
On the inadequacy of link connectivity monitoring
Mohit Saxena and Ramana Rao Kompella

Computer Science Department
Purdue University

Email: {msaxena,kompella}@cs.purdue.edu

Abstract—Internet backbone networks are constantly evolv-
ing along several dimensions such as technology, protocols,
and features. The rapid rate of this evolution often places a
tremendous amount of burden on network operators and router
vendors to cope with both unanticipated as well as complicated
failure scenarios. While routing protocols are designed todetect
these failures and respond by switching to alternate paths,
we argue that current routing protocols (e.g., OSPF) do not
completely verify all data plane paths properly. Thus, there
potentially exist failure scenarios that are not detected by them
and thereby recover from. To alleviate this problem, we show
how a simple extension to OSPF, wherein each router injects
probes to a 2-hop neighbor, can easily verify all the data plane
forwarding paths within the adjacent router. While we point out
the extension in the context of OSPF, we believe our approach
is generally applicable to other control plane protocols aswell.
Using Rocketfuel topologies, we quantify the resulting overhead
of injecting these 2-hop probes for routers in real ISPs.

I. I NTRODUCTION

Today’s operational backbone networks are extremely large
and complicated. A typical backbone consists of about a thou-
sand routers supported by access and core transport networks
with several hundred thousand network elements. The rapid
pace of deployment of these devices together with the constant
evolution in technology (e.g., ultra long-haul optics), protocols
(e.g., MPLS) and applications (e.g., VoIP) often results ina
wide variety of complex faults and impairments.

With the increasing reliance on electronic commerce and
convergence of several other communication services to IP-
based networks, network outages are becoming increasingly
costly, in terms of lost revenue for companies relying on
the infrastructure and for those that are managing it. Not
surprisingly, a great deal of effort is often expended by ISPs
to rapidly detect, diagnose and recover from faults in the
backbone networks.

A certain amount of fault tolerance is built into the network
architecture. This fault tolerance is often achieved via over-
provisioning, whereby the network is engineered to have
enough spare capacity to carry fail-over traffic in case certain
primary links fail. This basic fault tolerance is quite effective
at masquerading many of the common failure modes, such as
fiber cuts or optical layer failures, observed in the network.
This effectiveness, however, hinges mainly on the ability of
the routers to effectively detect the presence of a failure and
subsequently re-route the traffic via other functional paths.

Routers, therefore, periodically generate OSPF (or IS-IS)
“Hello” messages to their neighbors both to advertise their
presence as well as check connectivity between the two OSPF

instances (on the routers). The lack of receipt of a certain
number of consecutive messages indicates loss in connectivity.
This triggers link state advertisements propagated throughout
the network, and routers avoid sending traffic through this
failed link by computing alternate paths.

While the basic mechanism using these Hello messages
works well, and has indeed served its purpose quite well
so far, with the advent of newer (possibly distributed) router
architectures, we argue that this mechanism is not fundamen-
tally capable of detecting all the faults it has been originally
designed for. In particular, these Hello probes originate at a
router’s CPU and terminate at the adjacent router’s CPU; the
path traversed by these probes may be significantly different
from the regular data-plane forwarding paths within routers.
Thus, there potentially exist failure scenarios where these
probes do not automatically detect forwarding problems within
the router and thus respond to.

Lacking intrinsic capability to detect many such faults, ISPs
resort to fault detection and diagnosis outside of the network
with the help of measurement servers connected directly to
provider edge routers. Each server typically injects active
probes to all the other servers to check for liveness and other
performance problems, and take any remedial actions in case
any problems exist. Such a feedback loop often provides a
second layer of resiliency in the network and is implemented
in the management plane.

While this external feedback loop enables operators to
manage faults not handled directly by the routers, in many
cases, this feedback loop in the management plane is quite
slow. For example, using active probes allows detection of
failures in the order of a few seconds. Typically, the fault
needs to be localized before it can be repaired, which can
take a few minutes. Finally, the repair (at least a quick fix)
can be performed in a matter of minutes. Thus, the overall
duration of the failure, from detection to repair can take a few
minutes, which is quite large.

