Understanding the Backward
Slices of Performance Degrading
Instructions

Craig Zilles and Guri Sohi

University of Wisconsin - Madison

International Symposium on Computer Architecture

June, 2000

Motivation

RETIREMENT
STREAM

PROCESSORS ACHIEVE ONLY A FRACTION OF PEAK
PERFORMANCE ON MANY PROGRAMS
= Performance Degrading Events (PDE)
o branch mispredictions
o cache misses

BRANCH

TIME

branch
mispredict

LARGER CACHES AND PREDICTORS

e handle easy cases

e concentrates PDE’s to a fraction of
“problem” static instructions cache

miss
o UNCORRELATED (DATA—DEPENDENT) BRANCHES
o HASH TABLE LOOKUPS AND POINTER CHASING

Understanding the Backward Slices of Performance Degrading Events - Craig Zilles and Guri Sohi 2
International Symposium on Computer Architecture (ISCA-2000), June 2000

Motivation, cont.

PROGRAM BEHAVIOR IS DETERMINISTIC —

build predictors which use the program!

Pre-executed sub-program feeds
Pre-execution prediction for branch fetched by the
main thread
FORK

sub
program

Pre-fetch memory similarly

A . . .
BRANCH TIME Only pre-execute instructions which
BRANE?L» defy normal predictors
OUTCOME BRANCH
AVOID MISPREDICTION
Understanding the Backward Slices of Performance Degrading Events - Craig Zilles and Guri Sohi 3

International Symposium on Computer Architecture (ISCA-2000), June 2000

Motivation, cont.

THE EFFECTIVENESS OF PRE-EXECUTION IS DETERMINED BY THE SUB-PROGRAM

e Sub-program must enable faster
execution of the problem instruction

sub
program

A
BRANCH

e Sub-program size determines “overhead”

BRANCH

How can we build sub-programs to minimize their size while
maintaining accuracy

Understanding the Backward Slices of Performance Degrading Events - Craig Zilles and Guri Sohi 4
International Symposium on Computer Architecture (ISCA-2000), June 2000

Overview

e MOTIVATION

e PROGRAM SLICING

e EXPERIMENT OVERVIEW

e METHODOLOGY

e CONSERVATIVE SLICES

e EXAMPLE SPECULATIVE OPTIMIZATIONS
e ADDITIONAL OBSERVATIONS

e CONCLUSIONS

Understanding the Backward Slices of Performance Degrading Events - Craig Zilles and Guri Sohi
International Symposium on Computer Architecture (ISCA-2000), June 2000

Program Slicing

THE SUB-PROGRAM INCLUDES ONLY THE SUBSET OF INSTRUCTIONS WHICH
CAN INFLUENCE THE PROBLEM INSTRUCTION.

BACKWARD SLICE

lda 18,-8432(r29) cmoveq rl18,r1,r0
cmoveq rl8,r1,r0 /and r4,r5,r5

/'Idl r1,-19952(r29) sl 5,4,r5
s4addg r16,r8,r8 addq ro,r5,r5
st r31,0(r8) ldg r7,8(r5)

Cand 4,r5,r5 F
sli 5,4,r5 —

(Idg r23,-19408(r29) follow dependences backward
fo] 27,-19944(r29) from criterion instruction
addl rl1,1,rl
addg r0,r5,r5 both data and control
bis r31,r31,r0
stl r1,-19952(r29)

Idg r7,8(r5) -<«— Criterion Instruction

Understanding the Backward Slices of Performance Degrading Events - Craig Zilles and Guri Sohi 6
International Symposium on Computer Architecture (ISCA-2000), June 2000

Experiment Overview

INITIAL CHARACTERIZATION OF SLICES

Categorization of instructions in the slice

= |argest contributors:
o control and memory dependence resolution
o NOT dataflow

Exploiting well-known phenomena to reduce slice size

= highly-biased branches
= stability of memory dependences

Understanding the Backward Slices of Performance Degrading Events - Craig Zilles and Guri Sohi
International Symposium on Computer Architecture (ISCA-2000), June 2000

Methodology

e SPEC95 integer benchmarks

o Alpha architecture, optimized -0O4

e Profiled to identified “problem” static instructions

o Frequently caused mispredictions or cache misses

e Generated ASSEMBLY-LEVEL slices

N B O OO

cum. slice size

(-

O O O O
N N I
N

o Looked at the 512 dynamic instructions leading to the criterion
o Removed Nops, and sp/GpP computation dependences

/
/

Jall instructions

1
N

/ cumulative slice size

L B L B L L L
0 100 200 300 400 500
distance (in dynamic instructions)

Understanding the Backward Slices of Performance Degrading Events - Craig Zilles and Guri Sohi 8

International Symposium on Computer Architecture (ISCA-2000), June 2000

Conservative Slices

PROGRAMS HAVE AMBIGUOUS MEMORY DEPENDENCES AND COMPLEX
CONTROL FLOW — CONSERVATIVELY CONSTRUCTED SLICES CAN BE LARGE

e 50% of program necessary to compute all store addresses
« 80% of program necessary to resolve all branches

