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Abstract—With a widespread increase in the number of mobile
wireless systems and applications, the need for location aware
services has risen at a very high pace in the last few years.
Much research has been done for the development of new models
for location aware systems, but most of it has primarily used
the support of 802.11 wireless networks. Less work has been
done towards an exhaustive error analysis of the underlying
theories and models, especially in an indoor environment using
a wireless sensor network. We present a thorough analysis of
the Radio Signal Strength (RSS) model for distance estimation
in wireless sensor networks through an empirical quantification
of error metrics. Further on the basis of this experimental
analysis, we implement a k - nearest signal space neighbor match
algorithm for location estimation, and evaluate some crucial
control parameters using which this technique can be adapted to
different cases and scenarios, to achieve finer and more precise
location estimates.

I. INTRODUCTION

With a widespread increase in the deployment of mobile
wireless systems and applications, the need for location aware
services has increased manifold. This is attributed to the ap-
plication of these services in various spheres of life. Examples
of such applications range from navigational systems in a
building for guiding a user to his destination, to object tracking
systems and many more.

While much research has been done for the development
of location aware systems and service architectures in various
areas including wireless sensor networks, less attention has
been paid towards an exhaustive error analysis of the under-
lying theories and models, especially in indoor environments.
Some of the earlier efforts along similar lines for RF-based
user location estimation, are however directed towards the use
of 802.11 wireless networks [2]. Another category of work has
addressed the problem in the context of infrared (IR) wireless
networks, but they suffer from major limitations of limited
range and directionality.

In this work, we have not focused on developing another
sophisticated location estimation technique for Wireless Sen-
sor Networks (WSN), but our real motivation is to implement
a simple localization scheme which is instead based on a
strong experimental analysis of Radio Signal Strength (RSS)
as a distance measurement technique in WSNs over the 433
MHz wireless channel. On the basis of this empirical analysis,
we further work out certain crucial control parameters for

the k - nearest signal space neighbor match algorithm for
location estimation, which we can adapt to different cases and
scenarios, to achieve finer and more precise estimates.

The remainder of the paper is organized as follows. In
section 2, we present the related work - discussing the various
location estimation systems based on different underlying
schemes such as ultrasound sensing, 802.11 wireless networks,
infrared sensing and other in WSNs. In section 3, we formally
define RSSI and its theoretical model, then explain the sig-
nificance of the various error cost metrics used for our first
category of calibration based empirical analysis. We describe
our research methodology and the experimental setups along
with the implementation details and the system architecture.
It is followed by a description of k - nearest signal space
neighbor match algorithm for estimating the location of a
target sensor mote. Section 4 forms the core of the paper,
where we present and discuss our results and analysis. Finally
we conclude with a short summary of our results and future
research directions.

II. RELATED WORK

In recent past, many systems have tried to solve the problem
of location estimation and object tracking using different mod-
els in wireless networks. In this section, we briefly describe
some of the major approaches.

The Active Badge System [12], based on an infrared model,
is the oldest yet one of the most famous localization system.
A badge is worn by a user in the system which emits a unique
infrared signal every 10 seconds. This emission is made on an
on-demand basis as the sensors placed at different locations
pick up the identifiers and relay this information to a central
server. Although this system provides a fairly accurate location
estimate, it suffers from some major drawbacks such as limited
range of infrared sensors and usage of diffused infrared for
location estimation which could generate wrong estimates in
fluorescent lighting or direct sunlight.

Technological alternatives for infrared based sensing came
up with the usage of angle of arrival (AOA) and time difference
of arrival (TDOA) techniques. While these systems work
effectively in outdoor environments, they suffer from the
limitations of multiple reflections of RF and sound signals
in indoor environments.



One of the earliest location estimation systems in the area
of WSNs is the Cricket indoor location support system [11]
developed at MIT, which uses ultrasound transmitters and
embedded receivers in the objects being located. It uses
RF signals for time synchronization and delineation of the
time during which the receiver considers the sound waves
it receives. It is based on a decentralized system of sensors,
but this causes a huge burden on the tiny power-constrained
mobile receivers due to distributed computation and processing
of ultrasound pulses and RF data.

Another category of location estimation systems are based
on Global Positioning System (GPS) [5]. These systems work
extremely well in outdoor environments, but fail to work
indoors as the buildings block the GPS signals.

Another class of localization systems which have gained
recent popularity are based on radio-frequency (RF). These
systems work in two phases, first is the radio map building
phase which is done offline. This is followed by the online
location estimation in the second phase. The major advantage
of such a system is that it does not require any additional
hardware and can be easily deployed.

