
A Framework for Efficient Class-based Sampling
Mohit Saxena and Ramana Rao Kompella

Department of Computer Science
Purdue University

West Lafayette, IN, 47907
Email: {msaxena,kompella}@cs.purdue.edu

Abstract—With an increasing requirement for network moni-
toring tools to classify traffic and track security threats, newer
and efficient ways are needed for collecting traffic statistics and
monitoring of network flows. However, traditional solutions based
on random packet sampling treat all flows as equal and therefore,
do not provide the flexibility required for these applications.
In this paper, we propose a novel architecture called CLAMP
that provides an efficient framework to implement size-based
sampling. At the heart of CLAMP is a novel data structure called
Composite Bloom filter (CBF) that consists of a set of Bloom
filters that work together to encapsulate various class definitions.
In comparison to previous approaches that implement simple
size-based sampling, our architecture requires substantially lower
memory (upto 80x) and results in higher flow coverage (upto 8x
more flows) under specific configurations.

I. I NTRODUCTION

Flow monitoring is an essential ingredient of network
management. Typical flow monitoring involves collection of
flow records at various intermediate network boxes such as
routers. These flow records can assist a network operator in
various tasks such as billing and accounting, network capacity
planning, traffic matrix estimation, and detecting the presence
of adversarial traffic (e.g., worms, DoS attacks).

While the basic task of flow monitoring appears simple, col-
lecting flow records at high speeds under extremely resource-
constrained environments is quite challenging. Particularly,
memory and CPU resources in routers are often distributed
among several critical functions such as route computation,
forwarding, scheduling, protocol processing and so on, with
the result that flow monitoring tasks receive only a small
fraction of the overall pie. A classic way to overcome this
hurdle is to record a random subset of packets bysampling the
packets that traverse the interface. The rate at which packets
are sampled typically depends on the resources (CPU, memory
and flow export bandwidth) available on the router. The most
commonly used flow collection tool today called NetFlow [3]
uses a simple stage of random packet sampling.

One major deficiency of uniform packet sampling in col-
lecting flow records is its bias towards heavy-hitter flows,
i.e., flows that have a large number of packets, due to the
heavy-tailed flow-size distribution in the Internet. Whilesuch
a bias does not affect volume estimation applications, it
provides no flexibility to network operators to specify how to
allocate their overall sampling budget among different classes
of traffic. For example, an operator might want to specify
that he is interested in collecting as many small-sized flows

as possible to satisfy security applications such as tracking
botnets, detecting portscans and so on. For such applications,
packet sampling is exactly the wrong choice as it inherently
fills up the sampling budget with a large number of packets
from “elephant” flows.

In this paper, we propose an architecture, called CLAMP,
that provides network operators to perform size-based sam-
pling. Our architecture achieves dynamic class-based sampling
with the help of a novel classification data structure called
Composite Bloom Filters to help network operators flexibly
allocate different budgets among competing classes. Using
both theoretical as well as empirical analysis, we show thatour
architecture achieves high flow coverage (up to 8x more flows)
with substantially lower memory requirements compared to
other prior approaches.

II. BACKGROUND AND RELATED WORK

The increasing importance of flow measurement as an essen-
tial ingredient in several network management tasks prompted
router vendors such as Cisco and Juniper to support a simple
flow measurement solution called NetFlow [3] in routers.
Since observing all packets is not scalable for backbone links,
routers support sampled NetFlow, a variant that works on
packets that are sampled according to a configurable sampling
rate (say1 in 64). By randomly sampling packets, sampled
NetFlow allows unbiased estimators to compute volume es-
timates for different types of traffic. Several flow monitoring
solutions that exist in the literature (e.g., adaptive NetFlow [4],
FlowSlices [7]) are fundamentally based on this simple idea.

