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Chapter 1 - Introduction 
 

1.1 Motivation and Objectives 
 

Fossil fuels have traditionally been the main source of energy for power generation and 

transportation and it is anticipated that they will continue to be the main source for years 

to come.  Combustion of fossil fuels not only generates heat, which can be converted into 

power, but also produces pollutants harmful to human health.  Stringent regulations are 

forcing manufacturers of automobiles and power plants to reduce these emissions while 

there is also a requirement to increase power and decrease fuel consumption in these 

devices.  These objectives lead to a requirement of improved combustion in these devices 

and it is believed that understanding the combustion process is an important step in this 

improvement. 

 

In most practical applications, combustion takes place in a turbulent flow field.  In recent 

years, a lot of effort has been placed on understand the underlying phenomenon in 

turbulent combustion processes.  A tool that is becoming increasingly powerful in 

studying turbulent combustion is computer simulation of the processes involved.  Recent 

efforts at Direct Numerical Simulations (DNS) of turbulent reacting flows in simple 

geometries have lead to improved understanding of these processes.  Even with these 

recent advances, the subject of turbulent flow is not fully understood in itself and 

combustion within a turbulent flow field makes it more difficult to fully understand the 

physical processes involved.  One reason for this is the wide range of length and time-

scales that one has to deal with when studying turbulent combustion process, which 
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makes simulations extremely expensive in terms of computational effort.  This limitation 

makes it impractical to apply DNS methods to practical combustion systems due to 

computational limitations.  To overcome this limitation, the equations governing the flow 

are typically averaged and the information lost through averaging is accounted for with 

the use of models.  One of the major motivations for this study is to improve combustion 

models available as part of the KIVA-3v (reference) modified at the Engine Research 

Center at the University of Wisconsin (reference).  These combustion models will be 

applied mainly to Diesel combustion and to simpler flows like piloted jet flames for 

purposes of validating the models. 

 

The objective of developing predictive combustion models is that they can be useful in 

designing efficient and clean combustion devices by performing relatively inexpensive 

CFD calculations rather than time-consuming and expensive practical experiments.  

Predictive combustion models may also be useful in understanding and interpreting 

combustion phenomena by visualizing results from combustion simulations. 

 

A predictive combustion model must be able to represent the major physics of the 

combustion process.  This representation is achieved by solving equations that govern the 

conservation of mass, species and energy.  These equations are given as (Kuo, 1986): 
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Here, ρ  is the density, iu is the velocity vector, p is the pressure, ig  is the body force 

vector, ijτ  is the stress tensor, Y is the mass fraction of any species, lµ  is the laminar 

viscosity, lσ  the laminar Schmidt number, and ω�  the source term due to chemical 

reaction.  Two other equations that need to be solved are the energy conservation 

equation and the equation of state. 

 

As noted earlier, these governing equations need to be averaged in most computations.  

Upon averaging the equations (1-1), (1-2), and (1-3), unknown terms are generated that 

need to be modeled.  One requirement of a good model is that the physical processes 

being simulated and the term used to model the physics must be consistent with each 

other.  Models for some of the unknown terms in these averaged equations are the topic 

of discussion in chapters 2 and 3. 

 

Development of a combustion model is based on an understanding of the underlying 

physics.  Some of the physical processes occurring in turbulent combustion and in Diesel 

engines that are important in the development of models presented in this study are 

discussed below. 

 

1.2 Overview of Turbulent Combustion 
 

The following description of turbulent combustion in general and combustion in Diesel 

engines is one of many possible interpretations of the complex events taking place during 
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the combustion process.  This description is based on the author’s understanding of the 

combustion process and other descriptions of the process (Kuo, 1986; Musculus et al., 

1995; Lee, 1999; Peters, 2000). 

 

In order for combustion to occur, fuel and oxidizer must mix at the molecular level before 

they can react.  In a laminar flow, this mixing is dominated by molecular diffusion 

whereas in a turbulent flow field, this mixing is typically dominated by turbulence.  It is 

believed that once a range of different size eddies has developed in a turbulent flow, 

strain and shear at the interface between the eddies enhance the mixing.  Molecular 

mixing of fuel and oxidizer takes place at the interface between small eddies.  Once the 

fuel and oxidizer are mixed at the molecular level, they may react if conditions are 

suitable.  The rate at which they react is often linearly proportional to their concentrations 

and exponentially proportional to the temperature. 

 

The above description of combustion leads to two extremes of combustion: reactions 

limited by kinetics (reactants are well-mixed) and those limited by mixing.  In Diesel 

engines, the entire spectrum of combustion regimes can be found.  In a diesel engine, 

liquid fuel is injected into a gaseous charge towards the end of the compression stroke.  

As the liquid fuel enters the cylinder, the spray interacts with the vapor mass already 

present in the cylinder, resulting in droplet collisions and break up.  The fuel droplets 

exchange mass and momentum with the charge and generate a tremendous amount of 

turbulent kinetic energy near the spray.  This spray-induced turbulence greatly enhances 

the mixing rates, thus shortening the mixing time scales and inducing high strain rates. 
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As the droplets are evaporating, they act as point sources of fuel vapor in the engine 

cylinder.  The fuel air mixture formed immediately after the start of injection must auto-

ignite.  The conditions required for auto-ignition are generally not met at the time of 

injection, rather only after an ignition delay lasting several crank angles.  During the 

ignition delay, complex chemical reactions take place, breaking the fuel molecules down 

into radicals and intermediates.  This process continues until the temperature, pressure 

and species concentrations promote highly exothermic runaway kinetics.  The time 

required to induce the rapid high temperature reactions varies throughout the cylinder.  

 

During the ignition delay, a considerable amount of fuel vaporizes and mixes with the 

cylinder charge, thus forming a highly combustible mixture.  Experimental evidence 

suggests that this mixture is fuel rich with an equivalence ratio between 2 and 4 (Dec, 

1997).  During the time in which ignition occurs, this fuel air mixture reacts quickly.  

This rapid consumption of the fuel air mixture prepared during the ignition delay is 

referred to as the premixed burn phase, and is responsible for the initial spike found in 

some heat release diagrams.  As the turbulence and mixing rates are very large, the 

premixed reactions are typically kinetically limited.  Thermal conduction in the high 

temperature ignition zones promotes ignition in neighboring fuel air mixtures.  At this 

point, regions in the cylinder fall into two categories: 1) clusters of drops which have not 

ignited, where the fuel is vaporizing and mixing with the cylinder charge while 

participating in low temperature kinetics and 2) groups of droplets burning in a premixed 

fashion, with oxidizer being found between the droplets and the flame. 
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After some time, the oxidizer between the flame and the droplets is consumed and a 

diffusion flame forms at the jet periphery between the oxidizer and the incomplete 

combustion products (Dec, 1997).  Fuel vaporizing from droplets within this diffusion 

flame must be transported to the reaction zone to find sufficient oxidizer to react.  This 

diffusion burn is limited by the processes that vaporize droplets and transport fuel and 

oxidizer to the flame surface.  During this mixing-limited diffusion burn, the flame 

surface is transported and stretched by the turbulent gases.  Thus, the induced strain rates 

on the flame surface change drastically temporally and spatially.  After some time, most 

of the premixed fuel is exhausted, and the remainder of the combustion process is limited 

by diffusion burn processes. 

 

Representing the above physical description of the turbulent combustion process with 

models can be challenging given the complexity of the processes being modeled.  The 

following section discusses some of the common combustion models used by various 

researchers. 

 

1.3 Combustion Models 
 

One of the simplest approaches to combustion modeling is to assume that reactions are 

kinetically limited and use rates of reaction as determined by chemical kinetics alone.  

The most commonly used rate expression is an Arrhenius type reaction rate (Brady et al., 

1986).  Reactions may be expressed as single step reactions where fuel and oxidizer are 

completely converted to products.  In reality, the process of conversion of fuel and 
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oxidizer to products may involve thousands of elementary reactions steps.  Another 

approach is to systematically reduce these elementary into a few global reaction steps and 

use these global reactions to represent the chemical kinetics. 

 

Another simple modeling method assumes that the turbulent mixing rate dominates the 

combustion process.  Such models are often referred to as eddy break up (EBU) models.  

This model was first proposed by Spalding (1971) who argued that chemical reactions are 

controlled by the cascade of energy from the large scales of motion to the small scales of 

motion and the rate of chemical reaction can be determined using information from large-

scale quantities. 

 

Since combustion in engines may lie between these two extremes, several different 

models have been used to model diesel combustion.  One of these is a variation of the 

EBU model proposed by Magnussen et al. (1976).  They combine a chemical time-scale 

with the mixing time-scale in a hybrid scheme.  This model has been successfully applied 

to simulate diesel combustion in several studies. 

 

 Another widely used model is an extension of the characteristic time model (Abraham et 

al., 1985) to Diesel combustion (Kong et al., 1995).  In this model, the rate of conversion 

of a species from is present state to the equilibrium state is assumed to occur at a 

characteristic time-scale.  The characteristic time-scale is determined as a combination of 

a kinetic scale and a mixing time-scale.  The kinetic time-scale is derived from a single 
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step reaction rate correlation for diesel fuel while the mixing time-scale is derived from 

turbulence quantities. 