It is, therefore, important to consider mechanisms that can
quickly detect data plane failures, and more importantly be
coupled with the routing protocols so that they can react
to the problems once detected. In this paper, we present a
simple mechanism whereby routers can detect all forwarding
problems in the network. We start with the OSPF Hello
messages as our point of departure. We observe that these
messages do not automatically pass through the forwarding
paths within routers. We, therefore, devise a new set of probes,
similar to the OSPF probes, except between a router and all it’s

2-hop neighbors. These probes would essentially pass through
an adjacent router just as normal data packets would, and
hence verify the corresponding forwarding path within the
router. This extension, while simple, can provide an effective
feedback mechanism to all routers similar to the normal OSPF
Hello messages for link problems.

Thus the main contributions of this paper are as follows:

• Using the typical architecture of a router, we show how
today’s OSPF Hello probes are insufficient to cover all
the forwarding paths in the network.

• We propose novel 2-hop probes as a scalable mechanism
to allow routers to verify forwarding plane liveness within
routers.

• Using Rocketfuel topologies, we evaluate the additional
overhead caused by these new 2-hop probes.

The rest of the paper is organized as follows: First, we
discuss how current routing protocols detect link-level failures
and why we believe these mechanisms are incomplete in
Section II. We then discuss our approach of using 2-hop
segments as a way to alleviate this problem in Section III.
Finally, we show the overhead of using 2-hop segments on the
router architecture using Rocketfuel topologies in Section IV.

II. NATIVE FAULT DETECTION

In this section, we discuss the native fault detection mech-
anisms employed by classical intra-domain routing protocols
such as OSPF, and show why they fail to capture all inherent
data-plane failure modes within routers. In particular, using a
typical router architecture, we expose the particular forwarding
paths not completely verified by the OSPF active probes.

A. Link connectivity probes

Simply speaking, a network can be viewed as a graph with
a bunch of nodes connected via edges. In such a simplistic
representation, failures can occur in two flavors—link and
node failures, both of which can be easily detected using
simple probes between every pair of adjacent nodes. Indeed,
popular link-state routing protocols, such as OSPF [10] andIS-
IS [2] employ such a simple mechanism using periodic Hello
messages to verify both these types of failures.

When a router is switched on, it initializes the routing
protocol data structures and waits for indications from the
lower layer protocols to determine which of its interfaces are
functional. OSPF Hello probes are then sent out on each of the
functioning interfaces to discover and maintain neighboring
relationships. For each neighbor and interface, separate data
structures and state machines are maintained and are regularly
updated. Hello probes are sent periodically everyHelloInterval
seconds on all interfaces [10]. For physical networks having
multicast or broadcast capability, they are periodically sent to
the IP multicast addressAllSPFRouters.

Similarly, when a router receives a Hello packet on an
interface, a HelloReceived event is triggered. Each Hello
packet also contains a list of neighbors of the router which
originated the packet. This list of neighbors in the Hello packet
is examined and if the router itself appears in this list, then it

is assumed that the Hello packets have been received on both
ends recently (enters a2-WayReceived state). A single-shot
InactivityTimer is also restarted now for this neighbor, whose
duration isRouterDeadInterval seconds. Firing of this timer in
future will indicate that no Hello Packet has been seen from
this neighbor recently. In this way, each router periodically
keeps track of live OSPF instances running on its neighbors.

Apart from the firing of the InactivityTimer, a router can
also detect loss of communication with a neighbor in three
other ways. If a Hello packet is received in which the router
itself is not mentioned indicates that the communication isno
longer bidirectional now. While such an event may be triggered
due to administrative changes to the status of a link, still,the
routing protocol eliminates that link from its topology similar
to when a link failure occurs.

