits. Primarily, this interface incurs sathe hard interrupt to reschedule the actual activity for a
pling overheads only when the user actually wishes to dater time. To prevent the application from terminating
tain profiling information. It also expedited our perforbefore we sample it, and to permit access to the correct
mance experiments by allowing us to use the same kerg#P, the entirety of our profiling operation must occur as
to benchmark execution times with and without sampling.hard interrupt.
This eliminated the recompilations and reboots that wouldThe body of onhard.interrupt primarily serves to note
otherwise have been necessary. the application and corresponding EIP at regular inter-

Thus typical interaction with our profiler involves threals. Doing so requires maintenance of a few data struc-
programs:start , stop , andParse . The user exe- tures, and efficiency further behooves it to provide a batch
cutesstart to begin a profiling session. When he isnechanism for periodically dumping this data to file.
done running the programs of interest, he execsti®s . Having presented a high-level overview of our strategy,
To facilitate interpretation of the resultant output streamwe next explore the details of the data structures we chose
we provide theParse program, which takes as an arguto accomplish these goals.
ment the name of a file written by our sampl&arse
produces two similar streams, except that one aggregageé
on both application and EIP, while the other aggregates on
only application. The former lets the user see where pahe first challenge involves naming. To correctly interpret
ticular applications spent their time, while the latter mottds results, our user must differentiate different applica-
clearly shows how the various applications divided CPfibns, and also distinct instances of the same application,
time. which may run simultaneously. The kernel solves this

In addition to the EIP, our user might also like to obtaiby using the process ID (PID) to provide unique names.
the actual instruction and the method containing it . Givéihen an application ends, however, the kernel may reuse
the program binary, she can easily do so by running tite PID. Our application cannot allow this, as it must “re-
shell commandbjdump -d <bin> . This produces member” old applications that have completed, and store
an assembly version of the program organized as a #eeir profiling data separately from that of newer applica-
guence of instructions, each keyed by its corresponditigns. We thus introduce the concept ofappid to pro-
EIP. Theobjdump command also associates groups ofde unique names through the lifetime of a profiling ses-
instructions with their enclosing method. sion. As Figure 1 shows, an appid consists ofrtame of

We achieved this on-off functionality by making althe application’s binary as well as amstance , which

Appids

[appid) 7# -, ‘

= CE =S
N J . [appid_table_entry j

Figure 1: The appid data structure represents a unique name
within the context of a sampling session. The name field contains
the name of the binary, while the instance field encapsulates the

number of times that binary has executed. % - ‘

4 R

appid_table_entr
PP y Figure 3: The max.appid_table hashes application names to

appid the largest existing instance number. Synonyms are handled by
creating linked lists in conflicting buckets.
appid_table_entry*

the corresponding instance; otherwise, it adds a new ap-

- / pid to the table, initialized with an instance of zero. Either

) . _ way, the new instance value is returned for use in con-

Figure 2:An appid_table_entry represents the largest |nstanceStructin a new apbid

seen for a particular application. Since it is accessed through™a 9 ppid. o .

linked list, it contains a pointer to the next entry. The user must also initialize the table before sampling
begins; the start system call accomplishes this. Similarly,
the stop system call deallocates mappidtable entries.

indicates how many times that particular application has
run during the current session. . .
9 2.5 Pid Appid Table

2.4 Max Appid Table When the timer triggers ahard.interrupt, the kernel pro-
vides two pieces of information: the current PID and the
To implement this naming scheme, we must providecarresponding EIP. Before our code can record this data,
means of generating new appids. Toward this end, Wwenust first convert the PID to an appid. A second hash ta-
introduce themax appid _table , a hash table probedble, thepid _appid _table , orchestrates this. This hash
with an application name. Conflicts create linked lists table maps a PID to an appid, again using ELFHash. Like
the buckets, so we use for each element a struct condis¢-maxappidtable, the pidappidtable handles conflicts
ing of a piece of appidlata and a pointer to theext by generating linked lists. As shown in Figure 4, each
element in the bucket. In this context, the instance fieddement thus contains fields for th&l , the correspond-
of each appid corresponds to the instance number of thg appid , and a pointer to theext element. Figure 5
most recently created instance of that application. Figusdsws these entries in the context of the entire table.

