
Understanding the Backward
Slices of Performance Degrading

Instructions

Craig Zilles and Guri Sohi

University of Wisconsin - Madison

International Symposium on Computer Architecture

June, 2000

 and Guri Sohi
000 2

Motivation

ROCESSORS ACHIEVE ONLY A FRACTION OF PEAK

ERFORMANCE ON MANY PROGRAMS

• Performance Degrading Events (PDE)

A

TIME
BRANCH

LOAD

branch
mispredict

cache
miss

RETIREMENT
STREAM
P
P

L

Understanding the Backward Slices of Performance Degrading Events - Craig Zilles
International Symposium on Computer Architecture (ISCA-2000), June 2

O branch mispredictions
O cache misses

RGER CACHES AND PREDICTORS

• handle easy cases

• concentrates PDE’s to a fraction of
“problem” static instructions

O UNCORRELATED (DATA-DEPENDENT) BRANCHES

O HASH TABLE LOOKUPS AND POINTER CHASING

 Backward Slices of Performance Degrading Events - Craig Zilles and Guri Sohi
tional Symposium on Computer Architecture (ISCA-2000), June 2000 3

Motivation, cont.

R R IS DETERMINISTIC →
d predictors which use the program!

TIME

BRANCH

A

A ION

Pre-executed sub-program feeds
prediction for branch fetched by the
main thread

Pre-fetch memory similarly

Only pre-execute instructions which
defy normal predictors

su
og

e

P

BR

pr

Pr
Understanding the
Interna

OGRAM BEHAVIO

buil

NCH

FORK

BRANCH
OUTCOME

VOID MISPREDICT

b
ram

-execution

anding the Backward Slices of Performance Degrading Events - Craig Zilles and Guri Sohi
International Symposium on Computer Architecture (ISCA-2000), June 2000 4

• Sub-program must enable faster
execution of the problem instruction

• Sub-program size determines “overhead”

M n, cont.

HE NESS OF PRE-EXECUTION IS DETERMINED BY THE SUB-PROGRAM

BRANCH

ANC

sub
ogra

H we build sub-programs to minimize their size while
maintaining accuracy
T

BR

pr
Underst

otivatio

EFFECTIVE

H

m

ow can

 and Guri Sohi
000 5

Overview
Understanding the Backward Slices of Performance Degrading Events - Craig Zilles
International Symposium on Computer Architecture (ISCA-2000), June 2

• MOTIVATION

• PROGRAM SLICING

• EXPERIMENT OVERVIEW

• METHODOLOGY

• CONSERVATIVE SLICES

• EXAMPLE SPECULATIVE OPTIMIZATIONS

• ADDITIONAL OBSERVATIONS

• CONCLUSIONS

rstanding the Backward Slices of Performance Degrading Events - Craig Zilles and Guri Sohi
International Symposium on Computer Architecture (ISCA-2000), June 2000 6

ld r8,-8432(r29)
c r18,r1,r0
ld r1,-19952(r29)
s r16,r8,r8
s r31,0(r8)
a r4,r5,r5
s r5,4,r5
ld r23,-19408(r29)
ld r27,-19944(r29)
a r1,1,r1
a r0,r5,r5
b r31,r31,r0
s r1,-19952(r29)
ld r7,8(r5)

H OGRAM INCLUDES ONLY THE SUBSET OF INSTRUCTIONS WHICH

A NCE THE PROBLEM INSTRUCTION.

Program Slicing

cmoveq r18,r1,r0
and r4,r5,r5
sll r5,4,r5
addq r0,r5,r5
ldq r7,8(r5)

Criterion Instruction

follow dependences backward
from criterion instruction

both data and control

BACKWARD SLICE
T
C

Unde

a
moveq
l

4addq
tl
nd
ll
q
l
ddl
ddq
is
tl
q

E SUB-PR

N INFLUE

 and Guri Sohi
000 7

Experiment Overview

N

a

tion

x e size
I

C

E

Understanding the Backward Slices of Performance Degrading Events - Craig Zilles
International Symposium on Computer Architecture (ISCA-2000), June 2