Any change in the neighbor list of any interface at a router
causes an update to its link state database. Other routers in
the network are notified of this change using the Link State
Update packets which implement the flooding of Link State
Advertisements (LSAs). It is important to note that both the
Hello packets and Link State Update packets travel only one
hop from their originator. This is ensured by setting their
IP TTL field to 1 in the beginning. An important difference
between these two packets is that Hello packets are sent to
all the neighbors associated with an interface, but the Link
State Updates are sent to only those neighbors which are
adjacent to this router [10]. Adjacencies are created with
selected neighboring routers to exchange routing information.

Next, we explain the architecture of a typical router in order
to describe the path traversed by these Hello probes within the
router.

B. Typical router architecture

We show the architecture of a typical router in Figure 1.
Routers have several hardware and software components
typically classified into one of two planes based on their
functionalities. Forwarding plane (or data plane) refers to the
part of the router architecture which is responsible for packet
forwarding,i.e., the act of receiving packets on one interface
and sending them on the same or other interfaces through
the internal switching fabric (as shown in Figure 1). Control
plane, on the other hand, comprises of the routing protocols
that gather and maintain network topology information and
configures the forwarding plane appropriately.

In order to achieve high performance and throughput, spe-
cialized hardware is used for forwarding plane operations,so
that they do not contend for resources such as processing
power, shared with the control plane. While forwarding can
be done using a central forwarding engine, for scalability rea-
sons, many modern routers employ a distributed architecture,
with the forwarding operations spread across different line
cards [12]. Packets received on an interface are handled by
a forwarding engine local to that line card.

The path from one ingress line card to egress line card is
shown in Figure 1. When a packet is received on the ingress,
the packets are first recovered from the optical medium on

Ingress

Egress

To Fab

Frm Fab

IP

 Lookup
Queue

Queue Forward

Performance

Route Processor

 (PRP)

Line CardLine Card

Egress

Ingress

Frm Fab

IP

 Lookup
Queue

Queue Forward

To Fab

CPU

DRAM SRAM

OSPF Instance

Ingress

Egress

To Fab

Frm Fab

IP

 Lookup
Queue

Queue Forward

Control Plane

Crossbar Switch

 Fabric

PHY

PHY PHY

Fig. 1. Typical router architecture.

the PHY interfaces. A specialized module on the line card
computes a forwarding decision for the packet to locate which
egress interface the packet needs to be switched to. Typical
routers today are input-queued and they contain virtual-output
queues (VOQs) at each line card [9]. Many routers use a
crossbar switch fabric, in which the cross-points are configured
using a switch scheduler based on the current queue occupan-
cies of all the VOQs.

The exact architecture of a router may differ in terms of
the sequence of functions packets are exposed to, and the
complexity of each function in turn. For example, an optional
traffic shaper module may be present to shape the traffic to
certain specifications (e.g., conform to a specific delay). There
can also be a QoS scheduler devise that can prioritize among
several priority classes such as DiffServ [1]. Researchershave
proposed several mechanisms to scale the switch fabric even
further, either with the help of optics [7] or with several
stages of switching [6]. Thus, in essence, there are severaldata
paths within a router that potentially traverse different set of
functions within the router. Thus, depending on the particular
type of packets, therefore, there are several data paths within
the router.

In many routers, the route processor itself is a stand-
alone line card connected via the switch fabric (as shown in
Figure 1). So, all the control plane messages destined to the
router IP address, will be directed by the forwarding engine
towards the route processor. Thus, just like data packets, they
might visit several series of functions, before these packets
end up at the route processor, where appropriate control plane
actions can be performed. Similarly, when a route processor
transmits a packet (e.g., the OSPF Hello messages to the
neighbor), they cross the switch fabric to the corresponding
egress line card, where they might be further subject to specific
functions before they are forwarded on the medium.

C. Faults that evade detection

Given the router architecture described above, we argue that
the current fault detection mechanisms employed by today’s
routers,i.e., using the OSPF Hello messages,do not capture
all data-plane failure modes. For example, consider the path
of a typical incoming OSPF Hello message through the router.