2 and 3 show these structures schematically. The onhardinterrupt code must always probe the
The maxappidtable supports three main operationgid_appidtable to effect a PID to appid translation. If the
The kernel calls the most frequently usatsrement , PID does not hit, orhardinterrupt is sampling a new pro-

whenever it needs to generate a new unique name. Tdess for the first time. It thus uses the mappidtable to
function usesELFHash [4] to probe the table for the generate a new appid to represent this PID incarnation,
name of a given application. If found, the code incremerdasad inserts this into the pidppidtable for future refer-

(N
pid_appid_table_entry 2.6 Summary of Kernel Changes
int q
. e We implemented the majority of the code for the above
appid structures outside of the kernel, and performed integration
appt by merely adding the header filesliux/include/
pid_appid_table_entry* and the C files tdinux/kernel . However, as men-
tioned previously, some of our code did require changes
L) and additions to existing files. We briefly summarize these

here.

Figure 4: A pid_appid_table_entry associates a PID with an))
appid. It requires the PID for verifying hits, as multiple PID’s First, to implement our start and stop system
may hash to the same bucket. Similarly, the next pointer indalls, we added entries to thgys _call _table in

cates further conflicting entries, if any. linux/include/asm/unistd.h and call number
stubs tolinux/include/asm/unistd.h . We in-
corporated the call implementations into one of our origi-
—% ap) ‘ nal C files,interface.c

pid Second, while our code creates pgpidtable en-
— 7% - tries on demand in ahard.interrupt, correctness requires
. us to remove cached values as soon as the kernel can
- : reuse a PID, or on process deletion. Thus we added a
[p‘d—appld—table—e“try] call to ouron _process _delete function, which calls
pid _appid _table _delete if sampling is enabled, to

do_exit in linux/kernel/exit.c , which handles
other process delete functionality.
—1O |

Finally, we needed the kernel to call txardinterrupt
on every timer interrupt. The kernel al-

. ready includes some profiing mechanisms
Figure 5: The pid_appid_table maps unique kernel names, . .
9 pid-app P d namelyx86 _do _profile in

PID’s, to unique sampling session names, appids, for the m(?_ee . Section 5), . .)
time of its component PID's. If the kernel reuses a PID, tHfux/include/asm/hw -irg.h . This function let

pid_appidtable may contain different mappings for the samiéS distinguish interrupts occurring in kernel space from

PID at different times, because the same PID can represent nililose is user space. However, determining this condition

tiple different processes through time. required use of the argumerggs . While the variant of
2.4.21 on our personal machines provided this as the argu-
ment to x86do_profile, the version on our Crash and Burn

ence. To avoid confusing incarnations. we must remOdisk did not. Thus we also ended up changing the caller
' 9 ’ f this function, smp_local _timer _interrupt

mappings from the picgppidtable as soon as a process

. .) in arch/i386/kernel/time.c . This function
dies and its PID becomes available for reuse. The ker?(?rjtunately had access to regs, so we merely changed
therefore calls pid _appid _table _delete routinein ’

oo the argument to x8@lo_profile. In addition to deciding
Y whether or not to sample, we also use regs to obtain
Like the maxappidtable, the pidappidtable also re- the user-level EIP at the time of the interrupt. The final
quiresinit andfree functions, which the start and stogargument that omardinterrupt needs, the PID, we

system calls invoke, respectively. access via theurrent struct.