 

A separate approach to modeling of turbulent combustion is to separate the laminar 

chemistry from the turbulent flow field using the laminar flamelet model.  An 

introduction to the laminar flamelet concept is presented in Chapter 3.  A good review of 

the laminar flamelet concept and models that use this concept is presented by Peters 

(1984). 

 

Several models that are based on the laminar flamelet concept have been used by 

researchers to model diesel combustion.  One of these is a coherent flamelet model 

(Musculus et al., 1995).  This model provides a transport equation for the density of the 

flame area.  The overall reaction rate is then found by integrating the reaction rate per 

unit flame area for a strained laminar flame over all of the flame area. 

 

Another model called the Representative Interactive Flamelet (RIF) Model developed by 

Barths et al. (1998) has been successfully used to simulate diesel combustion.  This 

model uses the laminar flamelet concept with Probability Density Function (PDF) 

methods to accurately simulate processes such as ignition, premixed burn and diffusion 

burn.  This complex model requires an unsteady diffusion flamelet solver to work 

together with the CFD code.  Further, this model incorporates detailed chemical kinetics 

making the simulations are expensive in terms of CPU time usage. 
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Rogg et al. (1986) have applied the laminar flamelet model to partially premixed 

systems.  In their model, a flamelet is characterized by the extent of stretching to which 

they are exposed and additionally by the degree to which it’s reactants are premixed.  

Results from this model, which incorporates detailed kinetics, were shown to agree very 

well with experimental results. 

 

1.4 Turbulence Modeling 
 

It is known that turbulence is critical to the proper operation of an internal combustion 

engine (Heywood, 1988).  The reason for this is that turbulent mixing rates are typically 

significantly larger than the molecular diffusion processes.  The turbulent mixing will 

serve to increase the flame speed for premixed flames, typical of a spark ignited (SI) 

engine, and it will serve to enhance the oxidizer and fuel mixing rate in diffusion flames, 

typical of diesel engines.  Thus, in order to accurately model the combustion process in 

an internal combustion engine the effects of turbulent mixing must be included.  As noted 

earlier, current computational limitations are not enough to directly simulate all the 

length scales in a complex flow.  Thus, a turbulence model is necessary to account for the 

effects of the unresolved scales. 

 

The goal of turbulence modeling is to represent the physics of the flow as accurately as 

possible with as little computational expense as possible.  In traditional approaches, the 

effects of turbulence have been modeled by adding a turbulent viscosity to the molecular 

viscosity in the momentum equation.  It is reasoned that the primary effect of turbulence 
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is to increase mixing and therefore an effective turbulent viscosity can be used to 

simulate this effect.   

 

One class of turbulence models is the Reynolds Averaged Navier-Stokes (RANS) 

models.  In RANS models, the Navier-Stokes equations are ensemble averaged.  This 

averaging process results in an extra stress term, the Reynolds stress, which is usually 

modeled with an effective turbulent viscosity.  The ensemble averaging tends to remove 

the time-dependent part of the turbulent flow.  In less complex flows, RANS models 

usually perform adequately; however, in more complex highly time-dependent flows 

such as an internal combustion engine, the ensemble averaging tends to smear out 

important structures in the flow field (Mellor and Ferguson, 1980) and therefore may be 

inappropriate (Libby and Williams, 1980).  Thus, RANS models, such as k � � , have 

significant drawbacks for use in modeling an internal combustion engine. 

 

Another approach for modeling turbulence is large eddy simulation (LES).  In the LES 

approach, the large scale eddies are solved for directly while the effects of smaller scale 

eddies are modeled.  A property of a good LES model is that as the grid resolution 

approaches DNS, the effects of the sub-grid on the resolved scales are reduced and 

conversely as the resolution becomes coarser, the effects of the sub-grid on the resolved 

scale are increased.  In conventional RANS models, there is no such mechanism in place 

to respond to the grid resolution.  
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To implement a LES model, the flow field must be separated into a large scale (resolved) 

and a small-scale (sub-grid) field (Pomraning, 2000).  This is accomplished by using a 

filtering function, which is usually a local spatial average of the flow field.  Thus, the 

resolved field can be solved for using the filtered time dependent Navier-Stokes 

equations while the effects of the small scales are accounted for through the additional 

stress terms that arise from filtering the time dependent Navier-Stokes equations.  The 

ensemble averaging of the RANS models, which smears out flow structure, is replaced by 

local spatial averaging.  By the nature of the LES averaging, unsteady flow behavior can 

be more accurately simulated.  This makes LES methods more suited for complex highly 

time dependent flows such as in an internal combustion engine. 

 

Typically, LES is computationally less expensive than DNS and computationally more 

expensive than RANS models.  The main reason for this is that traditional LES requires 

that more scales of turbulence be resolved than RANS models yet it does not require that 

all of the scales of turbulence be resolved.  Thus, an LES grid is typically denser than a 

RANS grid and less dense than a DNS grid.  With recent increases in computational 

power, it has become feasible to use denser grids and therefore LES for complex 

engineering flows is more practical. 

 

A number of LES models have been proposed by researchers.  Some of these models 

were implemented into the KIVA code in this study and a discussion of these models 

along with a review of LES concepts is presented in Chapter 2. 
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LES methods have also recently been used to simulate simpler reacting flows.  It is 

reasoned that simulations of simpler flows such as reacting jet flows and simulations of 

decaying isotropic turbulence of a reacting mixture will provide insight into the physics 

of combustion and turbulence-chemistry interactions.  Since complex phenomena such as 

two-phase flow, evaporation and liquid-gas interactions that are present in IC engines do 

not occur in these flows, they provide detailed insight into both the combustion process 

and the behavior of the models themselves. 

 

Pitsch (2000) has performed an LES of a reacting methane-air jet flame using an 

extended flamelet model.  A lagrangian flamelet model (LFM) was used to simulate the 

Sandia series of flames (Barlow et al., 1998).  The simulation results were in good 

agreement with the experiment indicating that the combustion model with LES was 

suitable for non-premixed combustion. 

  

Cook et al. (1997) have applied a large-eddy probability density function combustion 

model to a reacting system of homogeneous, isotropic, decaying turbulence.  Their 

comparisons of model results with filtered DNS data indicates that the model is 

reasonably accurate and that accuracy increases with increasing Damköhler number. 

 

In conclusion, it seems that LES methods combined with flamelet models are promising 

methods for modeling turbulent, unsteady, reacting flows.  LES and flamelet models 

developed in this study are presented in the following chapters. 
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Chapter 2 - Turbulence Modeling with Large Eddy 
Simulation 

 

2.1 Introduction 

 

The discussion in Chapter 1 indicated that LES methods might be well suited for 

simulations of internal combustion engines.  Application of LES models to IC engine 

simulations is a relatively new field of research.  Some work in this area has been carried 

out by Celik et al. (1998) who used LES methods to model flow and combustion in an 

internal combustion engine. 

 

Four LES turbulence models have been implemented into the KIVA code:  a zero-

equation model (Smagorinsky, 1963), a one-equation viscosity based model (Menon et 

al., 1996), a zero-equation dynamic Smagorinsky model (Germano, 1991), and a 

Dynamic Structure Model (Pomraning, 2000).  In this chapter, a brief background of LES 

is first presented.  This is followed by a discussion of aspects of some LES models that 

are important for modeling combustion. 

 

2.2 Large Eddy Simulation Background 
 

The LES decomposition of any flow variable φ  is given as (Pomraning, 2000): 

 φ φ φ′= + . (2-1) 

The resolved quantity φ  is given by 

 (x) (x, y) (y) y
V

G dφ φ= � , (2-2) 

where ( , )G x y  is a spatial filter function that must satisfy 
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 G x y dy
V

( , )z � 1, (2-3) 

for the flow variable to be conserved.  Commonly used filtering functions include the box 

and Gaussian filters.  The resolved component is determined by solving filtered transport 

equations of mass, momentum, energy, and species conservation.  The effect of the sub-

grid variables must be modeled. 

 

Some properties of LES filters are presented here.  Unlike RANS averaging, for most 

LES filters, 

 0and� � �� �� , (2-4) 
where φ  is any flow variable.  Second, also unlike RANS averaging, the filtering 

operation only commutes with differentiation for a uniform stationary grid (Ghosal, 

1995).  In other words,  

 
x x
� �� �
�

� �
, (2-5) 

only for a uniform stationary grid. 

 

Upon filtering the governing equations, unclosed terms are generated which need to be 

modeled.  Models for these terms typically have a model coefficient that needs to be 

determined.  There are two broad classifications of sub-grid scale models for the unclosed 

terms—universal coefficient models and dynamic models.  The universal coefficient 

models, in general, require the user to specify the model coefficient based on the flow 

and/or grid resolution.  The appropriate universal model coefficient is frequently 

determined by comparing numerical calculations to experimental data.  In dynamic 

models, the model coefficient is dynamically determined as a function of space and time 
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from the resolved field.  This approach is based on an assumed scaling between resolved 

and sub-grid scales, and a mathematical identity that arises.  These models offer the 

advantage of not requiring a priori knowledge of the flow to set the flow coefficient.  