The message enters the ingress line card, it’s egress line
card (which is the card containing the route processor) is
looked up in the forwarding table, and is put in the queue
corresponding to the route processor and finally is switched
to that route processor. Similarly, an outgoing OSPF Hello
message generated by the router, passes through the switch
fabric to the corresponding egress line card, where it is
transmitted to the neighbor over the link.

Clearly, with the combination of incoming and outgoing
Hello messages, all the links are properly checked for con-
nectivity. However, there areO(p2) combinations within the
switch fabric, wherep is the number of ports, out of which
only 2 × p paths are verified by these messages,p from all
ingress ports to the route processor and anotherp from the
route processor to all the egress ports.

While this example only shows that some of the crossbar
switch fabric paths not checked by the OSPF Hello messages,
there could be several other forwarding paths not verified
by these Hello messages, such as those that involve specific
function applied to specific types of traffic. We argue that
while the exact nature of the problems might differ based on
the particular router architecture, we believe that these probes
fundamentally lack the ability to capture all the forwarding
paths within routers, even at the IP layer alone and not
considering other forwarding planes such as MPLS.

D. End-to-end probing

While the faults mentioned above evade detection using
the OSPF Hello messages, still, they can be easily identified
using end-to-end probes, which ISPs fortunately use anyway
to measure SLA violations and in general, health of the net-
work. Special measurement servers connected to provider edge
routers inject probes periodically to other such measurement
servers. When a sufficient number of probe packets are not
acknowledged by the receiver, the measurement servers detect
a connectivity loss and generate alarms for an operator to look
at. Thus, while some set of paths may not be verified by the
Hello messages, still, the end-to-end probes can detect and
appropriately alarm the operator.

Upon alarms, the operator is faced with the problem of
locating root cause, before any repair actions can be per-

R1

Control Plane

R2

OSPF

R3

CPUCPUCPU

OSPF OSPF

Data Plane Data Plane

Control Plane

Data packets

OSPF hellos

2-hop probes

Fig. 2. 2-hop probes issued from router R1 to R3.

formed. One way to determine the root cause is to feed
these connectivity losses into a localization engine (e.g., [8]),
that can then spatially correlate probe data according to the
underlying topology to identify a small set of likely locations
of the failure. These locations can then be examined manually
by the operator for the failure. Thus, these problems can be
easily taken care of.

We argue, however, that there are two main problems
associated with these end-to-end probes. First, this feedback
loop that is implemented in the management plane is quite
slow, with the result that disruption can seriously affect traffic
for extended periods of time. Second, end-to-end probes scale
asO(n2), which can translate to a lot of traffic. To control the
rate at which traffic is injected, the probes are only issued at
low frequencies (e.g., 1 per minute [8]), which subsequently
increases the detection time. In general, therefore, to overcome
these limitations, we need mechanisms that can be closely
coupled with routing protocols while covering all the data
plane forwarding paths within routers.

III. O UR APPROACH

In this section, we describe a simple mechanism that allows
routers to verify all types of forwarding paths within routers.
The basic idea is to allow routers to inject two-hop probes in
addition to the traditional one-hop probes,i.e., OSPF Hellos.
These two-hop probes are forwarded through the adjacent
router just as a regular data packet would, and thus, they
would be able to verify connectivity across all forwarding
paths within the adjacent router. We examine the mechanisms
required to incorporate this basic idea into the existing rout-
ing protocols. While we use OSPF as a canonical example
protocol in the following discussion, we note that our mecha-
nisms can be used to verify connectivity of any forwarding
path within routers by injecting probes at the appropriate
layer (e.g., MPLS) and that belong to the appropriate class
(e.g., Diffserv).

A. Basic Idea

Our goal is to verify the connectivity of all the forwarding
paths within a router. One way to achieve this goal is to allow
each ingress line card to send keep-alive messages to every
other line card within the router. While this is indeed possible,

A B

D

C
E

F

Fig. 3. Example

this would require hardware modifications1 to the line cards
to generate keep-alive messages to other line cards within the
router.