2.7 On Hard Interrupt total with its argument as the number of inner iterations.

)) _ _ . Our final benchmarkbtree , executes for three million
We close our discussion of our implementation with i ations. Twenty percent of these perform random in-
brief outline of the body of ormardinterrupt, which qoq o the tree, while the remaining eighty percent per-
x86.do_profile passes the current user-level PID and Ey ook-ups. The B-tree itself implements traversals via
If the user has not enabled sampling,

: ot enab this method dqg§ps and insertions recursively. Nodes do not have parent
nothing. Otherwise, it first probes the pégpidtable pointers.

with the pid argument to determine the corresponding

appid. If the probe does not hit, drardinterrupt gener-

ates a new appid using the magppidtable, and caches3.2 Correctness

this value in the pidappidtable for next time. It then To determine correctness, we performed three trials for

utilizes a relic of our att_empts at buffering (see Sec“%%ch of the three benchmarks, with sampling enabled. We
7). In essence, ahardinterrupt only exports data to

Ivar/log/messages via printk everyn samples, then copied the applicable section of /var/log/messages

into a separate file, and used Parse to aggregate the EIP

wheren is a constant chosen on compilation. For our ex- . .
P counts. We also used objdump to obtain an assembly ver-

periments we used 11, because as a prime, it gave Y81 of each benchmark. for a reality-check.
hash behavior when used as a buffer size, and because it '

was small enough to cause frequent dumps.
Thus, on each sample, drardinterrupt inserts the 3-2.1 Loop Benchmark

current_ sz_imple into a buﬁer of this S|zact|v§ -buf . Figure 6 shows a histogram of the mean counts for each
When it fills the last slot, it executes a routine to émpy|p gpserved across all three loop benchmark trials. We
the bufferbackground _process . For thisimplemen- o, nect sampling of loop to yield only a few distinct EIP’s
tation, backgroungbrocess actually executes within thgeco 56 the code spends most of its time in a single for
hard interrupt and merely prints the contents of the buffporop1 which should correspond to just a few assembly
to printk, and then re-initializes it. Section 7 explains Why,«irctions. Indeed, Figure 6 meets these expectations,

the implementation we have just presented does not use, | 2128 samples (counting all three executions) touch
real buffering, and also describes the several designs %ﬂ/ six distinct instructions.

strategies we attempted. However, this data gains far more heft when combined

with knowledge of the actual assembly. The pertinent
3 Eval . fragment of the objdump generated from the loop exe-
valuation cutable follows. We omit the hex translations of the in-

structions for brevity, and include the section label for

We next evaluate the implementation just described, dBpeyt. Note that we also exclude several unreferenced
terms of correctness and performance. For both aspegts.s from the beginning of theain section.

we used three benchmarks.

3.1 Benchmarks 08048480 <main>:

The first,loop , contains only a simple for loop that adds 80484a6: mov %esi,%esi

the index of the current iteration to a running total for one80484a8: mov Oxfffffffc(Yoebp),%eax
billion iterations. The secondall , has nested for loops. 80484ab: cmp Oxfffffff8(%oebp),%eax
The outer acts as above, except that it only iterates org0484ae: || 80484b4 <main+0x34>
hundred thousand times, and each iteration adds the r80484b0: jmp 80484c4 <main+0x44>
sult of a procedure call to the running total. The called30484b2: mov %esi,%esi

procedure takes as an argument the current iteration, a89484b4: mov Oxfffffffc(Yoebp),%eax
performs the same summation of the index to a runnin§0484b7: lea Oxffffffec(%oebp),%edx

Mean Number of Samples forthe Loop Benchmark Numb er of Samples for Call Benchmark

250 1400
1200 7
1000

140 — 800 —
600 — o

100 - b) .
50 1 || 200 —‘ '7 L
o

T T T T T /\ i (b b
0%8048438 0x80484ah (xB04B4ae (x30484b4 OxBO4B4bc 0xB0484c1 é’ﬁ@qﬁ@@@ @P{P@ ﬁgﬁ,&?ﬁp @PO"@ ﬁ@q&ﬁ
Ep o G AR L 5 [V VL
EIP

Number of Samples
Number of Samples

Figure 6: EIP distribution from sampling the loop bench-
mark. Even though our software took well over seven hundrggyyre 7: EIP distribution from sampling the call bench-
samples while running this benchmark, all were of one of siark. This histogram shows the mean number of references for
EIP’s. This strongly supports our thesis that our software samdach bucket among the three trials. The call benchmark showed
ples correctly: since this program spends the majority of its timgore variance among its trials than loop did; there were three
within a single for loop, we expect only a small range of EIP'E|p's that were measured only once, and only in one bench-
to appear, and these to come frequently. mark. Averaged, then, these buckets were empty. This explains
the presence of the empty buckets in the graph.