Models using the dynamic approach are reasonably successful and have become widely 

used. 

 

To formulate a dynamic model a second filtering operation, which is designated the ‘test’ 

level filter, is required.  The ‘test’ filter operation is defined in a similar manner as the 

‘grid’ filter operation: 

 u G u di TV i( ) ( , ) ( )x x y y y� z , (2.6) 
where the filter width of the test filter is required to be greater or equal to that of the first 

filter.  The use of this test filtering operation to develop a dynamic model will be 

presented later in this chapter. 

 

2.3 LES Momentum Transport 
 

In order to accurately model the combustion process, the effects of turbulent mixing must 

be modeled correctly.  In order to accomplish this, the averaged Navier-Stokes equation 

for momentum must be solved.  This is obtained by filtering the Navier-Stokes 

momentum equation and is given as (Pomraning, 2000): 

 �

�
�
�

�
�
��

�
�
�

�
�
�

�

� � � �~ ~ ~u
t

u u
x

P
x x x

i i j

j i

ij

j

u u

j

i jd i
, (2-7) 

where the bar indicates filtering at the grid level and 

 
� � �2

3
ji k

ij ij
j i k

uu u
x x x

σ µ µ δ
� �∂∂ ∂= + −� �
� �∂ ∂ ∂� �

, (2-8) 
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 � � �� �i ju u i j i ju u u u� �� � , (2-9) 

and iu�  is the LES Favre averaged velocity defined by 

 i
i

uu ρ
ρ

≡� . (2-10) 

The sub-grid stress tensor, 
i ju u� , must be modeled as it cannot be readily determined from 

the resolved field.  A number of approaches have been used to model this term.  The 

three approaches presented here are a zero equation model, a one-equation viscosity 

model, and the dynamic structure model. 

 

2.3.1 Zero Equation Model 
 

In the zero-equation model and the one-equation model presented later, the sub-grid 

stress tensor is modeled using a gradient approximation as: 

 
i j

iju u t S� �� , (2.11) 
where the filtered rate of strain tensor is defined as: 

 
� �1

2
i j

ij
j i

u uS
x x

� �� �
� �� �� �� 	

 (2.12) 

The zero-equation model (Smagorinsky, 1963) is the simplest of LES sub-grid models 

and it does not require any additional transport equations.  In this model, the turbulent 

viscosity is related to known quantities as: 

 22t sC S� � �  (2.13) 
where ∆  is a length scale taken to be the filter width (taken as the cube root of the cell 

volume in this study).  The magnitude of the filtered rate of strain tensor is defined as: 

 � �
1/ 2

2 ij ijS S S�  (2.14) 
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The parameter, sC , is a user-specified coefficient that may vary significantly with space.  

Approximate values of the coefficient have been determined to be between 0.01 and 0.3 

(Pomraning, 2000) depending on the grid resolution and flow configuration.  Thus, 

modeling complex turbulent flows using the Smagorinsky model requires a priori 

knowledge of the flow to set Cs correctly.  This is a critical weakness for complex flows 

where a priori knowledge of the flow may not be available to set the universal 

coefficient.  In addition, for complex flows, it may not be possible to find a universal 

coefficient that is appropriate for the entire domain at all times. 

 

2.3.2 One Equation Sub-Grid Model 
 

It is reasoned that the modeling of equation (2.11) can be improved by adding a transport 

for the sub-grid scale kinetic energy.  One such model was proposed by Menon et al. 

(1996).  The modeled from of the sub-grid kinetic energy transport is written as: 

 
� � ij t

ij
j j k j j

u kk k u
t x x x x

ν τ ε
σ

� �∂∂ ∂ ∂ ∂+ = − −� �� �∂ ∂ ∂ ∂ ∂� �
 (2.15) 

where the sub-grid kinetic energy is defined as: 

 � � �� �2 i i i ik u u u u�
� � . (2.16) 

The sub-grid stress tensor is modeled as: 

 2ij tk ijSτ ν= − , (2.17) 
where the turbulent viscosity, � tk , is modeled as 

 1/ 2
tk kC kν = ∆ . (2.18) 

A model for dissipation of the sub-grid scale kinetic energy, � , is given by 

 �
�

� C k3 2/

�
. (2.19) 
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The constants in the model are set to Ck � 0 05. , C
�
�10. , and � k �10.  (Yoshizawa, 1985). 

 

One weakness with both the zero-equation model and the one-equation model, proposed 

in equations (2.11) and (2.17) above, is the assumption that the sub-grid stress tensor 

scales with the rate of strain tensor.  It can be shown that this assumption cannot be 

justified (Pomraning, 2000).  Moreover, in general, viscosity closures show very little 

correlation with the actual sub-grid stress tensor (Pomraning, 2000).  Instead of modeling 

the stress tensor with a viscosity, a new model has been proposed by Pomraning (2000) 

where an attempt is made to estimate the stress tensor directly. 

 

2.3.3 Dynamic Structure Sub-Grid Model 
 

In the dynamic structure mode, the model coefficient is determined dynamically as a 

function of space and time from the resolved field rather than using a universal 

coefficient.  A dynamic model requires that the momentum equation be filtered a second 

time at the ‘test’ level.  The ‘test’ filter needs to be equal in width or wider than the ‘grid’ 

or first filter.  The second filtering operation results in a stress tensor at the test level, 

given by 

 ��
�

��
ij i j i jT u u u u�����

� �� � , (2-20) 
where 

 �
��

�

i
i

uu�� �

�

� . (2-21) 

 

The grid level and test level stress tensors are related by the Germano Identity (Germano, 

1991). 
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 �
ij ij ijL T �� � , (2-22) 

where the Leonard stress term, ijL , is given by 

 � ��
�

� �
ij i j i jL u u u u�� ���

� �� � . (2-23) 
The Leonard stress term can be determined from the resolved field.  The Germano 

identity is useful because it relates the two unknown stress tensors to a known tensor. 

 

In the dynamic structure model, the equation for the sub-grid stress tensor is given by 

(Pomraning, 2000) 

 ij ijc k� � , (2-24) 
and the equation for the test level stress tensor is given by 

 ij ijT c K� , (2-25) 
where the grid level and test level sub-grid kinetic energies are defined by 

 � � �� �2 i i i ik u u u u�
� � , (2-26) 

and 

 ��
�

��
1 ( )
2 i i i iK u u u u����

� �� � . (2-27) 

The grid level sub-grid kinetic energy is determined from a transport equation, the 

modeled form of which is given by 

 
�

�j
ij ij

j j j

u kk k S
t x x x

ν τ ε
� �∂∂ ∂ ∂+ = − −� �� �∂ ∂ ∂ ∂� �

 (2-28) 

Models for the unclosed terms in equation (2-28) are discussed by Pomraning (2000).  

These models were validated using DNS data. 

 

The grid and test level sub-grid kinetic energies are related by the trace of the Leonard 

term in equation (2-23) as 
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 K k Lii� �
1
2

. (2-29) 

The tensor structure of the sub-grid stresses is obtained from the tensor coefficient ijc , 

which is found using the Germano identity.  It is assumed that the tensor coefficient is the 

same at both filter levels.  Substituting the models for the stress tensors into the Germano 

identity gives 

 �
ij ij ijL Kc kc� � . (2-30) 

An algebraic form of the model is obtained by assuming that the tensor coefficient can be 

removed from the integral in equation (2-30) and solving for ijτ  which gives 

 2
ij ij

kk

kL
L

�

� �
� � �� �

. (2-31) 

Thus, the dynamic structure LES model obtains the tensor structure of the sub-grid 

stresses from a tensor coefficient rather than from the resolved scale stress tensor.  

Additionally, it is reasoned that since the sub-grid kinetic energy is related to the trace of 

the sub-grid stress tensor then a model of this form will scale well at the two filter levels.  

For this reason, it is assumed that the tensor coefficient is the same at both filter levels.   

 

2.4 LES Scalar Transport 
 

Determination of the mean species fractions in the combustion model (Chapter 3) 

requires the mean mixture fraction, its variance, and the mean stretch rate.  In order to 

obtain these quantities, transport equations are solved for the mean mixture fraction and 

sub-grid mixture fraction fluctuations.  The filtered LES equation for the Favre-averaged 

mixture fraction, �ξ , is given as (Pomraning, 2000): 
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� � �

iui

i i i i

u D
t x x x x

��� ��� �
�

��� � �
� � � �

� � � � �
, (2-32) 

where the sub-grid scalar-flux is given by 

 � � �� �iu i iu u�� � � �� � , (2-33) 
which needs to be modeled.  Currently, this term is modeled using a gradient 

approximation as: 

 
�

iu s
ix�

�
� �

�
� �

�
, (2-34) 

where sµ  is a scalar transport coefficient.  When using the zero-equation sub-grid stress 

model and the one-equation sub-grid stress model, the scalar coefficient may be 

determined as: 

 t
s

t

�
�

�
� , (2-35) 

where t�  is the turbulent Schmidt number and t�  is determined from equations (2.13) or 

(2.18).  When using the dynamic structure model, the scalar transport coefficient is 

determined as: 

 1 2
s kC k� � � . (2-36) 

Here, ∆  is the filter width of the grid-level filter. 