Alternatively, we propose the following simple extension to
existing OSPF Hello mechanism to achieve our goal. Each
router generates a new set of probes in the control plane,
similar to OSPF probes, except between a router and all its
2-hop neighbors as shown in Figure 2. Each router can easily
identify its two hop neighbors in link-state protocols (such as
OSPF), as each router has typically the state of all the links
in the network. These 2-hop probes would essentially pass
through the adjacent router’s data plane and would terminate
at the 2-hop neighbor as shown in Figure 2.

As 2-hop probes are originated by the router CPU, there is
no need for any additional hardware primitives to accomplish
this, and thus can be easily implemented in today’s routers.
Note, however, that these 2-hop probes arenot meant to be
a replacement to the normal OSPF Hello messages and are
instead, in fact, complementary to them. The normal OSPF
Hello messages are still required even in the presence of the
2-hop probes, because, OSPF still operates at the granularity
of a link. In case of a link failure, OSPF still needs to
recompute routes that avoid the failure, just as today. For
this to happen, two adjacent OSPF instances still need to
communicate amongst themselves. The 2-hop probes only
help detect forwarding-plane problems that are not completely
captured by the current OSPF Hellos, which involve those that
traverse the entire data plane from ingress to egress just asa
normal data packet.

Similar to how routers already generate link-state advertise-
ments (LSAs) during link failures (observed either using Hello
messages or through lower layer alarms), routers also generate
path state advertisements (PSAs) whenever these probes are
not received by a router from a 2-hop neighbor within a certain
amount of time. By flooding these PSAs to other routers, the
router which is involved in the particular 2-hop probe will stop
forwarding any packets towards the router where the failure
occurred.

In Figure 3, we show an example, where routerA sends
2-hop probes to its 2-hop neighbors, routersC, D, E andF

1In some cases, there is an additional CPU per line card, in which case,
software modifications should be enough. However, these CPUs tend to be of
lesser power than that of the general purpose route processor, and thus may
still face practical deployment issues.

via routerB. Suppose the forwarding path betweenA andC,
i.e., A−B−C, has failed, this would be detected by the router
C which in turn propagates a corresponding PSA to indicate
this failure. The routerA notices the problem and avoids the
router B altogether for any of its shortest paths. Note that
while potentially the pathA−B−D is active, still, the routerA
conservatively decides not to use the routerB for forwarding.
This is because, it would require a way to selectively reroute
the packets that go only viaB −C while allowing B −D to
continue as usual. While selective rerouting is not impossible,
it could be difficult as forwarding tables today only output the
next hop and not the next 2-hop. A different router, sayE,
however, can still use the paths through routerB, as a PSA
corresponding toA−B−D does not automatically mean that
E − B − D is inactive.

One problem with PSAs is that any link failure can also
cause potentially several of the 2-hop probes to be lost, thus
generating a flurry of PSAs. One way to get rid of this problem
is to make use of the fact that the entire network need not be
aware about the PSAs, unlike LSAs which need to be flooded
throughout the network. Typically, the sender of a given 2-hop
probe as well as the router which has the particular problem
need to be aware of this, which can be easily incorporated
by allowing the receiver to just uni-cast the loss of the 2-
hop probe to the upstream routers by the router that detects
the failure. Thus, while many PSAs that depend on LSA
are potentially effected, these messages will only have local
scope. We later quantify the number of PSAs that need to be
generated for specific ISP topologies in Section IV.

B. Other implementation details

The 2-hop probes need to be restricted to travel only two
hops from the source, which can easily be ensured by setting
the IP TTL value to 2 for these probes. Interface state machines
can be similar to that of the Hellos, except that the router
maintains 2-hop neighbors instead of the immediate neighbors.
Neighbor data structures such as HelloInterval periodic timers
and RouterDeadInterval can also be set accordingly for the
2-hop neighbors. As we show later in Section IV, the number
of 2-hop probes are greater than the number of Hello probes.
Thus, we can reduce the resulting overhead of these 2-hop
probes on the router CPU by increasing HelloInterval timers.
Thus, while there are large number of these 2-hop probes, they
are launched less frequently as compared to the regular OSPF
hello messages, so that the messaging overhead is manageable.