80484ba: add %eax,(%edx)

80484bc: lea Oxfffffffc(%ebp), %eax togram. Here we see more variation among the trials. The
80484bf: incl (%eax) buckets that appear empty in the figure each held only a
80484cl: jmp 80484a8 <main+0x28> single sample, and that from only one benchmark. (These
80484c3: 90 nop anomalies were distributed across the benchmarks, how-

ever). Like loop, on the other hand, samples remain con-
. . centrated among a few EIP’s.
M importantly, thi hows th II'm r . .
ost importantly, this code shows that all measu e§To better understand this data, we next examine the

EIP’s do occur in themain section of the disassembly; orresponding disassembly. We first discuss instructions
correctness demands this as no other section in suc% é P Ing di Y- : ISCUSS 1 ucti

simple program could contain programmer-defined cocﬁgmpled from théoop - routine.
Second we see that all six measured instructions 0CE¥H48480

L : T <loop>:
betwgen the Qestmatlon ofjmp and the agtual jmp in- “g018480: push %ebp
struction. This strongly suggests we do indeed observ§048481_ mov %esp,Yebp

the part of the code that actually comprises the loop. F0é048483' sub $0x8.%es
comparison, the corresponding C fragment follows. 8048486: movl $0x0 ’Oxffff?ffS(%ebp)

for (index = 0; index < MAX_ITERATION; 804848d: movl $0x0,0xfffffffc(%ebp)
index++) { 8048494: mov Oxfffffffc(Yoebp),%eax
sum += index; 8048497: cmp 0x8(%ebp),%eax
} 804849a: |l 80484a0 <loop+0x20>

804849c: jmp 80484b0 <loop+0x30>
804849e: mov %esi,%esi

3.22 CallBenchmark 80484a0: mov Oxfffffffc(%ebp),Y%eax
We performed an analogous experiment for the slighty80484a3: lea Ox(fffffff8(%ebp),%edx
more complex benchmark, call. Figure 7 shows the his80484a6: add %eax,(%edx)

80484a8: lea Oxfffffffc(Yoebp),%eax for (index = 0; index < MAX_ITERATION;

80484ab: incl (%eax) index++) {
80484ad: jmp 8048494 <loop+0x14> sum += loop(index);
80484af: nop }

The first “empty” EIP refers to the first instruction of
the loop function, the procedure called inside the outér3 B-Tree

loop. The next six buckets all correspond to instructiorp$na||y, we examine the btree benchmark; Figure 8 shows
within this function. Close interpretation of the assembjye histogram. Our presentation of the btree data differs
again reveals that these instructions comprise the megggniﬁcanuy from that of loop and call, mostly as a re-
work of the code: in this case, the loop within the procgyit of the benchmark’s size: btree references over two
dure call. The second anamolous bucket also referengggdred distinct instructions. Thus, instead of bucket-
part of the loop function, but in this case a piece outsideigb by EIP, we instead bucket by the encompassing func-
the loop. The final single sample belongs to main, withighn. ~ Across all three trials, we see samples of instruc-
the outer loop. tions in seven different functions. About ten percent oc-
080484b8 <main>: cur in main, which is res_ponsible for dgciding whether to
perform a lookup or an insert, and which must also gen-
erate random input for the inserts. The lookup routine
itself takes about twenty percent of the samples; it iter-
ates through levels of the tree. Insert itself has no sam-
ples, but we expect this, as insert merely calls a recur-
sive insert variant. That has no samples, either, however,
butfind _child andget _parent _key together took
about fifteen percent of the samples, and only insert uti-
lizes these routines. This distribution does not appear to
follow the proportional distribution of lookups and inserts
The fact that nearly all of the samples were of instru€rformed; we attribute this to the fact that inserts cost far
tions comprising the inner loop certainly attests to the céRore CPU time than do lookups. Finalfjpd _index
rectness of our implementation. At first, it may seem sufikes the most hits, at about fifty percent. As both lookup
prising that we observe so few samples of the outer log#'d insert require several calls to this function, these re-
However, consider that the inner loop executes five billiGhItS Seem quite reasonable in terms of the code structure.
iterations, while the outer loop executes only one hundrkie call, btree features one anomaly: a few samples to
thousand. Given this perspective, the observed ratiol®¢ PIt section, which the compiler automatically inserts
two out of 11,843 seems more than reasonable. To hif|fp all executables. o _
the reader better understand these ratios, we present tHeuring the course of instrumenting this data (placing