SOLUTION: EXPLOIT THE FACT THAT SLICES ONLY PROVIDE HINTS

e construct speculative slices
e assume common-case behavior
o profiling is required to detect the common-case

TWO EXAMPLE OPTIMIZATIONS:

= both targeting ambiguous memory dependences

Understanding the Backward Slices of Performance Degrading Events - Craig Zilles and Guri Sohi 9
International Symposium on Computer Architecture (ISCA-2000), June 2000

Speculative Optimizations

A CONSERVATIVE SLICE MUST COMPUTE THE ADDRESS FOR EVERY STORE WHICH
COULD ALIAS WITH A LOAD IN THE SLICE

THE SET OF MEMORY DEPENDENCES ACTUALLY REALIZED IS A SUB-SET OF THOSE
WHICH ARE POSSIBLE

= Profile to identify the store sets
= Only compute store addresses for these stores

. . conservative (all aliasable stores) .
.ﬁ 150- all instructions, -~ (__/_,_,-—)/
G-) E _ 7 7 .- ———
© 1004 e .= store set
)] Pl T

. oracle
£) e
0F=——"—— [T T T [T T T [T T T T [T T T [
0 10 200 300 400 50

distance (in dynamic instructions)
Slices built using store sets approximate size of oracle slices

Understanding the Backward Slices of Performance Degrading Events - Craig Zilles and Guri Sohi 10
International Symposium on Computer Architecture (ISCA-2000), June 2000

Speculative Optimizations, cont.

WHEN MEMORY DEPENDENCES EXIST, OFTEN THE LOAD COMMUNICATES WITH
THE MOST RECENT STORE FROM ITS STORE SET.

= much like communication through registers

EXPLOIT TO REDUCE SLICE SIZE:

1. Assume a communication pattern (imprecise transformation)
2. Remove load and store from the slice

- » STORE R9 -> 0(R17) - FERERG BRI

/

! ADD R10, R11 ->R12 X ADD R10, R11 ->R12
1

|, # STORE R12 -> O(R18) \ CFeREREZ DRSS
“4=-10AD 0(R19) ->R13 SN DAD B(RED) e RE3
ADD R13, R14 ->R15 ADD R12, R14 ->R15

Understanding the Backward Slices of Performance Degrading Events - Craig Zilles and Guri Sohi 11
International Symposium on Computer Architecture (ISCA-2000), June 2000

Speculative Optimizations, cont.

STATIC LOADS ARE HIGHLY BIASED WITH RESPECT TO THIS BEHAVIOR

= Mis-speculation can be avoided
= Easily profiled to classify the dependences

.g 150-3 all mstrucﬂoni/' all aliasable storg_s/_,-/"’
Q] // .- ST T
© 1004 o T store set
@ : g - oracle
c 50- e Eee
3 0 1.7 - 7T T optimized
LU I__I_II__I_—I-I_I_’I_I_‘I_—I I I rrrrrirnriri I r T rriririuri I rrrrrirnriri I I
0 100 200 300 400 500

distance (in dynamic instructions)

Removing such load-store pairs can further reduce slice size
with little affect on accuracy

Reduced address sub-slice to 1/4 of conservative size

Understanding the Backward Slices of Performance Degrading Events - Craig Zilles and Guri Sohi 12
International Symposium on Computer Architecture (ISCA-2000), June 2000

Additional Observations

OFTEN DATA DEPENDENCES ARE CLUSTERED NEAR CRITERION

= possibly influences pre-execution mechanisms

NOT UNCOMMON FOR SLICES TO OVERLAP

e create a single “multi-slice”

SLICES ARE BURSTY

= due to program structure

N o0 Regions with no contribution
n 40)
3 30 —
? 20 —— —
° 0F— [[T [T [T [

0 10 200 300 400 500

distance (in dynamic instructions)
Understanding the Backward Slices of Performance Degrading Events - Craig Zilles and Guri Sohi 13

International Symposium on Computer Architecture (ISCA-2000), June 2000

Additional Observations

FALSE CONTROL DEPENDENCES:

control dependent regions are part of slice, but all paths from

the branch contribute to the slice equivalently.

COMMON CASE: CONDITIONAL FUNCTION CALL

INT A = ... FUNCTION() {
IF (B) { SAVE A,
FUNCTION();
} RESTORE A,
CRITERION = |F (A) }

OTHER CASE. CODE REPLICATION

Currently refining infrastructure to handle these cases

Understanding the Backward Slices of Performance Degrading Events - Craig Zilles and Guri Sohi
International Symposium on Computer Architecture (ISCA-2000), June 2000

14

summary

PRE-EXECUTION: GENERAL TECHNIQUE FOR HANDLING “PROBLEM” INSTRUCTIONS

= Use the program to predict the program
= Requires small, accurate slices

SPECULATIVE SLICES:
= Exploit common-case behavior to reduce slice size while maintaining
accuracy