A recent paper by Kumaret. al [8], addresses the main
limitation of random packet sampling—its bias towards heavy-
hitters—and provides a way to perform size-dependent sam-
pling using a sketch to estimate the flow size. FlexSam-
ple [10] builds upon this basic idea and attempts to explicitly
improve the flow coverage, as opposed to just accuracy of
volume estimates. Both these solutions, however, use sketches
or counting Bloom filters which are quite heavy-weight in
their memory requirements. In addition, they are too attuned
towards size-dependent sampling and do not provide explicit
ways to specify how to maximize the flow coverage or
accuracy of a particular group of flows. Our architecture, on
the other hand, is much more generic and also uses light-
weight data structures for classification, thus reducing the
overall memory consumption as well as improving the flow

2

Flow Memory

�
�
�
�

Packets
Sampled

[1] [1] [0] [1]

Packet Classifier

Sampling Process

Sampling Rate = f([1101])

Flow Records

Feedback: Insert Action

Composite Bloom Filter

Bit Map
[1101]

Class Membership

Packet Stream

Fig. 1. Architecture of CLAMP.

coverage or accuracy depending on the specific objective, as
we discuss next.

III. D ESIGN OFCLAMP

Our goal is to design an architecture that provides flex-
ibility in configuring different sampling rates for different
classes of flows. The design of our architecture, CLAMP
(short for CLass-based sAMPling), comprises of two basic
components—a classification data structure called Composite
Bloom Filter (CBF) and flow memory as shown in Figure 1.
Each packet upon its arrival is passed through the CBF to
first identify the class to which the packet belongs to. CBF
is composed of a few Bloom filters (BFs) working in tandem
to provide hints about the class to which an incoming packet
belongs to. Since the CBF uses simple BFs, it is small enough
to fit well in fast memory (SRAM) and can easily operate at
link speeds such as OC-192 and OC-768.

Once the class to which a packet belongs to is identified,
a sampling rate corresponding to this class is obtained and
the packet is then probabilistically sampled based on this rate.
If the packet is sampled and a flow record exists in the flow
memory, then the flow record is updated with the contents of
the packet (e.g., packet counter is incremented, byte counter
is incremented by the packet size, and special flags in the
packet are noted). If not, a new flow record is created for
this packet. We envision that the flow memory resides in the
larger and less expensive memory (DRAM)1. Flow memory
is periodically reset when the flow records are reported to the
collection center.

We apply the above framework to implement two-class
size-based sampling. In particular, we consider two classes
of flows—‘mouse’ and ‘elephant’ flows—which are defined
as flows of size smaller (or greater) than a thresholdT . The
most important step is to decide which flows are inserted
into a given BF. If we know the type of a flowa priori,
then it would be straightforward to make an entry of the
flow into the corresponding BF. However, all flows begin as
mouse flows and only when the number of packets observed
crosses a threshold that we know that a flow becomes a large
flow. Thus, ideally, we need a data structure that keeps track

1In some cases, a limited amount of flow memory may reside in SRAM
which is then flushed periodically to the DRAM

of flow sizes in a scalable fashion in high speed memory.
Given maintaining accurate flow sizes is hard, we can resort to
approximate data structures such as counting Bloom Filters(as
used by FlexSample [10]). However, counting Bloom Filters
require counters which increases the size of the data structure
significantly.

To reduce the memory usage, we leverage the fact that
sampled packets anyway require updating the flow records
in the flow memory. During that step, we can quickly check
whether the flow has transitioned from a small flow to an
elephant flow and then make a corresponding entry in the BF
corresponding to elephant flows as depicted using a feedback
action in Figure 1. One problem with this approach is that,
because records in the flow memory are based on sampled
packets, they are subject to re-normalization errors. When
flows are inserted or transitioned between different classes
based on these sampled statistics, these re-normalizationerrors
can effect the accuracy of the mapping between a flow and
a class and thus may result in mis-classification of certain
flows. In addition, there could be misclassification due to
the inherent false positives associated with BFs. To some
extent, this is unavoidable due to the approximate nature ofthe
data structure; the key is to ensure that such misclassification
results do not significantly affect the overall flow monitoring
objectives.

A. Analysis

For our example of a two-class CBF, packets can be
classified as either mouse or elephant packets, with some
mouse packets misclassified as elephant packets and vice-
versa. We useMM andME to denote sampled mouse packets
that are classified as mouse and elephant packets respectively
(and hence sampled at mouse and elephant sampling rates).
Similarly, we denoteEM and EE as the elephant packets
classified as mouse and elephant packets respectively.