80484e3: cmp Oxfffffff8(%ebp),%eax
80484e6: |l 80484ec <main+0x34>
80484e8: jmp 8048508 <main+0x50>
80484f2: call 8048480 <loop>

8048504: jmp 80484e0 <main+0x28>

two loop bodies featured in the benchmark. ElIPs into function buckets) we found that all EIPs that

we explicitly examined in fact matched exact entries in

int loop (int j) { the corresponding binary. Beyond the more qualitative
int i; results we have discussed so far, this adds significant cre-
int sum = O; dence to our claims of correctness. This results directly

for (i = 0; i < j; i++) { from the variable instruction size of the x86 architecture.
sum += i; Since instructions may vary from one to seventeen bytes

} and are not aligned, the probability of our sampler exactly
return sum; matching instruction addresses were it incorrect is negli-

} gibly small.
Thus far our sampler appears flawless. However, ex-

Control |Sampling | % Difference | Backup | % Difference
Nu m ber 'Df Sa m ples f'or E_T ree lOOp 10.477351 | 10.476556 —-0.008 10.800774 3.087
call 38.906508 | 38.902799 -0.010 40.228744 3.383
Benchmark btree | 63732426 | 63181360 | —0.865 |67.768769| 6.333

Figure 9:Profiler Performance. This table gives the execution
time in seconds of the three benchmarks loop, call, and btree, in
three configurations. Control refers to execution without sam-
pling enabled, sampling refers to sampling enabled but backup
commented out of the build, and backup refers to sampling en-
abled with periodic data dumps included. The left percent dif-
ference column compares sampling to control, while the right
—|_|—|_| —|_|— one compares backup to control. A negative percent difference
T T T T T indicates a performance loss relative to the control experiment.
@ bégn %t;, {@, @ \PS'Q .@Q The data given is the median of the three runs taken for each of

—omo_u_om_ wpy

b SOOI e TR0
o T e | o e e s

Humber of Samples

ot ¥ the nine configurations.
%@b> R &
s
%@9 3.4 Performance
Function Name Having convinced ourselves of the correctness of our im-