RADAR was the first RF-based technique for location
estimation and user tracking, developed at Microsoft Research
[2]. It is primarily based on a 802.11 Wireless LAN for
building a single monolithic radio map for the network site and
uses a k - nearest neighbor match algorithm for search in signal
space. While there is certain similarity in their and our research
methodology, both differ in significant ways. Their system
(1) is based on an entirely different 802.11-based wireless
platform, (2) investigates the accuracy variations on a more
limited range of k values, (3) works on 2.4 GHz license-free
ISM band on which signal interference is much prominent
with other wireless devices. These points are also discussed
in the next sections.

An enhancement method for location estimation based on
RSSI-values and extended Kalman filter, using pre-calibration
measurements has been described in [6]. However their system
is also supported by a standard wireless local area network
over the 2.4 GHz frequency band.

The work described in [1] is also based on localization in a
WSN using RSSI as the underlying model. However unlike our
approach, which investigates the crucial control parameters for
adapting to various scenarios and achieving finer results, their
major focus has been to quantify distance estimation errors
across multiple environments.

The Cramer-Rao bound (CRB) for location estimation using
RSS and TOA relative localization techniques has been derived
in [10]. Their testbed developed at Motorola Labs consisted
of 12 prototype peer-to-peer wireless sensor devices with
RSS measurement capabilities. They conclude that despite
the reputation of RSS as a coarse localization model, it can
nevertheless achieve an accuracy of about 1 meter RMS in a
real testbed environment.

Another category of related work in WSNs, focuses on the
evolution of new calibration techniques for optimizing the
overall system performance. Calamari, an ad hoc localization

system [13] estimates the distance between wireless nodes
using RF-based received signal strength and acoustic time of
flight (TOF). In this work, they present the trade-offs between
the heavy engineering of a system and its heavy calibration.
They propose new calibration techniques to solve this problem,
instead of adding special hardware or other infrastructure.

Overall system performance largely depends on efficient
query processing too. In [7], the major focus is on sophis-
ticated data analysis for vehicle tracking. It is based on the
idea of building a framework which can combine intelligent
tracking with other ad hoc query facilities using a sensornet
query engine such as TinyDB.

In [15], the focus has been to investigate the impact of
radio irregularity on the communication performance of WSN
nodes. This work also uses MICA2 platform for getting the
empirical data with which they establish a radio model for
simulation. They also analyze the impact of radio irregularity
on MAC and routing protocols in WSNs.

A decentralized approach to RF-based object tracking,
named Mote-Track [8] was deployed at Computer Science
building of Harvard University. The testbed consisted of 25
beacon nodes and the system uses the radio signal over 16
different frequencies. Other major works which use signal
strength for localization include [4], [14]. In 802.15.4 (wireless
personalized area networks), an empirical analysis of RSSI has
been done using monopole antennaes [9], but with a major
focus on analyzing the physical layer network characteristics.

III. RESEARCH METHODOLOGY

A. RSSI model and error cost metrics

Received Signal Strength Indicator (RSSI) measures the
strength of the radio signal received. Usually calibration is
required for mapping RSSI to distance values. It is important
to note that RSSI does not imply the quality of the signal.
RSSI is usually a 8 or 10 bit number, obtained from the
physical layer, and is used for tasks such as issuing of Clear
to Send (CTS). The number of bits used for RSSI is hardware
dependent. The radio on MICA2/MICA2DOT motes provides
RSSI on the Analog to Digital Converter (ADC) channel 0 and
is available to the software running on the mote as a 10 bit
number. Following is the conversion from ADC Counts (10
bits) to RSSI in dBm as described in [3]:

VRSSI = Vbatt ×ADC COUNTS/1024

RSSI(dBm) = −51.3× VRSSI − 49.2

Signal Strength (in dBm) = x = 10× log10

(
Power(in mW )

1 mW

)
It is important to note that VRSSI ranges between 0
and 1.2 Volts and a higher voltage means lower input signal.
Thus RSSI in dBm is a decreasing function of VRSSI in
Volts. For simplicity, we assume free space signal propagation
and have the following relation for power per square meter.
This is expected because if we consider concentric spheres
of increasing radius r around the antenna, the total power
radiated through the sphere remains constant, however the
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Fig. 1. System architecture.