 

The unclosed term in the species conservation equation (3-1), 
iu Y� , is modeled in a 

similar fashion as: 

 
�

iu Y s
i

Y
x

� �
�

� �
�

, (2-37) 
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The combustion model also requires the mean stretch rate and the variance of the mixture 

fraction.  In order to evaluate these quantities, a transport equation for the sub-grid 

mixture fraction fluctuations is solved.  The modeled form of this equation is given by 

 
�

�2i iu ui

i i i i i

u D
t x x x x x

�� �
� ��

�
� � � �� ��� � ��

� � � � � �� 	� � � � � �
 �
 (2-38) 

where 

 � � �� �� �� � �� � � , (2-39) 

 � � �� �iu i iu u� � �� ��
�
� � , (2-40) 

and 

 
� � �

2
i i i i

D
x x x x
� � � �

�
� �� � � �

� �� �� � � �� 	
. (2-41)  

 

For the zero-equation Smagorinsky model and the one-equation model, the sub-grid 

mixture fraction fluctuation dissipation rate, χ , is modeled as: 

 2C D
�

�
�

�
�

. (2.42) 

Here, C
�

, is a model constant and D  is the laminar diffusion coefficient. 

 

In the dynamic structure model, the dissipation rate, � , is modeled as: 

 L
L �

�

�

�
� , (2-43) 

where 

 
� ��

� � �

2
j j j j

L D
x x x x

����������

�

� � � �
� �

� �� � � �
� �� �

� �� � � �� 	
, (2-44) 

 � ��
�

�� ��L �� � �� �
�
� � , (2-45) 

and 

 ��
��

�

��
�

�
�  (2-46) 
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Methods for modeling the other unclosed terms in equation (2-38) are discussed by 

Pomraning (2000). 

 

The mean stretch rate χ , given by averaging equation (3-7), is: 

 
�

2
i i

D
x x
� �

�
� �

�
� �

. (2-47) 

This is determined from equation (2-41) as:  

 
� �

2
i i

D
x x
� �

� �
� �

� �
� �

, (2-48) 

It can be seen that as grid resolution increases, this term approaches the instantaneous 

stretch rate defined in equation (3-7).  This offers an improvement over RANS models, 

which are known to do a poor job of predicting χ  (Peters et al., 1988). 

 

Equation (2-38) is also used to determine the variance of the mixture fraction.  The 

relation, � � � �ξ ξ ξξ ξξ′ ′ = − , which is true in a RANS model is not valid for LES averaging 

since, in general, for LES, � 0ξ ′ ≠ .  However, the two quantities, �ξ ξ′ ′  and � � �ξξ ξξ−  have 

the same qualitative trend as they tend to be large in regions of large gradients.  

Therefore, it is assumed that the quantity � � �ξξ ξξ−  can be used in place of �ξ ξ′ ′  to 

determine the PDF of ξ .  Knowing �ξ  from equation (2-32), � � �ξξ ξξ−  from equation 

(2-38), and χ  from equation (2-48) allows us to determine mean species mass fractions 

using equation (3-22). 
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In the future, the sub-grid scalar flux in equation (2-33) could be modeled in a manner 

that is consistent with the Dynamic Structure LES model.  This method is presented here.  

A dynamic model for the sub-grid scalar flux would be of the form 

 
iu ic� �� ��  (2-49) 

where 

 1 2 1 2(2 )k�� � � . (2-50) 
It is reasoned that equation (2-50) will provide the right scaling on the sub-grid scalar 

flux in the same way as that for the sub-grid turbulent stresses.  In order to determine the 

coefficient ic  dynamically, a model of the form 

 � ��
�

� �� �
iu i i i iL u u c c��
� � �� � � � � �� � � �  (2-51) 

would have to be used.  The model for the sub-grid flux at the test level, ξα , would be of 

the form: 

 1 2 1 2(2 )t K�� � � , (2-52) 
where 

 ��
�

�� �� �
t L���� ���� � � � �� , (2-53) 

and 

 � ��
�

�� ��L� ��� �� �� � . (2-54) 
Substituting Equations  (2-50) and  (2-52) into the dynamic model, (2-51), gives the 

following:  

 ( ) ( )�1/ 2 1/ 21/ 2 1/ 22 2
iu i t iL c K c kξ = Φ − Φ . (2.55) 

Equation (2.55) is a set of three Fredholm integral equations of the second kind.  

Although not strictly justified, the dynamic vector coefficient can be removed from the 

integral giving a set of three algebraic equations: 
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( ) ( )�

( )1/ 21/ 2

1/ 2 1/ 21/ 2 1/ 2
2

2 2
i

i

u
u

t

L
k

K k

ξ
ξτ

� �
� �= Φ
� �� �Φ − Φ� �

. (2.56) 

The model derived above is consistent with the dynamic structure LES model since it 

does not use a turbulent diffusion term to model the unclosed term.  However, use of this 

model would require adding sub-grid transport equations for all species that are 

transported in the KIVA code.  These sub-grid transport equations would add 

computation cost as well as have terms involving the mean reaction rate that would be 

extremely difficult to model.  In order to avoid these difficulties, the sub-grid scalar flux 

is currently modeled using equations (2-34) and (2-37). 
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Chapter 3 - Probability Density Function Time-Scale 
Model 

 

3.1 Introduction 
 

A review of combustion models in Chapter 1 showed that combustion models are either 

too simple to capture all the physics of the combustion process or are extremely complex 

and require a lot of computational effort.  The PDF time-scale model presented in this 

study attempts to capture the major physics of the combustion process without the need 

for large amounts of computational effort. 

 

Most efforts at modeling diesel combustion use a premixed combustion model and a 

diffusion combustion model and employ coupling between the two models.  The PDF 

time-scale model attempts to model both these modes with a single model that can be 

used in all regimes of combustion.  This is achieved by using a laminar flamelet concept 

in the flamelet regime of combustion and is modified for use in other regimes using a 

time-scale approach.  Some of the governing equations that need to be solved to model a 

turbulent reacting flow are discussed followed by a discussion of the laminar flamelet 

concept and the time-scale modification. 
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3.2 Conservation Equations 
 

In a gaseous reacting flow, mass fractions of species are governed by the equations for 

conservation of mass, momentum and species.  The averaged form of the species 

conservation equation is given as (Lee, 1999): 

 
� � �

iu Yi

i i i i

u YY YD
t x x x x

�

���
� �

��� � �
� � � � �

� � � � �
, (3-1) 

where 

 � � �� �iu Y i iu Y u Y� �� � . (3-2) 

 

The mean reaction rate term that appears in equation (3-1) is difficult to evaluate.  

Typically, the laminar reaction rate for an irreversible reaction such as F O P+ →  may 

be given as: 

 exp A
P F O

EAC C
RT

ω � �= −� �
� �

� , (3-3) 

where C  represents the concentration of a species and T is the temperature.  Evaluation 

of the mean reaction rate requires averaging the above term.  Because of the way in 

which averages are defined, the mean reaction rate is not equal to: 

 exp A
P F O

EAC C
RT

ω � �≠ − −� �
� �

� . (3-4) 

Care should be taken not to use the above expression as this could result in errors up to 

three orders of magnitude (Jones et al., 1982).  We make use of the laminar flamelet 

concept to help model the mean reaction rate since it is difficult to solve for directly. 
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3.3 Laminar Flamelet Concept 

 

The laminar flamelet concept (Bilger, 1980; Peters, 1984) simplifies modeling the 

reaction rate term that appears in the species conservation equation.  The motivation for 

using this concept is to simplify the turbulence-chemistry interactions by assuming a 

time-scale separation of turbulent and chemical time-scales in the flamelet regime.  

Under the laminar flamelet concept, a turbulent flame is viewed as an ensemble of 

laminar diffusion flamelets that are embedded in a turbulent flow field.  A flamelet is a 

thin, locally one-dimensional, laminar structure within which reaction takes place.  The 

strain rate scales associated with the smallest turbulent eddies are larger than those 

associated the flamelet and the effect of turbulence is to stretch these flamelets.  Under 

these assumptions, the laminar flamelet solution may be mapped onto the turbulent flow 

field.  The laminar flamelet solution can be obtained as a function of a single conserved 

scalar and one other parameter, which characterizes the flow field. 

 

A conserved scalar is one that is not generated or consumed by chemical reaction.  