plementation, we next turn to performance evaluation. We

performed this experiment by measuring the execution
Figure 8: EIP distribution from sampling the btree bench- time of all three benchmarks with sampling, with sam-
mark. This histogram again shows the mean number of refg@lting but without dumping the data, and without sam-
ences for each bucket among the three trials. However, sinceglimg. As before, we took three runs for each config-
btree code has many more lines than that of call, for this grapltation. Figure 9 shows the results. First we compare
we group code by function, instead of by EIP. The names mogf{i performance of the control (sampling disabled) to
expl_ain_themselves; pltis s_ection inserted by the compiler at fpey¢ of the configuration described in Section 2: peri-
beginning of all assembly files. odically onhardinterrupt writes the buffered samples to
/var/log/messages via printk. We see that loop and call
have fairly low overhead at about three percent, but btree
has significantly higher overhead, at six percent. Inter-
estingly, an earlier run of the same set of experiments
amining the btree samples in detail did reveal some unskowed btree with a significantly lower overhead, at less
plained profiles. Sixty-five percent of the btree samplgban one percent. The latter results make far more sense:
on average, occurred to a set of drastically different, usince btree is less CPU-intensive, it should show less over-
known addresses. (Note that the percentages above vie&d as less execution occurs in user-space and less sam-
with respect to known addresses, and that these unmapgléty should therefore occur. Indeed the EIP results above
addresses were excluded from the histogram.) While waibuld support this hypothesis, as while btree runs nearly
addresses that we sampled in loop, call, and the restwice has long as call, it has less than half as many sam-
btree begin with 0x804 and are seven hex digits totales, even including the unmapped ones. We can only
these addresses begin with 0x400 and are eight hex digitclude that the system is quite sensitive to variation,
Our only hypothesis is that our profiler somehow sampledid that a larger set of tests should be run to gain confi-
system code and attributed it to btree. This seems reasdence.
able because many of the other applications we sample®lacing faith in these results nonetheless, we explore
(X and gnome, for instance) had addresses of this lengftlke source of these overheads in more detail by elimi-
beginning with 0x4. nating the most expensive operation inloard.interrupt:

dumping the samples to file. The left-hand percent diffeseheme would also allow for interesting results regarding
ence column of Figure 9 shows the results. Strangely, aunat amount of buffering would be optimal for such a
measurements show a consistent performance improsgstem. Further results would be to compare our imple-
ment over the base configuration across all three benotentation to similar profilers such as OProfile or Prospect
marks. However, the actual values are so similar, that yegetsariounov2002.
hypothesize the difference between the two configuration€Other useful optimizations would be beneficial for us-
is simply too small to be measured. The variation withinability purposes. A MySQL front end would allow
single set of trials (e.g., loop with sampling disabled) wagsogrammers familiar with database operations to eas-
more than the difference between trials (e.g. loop witlly query the samples. In order to allow for instruction
out sampling versus loop without the data dump). Agaievel granularity, instruction translation should be imple-
a larger body of trials would probably shed light on thimented during the timer interrupt. Similarly, queries on
situation. the percentage of time spent within all the instructions
Finally, we draw attention to the fact that we cannaf a method could result in interesting results. A soft-
evaluate performance by measuring the number of samare back end could be written to map the EIP to the sys-
pling events. This is because the kernel does not call é&m map of functions on a binary file using nm or some
code if an interrupt occurs in kernel space. Thus a drofher mapping utility. Another idea is to incorporate our
in user-level samples does not imply an increase in samser-level profiling with the kernel profiling that is already
pling overhead, because an increased percentage of kepnedent in Linux. Distribution-wise, it would be cleaner
execution would have the same effect. to extract our code from the kernel itself and turn it into a
To summarize, performance measurements show sigpdule.
nificant variation. Generally, we believe that our profil-
ing method causes relatively little overhead (around three
percent) and that nearly all of this may be attributed to e Related Work
dumping mechanism. Thus to reduce overhead with the
current configuration, the user could trade memory spaggstem profiling has been the focus of several studies.
by arbitrarily increasing the size of the buffer. This woul@pecifically, system calls, processor performance coun-
not affect correctness as the sample stop system call atg6s, and sampling have been the methods for determin-
matically performs a final dump before clearing the bufféfg system and application bottlenecks. Using this as a
We have also explored techniques to rotate buffers a§tarting point, we implement our own system in the x86
to perform backups outside the hard interrupt via anotrfchitecture.
thread or process. Section 7 summarizes our strategie®/hen attempting to determine the source of delay in an
and findings. application one of the first ideas is I/0O. Therefore, if the
system calls of all running applications can be caught and
determined. In particular, Parrot and Bypass are trans-
4 Future Work parent user-level middleware projects, which simplify the
creation of interposition agents between the operating sys-
The preliminary results have been promising but there deen and the CPU so that system calls can be recorded
a lot of improvements that could be implemented for[&][7]. In addition, by measuring the time each request
much more efficient and useful analysis tool. The immeras issued and completed, one can gain an accurate pic-
diate optimizations to improve SLEEPY are described biewre of where an application is spending its time in rela-
low. tion to the rest of the system. However, such a system
First off, the evaluation and results of sampling withmits the profiling to system 1/O usage.
backup are worst case scenarios. An improvement orOther system profilers use processor chip counters. The
single threading is naturally multithreading so that muBrink and Abyss suite allows various performance events
tiple buffers could be used. Backup could be differed to be measured by accessing the performance counters on
a later time and the hard interrupt would be shorter. Thise Pentium 4 on a per application basis [5].