One issue we have skirted so far, concerns the verification
of data plane paths within border routers. The border routers
could be between two OSPF areas within the same AS or
they could also belong to two different ISPs. Unfortunately,
verifying all the data paths within border routers using our
mechanism requires support from external routers, which
might be difficult. Of course, the border routers can still
generate 2-hop probes to its neighbors within the AS. The
only issue is that no other router will be able to generate 2-hop
probes to verify data plane forwarding within the border router.
The other issue we have not discussed at length is incremental

deployment. Unlike OSPF or other routing protocols, we
can deploy the 2-hop probes incrementally. Even if all the
routers are not compliant with the 2-hop probes, we can still
get marginal benefit only along the 2-hop paths where such
problems are continuously probed.

C. Comparison

The main advantage of the 2-hop probes in contrast with
end-to-end probes is that, these 2-hop probes are issued in the
network much closer to the place where the failure actually
happens, and thus, they allow routers to take corresponding
recovery actions based on this feedback.

We summarize our discussion on fault detection using
different probe-based schemes in Table I for the different types
of failures—link failures and path failures (i.e., those only
detected by the 2-hop probes). Clearly, end-to-end probes can
detect both these faults, but localization is imprecise dueto
the fact that the inference problem using end-to-end probesis
inherently under-constrained [3], [5]. Thus, it cannot easily
be integrated into the control plane. On the other hand, OSPF
Hello probes are able to detect link-level failures precisely but
data plane faults go undetected which are detected using the
2-hop probes.

We also show the overall complexity of these various
mechanisms. Probe traffic overheads for end-to-end probing
is O(n2), whereas that for OSPF Hello probes is O(m), where
m represents the number of network links. 2-hop probes have a
total probe traffic complexity of O(n · d2), whered represents
the average degree of a router andn being the number of
backbone routers. We quantify these overheads associated
with OSPF and 2-hop probing schemes in real ISP backbone
networks in the next section.

IV. EVALUATION

In this section, we evaluate the overhead associated with
using OSPF Hello probe and 2-hop probe based approaches
for fault detection. We use Rocketfuel topologies and maps
for ISP backbone networks [11].

The Rocketfuel data provides the degreedi of each router
i and the list of its immediate neighborsN(i). We note thatdi

is always greater than or equal to the cardinality ofN(i), due
to the existence of multiple links between two routers or due
to aliasing (multiple IP interfaces of a router). As Rocketfuel
maps do not provide us the exact number of links between
a routeri and its immediate neighborj, we approximate it as
di/|N(i)|. We can of course choose other ways to approximate
this as well, but the overall results are not going to be that
different. Thus, the total number of 2-hop segments originating
from a routeri can be then computed asΣj∈N(i){(di/|N(i)|)·
dj}.

Another important metric of interest is the number of path
state advertisements or PSAs, which need to be generated for
a single link failure. Thus, when a single link failure occurs,
the number of 2-hop probes that would be affected because
of this failure can be calculated as follows. Letdi anddj be
the degrees of two routersi andj. If the link (i, j) fails, then,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 25 50 75 100 125 150 175 200

P
(d

eg
re

e
<

 x
)

Router degree

CDF: Router degree in ISP backbone networks

7018 (AT&T)
1239 (Sprint)

3356 (Level 3)

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1000 2000 3000 4000 5000

P
(#

 s
eg

m
en

ts
 <

 x
)

Number of 2-hop segments

CDF: 2-hop segments in ISP backbone networks

7018 (AT&T)
1239 (Sprint)

3356 (Level 3)

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

P
(#

 p
at

hs
 <

 x
)

Number of paths

CDF: Paths dependent on a link

7018 (AT&T)
1239 (Sprint)

3356 (Level 3)

(c)

Fig. 4. Distribution in ISP backbone networks.