surface area increases as r2. This theory also forms the basis
of our first experimental setup, discussed later in section
III-B.
So, we assume absolute power in milliWatts to be proportional
to K/r2 and that in dBm is defined as the variable x as
follows.

x = 10× log10

(
K

r2

)
∴, x = 10 log10 K − 20 log10 r

∴, x = 10 log10 K − 20 log10 r

= (−51.3× VRSSI)− 49.2
∴, r = 10p

where,

p =
(10 log10 K + 51.3 (Vbatt ×ADC COUNTS/1024) + 49.2)

20

In the above equations,

VRSSI = RSSI Voltage measured
from RSSI/IF pin of CC1000 chip,
at the ADC of the µcontroller

Vbatt = Mote Battery Voltage
ADC COUNTS = 10 bit ADC count

at the µcontroller
K = Constant (Depends on environment)
r = Transmission Distance

We can observe in the above formulation that transmission
distance is an exponential function of the ADC Count value.

The various technologies and schemes used in location esti-
mation in wireless sensor networks suffer from an assortment
of errors and dispersions. The foundations for these deviations
lie in the very nature of the medium. Noise and interference
can hamper the performance of the network because of the
losses that they induce. These issues are relatively handled
at the physical and MAC layers in the network protocol
stack. But in case of distance measurement, noise and optical
interference can lead to disastrous results by the induction of

Fig. 2. Packet structure for application.

errors in the distance parameters measured by the devices.
Therefore, there is always a need for calibration for location
estimation. However, calibration alone can not eliminate the
errors completely from the measurements. What is desired is
a modeling of the errors in terms of the known (measurable)
parameters, so that they can be removed in a fine grained man-
ner. We achieve this by formulating some error cost metrics. In
our analysis, we use percentage accuracy as the basic metric
which is a measure of the absolute error introduced. It helps
us to evaluate the different control parameters in our location
estimation algorithm.

B. Experimental Setup

We used the MPR 410 (433 MHz) MICA2 motes which
are supplied by Crossbow Technologies, for our experiments.
The mote µcontroller has a built-in analog to digital converter
which is used to convert a variety of analog signals to digital
output, one of them being the output from the RSSI/IF pin of
the CC1000 radio chip. The A to D converter, for the signal
obtained from the RSSI/IF pin, generates a 10 bit number
representing the RSSI for the received signal at the CC1000
Radio Chip.

Our object tracking application (Figure 1) consists of two
modules, the sensing module in the wireless domain which
comprises of the tracked object, its hardware, software and the
underlying protocols. The software consists of a SendHellos
application running on the tracked object, which periodically
broadcasts HELLO messages every 125 ms, and a base
application on the base station(s) which senses the RSSI
information for the received HELLO packets and forwards
this information, via UART, to a central server for the second
module. The second module is the Data Aggregation and
Analysis module, or the tracking front end. It consists of
the application front end user interface, backend TCP socket
interface and a wireless to RS232 interface. Data from the
RS232 port is written to a TCP socket, which is henceforth
collected by a frontend Java application.

The MAC layer protocol used in our implementation is the
default TinyOS version, B-MAC. It is similar to CSMA and is
the successor of pre-BMAC version used in older versions of
TinyOS. It includes improvements over the earlier version as
it employs an adaptive preamble sampling scheme. The data
payload of the message which is defined by our application is
26 bytes preceded by the destination address, active message



Fig. 3. Calibration equation and basic error analysis setup.

handler id, group id and the message length (Figure 2). This
is also the default packet size for B-MAC and is much smaller
as compared to other versions of MAC layer protocols in
TinyOS. The payload is divided into 4 major fields, first
one is source mote id, then the sample counter of two bytes
which is followed by the ADC Channel Number and finally
there are 10 readings of 2 bytes each, which symbolize the
ADC data readings. If we use larger packet sizes then the
probability of the packets being delivered decreases due to
high memory constraints on the motes, which is not enough
for storing a large number of packets for the purpose of link
level retransmissions. The data is sent to the motes in little-
endian format.

