
Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 1

CS 367 - Introduction to Data Structures
Week 6, 2017

Program 2

• Due 10 pm Friday, July 28th
• Take a look at clarifications posted and come talk to me if you have serious concerns about

them.

Homework 5 released, complete as soon as possible. Due by 10 pm Sunday, July 30th

Rest of the assignments check out Piazza post 250. Come discuss with me if you have any
concerns.

Exam anonymous feedback check out Piazza post 240. Midterm 2 will be incorporating the
feedback received, so please volunteer to provide your feedback.

Last Week

General Trees, Classifying Binary Trees, Balanced Search Trees

This Week
Read: Red-Black Trees, Graphs
Red-Black Trees
• Tree properties
• Insert
• Complexity
ADTs/Data Structures Revisited
Graphs
• terminology
• implementation
• edge representations
• traversals
• applications of BFS/DFS
• more terminology
• topological ordering

Next Week (more Graphs and Hashing)
Read: continue Graphs, Hashing
• topological orderings
• Dijkstra’s Shortest Path algorithm
Hashing
• terminology
• designing a good hash function
• choosing table size
• expanding a hash table
• handling collisions
Java Support for Hashing: Tree Map vs Hash Map
Sorting Intro

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 2

Red-Black Trees (RBT)

RBT:

Example:

Red-Black Tree Properties

root property

red property

black property

Red-Black Tree Operations

print
lookup

insert

delete

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 3

Inserting into a Red-Black Tree

Goal: insert key value K into red-black tree T
 and ___.

If T is Empty

If T is Non-Empty
• step down tree as done for BST
• add a leaf node containing K as done for BST, and ______________________
•

à Which of the properties might be violated as a result of inserting a red leaf node?

root property

black property

red property

Non-Empty Case 1: K's parent P is black

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 4

Non-Empty Case 2

Non-Empty Case 2: K's parent P is red

Fixing an RBT

Tri-Node Restructuring is done if P's sibling S is null

Recoloring is done if P's sibling S is red

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 5

Practice

à 1. Starting with an empty RBT, show the RBT that results from inserting 7 and 14.

à 2. Redraw the tree from above and then show the result from inserting 18.

à 3. Redraw the tree from above and then show the result from inserting 23.

à 4. Redraw the tree from above and then show the result from inserting 1 and 11.

à 5. Redraw the tree from above and then show the result from inserting 20.

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 6

More Practice!

à 6. Redraw the tree from the previous page and then show the result from inserting 29.

à 7. Insert the same list of values into an empty BST: 7, 14, 18, 23, 1, 11, 20, 29

à What does this demonstrate about the differences between a BST and RBT?

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 7

More Practice?

à 8. Show the result from inserting 25 in the RBT below.

à 9. Redraw the tree from above and then show the result from inserting 27.

14

7

1

20

29

23 18 11

14

7

1

20

18 11

14

7

1

20

18 11

14

7

1

20

18 11

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 8

Cascading Fixes

Fixing an RBT UPDATED!

Recoloring is done if P's sibling S is red

 1. change P & S to black
 2. if G is the root – done

 otherwise change G to red

Tri-Node Restructuring is done if P's sibling S null _______________

G

GG

P S

K

G

P

K

G

P

K

S

S

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 9

RBT Complexity

print

lookup

insert

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 10

ADTs/Data Structures

Linear (Lists, Stacks, Queues)

• predecessors: at most 1
• successors: at most 1

Hierarchical (Heaps, BSTs, Balanced Search Trees)

• predecessors: at most 1
• successors: 0 or more - general tree, at most two - binary tree

Graphical

• predecessors:
• successors:

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 11

Graph Terminology

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 12

Implementing Graphs

Graph ADT Ops

Graph Class

Graphnode Class

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 13

Representing Edges

Adjacency Matrix

Given the following graphs:

à Show the adjacency matrix representation of the edges for each of the graphs:

 Graph 1 Graph 2

 0 1 2 3 4 A B C D E
0 A
1 B
2 C
3 D
4 E

0

1

4

2

3

A

B

E

C

D

Graph 1

Graph 2

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 14

Representing Edges

Adjacency Lists

Given the following graphs:

à Show an adjacency list representation of the edges for each of the graphs:

 Graph 1 Graph 2

0: A:
1: B:
2: C:
3: D:
4: E:

0

1

4

2

3

A

B

E

C

D

Graph 1

Graph 2

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 15

Using Edge Representations

à Write the code to be added to a Graph class that
 computes the degree of a given node in an undirected graph.

1. Adjacency list:

public int degree(Graphnode<T> n) {

2. Adjacency matrix:

public int degree(Graphnode<T> n) {

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 16

Comparison of Edge Representations

Ease of Implementation

Space (memory)

AM

AL

Time (complexity of ops)

node’s degree?

 AM

 AL

edge exists between two given nodes?

 AM

 AL

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 17

Searches and Traversals

Search

Traversal

à Which connected component in the graph above can produce the longest path?

¯

A

I

H

G

F

E

D

B

C

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 18

Depth-First Search (DFS)

•

•

Algorithm

¯

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 19

DFS Practice

 Graph 1 Graph 2

à Give the order that vertexes are visited for depth-first search (DFS) starting at A.

Graph 1:

Graph 2:

à Give the DFS spanning tree starting at A.

Graph 1: Graph 2:

A

I H G

F E

D B C

A

I

H

G

F

E

D

B

C

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 20

Breadth-First Search (BFS)

•

•

Algorithm

¯

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 21

BFS Practice

 Graph 1 Graph 2

à Give the order that vertexes are visited for breadth-first search (BFS) starting at A.

Graph 1:

Graph 2:

Give the BFS spanning tree starting at A.

Graph 1: Graph 2:

A

I

H

G

F

E

D

B

C

A

I

H

G

F

E

D

B

C

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 22

Applications of DFS/BFS

Path Detection

Cycle Detection

Copyright 2014-2017 Jim Skrentny; Deb Deppeler; Meena Syamkumar CS 367 (S17): W6 - 23

More Graph Terminology

Weighted graph:

Network:

Complete graph:

Connected graph (undirected):

Connected graph (directed):

Length of a path:

