CS 367 - Introduction to Data Structures
Week 6, 2017

Program 2
e Due 10 pm Friday, July 28"
e Take alook at clarifications posted and come talk to me if you have serious concerns about
them.

Homework 5 released, complete as soon as possible. Due by 10 pm Sunday, July 30™

Rest of the assignments check out Piazza post 250. Come discuss with me if you have any
concerns.

Exam anonymous feedback check out Piazza post 240. Midterm 2 will be incorporating the
feedback received, so please volunteer to provide your feedback.

Last Week
General Trees, Classifying Binary Trees, Balanced Search Trees

This Week
Read: Red-Black Trees, Graphs
Red-Black Trees
e Tree properties
e Insert
o Complexity
ADTs/Data Structures Revisited
Graphs
e terminology
implementation
edge representations
traversals
applications of BFS/DFS
more terminology
topological ordering

Next Week (more Graphs and Hashing)
Read: continue Graphs, Hashing
o topological orderings
e Dijkstra’s Shortest Path algorithm
Hashing
e terminology
designing a good hash function
choosing table size
expanding a hash table
handling collisions
Java Support for Hashing: Tree Map vs Hash Map
Sorting Intro

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 -1

RBT:

Example:

Red-Black Tree Properties
root property
red property

black property

Red-Black Tree Operations

print
lookup

insert

delete

Red-Black Trees (RBT)

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar

CS 367 (S17): W6 - 2

Inserting into a Red-Black Tree

Goal: insert key value K into red-black tree T
and

If T is Empty

If T is Non-Empty
e step down tree as done for BST
e add a leaf node containing K as done for BST, and

- Which of the properties might be violated as a result of inserting a red leaf node?
root property

black property

red property

Non-Empty Case 1: K's parent P is black

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 -3

Non-Empty Case 2

Non-Empty Case 2: K's parent P is red

Fixing an RBT

Tri-Node Restructuring is done if P's sibling S is null

Recoloring is done if P's sibling S is red

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar

CS 367 (S17): W6 - 4

Practice

-> 1. Starting with an empty RBT, show the RBT that results from inserting 7 and 14.

—> 2. Redraw the tree from above and then show the result from inserting 18.

-> 3. Redraw the tree from above and then show the result from inserting 23.

-> 4. Redraw the tree from above and then show the result from inserting 1 and 11.

-> 5. Redraw the tree from above and then show the result from inserting 20.

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 -5

More Practice!

-> 6. Redraw the tree from the previous page and then show the result from inserting 29.

-> 7. Insert the same list of values into an empty BST: 7, 14, 18, 23, 1, 11, 20, 29

- What does this demonstrate about the differences between a BST and RBT?

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 6

More Practice?

-> 8. Show the result from inserting 25 in the RBT below.

O O

29

-> 9. Redraw the tree from above and then show the result from inserting 27.

O O

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar

CS 367 (S17): W6 - 7

Cascading Fixes

Fixing an RBT UPDATED!

Recoloring is done if P's sibling S is red

1. change P & S to black

GG
2. if G is the root — done
otherwise change G to red
S

Tri-Node Restructuring is done if P's sibling S null

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 8

RBT Complexity
print

lookup

insert

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 -9

ADTs/Data Structures

Linear (Lists, Stacks, Queues)

e predecessors: at most 1
e successors: atmost1

Hierarchical (Heaps, BSTs, Balanced Search Trees)

e predecessors: at most 1
e successors: 0 or more - general tree, at most two - binary tree

Graphical

e predecessors:
e SUCCESSOrS:

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 10

Graph Terminology

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 11

Implementing Graphs

Graph ADT Ops

Graph Class

Graphnode Class

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 12

Representing Edges

Adjacency Matrix

Given the following graphs:
Graph 1 Graph 2

0 (8)

(®) (9
(®

- Show the adjacency matrix representation of the edges for each of the graphs:

Graph 1 Graph 2
01 2 3 4 A B CDE
0 A
1 B
2 C
3 D
4 E

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 13

Representing Edges

Adjacency Lists

Given the following graphs:
Graph 1 Graph 2

0 (8)

(®

- Show an adjacency list representation of the edges for each of the graphs:

Graph 1 Graph 2

plw [N |2 o
m o o w>»

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 14

Using Edge Representations

- Write the code to be added to a Graph class that

computes the degree of a given node in an undirected graph.

1. Adjacency list:

public int degree(Graphnode<T> n) {

2. Adjacency matrix:

public int degree(Graphnode<T> n) {

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar

CS 367 (S17): W6 - 15

Comparison of Edge Representations

Ease of Implementation

Space (memory)
AM

AL

Time (complexity of ops)

node’s degree?
AM

AL

edge exists between two given nodes?
AM

AL

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 16

Searches and Traversals

Search

Traversal

G ©
B—W

- Which connected component in the graph above can produce the longest path?

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 17

Depth-First Search (DFS)

Algorithm

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 18

DFS Practice

Graph 1 Graph 2

-> Give the order that vertexes are visited for depth-first search (DFS) starting at A.

Graph 1:

Graph 2:
-> Give the DFS spanning tree starting at A.

Graph 1: Graph 2:

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 19

Breadth-First Search (BFS)

Algorithm

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 20

BFS Practice

Graph 1 Graph 2

-> Give the order that vertexes are visited for breadth-first search (BFS) starting at A.

Graph 1:

Graph 2:

Give the BFS spanning tree starting at A.

Graph 1: Graph 2:

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 21

Applications of DFS/BFS

Path Detection

Cycle Detection

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 22

More Graph Terminology

Weighted graph:

Network:

Complete graph:

Connected graph (undirected):

Connected graph (directed):

Length of a path:

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 23