Our experimentation consisted of two stages, which we refer
to as setups in the remaining of the paper, the first setup aimed
at collection of RSSI data for known distances and angular
displacements and generation of calibration equation using this
data which also validates our hypothesis that the RSSI value
is a logarithmic function of distance from the emitter. This
hypothesis is supported by the fact that RSSI (in dBm) is
logarithmically related to power of the signal, and power is
K/r2 where K is a constant and r is the distance. Calibration
is done using a range of points which are spread over discrete
distance values from 0 to Rmax over ∆R steps. For each
distance, data is collected across angular displacements from
0 to Θmax with discrete steps of ∆Θ. The values for ∆R,
Rmax, ∆Θ and Θmax were 25 cms, 700 cms, 15o and 120o

(Figure 3).
For the second stage (location estimation), we constructed

our test-bed in the Department of Computer Science at IIT
Delhi. It consisted of a 2 meters × 7 meters rectangular
grid as depicted in the Figure 4. The green circles indicate
the points which were used to build the radio map data set
during the map building phase of our scheme. The red circle
denotes a target mote being tracked in the rectangular field.
A MIB 510 board mounted with a MICA2 mote was used to
collect the RSSI information of the target mote and forward
it to a laptop where the location was estimated, as per the
second phase of the scheme. Our primary purpose was to
do an exhaustive error and precision analysis for our scheme
in an indoor environment, where accuracy and precision for

Fig. 4. Setup for location estimation system analysis.

distance estimation using RSSI, are seriously hampered. We
also intended to simulate a corridor - like environment in a
building where such an indoor tracking application can most
likely be deployed.

C. Algorithm and the System

In this section we explain the k-nearest neighbor algorithm
and its implementation for location estimation in our system.

1) Radio Map building Phase: For each of the map building
stage data points (see Figure 4), RSSI data was collected for
2 minutes (approximately 60000 samples) for two different
mote orientations: +180o and −180o. Mean RSSI data was
computed for each orientation and this data, along with the
point coordinates, was stored in our data set Γ. We collected
data separately for the two different orientations to observe and
analyze the impact of mote orientation on error introduced in
estimation.

2) Data Processing and Location Estimation Phase: In our
location estimation scheme, we use the k - nearest neighbor
algorithm with the following data sets Γ, ξ and χ:
• Γ: The set Γ is built in the initial map building stage,

where we profile the area, A, in consideration for lo-
cation estimation application, by constructing a radio
map of the entire area. This is done by collecting
the RSSI information for pre-determined locations in
the area A, which are well-distributed. In our case,
the selection of these points was uniform, lying on
the vertices of a planned grid spread out over the
area A (see Figure 4). Each element in the set Γ is
a 2-tuple 〈Point Coordinates, RSSI Information〉,
which correspond to 〈Point Feature, V alue〉.

• ξ: The RSSI information for the tracked mote.
• χ: An estimate for the location of the tracked mote. This

could be the mean/median/mode of the coordinates from
the k nearest matches in Γ to ξ.

K-NEAREST NEIGHBOR MATCH ALGORITHM(Γ, ξ, k)
1 Find k Nearest :
2 N ← size of(Γ)
3 for i← 1 to N
4 do Distance[i]← ‖ξ.value− Γ[i].value‖
5 Sort ascending(Distance)
6 k Nearest← Distance[1 : k]
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7 Estimate value :
8 χ← mean(k Nearest) // or median, mode
9 return χ

IV. RESULTS AND ANALYSIS

In this section, we present an analysis of the results which
we obtained in the two stages of our experimentation. First
is the calibration-based error analysis, where we perform
the calibration for the indoor environment. The setup for
this was placed in the Advanced Networking Laboratory in
our department. The next stage of experimentation is the
fingerprinting-based location estimation, which uses the k -
nearest signal space neighbor match algorithm for location
estimation. We assume the target to be stationary in all of the
following experiments.

A. Calibration-based error analysis

The experiment for generating the calibration equation,
relating RSSI to distance, was conducted to support and cor-
roborate our initial theoretical analysis from which we derived
distance as an exponential function of RSSI (in dBm). For this
we considered the worst case scenario - indoor environment
with large number of obstacles and moving objects. RSSI
information was collected for various distances, at various
points and for each distance value mean observed RSSI was
computed.

The plot in Figure 5 shows the data used for calibration. It
was obtained with RSSI(dBm) along y-axis and log10(Actual
Distance) along x-axis. The calibration equation and curve
were fitted with MATLAB’s basic fitting tool. It shows a linear
curve fit between RSSI(dBm) and log10(Distance). The linear
curve fit gives the following relation between RSSI(dBm) and
distance:

RSSI(dBm) = −23.28× log10(distance)− 2.425

which gives distance as an exponential function of
RSSI(dBm):

Distance(cm) = 10−(
RSSI(dBm)+2.425

23.28 )
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We use this calibration equation for computing distances
for different known points on our testbed, using which we
compute and analyze the error cost metrics.