For any sampling framework, the most fundamental con-
straint is applied by the processing limits. We definec as the
capacity or the maximum number of packets which can be
sampled at a given rate constrained by the processing power.

N = MS + ES ≤ c

whereN is the total number of packets sampled andMS and
ES are the actual number of packets sampled which belong
to mouse and elephant flows respectively assuming an oracle
which can perform perfect classification. From our definitions,
MS = MM + ME andES = EE + EM .

Due to the presence of false positives in BFs, some packets
belonging to mouse flows will be matched in the elephant BF
(ME) with a probability of β = (1 − ekn/m)k, wherek is
the number of hash functions,n is the number of elements
supported by the filter, andm is the size of the filter [6].
Hence, we need to reduce this fraction fromMM and add it
to ME . Thus, we get the following:

MM = sM · M · (1 − β)

ME = sE · M · β (1)

3

where,sM and sE are the sampling rates of the mouse and
elephant classes andM is the total number of mouse packets.
Generally, at larger sizes for the filters,β will be small enough
to approximateMM to be simply equal tosM ·M .

Similarly, every elephant flow in the beginning of its evo-
lution is treated as a mouse flow, until an estimatedT/sM

packets have been encountered for it, whereT is the threshold
number of sampled packets at which a flow changes from
mouse to elephant.

EM ≤ FE · T

EE = sE · (E − EM/sM) (2)

where FE is the total number of elephant flows andE is
the total number of elephant packets. Note thatEM is atmost
FE times the thresholdT , since a flow will be immediately
labeled as an elephant onceT packets are sampled for that
flow. Hence, we need to reduce these many packets sampled
at mouse sampling rate, to get the expression ofEE . We
now plug in the values forMM , ME and EE to derive a
more general inequality (assuming negligible values forβ), as
follows:

N ≤ sM · M + FE · T + sE · (E − EM/sM) ≤ c (3)

Maximizing flow coverage:One of the main objectives we
consider is increasing the number of unique flows captured by
CLAMP, either for a particular group or for all the flows. To
increase the flow coverage of mouse flows, we need to increase
the sampling ratesM . However, for a given sampling budget
and processing constraints, we can not increase it indefinitely.
Equation 3 is a quadratic insM which can be solved to obtain
the following solution forsM .

sM = (t +
√

t2 + 4sE · EM · M)/(2 · M)

where,t = c − sE · E − EM (4)

All positive values ofsM less than the one defined above
will satisfy the processing capacityc. We can get estimates
for E, M andEM historically, based on the past measurement
cycle(s). Due to the heavy-tailed nature of Internet traffic, max-
imizing the value ofsM will automatically lead to increasing
the overall flow coverage. Thus, we maximize the value ofsM

with respect tosE to obtain the values forsM and sE that
will lead to maximizing the flow coverage.

sM = min{(c − EM)/M, 1}

sE = max{0, (c − M − EM)/(E − EM)} (5)

In most cases, the first configuration withsM set to
(c−EM)/M andsE to 0 would work fine because sampling
capacityc is typically very small. Only when we have higher
sampling capacity, we will need to configuresM to 1 andsE

to a value less than or equal to(c−M −EM)/(E −EM), so
as not to underutilize the spare sampling capacity. We referto
this sampling scheme assample and block as it is the opposite
of sample and hold [5] that is designed to identify large flows.

We compare the coverage gains of sample and block with
that of random packet sampling with probabilitysR, under the
invariant of sampling budgetc in both schemes.

Gmax = (sM · M)/(sR · M) =
(c − EM)/M

c/(M + E)

= (1 + E/M) · (1 − EM/c)

for EM < c ≤ (M + EM) (6)

While Gmax is actually packet coverage gain, it is directly
related to the flow coverage gain for mouse flows, because
all the mouse flows have less than or equal toT packets.
Gmax is dependent on two terms:1 + E/M and1 − EM/c.
The first term is solely dependent on the traffic mix or the
trace characteristics. However, the second term is dependent on
the amount of misclassification occurring for elephant flows.
In summary, sample and block samples packets belonging
to mouse flows at the maximum possible sampling ratesM ,
and as soon as a mouse flow becomes an elephant, it stops
sampling further packets for that flow, thus increasing the
mouse flow coverage.