Examples of conserved scalars are the total enthalpy in adiabatic systems and elemental 

mass fractions.  The mixture fraction, ξ , is a conserved scalar and can be defined as 

(Bilger, 1976): 

 � �

�

�

Z Z
Z Z

k k ox

k fuel K ox

,

, ,

 (3-5) 

Here, Zk  represents the elemental mass fraction of atomic species k, while ox and fuel  

denotes the conditions in the oxidizer and fuel boundaries, respectively.  In this study, the 

definition of �  is based on elemental carbon. 
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Under the assumption that chemical time-scales are smaller than flow time-scales, the 

species mass fractions are solely a function of the mixture fraction as: 

 Y Yi i
e

� ( )�  (3-6) 

This argument of chemical time-scales being smaller than flow time-scales leads to an 

equilibrium assumption.  Species mass fractions as a function of the mixture fraction 

under the equilibrium assumption are show in figure 3-1: 

 

Figure 3-1: Species Mass fractions as a function of mixture fraction for the equilibrium assumption 

 

Implied in the equilibrium assumption is that the mixture fraction is uniform throughout 

the flow field, i.e. no gradients in mixture fraction are present.  However, this is often not 

the case in non-premixed combustion and the solution obtained in equation (3-6) does not 

consider the effect of gradients.  The parameter that is used to account for these gradients 

is the stretch rate, χ , which is defined as 

 2
k k

D
x x
ξ ξχ ∂ ∂=

∂ ∂
 (3-7) 
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Under the laminar flamelet concept, it is assumed that the reaction zone is a thin region 

around the surface of the stoichiometric mixture fraction.  If a new co-ordinate system is 

attached to this surface, the mixture fraction becomes a new co-ordinate, which is locally 

normal to the stoichiometric surface.  The species conservation equation may be 

transformed into this new co-ordinate system where the mixture fraction is the 

independent variable.  The transformation results in the flamelet equation for species 

conservation (Peters, 1984): 

 
2

2 0
2

i i
i

i

Y Y
Le
χρ ρ ω

τ ξ
∂ ∂− − =
∂ ∂

� , (3-8) 

where τ  is time in the new-coordinate system. 

 

The flamelet equations in mixture fraction space do not have any convective terms and 

the stretch rate, χ , accounts for both convection and diffusion normal to the surface of 

stoichiometric mixture fraction.  The stretch rate may also be viewed as an external 

parameter that is imposed on the flamelet due to the flow field (Peters, 1984).  Using the 

laminar flamelet concept, the species mass fractions may be expressed as: 

 ( ),i iY Y ξ χ=  (3-9) 
Equation (3-9) assumes that the Damköhler number is large (chemical time-scales are 

much smaller than flow time-scales).  However, there are some regimes in Diesel 

Combustion where the Damköhler number is not large (Peters – length scales paper).  

These regimes are illustrated in figure 3-2. 
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Figure 3-2: Regimes of Diesel Combustion 

 

In order to use the flamelet combustion model in these regimes, it must be modified to 

take into account that chemical and turbulent time-scales may be of the same order of 

magnitude.  The modifications used in this study are discussed in section 3.4. 

 

3.3.1 Opposed Flow Diffusion Flame 
 

It is believed that a good representation of a stretched laminar flamelet is the opposed 

flow diffusion flame.  This configuration has been studied extensively by a number of 

researchers (reference) because it is simple enough for detailed experimentation to be 

performed, yet complex enough for studying phenomena such as strain and detailed 

kinetics. 
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A schematic of the configuration is shown in figure 3-3 (Lee, 1999).  The arrangement 

consists of jets of pure fuel and oxidizer that diffuse into each other.  A diffusion flame is 

formed at the point where the fuel and oxidizer meet in stoichiometric proportion.  In this 

study, the OPPDIF code (Lutz et al., 1997) was used to solve the equations governing an 

opposed flow diffusion flame.  The program requires a chemical mechanism as an input 

parameter.  For the engine simulations that are discussed in Chapter 4, an iso-octane 

mechanism consisting of 29 species and 49 reactions was used (reference).  For the 

reacting jet simulation, a chemical mechanism for methane-air combustion with 37 

species and 190 reactions (reference) was used.  For the engine simulations, the OPPDIF 

calculations were performed at 100 atm. pressure and the fuel and oxidizer inlet 

temperatures were assumed as 300 K and 1000 K respectively.  For the reacting jet 

simulation, the pressure was set to 1 atm and fuel and oxidizer inlet temperatures were set 

to 300 K when performing OPPDIF calculations. 

 

Figure 3-3: Opposed flow diffusion flame configuration 
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For the simple case of the opposed flow diffusion flame, the mixture fraction varies from 

one at the fuel inlet to zero at the oxidizer inlet boundary.  The point of stoichiometric 

mixture fraction is shown in figure 3-3.  The thin region around the vicinity of this 

stoichiometric mixture fraction is known as a laminar diffusion flamelet.  The mixture 

fraction can be made the independent variable in the opposed flow diffusion flame 

solution and this solution is assumed to be the solution to equation (3-8). 

 

The stretch rate, χ , is varied in this configuration by varying the fuel and oxidizer 

boundary velocity.  As χ  gets larger, the rate at which fuel and oxidizer are transported 

into the reaction zone is increased.  As χ  approaches zero, the laminar opposed flame 

solution approaches the equilibrium solution shown in figure 3-1. 

 

The effects introduced by the stretch rate are important.  Although the reaction rate 

increases as χ  increases, the temperature decreases with increasing χ .  This effect can 

be seen in figure 3-4, which shows the temperature and fuel reaction rate as a function of 

the mixture fraction for different values of the stretch rate.  This apparent contradiction of 

the temperature decreasing while the reaction rate increases is due to the stretching of the 

laminar flamelet with the increase in stretch rate.  As the laminar flamelet is stretched, its 

thickness in physical space decreases.  Due to this, heat conduction from within the 

reaction zone increases, causing the temperature to drop.  In other words, the rate of 

increase of reaction rate is not sufficient to keep up with the increased rate of heat loss 

due to thinning of the flamelet.  This effect continues until the stretch rate reaches a 

critical value known as the quenching value of the stretch rate where the kinetics cannot 



 

 

34

keep up with the rate at which the fuel and oxidizer are transported into the reaction zone 

and the flamelet is quenched.   

Figure 3-4: Effect of Stretch Rate on Temperature and Reaction Rate 

 

For the iso-octane mechanism used in this study, the quenching value of χ  was found to 

be 1142.2 s−  at the conditions the OPPDIF simulations were performed.  For the methane 

– air mechanism, the quenching value of χ  was found to be 16.0014 /s which is in 

agreement with experimental findings (reference from Peter’s reduced mechanisms 

book). 

 

3.3.2 Extension to Turbulent Flow Simulation 
 

Using the opposed flow configuration, we can obtain all scalars of interest (such as 

temperature and mass fractions) as a function of the mixture fraction and the stretch rate.  

When performing a turbulent flow simulation, we need average values of the scalars 

because these are solved for with conservation equations.  Moreover, the instantaneous 

mixture fraction and stretch rate cannot be determined because of computational 
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limitations.  Instead, the statistics for these quantities can be determined by solving 

transport equations, and the mean values of the scalars of interest can then be determined 

knowing the statistics of the mixture fraction and the stretch rate.  The mean mixture 

fraction may be obtained by solving equation (2-32).  Similarly, the second moment of 

the mixture fraction is obtained by solving equation (2-38).  The term, χ , that appears in 

equation (2-38) is the rate of dissipation of sub-grid mixture fraction fluctuations and is 

useful in determining the mean stretch rate.  Once the mean mixture fraction, its second 

moment, and the mean stretch rate are know, they can be used to determine mean values 

of the scalars from the instantaneous OPPDIF solutions using Probability Density 

Functions as explained below. 

 

3.3.3 Probability Density Function 
 

A probability density function (PDF) describes the likelihood that a continuous random 

function, f , lies in an interval between f f+ ∆  and f f− ∆ .  An important property of 

the PDF is that the integral of the PDF over all possible values of the function must equal 

one: 

 ( ) 1P f df
��

��

��  (3-10) 

where ( )P f  is the probability density function of the variable f . 

 

Once the PDF of a variable f  is known, the mean value of any variable, ( )fα α= , can 

be found using the following expression: 



 

 

36

 ( ) ( )f P f dfα α
+∞

−∞

= �  (3-11) 

Using this method, mean scalar values can be determined from instantaneous OPPDIF 

simulations. 

 

For a PDF to perfectly describe a continuous random variable, an infinite number of 

moments are required to be known.  However, due to computational limitations, it is 

assumed that the PDF of the mixture fraction may be found knowing it’s first two 

moments and the PDF of the stretch rate may be found knowing it’s first moment.  