VTune is Intel's answer for profiling on their line of Perhaps the most valuable lesson we learned during this
processors [1]. It is a system-wide profiler and it is n@roject was the significance of disabling interrupts. Since
able to easily separate a single process’ information sirthe main body of our code occurs during a hard interrupt,
other applications are updating the performance countetsen no other interrupts may occur, we struggled quite
at the same time in a sampling period. While perfoa bit with finding a way to add a background process to
mance counters are provided with the processors thesar implementation. Unfortunately, none of efforts ever
selves, their implementation has proven to be buggy asid pan out. We also learned the value of finding and
the errors in their execution are undocumented. taking advantage of existing tools and resources: much

Other profilers bypass performance counters entirafwhat we achieved would not have been possible with-
and sample the information systematically. DCPI inteput the significant body of unpublished research so readily
prets the instruction pointer (EIP) on performance countrailable through the Internet.
overflows [2]. The sampled EIP must be shifted six cy- For further lessons, please see Section 8.
cles into the past for the current EIP. DCPI is also specific
to the Alpha architecture, which is a very clean architec-
ture with a fixed length instruction set. Meanwhile oif Unused (But Attempted) Re-
profiling is specific to the x86, a variable length instruc-
tion architecture. Instead of creating using a performance search Ideas
counter interrupt, we utilized the timer interrupt, which)) .)
occurred every 10 milliseconds. Therefore the PC did nbf€ main problem encountered is due to working during
have to be shifted to accurately "interpret” the current if?€ top half of the timer interrupt. The purpose of using
struction. the top half is the ability to sample the EIP from the pre-

The most similar implementation of profiling is OProViously running process before the its status is saved and
file, the Linux system-wide profiler based on DCPI [3fWapped out during a context switch. The problem lies in
OProfile first attempts to use performance counters. U fact that certain activities are prevented from running
unavailable it defaults to sampling the EIP on timer iffluring this period.
terrupts. Again, our implementation is based entirely onOur original algorithm for storing the samples involved
sampling the EIP, but our samples are taken within tReclean buffering scheme. This algorithm depended on

kernel, not as a module, so our sampling should incur I88/ing the ability to create a kernel thread to service a
overhead. buffer once it is full. This kernel thread would execute

outside of the timer interrupt, shortening the length of the
timer interrupt. However, it was discovered upon imple-
6 Conclusions mentation that kernel threads are not allowed in an inter-
rupt.
We have presented SLEEPY, a mechanism for continu-Therefore, other means were explored to avoid kernel
ously profiling user-level applications when running Retireads. Tasklets looked to be a good solution for schedul-
Hat Linux on an x86 architecture. Our method incurs réhg an activity to be deferred. In order to use tasklets ker-
atively low sampling overhead (about three percent witiel code had to be separated in order to prevent recur-
the configuration described in this paper) and can be side dependencies on code required by the profiling in the
most completely eliminated by increasing the size of &ard interrupt. The main idea was to associate a tasklet to
in-kernel buffer. We have also created user-level softwagach buffer, including the tasklet as a data member in the
that permits enabling and disabling of sampling witholf_poolelement data structure. This caused problems
changing the kernel, as well as programs to help interps#ice our code relied on interrupt.h while another header
the data generated by our kernel code. One drawbacKilgfin the kernel (hwirg.h) relied on samplésuf.h as well
our implementation is that it requires modifying and reas interrupt.h.
compiling the kernel. However, it can easily be extendedAfter implementing a tasklet outside of the interrupt to
to also perform kernel sampling. ensure it worked, the scheduling and enabling was moved