= Some slices can be reduced to less than 10% of the 512 instructions
preceding the criterion while maintaining greater than 95% accuracy

o Much future work to be done
= Requires sophisticated profile information

Understanding the Backward Slices of Performance Degrading Events - Craig Zilles and Guri Sohi 15
International Symposium on Computer Architecture (ISCA-2000), June 2000

	lda r8,-8432(r29)
	cmoveq r18,r1,r0
	ldl r1,-19952(r29)
	s4addq r16,r8,r8
	stl r31,0(r8)
	and r4,r5,r5
	sll r5,4,r5
	ldq r23,-19408(r29)
	ldl r27,-19944(r29)
	addl r1,1,r1
	addq r0,r5,r5
	bis r31,r31,r0
	stl r1,-19952(r29)
	ldq r7,8(r5)
	cmoveq r18,r1,r0
	and r4,r5,r5
	sll r5,4,r5
	addq r0,r5,r5
	ldq r7,8(r5)
	follow dependences backward from criterion instruction
	both data and control
	Experiment Overview
	Initial characterization of slices
	Categorization of instructions in the slice
	• largest contributors:
	O control and memory dependence resolution
	O NOT dataflow

	Exploiting well-known phenomena to reduce slice size
	• highly-biased branches
	• stability of memory dependences

	Motivation
	Processors achieve only a fraction of peak performance on many programs
	• Performance Degrading Events (PDE)
	O branch mispredictions
	O cache misses

	larger caches and predictors
	• handle easy cases
	• concentrates PDE’s to a fraction of “problem” static instructions
	O uncorrelated (data-dependent) branches
	O hash table lookups and pointer chasing

	Motivation, cont.
	Program behavior is deterministic Æ
	build predictors which use the program!

	Motivation, cont.
	The effectiveness of pre-execution is determined by the sub-program

	Overview
	• Motivation
	• Program Slicing
	• Experiment Overview
	• Methodology
	• Conservative Slices
	• Example Speculative Optimizations
	• Additional observations
	• Conclusions

	Program Slicing
	The sub-program includes only the subset of instructions which can influence the problem instruct...

	Methodology
	• Spec95 integer benchmarks
	O Alpha architecture, optimized -O4
	• Profiled to identified “problem” static instructions
	O Frequently caused mispredictions or cache misses
	• Generated assembly-level slices
	O Looked at the 512 dynamic instructions leading to the criterion
	O Removed nops, and sp/gp computation dependences

	Conservative Slices
	Programs have ambiguous memory dependences and complex control flow Æ conservatively constructed ...
	• 50% of program necessary to compute all store addresses
	• 80% of program necessary to resolve all branches

	Solution: exploit the fact that slices only provide hints
	• construct speculative slices
	• assume common-case behavior
	O profiling is required to detect the common-case

	Two example optimizations:
	• both targeting ambiguous memory dependences

	Speculative Optimizations
	A conservative slice must compute the address for every store which could alias with a load in th...
	The set of memory dependences actually realized is a sub-set of those which are possible
	• Profile to identify the store sets
	• Only compute store addresses for these stores

	Speculative Optimizations, cont.
	When memory dependences exist, often the load communicates with the most recent store from its st...
	• much like communication through registers

	Exploit to reduce slice size:
	1. Assume a communication pattern (imprecise transformation)
	2. Remove load and store from the slice

	Speculative Optimizations, cont.
	Static loads are highly biased with respect to this behavior
	• Mis-speculation can be avoided
	• Easily profiled to classify the dependences

	Additional Observations
	Often data dependences are clustered near criterion
	• possibly influences pre-execution mechanisms

	Not uncommon for slices to overlap
	• create a single “multi-slice”

	Slices are bursty
	• due to program structure

	Additional Observations
	False control dependences:
	control dependent regions are part of slice, but all paths from the branch contribute to the slic...
	common case: conditional function call

	Summary
	Pre-execution: general technique for handling “problem” instructions
	• Use the program to predict the program
	• Requires small, accurate slices

	Speculative slices:
	• Exploit common-case behavior to reduce slice size while maintaining accuracy
	• Some slices can be reduced to less than 10% of the 512 instructions preceding the criterion whi...
	O Much future work to be done
	• Requires sophisticated profile information

	int A =;
	if (B) {
	Function();
	}
	if (A)
	Function() {
	save A;

	restore A;
	}
	other case: code replication
	Currently refining infrastructure to handle these cases
	Understanding the Backward Slices of Performance Degrading Instructions
	Craig Zilles and Guri Sohi
	University of Wisconsin - Madison
	International Symposium on Computer Architecture
	June, 2000
	Slices built using store sets approximate size of oracle slices
	store r9 -> 0(r17)
	add r10, r11 -> r12
	store r12 -> 0(r18)
	load 0(r19) -> r13
	add r13, r14 -> r15

	store r9 -> 0(r17)
	add r10, r11 -> r12
	store r12 -> 0(r18)
	load 0(r19) -> r13
	add r12, r14 -> r15

	Removing such load-store pairs can further reduce slice size with little affect on accuracy
	Reduced address sub-slice to 1/4 of conservative size
	Pre-executed sub-program feeds prediction for branch fetched by the main thread
	Pre-fetch memory similarly
	Only pre-execute instructions which defy normal predictors
	• Sub-program must enable faster execution of the problem instruction
	• Sub-program size determines “overhead”

	How can we build sub-programs to minimize their size while maintaining accuracy