Along with increasing the packet and flow coverage, sample
and block can also increase the accuracy of the flow size
estimates for the mouse flows. As we reducesM from its
value for maximum coverage, and increasesE to compensate
for the reduction inN , accuracy in flow size estimates for
medium and large flows increase. Thus, the network operator
has the flexibility to configure CLAMP for achieving maximal
flow coverage for mouse flows, along with sufficiently accurate
flow size estimates for medium and large flows. This can be
attained by tuning to a point between the configurations for
maximum coverage and maximum accuracy.

IV. EVALUATION

While we envision CLAMP to be implemented in hardware
for high speeds, we built a prototype software implementation
of CLAMP for evaluation. This prototype required nearly
1200 lines of C++ code. The most important component of
CLAMP is the packet classification data structure, which is
implemented as a vector of binary Bloom filters (hash tables).
Our prototype allows selecting the number of hash functions
(k), number of entries (m) in each filter and even the epoch
size (e). We use Bob Hash function as suggested by [9]
for packet sampling at line speeds. Each hash function is
initialized with a different 32 bit value.

Using this prototype implementation, we evaluate the effi-
cacy of CLAMP over real-world traces. We also implemented
other size-based sampling frameworks [8], [10] and use these
in our comparisons. We show how to configure CLAMP to
obtain better flow coverage using our theoretical analysis in
Section III-A. We now discuss how CLAMP can be configured
for maximizing the mouse flow coverage and accuracy by
employing thesample and block scheme.

We use two real-world anonymized traces to analyze the
performance of CLAMP. The first is a 10 minute OC-48 trace
published by NLANR [2] with 34 million packets and about
2.2 million flows, while the second is a 1 minute OC-192

4

Name Date/Time Duration Online Source Link Mbps (Kpkt/s) Packets 5-tuple flows

ABIL 2002-08-14/09:20 600s www.nlanr.net OC-48 294.2 (57.6) 34,573,317 2,195,366
CHIC 2008-04-30/13:10 60s www.caida.org OC-192 971.4 (217.4) 13,046,322 1,174,965

TABLE I
TRACES USED FOR OUR MEASUREMENTS.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n

m/n ratio: Memory usage

Mouse flow coverage vs. memory usage

CBF
Counting BF

(a) Flow coverage

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

F
al

se
 p

os
iti

ve
 r

at
e

m/n ratio: Memory usage

False positive rate β vs. memory usage

CBF
Counting BF

(b) False positive rate

Fig. 2. Effect of varying memory usage for CBF and counting BF
(T=1,sM =1,epoch=600s).

backbone trace of a tier-one ISP published by CAIDA [1]
with 12 million packets and 1.1 million flows. Both traces
exhibit heavy-tailed flow size distributions that we assumein
our analysis. These traces are summarized in Table I.

A. Memory Usage

In this section, we compare CLAMP with other counter-
based schemes for size-based sampling such as FlexSam-
ple [10] and sketch-guided sampling [8]. While the focus and
usage of these solutions is different, they both share similar
data structures (sketch and counting Bloom filters) to keep
track of the flow sizes. In contrast, we rely on CBF that
represents a much simpler data structure. In many cases, such
simplicity comes at the cost of worsening some other metric
such as, say, increasing the false positive rate of the filter.
The results indicate, somewhat surprisingly, that CBF performs
better in both memory consumption as well as false positives
compared to counting BF alternatives, thus indicating thatCBF
achieves clear benefit and is not a tradeoff.

Why is higher false positive rate in the classification data
structure bad for various sampling objectives? As an example,
consider the case when we are interested in increasing flow
coverage. According to Equation 1, the mouse flow coverage
is directly related to the number of mouse packets classi-
fied and sampled at mouse rateMM . Mouse flow coverage,
however, decreases as filter false positive rateβ increases as
these packets will be misclassified as elephant packets and

thereby sampled at elephant rate (i.e., less than the mouse rate
for high flow coverage). Thus, low false positive rate for the
classification data structure is important for such objectives.