Knowing these moments, a distribution is assumed for the shape of the PDF of the 

mixture fraction and the stretch rate.  This method of constructing a PDF using an 

assumed shape characterized by the moments of the variable is known as the presumed 

probability density function (PPDF) method of combustion modeling.  In this study, it is 

assumed that the PDF of the mixture fraction is a beta-distribution given as: 
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where 
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and 
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The PDF of the stretch rate is assumed a lognormal distribution (Lee, 1999) given as: 

 
( )( )
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 (3-15) 
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 where χ  is the mean stretch rate, which is determined using methods discussed in 

section 2-4 and χσ is the standard deviation, which is assumed unity.  It has been shown 

that mean properties of interest are relatively insensitive to the precise shape of the PDF 

(Jones et al., 1982). 

 

Having determined the PDFs of the mixture fraction and the stretch rate, the mean mass 

fractions are determined from the instantaneous OPPDIF solutions as: 

 
0 0

( , ) ( , )i iY Y P d dχ ξ χ ξ ξ χ
∞ ∞

= � ��  (3-16) 

It is assumed that the stretch rate and the mixture are statistically independent which 

simplifies the evaluation of equation (3-16): 

 
1

0 0

( , ) ( ) ( )
q

i iY Y P P d d
χ

χ ξ χ ξ χ ξ= � ��  (3-17) 

Mass fractions determined using equation (3-17) are tabulated as a function of the mean 

mixture fraction, its second moment and the mean stretch rate.  Pre-computing the 

integral in equation (3-17) and tabulating the mass fractions offers a computational 

advantage, as the integral need not be evaluated during the simulation.  However, with 

this advantage comes a penalty in accuracy, as interpolation is necessary to determine 

mean mass fractions.  In order to improve the accuracy of this interpolation, high 

resolution in storing tabulated values was used around the stoichiometric mixture fraction 

where large gradients in mass fractions exist. 

 

It has been shown (Lee, 1999) that choosing 13 of the 29 species from the original 

mechanism used in the OPPDIF simulations account for over 99% of the mass.  To avoid 
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the computational expense of transport equations for all the species, it was decided to 

transport only these 13 species.  The KIVA code was modified to allow for transport of 

six additional species, i.e. 2 2C H , 3CH , 2 4C H , 3 4C H , 3 6C H , and 4 8C H , apart from the 

seven species for which KIVA already solved transport equations.   

 

3.4 Time-scale approach for Low Damköhler Number Effects 
 

As noted in section 3.3, the laminar flamelet model needs to be modified for use in 

regions of low Damköhler number.  In order to model combustion in these regimes, a 

modified form of the characteristic time-scale model of Reitz et al. (1983) is used.  This 

method is discussed here.  Equation (3-8) may be written as: 

 
2

22
i i i

i

Y Y
t Le

ωχ
ξ ρ

∂ ∂= +
∂ ∂

�
 (3-18) 

In the PDF time-scale model, the right hand side of equation (3-18) is expanded to first 

order in time about the flamelet solution using a Taylor series expansion resulting in: 
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*
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ij j j
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�
 (3-19) 

where J is the number of species and * indicates the steady OPPDIF solution.  The 

leading order term 
*2

22
i i

i

Y
Le

ωχ
ξ ρ

� �∂ +� �∂� �

�
 must equal zero since the OPPDIF solution is a 

steady solution.  The Jacobian matrix ijα  contains the elements 
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22
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Y

ωχ
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∂

�

 

evaluated for the steady flamelet solution.  Note that the elements of ijα  are reciprocal 

time-scales of species jY  with respect to terms in flamelet equation i .  This matrix can be 
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evaluated numerically from the steady OPPDIF solution.  A representative term, 
2COτ , for 

one OPPDIF simulation is shown in figure 3-5. 

 

 

Figure 3-5: Representative time-scale for PDF time-scale model 

 

The original characteristic time-scale model of Reitz et al. expands the reaction rate term 

about equilibrium and turbulence effects are introduced by modifying the time-scale as a 

combination of a laminar and a turbulent time-scale.  The difference between expanding 

the reaction rate term and the 
2

22
i i

i

Y
Le

ωχ
ξ ρ

∂ +
∂

�
 term can be seen in figure 3-5. 

 

It is currently assumed that all off-diagonal terms of ijα  are zero and all diagonal terms 

can be represented by a time-scale 1
chemτ : 

 ( ) ( )2

1.50.751 exp A
chem fuel O

EA Y Y
RT

τ
−− � �= � �

� �
 (3-20) 
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where 1.54 10A e= + and 77.3 /AE kJ mol= .  These values are determined from a one-

step reaction-rate expression for tetradecane (Kong et al., 1995). 

 

With this method, the time rate of change of species i  is then written as: 

 
�

*
ii i

chem

Y Y Y
t τ

∂ −= −
∂

� �

�
 (3-21) 

where *
iY�  is the value of the mass fraction obtained from equation (3-17).  Equation 

(3-21) is integrated in time to yield an expression for the mean mass fraction of species i  

at time 1n + : 

 ( )1 * *( ) chemtn n
i i iY Y Y Y e τ−∆+ = + −� � � �  (3-22) 

The second term in equation (3-22) can be thought of as a perturbation added to the 

steady flamelet solution to account for low Damköhler number effects.  It can be seen 

that as chemτ becomes very small (large Damköhler number), the mean mass fractions 

obtained from the steady flamelet solution are recovered. 

 

Future work will consider multiple time-scales since each species reacts at a different 

rate.  This will involve determining all elements of the Jacobian Matrix ijα  from the 

OPPDIF solution.  In addition, the characteristic time-scale for combustion can be 

obtained by weighting 

2

22
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i
i
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Y
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 with the Joint PDF of the mixture fraction and 

the stretch rate. 
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Chapter 4 - Turbulent Combustion Simulations using the 
PDF time-scale model 

 
 

A predictive combustion model should be able to predict combustion in both simple and 

complex flows over a wide range of flow conditions.  To test the models developed in 

this study, it was decided to apply the models to simulate a reacting methane-air jet flame 

as well as for simulations of various internal combustion engines.  Results and 

discussions based on these simulations are presented in this chapter. 

 

4.1 Reacting Jet Simulation 
 

It is believed that in order to test the combustion model, it should be applied to a simple 

reacting flow where complex physics like sprays, two-phase flow and evaporation are not 

present.  With this objective, the PDF time-scale model was used to simulate the reacting 

methane-air jet flame studied experimentally by Barlow et al. (1998a, 1998b).  The 

Dynamic Structure LES model (Section 2.3.3) was used to model turbulence.  This flame 

is sometimes referred to as the Sandia flame D. 

 

The experimental setup consists of a main fuel jet of diameter 7.2 mm.  The main jet 

composition is 25% methane and 75% air.  The main jet is surrounded by a burnt-gas 

pilot of diameter 18 mm.  The pilot is a lean (phi=0.77) pre-mixture of C2H2, H2, air, 

CO2, and N2 with the same nominal enthalpy and equilibrium composition as methane/air 

at this equivalence ratio.  The energy release of the pilot is approximately 6% of the main 

jet and the temperature of the burnt gases is approximately 1880 K.  The pilot stream is 
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surrounded by an air co-flow.  The Reynolds number based on the fuel stream is 22400.  

The mixing rates in these flames are high enough that these flames burn as diffusion 

flames, with a single reaction zone near the stoichiometric mixture fraction and no 

evidence of premixed reaction in the fuel-rich CH4/air mixtures is found. 

 

The computations were performed using a 3-d Cartesian mesh.  The dimensions of the 

mesh are 30 cm x 30 cm x 60 cm and the mesh has approximately 280,000 cells.  A 

Cartesian mesh was chosen for the simulation because some LES filtering properties used 

in developing the LES equations are not valid for cylindrical cells.  A view of this mesh 

is shown in figure 4-1.  The cells get larger in all three co-ordinate directions away from 

the jet inlet for computational efficiency. 

 

 

Figure 4-1: Cartesian Mesh used for simulation of Sandia Flame D 

 



 

 

43

 
Boundary conditions for the velocity and scalars were obtained from experimental data 

and the KIVA code was modified to impose these boundary conditions.  The sub-grid 

kinetic energy, k  (see section 2.3.3), was perturbed in time to represent turbulent 

fluctuations in the velocity. 

 

The simulation was first run for approximately 1.5 flow-through times (~0.075 s).  The 

simulation was then restarted and ensemble averages of quantities of interest were 

computed every 100 time-steps (approximately every 0.001 s).  The averages reported 

here are taken at 0.16 s. 

 

Figure 4-2 shows an instantaneous snapshot of the LES mean temperature and LES mean 

stretch rate at 0.08 s.  The mean temperature is shown in a plane passing through the 

center of the main jet.  Tthe whole domain in the length-wise direction is shown.  The 

mean stretch rate is shown in the same plane and is magnified to show the jet inlet region.  

The black line corresponds to a contour of the stoichiometric mean mixture fraction.  The 

presence of large-scale structure is evident in both the temperature and stretch rate 

images.  It is expected that such structure would not be seen in a RANS simulation. 

 



 

 

44

  
Figure 4-2: Instantaneous temperature and stretch rate for the Sandia Flame D simulation 

 

The peak temperatures in the upstream region of the jet are around the stoichiometric 

fraction indicating that reaction takes place around that region.  This agrees with the 

experimental findings of Barlow et al.  In the downstream region, high temperatures are 

seen both around the stoichiometric mixture fraction and in regions surrounding it. 