Types of fault Features

Scheme Link Connectivity Path Connectivity Detection type Reaction Time Probe overhead
End-to-end Imprecise Imprecise External High O(n2)
OSPF Hello Precise Undetected Internal Low O(m)

2-hop Precise Precise Internal Low O(n · d2)

TABLE I
FAULT DETECTION SCHEMES: A COMPARISON.

the 2-hop probes originating from all other neighbors ofi to
j will be affected. Similarly, all the 2-hop probes originating
from i to all other neighbors ofj will also be affected. Thus
the total number of PSAs that need to be generated isdi + dj .

Figure 4(a) shows the distribution of the degree of the
routers for three different ISPs. The median degree of a
router, which corresponds to the number of Hello messages
generated by the router, for all three ISPs varies between 8-
20. Figure 4(b) shows the distribution of 2-hop segments for
routers in three ISP backbone networks. As we observe in
Figure 4(b), the median number of 2-hop probes per router
is 150-400. If we assume that these probes are sent once
every 20 seconds, probing rate is roughly 7-20 pps. As each
of this probes is very small in size (only a few kilobytes),
the bandwidth overhead will be almost negligible for routers
operating at Gbps speeds today. The number of interrupts
triggered per second is also fairly small, and we have the
flexibility to fine-tune it by configuring the probing rate
according to the needs of the router and the network.

Figure 4(c) shows the number of forwarding paths depen-
dent on a link between adjacent router pairs in the backbone
networks. As discussed earlier, this quantifies the number of
path state advertisements needed to be generated for one link
failure. As we also observe in Figure 4(c), the median number
of such advertisements varies between 46-85 for the three
ISPs. Though these advertisements are relatively large in size
as compared to the 2-hop probes, their associated overhead is
still very low when compared to their value.

V. CONCLUSIONS

In this paper, we showed that today’s routing protocols
such as OSPF that employ simple Hello packets to detect
faults, do not completely cover all the forwarding paths within
routers. As routers become more complicated with newer

types of architectures and protocols, it is imperative that
routing protocols be retrofitted with mechanisms that can
deterministically monitor all forwarding path failures. While
end-to-end probes in the management plane offer a line of
defense, it is still important to incorporate these mechanisms
into existing routing protocols, as the external feedback loop
can be quite slow. Our 2-hop probes provides a simple and
effective mechanism to incorporate such data-plane checks
into routing protocols with small amount of overhead.

VI. A CKNOWLEDGEMENTS

We thank Cisco systems for their support. We would like
to thank anonymous reviewers for their comments.

REFERENCES

[1] S. Blake, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An architecture
for differentiated services. Dec. 1998.

[2] R. Callon. Use of OSI IS-IS for routing in TCP/IP and dual environ-
ments. RFC 1195, Dec. 1990.

[3] Y. Chen, D. Bindel, H. Song, and R. H. Katz. An algebraic approach to
practical and scalable overlay network monitoring. InACM SIGCOMM,
2004.

[4] B. Davie and Y. Rekhter.MPLS: technology and applications. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2000.

[5] N. Duffied. Simple network performance tomography. InUSENIX/ACM
Internet Measurement Conference, 2003.

[6] S. Iyer and N. W. McKeown. Analysis of the parallel packetswitch
architecture.IEEE/ACM Trans. Netw., 11(2):314–324, 2003.

[7] I. Keslassy, S.-T. Chuang, K. Yu, D. Miller, M. Horowitz,O. Solgaard,
and N. McKeown. Scaling internet routers using optics. InACM
SIGCOMM, pages 189–200, 2003.

[8] R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren. Detection and
localization of network black holes. InIEEE Infocom, May 2007.

[9] N. McKeown. The islip scheduling algorithm for input-queued switches.
IEEE/ACM Trans. Netw., 7(2):188–201, 1999.

[10] J. Moy. Ospf version 2. RFC 2328, IETF, Apr. 1998.
[11] Neil Spring, Ratul Mahajan, and David Wetherall. Measuring ISP

Topologies with Rocketfuel. InProceedings of the ACM SIGCOMM
Conference, Aug. 2002.

[12] G. Varghese.Network Algorithmics. Morgan-Kaufmann, 2005.