In Figure 2(a), we compare the mouse flow coverage (which
is equal to MM for T set to 1) for the full ABIL trace
for CLAMP and counting BF. In addition to the mouse flow
coverage, we also plot the empirical values for filter false pos-
itive rateβ (calculated using Equation 1) in Figure 2(b). The
configuration allowed mouse flow coverage to be maximum,
i.e., sM set to 1, thus ensuring a worst case analysis for the
filter with the maximum number of flows inserted in the Bloom
filter over the trace. To ensure fair comparison, we use three
hash functions for both CBF as well as the counting Bloom
filter.

Figures 2(a) and 2(b) show that CLAMP as well as counting
BF implementations exhibit a reduction in the false positives
and increase in the flow coverage as we increase the amount of
memory over-provisioning (m/n). However, clearly, CLAMP
exhibits much faster increase in mouse coverage and decrease
in false positives (or mis-classifications). CBF achieves a
filter false positive rate of 6% at am/n ratio of 4 (using
174.5KBytes of memory), giving nearly 94.3% mouse flow
coverage (atsM=1 andsR=0.069). Note that we do not have
100% mouse flow coverage due to the fact thatME is not
zero. At the same sampling rate, the counting Bloom filter
implementation requires am/n ratio of 10 (using 13,960
KBytes of memory) to achieve the same filter false positive
rate of 6%. This shows that CBF requires nearly 80x less high-
speed SRAM than a counting Bloom filter to achieve similar
filter false positive rates and flow coverage.

On the other hand, even considering only same number
of entries (bits and counters) across both CBF and counting
Bloom filter, CBF still obtains at least up to 6x reduction in
the number of false positives (atm/n = 5, CLAMP has about
4% false positives while counting Bloom filter experiences
about 25% false positives). What makes these gains even
more significant is the fact that we do not consider the extra
overhead associated with counters (in the counting Bloom
filters). If we factor in this disparity, the benefit associated
with CBF will increase even further.

B. Flow coverage

According to Equation 5 and Equation 6, the best possible
coverage for mouse flows can be achieved by setting CLAMP
in sample and block mode withT=1. Table II shows the results
for ABIL trace with epoch size of 600s and CBF allocated
436.25 KBytes of memory. We note that the theoretical
gains for mouse coverage follow Equation 6. Those gains are
formulated for the mouse flows which are all such flows with

5

Flow Coverage %

sR sM Pkt Sampling CLAMP Gain
0.001 0.0043 0.3 1.1 3.74x
0.004 0.0267 1.0 5.2 5.08x
0.016 0.146 3.4 20.8 6.17x
0.064 0.845 10.7 86.4 8.10x
0.073 1.0 11.9 99.4 8.32x

TABLE II
COVERAGE FOR FLOWS OF SIZE0-1K PACKETS(ABIL
TRACE,T=1,EPOCH=600S,MEMORY=436.25KBYTES).

Flow Coverage %

sR sM Pkt Sampling CLAMP Gain
0.001 0.0010 0.4 0.4 0.99x
0.004 0.0041 1.6 1.7 1.03x
0.016 0.0179 6.0 6.7 1.11x
0.064 0.0965 18.7 25.3 1.36x
0.307 1.0 53.8 99.2 1.84x

TABLE III
COVERAGE FOR FLOWS OF SIZE0-100PACKETS(CHIC

TRACE,T=5,EPOCH=10S,MEMORY=50KBYTES).

size less than or equal to T packets (T=1). However, in Table II
we show the gains for flows of size 0-1000 packets, which will
be slightly less than those obtained for mouse flows according
to Equation 6. The flow coverage gains for the overall traffic
volume are also mainly decided by the mouse flow coverage,
because large flows are almost always captured.

We can observe from Table II that as we increase the
random sampling probabilitysR, the coverage gain of CLAMP
increases from 3.74x (atsR = 0.001) to almost 8.32x (at
sR = 0.073). Further increasingsR will reduce the gain since
at sR = 0.073, the mouse sampling ratesM is already set to 1
and it cannot further increase the flow coverage. As mentioned
earlier, even withsM = 1, we can see that CLAMP almost
captures 99.4% of traffic (with the remaining 0.6% attributed
to the false positive probability associated with the elephant
Bloom filter). Thus, we can clearly conclude that CLAMP
provides an order of magnitude better coverage for this traffic
mix as compared to random packet sampling.