 

The LES simulation of the jet shows large stretch rates in the reaction zone (around 

regions of stoichiometric mixture fraction).  This result agrees well with simulations of 

opposed flow diffusion flames (figure 3-3).  It is important to predict the stretch rate 

correctly in order to correctly predict phenomena such as local extinction and RANS 

models do not do a very good job of predicting the stretch rate (Peters et al., 1988).  This 

is believed to be a significant advantage of using the Dynamic Structure LES model in 

turbulent combustion simulations. 
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Radial values of the ensemble-averaged temperature predicted by the model are 

compared with experimental values in figure 4-3.  The model results have been averaged 

in the θ - direction.  Radial profiles at 1, 2, 15, and 45 diameters downstream of the jet 

exit are shown. 

 

  

  
Figure 4-3: Radial Profiles of temperature for four locations in the axial direction for a simulation of Sandia 

Flame D 

 

The shape of the temperature profiles at each location agrees with the experiment.  For 

the two upstream positions, the magnitude of the peak temperature is under-predicted by 
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the model indicating that predicted combustion in these regions is not as pronounced as in 

the experiment.  One possible reason for this is that the high stretch rates in this region 

cause local quenching of the flame.  The manner in which spatial derivates are calculated 

in the KIVA code leads to high stretch rates near the inlet.  This result indicates that the 

model for predicting local quenching must be improved and the calculation of derivates 

near boundaries needs to be modified. 

 

In the two downstream regions, the peak temperatures are in reasonable agreement with 

the experiment; however, the location of peak temperature is incorrect.  It appears that the 

spread-rate of the jet is higher for the simulation than the experiment.  Two possible 

reasons for this are absence of buoyancy effects in the simulation and the magnitude of 

the perturbation on the inlet sub-grid kinetic energy, which may be resulting in more 

turbulence than what is observed experimentally. 

 

4.2 Engine Simulations 
 

Having verified that the combustion model can predict combustion in simple flows 

satisfactorily, it was decided to test the models for simulating Diesel Combustion in 

different engines at various load conditions to test the predictive ability of the model in 

more complex flows.  The test engines used in this study are a single Cylinder version of 

the Caterpillar 3400 series engine (Montgomery et al, 1996) (referred to as the old 

Caterpillar engine), a new single cylinder version of the Caterpillar 3401 engine (need 

reference) (referred to as the new Caterpillar engine), and an optical access engine (Dec, 

1997) (referred to as the Sandia Optical access engine).  The old caterpillar engine is 



 

 

47

operated under a baseline operating mode and a 6-mode test cycle.  The Sandia engine is 

operated under one operating condition and the new Caterpillar 3401 engine was tested 

for two different modes.  The various operating conditions for the old Caterpillar and the 

Sandia engines are shown in the table 4-1. 
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Engine and 

Operating Mode 

Speed 

(rpm) 

% Load INJθ  

(CA° 

ATDC)

fuelm�  inP  

(kPa) 

Caterpillar 3400 

(Baseline) 

1600 75 -9.0 129 g/min 183 

Caterpillar 3400 

(Mode 1) 

750 0 -8.0 8.7 g/min 100 

Caterpillar 3400 

(Mode 2) 

953 25 -0.5 33.7 g/min 108 

Caterpillar 3400 

(Mode 3) 

1074 75 5.5 105.0 g/min 168 

Caterpillar 3400 

(Mode 4) 

1657 100 7.5 169.0 g/min 239 

Caterpillar 3400 

(Mode 5) 

1668 50 2.0 88.8 g/min 164 

Caterpillar 3400 

(Mode 6) 

1690 25 -1.0 53.8 g/min 132 

Sandia 1200  -11.5 0.0535 g/cycle 206 
Table 4-1: Operating conditions for the old Caterpillar and Sandia engines 
 

For the majority of the simulations, a sector mesh was used for computational efficiency.  

The Caterpillar mesh is a 60�  sector while the Sandia mesh is a 45�  sector (verify), as 

seen in figure 4-4. 
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Figure 4-4: Perspective view of the computational mesh for the Caterpillar 3401 engine (left) and the 
Sandia Optical access engine (right) 
 

The simulations for the new Caterpillar engine were done using a 360�  Cartesian mesh.  

These cases are discussed further in section 4.2.2.3. 

 

The remainder of this chapter is organized as follows.  Results from simulations using the 

PDF time-scale model using the RNG k ε−  model (reference) for turbulence are first 

presented.  This is followed by results from simulations using the Smagorinsky model 

(section 2.3.1) and the one-equation viscosity model (section 2.3.2) for turbulence.  

Finally, results using the dynamic structure model (section 2.3.3) with the PDF time-scale 

model are presented. 
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All the simulations used the UW – ERC modified version of the KIVA-3V code with the 

PDF time-scale combustion model.  Standard ERC sub-models (Han et al., 1994) were 

used.  Ignition was simulated using the shell ignition model (reference).  Most constants 

used in the ERC sub-models were left unchanged.  The constants that were changed and 

their values are shown in table 4-2.  All simulations were started at intake valve closure 

and run until end of combustion. 

 

Constant Value 

denomc: pre-exponential coefficient in timescale chemτ  0.3e10 

tchop: Temperature at which switch is made from shell model 

to combustion model 

1100 K 

af04: pre-exponential coefficient for reaction 4 in Shell 

Ignition Model 

1.5e5 

Table 4-2: Constants used for ERC sub-models 
 

For all the engine simulations using LES, the turbulent law-of-the-wall model was turned 

off and walls were set to a no-slip boundary condition.  Since the law-of-the-wall relies 

on quantities such as k  and ε  from RANS models, it was decided not to use this model.  

Developing wall models for LES is an area that needs future research. 

 

4.2.1 Engine Simulations with the PDF time-scale model and RANS turbulence 
models 
 

 The first test of the PDF time-scale model as a predictive combustion model for I.C. 

engine simulations was to simulate various operating conditions for two test engines.  
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Figure 4-5 shows the cylinder pressure and the heat release as a function of crank angle 

for the baseline operating condition of the old Caterpillar engine (table 4-1) 

 

Figure 4-5: Comparison of simulated and measured pressure and heat release for the old Caterpillar engine 
operating at the baseline condition 
 

It can be seen that the model matches the experimental pressure trace and the heat release 

curves very closely.  The major features of combustion such as the premixed burn and 

peak pressure are captured accurately.  The start of combustion is slightly delayed in the 

model as compared to the experiment and this may account for the slight difference in the 

rate of initial pressure rise around 3− � ATDC as seen in the cylinder pressure plot.  This 

may in part be due to the ignition phenomenon not being accurately captured by the Shell 

model.  This could be changed by changing the pre-exponential constant, Af04, in the 

Shell model.  However, this may require case-by-case tuning, so this constant was kept at 

one value for all simulations. 

 

To further test the predictive capability of the model, the Sandia Optical access engine 

was simulated and results from that simulation are shown in figure 4-6. 
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Figure 4-6: Comparison of simulated and measured pressure and heat release for the Sandia Optical Access 
engine. 
 

In this simulation too, the major features of the combustion process are captured 

accurately.  These include the premix burn, the phasing of the pressure rise, and the peak 

pressure.  Although the heat release in the premixed burn seems to be over-predicted, the 

pressure rise due to the premixed burn is in agreement with experimental results.  In this 

simulation also, the start of combustion seems to be delayed which again indicates the 

need to change constants in the shell model. 

 

The six-mode test cycle for the old Caterpillar engine was simulated next.  This test cycle 

has been previously simulated in a study by Xin et al. (1997).  It was shown in this case 

that the one of the shell model pre-exponential coefficients, af04, had to be changed to 

match the ignition for each mode.  In this study, that constant was left unchanged for each 

mode.  Cylinder pressure as predicted by the model is compared with experimental values 

in figure 4-7. 
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Overall, the combustion model captures the trend in the pressure rise for all modes 

accurately.  Some of the details are not captured accurately such as the peak pressure in 

modes 2 and 5.  It is also observed that the ignition delay is not captured accurately for 

some of the cases and this could possibly have affected results from the combustion 

model.  In addition, more work is needed in making the mixture fraction fully consistent 

with cases where EGR is present and this is an area of future research. 
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1 2

3 4

5 6

Figure 4-7: Model predicted pressures as compared to experimental values for the six-mode test cycle for the old 
Caterpillar 3401 engine (Numbers at bottom right of figure indicate mode number) 
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4.2.2 Engine Simulation using LES turbulence models 
 

Having verified that the PDF time-scale model is able to predict major trends in the 

Diesel combustion process, it was integrated with LES methods of modeling turbulence.  

For reasons discussed earlier, it is believed that LES methods may be better suited for IC 

engine simulations than RANS methods.   

 

The LES equations typically require a length scale, ∆  (see for example section 2.3.1).  