Here we have demonstrated results for percentage accuracy,
which is a measure of relative error in measurements, for two
scenarios - (i) in open space (Figure 6) and (ii) near walls
(Figure 7). From the graphs we can clearly see that the system
produces results for open space with upto 10% accuracy
(which is 10% relative error) for 6-7 meters distances. While
in case of the scenario where there are obstructions (walls)
the error is very large (nearly 60%) for distances upto 6-7
meters. We have only upto 30% error for mediocre distances
(4-5 meters). Another important observation that can be made
here is the presence of a zero error in the latter scenario.
This can be attributed to deflection from walls and multi-path
fading in this case. This is a significant observation because
this zero error can be deducted from the measurements to
improve accuracy in estimation. Next, we proceed to using
the calibration information for fingerprinting and location
estimation.

1) Fingerprinting and Location Estimation: Here we
present the analysis of the results obtained for the experimental
setup described earlier in section III-B. The k - nearest signal
space neighbor algorithm is divided into two phases - Offline
fingerprinting and the Online location estimation. In the first
phase, we fingerprint the test environment by building a grid
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of pre-defined points. We then, find the average RSSI values
at each of these gridpoints, thereby generating a radio map of
the testbed and maintain this database for the next phase. In
the second phase, we collect the signal strength information
from the target and find the k - nearest neighbors (the closest
values) from the signal space (the data set generated in the
first phase), to estimate the region in which the target may lie.

B. Preliminary analysis

We take all the grid-point samples in our signal space and
a random location of the target for the initial analysis. Then
we run our k - nearest signal space neighbor algorithm and
generate a cumulative distribution function (CDF) of the error
distances, which is the euclidean distance between the actual
and the measured values of the locations. This is made using
signal strength samples collected for all the grid points, for
certain k values.

Considering the 50th error percentile, our approach has a
resolution of nearly half-a meter. Moreover, for 90% of the
cases the error distance is under 1.1 meters which is much
lower as compared to other RF-based schemes for indoor
environments. Hence this CDF (Figure 8) based on empirical
results gives a good picture of how robust is the k-nearest
neighbor scheme for location estimation in a WSN. We now
present how these results depend on some significant control
parameters and how can we adapt the scheme to achieve finer
results.

C. k - nearest neighbors in signal space

One of the most important evaluation of our location esti-
mation algorithm is to study how its performance varies with
the number of candidate neighbors chosen for interpolation
in its second phase, that is with the parameter k. Figure 9
represents the variations in the 50th and 90th percentiles of
error distances with k.

We observe that as k increases, both the percentiles of error
distances initially decrease, then reach an absolute minima and
then again rapidly increase. This can be explained as follows.
When the value of k increases initially, then the underlying
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variations of signal strength at the single neighboring grid-
points get averaged out with increasing k, resulting in decrease
of error distance. Further, to some extent we also believe that
the error vectors at the different neighbors of the target mote
are oriented in different directions. Hence averaging over more
neighbors may yield more accurate estimates of the target’s
location as these different error vectors nullify each other in
most of the cases. However, for larger values of k, the errors
again increase as many grid-points which are closer in signal
space but much farther in physical space to the target mote,
are also included in the data set, thereby leading to greater
deviations in measurements from the actual location.

Another observation is that there exists an optimal value of
k, which in Figure 9, is in the range of 5 to 10 for both the
percentiles at which error distance or the difference between
the measured and actual location coordinates is minimum. This
result shows that it is empirically possible to infer a set of
optimal values for the control parameter k for our algorithm
in a given environment and surroundings, which will yield
finer and more accurate results.

Similar trends in variation of error distances with k are
found irrespective of the orientation of the target relative to
the signal space measurements. Figure 10 shows the error
variations for three different configurations up-up, up-down
and max(up,down). It is important to note that there always
exists an optimal control value (OCV) for k at which error
can be minimized. However this value or the feasible region
for the optimal value is different for each configuration. This
is better explained in the next section.