For the CHIC trace, we show the results in Table III. A
maximum gain of 84% is achieved for this trace at a random
packet sampling rate of 0.307, while at lower sampling rates
(sR=0.016), the gains are just 11%. There are two important
observations: First, at very low sampling rates (∼0.001),
CLAMP is almost as bad as random packet sampling since
there is not enough sampling budget mouse flows can ‘steal’
from elephants to improve their coverage. Second, at high
sampling rates such as 0.307, we get a gain of 84% which
is not as good as we obtained for the ABIL trace (8.32x at
sR=0.073). This is in part because of the flow size distribution
of CHIC trace (see Equation 6 for the1 + E/M term). But
the major reason is attributed to the highEM/c ratios for all
of these configurations in Table III, because of smaller epoch
size (10s) and higher threshold (T=5), effectively decreasing
the coverage gain (see Equation 6 for the1 − EM/c term).

The role of EM/c ratio is further strengthened by the fact
that operating insample and block mode for the CHIC trace
(with T=1, epoch=60s), a lower sampling rate (sR=0.138)
results in a much better coverage gain of 3.05x (with only flow
memory reset after every 10s), thereby reducing the share of
EM/c. This shows that CLAMP can nevertheless achieve an
order of magnitude better flow coverage than random packet
sampling even for CHIC trace, with suitable tuning, based on
Equation 6. For brevity, we omit those results for CHIC trace.

V. CONCLUSIONS

Flow monitoring solutions in routers have evolved signif-
icantly over the years from their modest origins in simple
NetFlow-like solutions. While most solutions revolve around
better handling router resource constraints such as CPU, mem-
ory and flow reporting, there is little research on providing
an efficient and flexible class-based sampling architecture,
with dynamic class definitions that include specific flow
properties such as the size. In this paper, we have discussed
the architecture of CLAMP to address this challenge that
involves the use of a set of simple Bloom filters for class
membership and a feedback from the actual flow memory
to record class-membership information about flows. Using
this architecture, we have shown how to implement a simple
two-class size based packet sampling framework. Compared to
prior approaches, we achieve significant memory reduction (up
to 80x depending on the configuration) and increased number
of flows (up to 8x). There are several directions for future
work. For example, we can extend our analysis to multiple
classes. We can also consider applying our architecture to other
definitions of classes. We plan to pursue these in our future
work.

VI. A CKNOWLEDGEMENTS

This work was supported in part by NSF Award CNS
08316547 and a grant from Cisco Systems.

REFERENCES

[1] CAIDA Anonymized 2008 Internet Trace (equinix-chicagocollection).
http://www.caida.org/data/passive/passive2008 dataset.xml.

[2] NLANR Abilene-I Internet dataset. http://pma.nlanr.net/Traces/long/
ipls1.html.

[3] B. Claise. Cisco Systems NetFlow Services Export Version 9. RFC
3954.

[4] C. Estan, K. Keys, D. Moore, and G. Varghese. Building a Better
NetFlow. In Proc. of ACM SIGCOMM, 2004.

[5] C. Estan and G. Varghese. New Directions in Traffic Measurement and
Accounting. InSIGCOMM, 2002.

[6] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a scalable
wide-area Web cache sharing protocol.IEEE/ACM Transactions on
Networking, 8(3):281–293, 2000.

[7] R. Kompella and C. Estan. The Power of Slicing in InternetFlow
Measurement. InProc. of IMC, 2005.

[8] A. Kumar and J. J. Xu. Sketch guided sampling - using on-line estimates
of flow size for adaptive data collection. InIEEE INFOCOM, 2006.

[9] M. Molina, S. Niccolini, and N. Duffield. A comparitive experimental
study of hash functions applied to packet sampling. InTechnical Report,
AT&T.

[10] A. Ramachandran, S. Seetharaman, N. Feamster, and V. Vazirani.
Building a Better Mousetrap. InGeorgia Tech CSS Technical Report
GIT-CSS-07-01, 2007.