For a uniform mesh, this length scale is usually taken as the cube root of the cell volume.  

However, some of the engine simulations in this study used a cylindrical mesh where 

cells near the axis are much smaller than those far from the axis.  To avoid any 

difficulties that may arise from non-uniform cells, a representative length scale was used.  

This length scale was set to cube root of the total volume of the mesh divided by the 

number of computational cells when the piston is at bottom dead center. 

 

4.2.2.1 Smagorinsky LES model 
 

The first model implemented into the KIVA code was the Smagorinsky model discussed 

in section 2.3.1.  The old Caterpillar engine baseline case and the Sandia Optical engine 

(table 4-1) were simulated using the PDF time-scale model with the Smagorinsky model.   

 

Results from engine simulation the old Caterpillar engine are shown in figure 4-8.  The 

pressure and heat release are in reasonable agreement with the experimentally measured 

values.  Note that the differences could be compensated for by adjusting some of the 
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constants in the combustion model.  However, this was not attempted, in part due to the 

limitations of the Smagorinsky model. 

 

  
Figure 4-8: Simulated and measured pressure (left) and heat release (right) for the old Caterpillar engine using 
the PDF time-scale model with a Smagorinsky LES model 
 

Results from a Sandia engine simulation for the same model are shown in figure 4-9. 

 

  
Figure 4-9: Results from simulation of the Sandia engine using the PDF time-scale model with a Smagorinsky 
LES turbulence model. 
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The predicted pressure and heat release are in reasonable agreement with the 

experimental results.  These cylinder-averaged quantities are not very different from 

simulations using the RANS turbulence model.  It would be expected that in-cylinder 

contour of quantities such as temperature, etc. would however differ from a simulation 

using a RANS model.  However, due to the coarse grid used, the viscosity added by using 

the Smagorinsky model tends to smear out structures, so little difference was noted. 

 

It is useful to examine the effect introduced by the time-scale in the PDF time-scale 

model.  This effect is seen in figure 4-10 by looking at the multiplicative factor on the 

perturbation term in equation (3-22), exp
chem

t
τ

� �∆−� �
� �

, as a function of the crank angle.  The 

heat release as a function of crank angle is also plotted in the same figure.  It is seen that 

the multiplicative factor approaches one at the beginning of combustion, indicating that 

the magnitude of the perturbation term is large at the beginning of combustion indicating 

a low Damköhler number at that time.  This corresponds with the sharp heat release rate 

or the premixed burn phase where reactions are kinetically limited.  The term then 

approaches zero as combustion proceeds and the steady flamelet solution is approached 

indicating that reactions are mixing limited (high Damköhler number).  This finding is 

consistent with the physical description of the diesel combustion process provided in 

Chapter 1. 
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Figure 4-10: Magnitude of perturbation term and Heat Release as a function of crank angle for the Sandia 

Engine simulated using the PDF time-scale model with a Smagorinsky turbulence model 

 

4.2.2.2 One-equation viscosity LES turbulence model 
 

A one-equation viscosity based LES turbulence model was implemented into the KIVA 

code (see section 2.3.2).  Engine simulations using this model with the PDF time-scale 

model were performed for the baseline operating condition of the old Caterpillar engine 

and the Sandia engine.  Plots of cylinder pressure and heat release as a function of crank 

angle are compared to experimental values in figure 4-11. 
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Figure 4-11: Cylinder pressure and heat release curves for the old Caterpillar engine using the PDF time-scale 
model with a one-equation viscosity based LES turbulence model 
 

It is seen that the pressure and heat release are in reasonable agreement with experimental 

values.  The combustion model captures the major aspects of the combustion process in 

this case.  Temperature contours inside the cylinder in a plane passing through the spray 

are shown in figure 4-12 for simulations using both a RANS turbulence model as well as 

the one-equation viscosity based model. 

 

The LES model predicts higher peak temperatures than the RANS model and predicts 

small regions of high temperature while the RANS model predicts larger regions of high 

temperature.  This is because the added viscosity in RANS models tends to smooth out 

gradients whereas structure is retained in LES models.  It can also be seen that the spray 

droplet distribution is slightly different for the RANS case and the LES case.  However, 

the differences seen in figure 4-12 are generally not large.  This issue is addressed in the 

next section when a full 360�  mesh is used. 
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Figure 4-12:  Temperautre contours for RANS (left) and the one-equation LES (right) 
models 
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4.2.2.3 Dynamic Structure LES model 
 

The third LES model implemented into the KIVA code was the dynamic structure model 

(Pomraning, 2000).  This model was tested for a reacting gaseous jet and was used to 

simulate engine flow and combustion.  The old Caterpillar engine was simulated at the 

baseline operating condition and the Sandia engine was simulated for the operating 

condition shown in table 4-1.   

 

Cylinder pressure and heat release as a function of crank angle for these simulations 

along with experimental data are shown in figure 4-13. 

 

  
Figure 10: Cylinder pressure and Heat Release for old Caterpillar (left) and Sandia (right) engines using the 
PDF time-scale model with the Dynamic Structure LES model 
 

The pressure and heat release curves are in good agreement for both engines.  The 

combustion model is able to correctly predict the phasing of the pressure rise and fall and 

the sharp rise in pressure due to the premixed burn. 
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The constant kC  in equations (2-34) and (2-37) for the scalar transport coefficient had to 

be changed from 0.05 to 0.3 for these cases.  This was required because a 60º-sector mesh 

with periodic boundary conditions was used.  Since the periodic boundaries are close to 

each other near the nozzle tip in the sector mesh, large eddies cannot be formed in this 

region and large-scale turbulent mixing is suppressed.  In order to compensate with sub-

grid mixing, additional viscosity is added by increasing the scalar transport coefficient. 

 

In order to test the models in a complex geometry and to avoid the problem of eddy 

suppression due to irregularities in the mesh, a 360�  - Cartesian mesh with intake and 

exhaust ports and moving valves was used.  Two operating conditions for the new 

Caterpillar engine were simulated.  The operating conditions are shown in table 4-3 and a 

view of the mesh is shown in figure 4-14. 
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Figure 4-14: New Caterpillar 3401 engine computational grid (approximately 160,000 cells) 
 

Operating 

Condition 

Speed 

(RPM) 

% Exhaust 

Gas 

Recirculation

Equivalence 

Ratio 

Fuel Flow 

rate  

(g/min) 

Injection 

timing 

(°ATDC) 

Baseline 1737 0 0.4 117.2 -5.5 

EGR 1737 6.7 0.44 118.4 -5.5 
Table 4-3: Operating Conditions for the new Caterpillar engine 
 

These simulations were started 0.5 crank angle degrees before the intake valve opened 

and were run until 0.5 degrees before start of injection.  At this time, the cylinder 
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temperature was adjusted to 930 K for the baseline case and 950 K for the EGR case.  It 

was necessary to adjust the temperature to match the mass trapped inside the cylinder.  

The simulations were then restarted and run until end of combustion.  The cylinder 

pressure for the baseline case is shown in figure 4-15. 

 

Figure 4-15: Cylinder Pressure and Heat Release for the new Caterpillar engine operating at the baseline 
condition 
 

It can be seen that as with other models, this model also matches the cylinder average 

pressure and heat release very well.  In this case, it was not necessary to change the 

constant, kC  as the 3-dimensional nature of the grid allowed the formation of large-scale 

structures, which allow the turbulent mixing to be represented correctly.  This can be 

visualized by comparing the temperature contour and spray droplet pattern for this 

simulation with the one performed using the 60�  sector mesh as seen in figure 4-16. 
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Figure 4-16: Temperature contours and spray distribution for simulations with a 360�  Cartesian mesh 
(new Caterpillar engine) and a 60�  sector mesh (old Caterpillar Engine) 
 

More evidence of large-scale structure is seen in results from the 360º Cartesian Mesh 

than in results from the 60º Sector Mesh.  The lack of symmetry in droplet distribution 

for the six spray plumes and in the temperature distribution around these spray plumes is 

evident when using the Cartesian mesh with the dynamic strucutre LES model.  This 

indicates that the fuel vapor spreads in a non-symmetric manner in the combustion 

chamber.  The simulation using the sector-mesh shows approximately a symmetric 

distrubution of temperature around the spray plume.  This is not totally symmetric 

because of the swirl present in the cylinder.  Changing the constant, kC , has the effect of 

added viscosity and this tends to smear out flow structure.   
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To verify that the combustion model was working consistently with the turbulence 

model, another operating condition for the new Caterpillar engine was simulated (table 4-

3).  Cylinder pressure for that simulation is shown in figure 4-17. 

  

 

Figure 4-17: Measured and Simulated Pressure for the new Caterpillar engine operating with EGR. 
 

While the simulated pressure agrees reasonably with the experimental value, it starts 

dropping below the measured value after reaching the peak pressure.  This could indicate 

that the combustion model and mixture fraction need modification due to the presence of 

EGR.  This points to the need to work on making the model consistent for use with cases 

where EGR is present. 
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Chapter 5 - Conclusions and future work 
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