D. Impact of target orientation

The target mote’s orientation is an important factor in the
estimation of the user location as it significantly affects the
signal strength samples received from it. To observe this, we
built the radio map in the offline phase with a particular
orientation of the motes, which we refer to as up and in
the online phase we place the target in exactly the same
(up-up configuration) or 180 degrees opposite to it (up-down
configuration). Similarly we had down-up and down-down
configurations.
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We notice a significant degradation in the accuracy for
the up-down configuration as compared to the up-up one.
As in Figure 10, the 90th percentiles of error distance are
compared for the three configurations - up-up, up-down and
max{up-down}. The errors for up-down configuration are
mostly much higher than that for up-up configurations. We
can also compare the optimal control values (OCV) for k for
the two configurations. The OCV range for up-up is nearly
for k ranging between 4 and 7, whereas the same for up-
down configuration is for k from 10 to 13, which is nearly
double. Hence, this proves that for achieving the same degree
of accuracy in up-down configuration, it takes nearly twice the
time for computation in the OCV range, as compared to that in
up-up configuration, as the time complexity for the algorithm
is O(k log(N)).

We believe that with larger areas of indoor experimentation
and with mobile targets, the difference in accuracy levels for
the two configurations will increase. Other physical parameters
influencing the accuracy levels are mote orientations, antenna
directions of both the receiver and the transmitter, and the
surface type of the floor between the two motes. Another
basis of these variations can be attributed to the RF-based
communication phenomena such as multi-path reflections and
antenna directionality.

E. Maximal Signal Strength Matching

As we have seen in the previous section, the orientation of
the target motes affects the location estimation significantly.
We now try to analyze the error distances when we match
the observed signal strengths of the target mote with the
maximal signal strengths at the grid points. By maximal, we
refer to the greatest of the signal strengths among the four
possible orientations, namely up-up, up-down, down-up and
down-down.

Variations of error distances using this strategy, with k
is compared with two other configurations in Figure 10.
We notice that this strategy certainly reduces the error as
compared to the two disjoint configurations up-down and
down-up. The OCV range is also found to be the least for
this strategy as compared to the four other configurations. We
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also observe that this strategy results in lower 90th percentile
error distances for even higher values of k. Hence this strategy
tries to overcome the effects of physical parameters such as
mote orientation and antenna direction, as we now choose
one averaged maximal fingerprint of signal strength which
is relatively more independent of the mote orientations, for
building our offline signal space.

F. Impact of Size of Dataset

We also analyzed how the variation in number of grid
points used for the signal space will impact the accuracy
of location estimation. To observe this we chose a uniform
random distribution of N grid points in our setup. We varied
the value of N from 15 to 30 and performed the error analysis
for location estimation using k - nearest neighbor algorithm.
For each run of N, we used the OCV error distance for our
analysis corresponding to the OCV k. Figure 11 shows the
90th percentile OCV error distances for varying N.

We observe a significant improvement in the accuracy levels
as N is increased. For smaller values of N such as 15, the
error distance is nearly 1.9 meters whereas the same for N
being 30 is 80 centimeters. This shows that there is nearly
58% decrease in error distance as N is doubled from 15 to
30. At the same time we also note that this gradient starts
smoothening as we increase N beyond a certain value. Hence,
we conclude that the accuracy levels in location estimation
increase considerably as the size of the dataset is increased
but only till a certain threshold is achieved.

V. CONCLUSION AND FUTURE WORK

In this work, our major objective has been to quantify
how good and accurate is the RSSI model in a wireless
sensor network to estimate the location of a cooperative target.
We have classified our observations in two broad categories,
the first ones are based on a calibration based analysis and
the second ones are based on a full - fledged scheme for
location estimation, the k - nearest signal space neighbor
match algorithm. Our results are encouraging and we are
able to achieve an accuracy of nearly 1.1 meters with 90%
probability in indoor environment.



In the first set of results, we quantify the relationship
between relative error and actual distance which we em-
pirically prove to be multiplicative. Once we have a good
quantification of the signal strength model, we implemented a
location estimation scheme on this basis. The first relationship
which comes to surface is the variation of accuracy with
changes in the control parameter k. Next we investigated
the impact of variation in mote orientations on the accuracy
of location estimation. Appropriate choice of k within the
OCV ranges proved to give more accurate results. Choosing
maximal signal strength fingerprints while building the offline
signal space, makes the location estimation more independent
of user orientation. We also observe that the performance of
our system improves as the size of the radio map is enhanced
by increasing the number of grid points - N.

One of the extensions to this system built using a WSN
could be to analyze how the accuracy levels vary as we
increase the number of targets being tracked at the same time
from one to more. As we increase the number of motes being
tracked, the number of packets being sampled at the base
station will increase manifold, which can in turn result in
the degradation of sensitivity of the location estimates of the
objects.

We would also like to investigate the performance of
our system under phenomena such as shadowing and signal
contention between different motes and interference with
other low-power wireless devices, which work on the same
frequency channels.
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