10

inside of the hard interrupt. But during sampling the ta
never occurred. Again, the ability to defer backing up
buffered samples was infeasible through tasklets.
However, we will still present our algorithm for buffe
ing, which was also implemented, but not present in
results. At the beginning of the sampling period an
ray of buffers is preallocated. Once a buffer is full, it
marked as full and not used again until the samplesiit g
tains is backed up. Then the buffer with the smallest in
in the array is set as the active buffer. If all the buffers
up samples are dropped (not overwritten for simplicit
Given the state where all the buffers are full, a sa
is taken and the array of buffers is searched to see
buffer has been freed. Therefore, dropped samples
minimized. More interestingly, this allows for easy vie
ing of the largest buffer that has been utilized to deter-
mine the buffer requirements by the system. Statistics can Figure 10:The Crash and Burn Lab is very cold.
also be taken on the average number of buffers needed
as empt_ylng buffers in a differed fashion is dependent g1 Final Comments
scheduling.

In addition to backup issues, we also wanted to gathﬁﬁe memory management comment was noteworthy , but

more mfo;matlon (.j;”ng Mardl?garruFt. In Part'EUIaErl’Pmemorable at a later time when we needed the informa-
we wanted to proviae a means of dereterencing the tittg)n and remembered the comment. From Linus him-

obtain the hex for the instruction. We could then trang-elf. “Fork is rather simple, once you get the hang of

late this into assembly during the background Process,p it the memory management can be a bitch” See
largely eliminating the need to use objdump manually, m/memory.c’: ‘copypagerange()’ '

W.e did in_ fact devise an assem_bly routine to accomplis It seems as though the comments in the kernel are very
this, but “k.e our buffering exploits, what worked OUIS'd(a scriptive as to the feelings of those who put their life
of on_hard.interrupt caused the system hang when placgﬁd soul into the kernel. A graph would be nice if we are

inside. Before abandoning this feature, we hypothesizﬁ,] Lrested in this: Fuck 35 Bitch 15 Shit 27

that virtual memory mappings perhaps do not always ®""The crash and burn lab is extremely cold. Every crash
dure, thus causing some kind of access error when der,

.) : d burn disk should ith heater. See Fi
erencing the EIP. We further hoped to include mforma— urn diskshould come with a space heater. see Figure

tion about the enclosing function. Had we added these;
two pieces of data, the following point would have beqnerhe girl who works nights at Quick Bite scoops up the

. argest "two” scoop waffle cones we have ever seen.

of even greater interest.

We currently provide a Java program to parse the
dumps made by our sampler. However, a MySQL i”teReferences
face that lets the user perform aggregations herself on tu-
ples of interest would make the data we gather far mcEfl_e] Intel Corporation. Vtune.
useful. Toward accomplishing this, we did install MySQL ™ http:/mww.intel.com/software/products/vtune!.
on our Crash and Burn disk, but we never got around to
working on accessing a database programmatically wjg] J. Anderson et al. Continuous profiling: Where have
C. The end result would have been similar to what we all the cycles gone?Proceedings of the 16th ACM
presented in our evaluation, but much of the labor could Symposium of Operating Systems Principleages
have been automated away. 1-14, October 1997.

11

[3] J. Levon. Oprofile.
http://oprofile.sourceforge.net/about/.

[4] Aaron Partow. http://www.partow.net.

[5] B. Sprunt. Managing the complexity of performance
monitoring hardware: The brink and abyss approach,
2004.

[6] D. Thain and M. Livny. Multiple bypass: Interpo-
sition agents for distributed computinglournal of
Cluster Computingpages 4:39-47, 2001.

[7] D. Thain and M. Livny. Parrot: Transparent user-level
middleware for data-intensive computingtroceed-
ings of the Workshop on Adaptive Grid Middleware,
New OrleansSeptember 2003.

12