ITIAL CHARACTERIZATION OF SLICES

tegorization of instructions in the slice

• largest contributors:
O control and memory dependence resolu
O NOT dataflow

ploiting well-known phenomena to reduce slic

• highly-biased branches

• stability of memory dependences

rmance Degrading Events - Craig Zilles and Guri Sohi
puter Architecture (ISCA-2000), June 2000 8

300 400 500
(in dynamic instructions)

Methodology

rks
ized -O4

blem” static instructions
dictions or cache misses

L slices
ic instructions leading to the criterion
computation dependences

cumulative slice size
Understanding the Backward Slices of Perfo
International Symposium on Com

0 100 200
distance

0
20
40
60
80

c
u

m
.
sl

ic
e
 s

iz
e

• SPEC95 integer benchma
O Alpha architecture, optim

• Profiled to identified “pro
O Frequently caused mispre

• Generated ASSEMBLY-LEVE
O Looked at the 512 dynam
O Removed NOPS, and SP/GP

all instructions

 and Guri Sohi
000 9

Conservative Slices

R COMPLEX

ES CAN BE LARGE

tore addresses

nches

O TS

W

P

S

T

Understanding the Backward Slices of Performance Degrading Events - Craig Zilles
International Symposium on Computer Architecture (ISCA-2000), June 2

OGRAMS HAVE AMBIGUOUS MEMORY DEPENDENCES AND

CONTROL FLOW→ CONSERVATIVELY CONSTRUCTED SLIC

• 50% of program necessary to compute all s

• 80% of program necessary to resolve all bra

LUTION: EXPLOIT THE FACT THAT SLICES ONLY PROVIDE HIN

• construct speculative slices
• assume common-case behavior

O profiling is required to detect the common-case

O EXAMPLE OPTIMIZATIONS:
• both targeting ambiguous memory dependences

f Performance Degrading Events - Craig Zilles and Guri Sohi
n Computer Architecture (ISCA-2000), June 2000 10

200 300 400 500
ance (in dynamic instructions)

Speculative Optimizations

MPUTE THE ADDRESS FOR EVERY STORE WHICH

E SLICE

ES ACTUALLY REALIZED IS A SUB-SET OF THOSE

 sets
esses for these stores

ets approximate size of oracle slices

conservative (all aliasable stores)

store set

oracle
A
C

T
W

Understanding the Backward Slices o
International Symposium o

0 100
dist

0

50

100

150

cu
m

.
sl

ic
e

si
ze

CONSERVATIVE SLICE MUST CO

OULD ALIAS WITH A LOAD IN TH

HE SET OF MEMORY DEPENDENC

HICH ARE POSSIBLE

• Profile to identify the store
• Only compute store addr

Slices built using store s

all instructions

Performance Degrading Events - Craig Zilles and Guri Sohi
 Computer Architecture (ISCA-2000), June 2000 11

Speculative Optimizations, cont.

IST, OFTEN THE LOAD COMMUNICATES WITH

ITS STORE SET.
 through registers

X
. pattern (imprecise transformation)
. the slice

STORE R9 -> 0(R17)
ADD R10, R11 -> R12
STORE R12 -> 0(R18)
LOAD 0(R19) -> R13
ADD R12, R14 -> R15
....
W

E
1
2

Understanding the Backward Slices of
International Symposium on

HEN MEMORY DEPENDENCES EX

THE MOST RECENT STORE FROM

• much like communication

PLOIT TO REDUCE SLICE SIZE:
Assume a communication
Remove load and store from

STORE R9 -> 0(R17)
ADD R10, R11 -> R12
STORE R12 -> 0(R18)
LOAD 0(R19) -> R13
ADD R13, R14 -> R15
....

anding the Backward Slices of Performance Degrading Events - Craig Zilles and Guri Sohi
International Symposium on Computer Architecture (ISCA-2000), June 2000 12

100 200 300 400 500
distance (in dynamic instructions)

Speculative Optimizations, cont.

T ARE HIGHLY BIASED WITH RESPECT TO THIS BEHAVIOR

culation can be avoided
rofiled to classify the dependences

g such load-store pairs can further reduce slice size
with little affect on accuracy

ced address sub-slice to 1/4 of conservative size

all instructions all aliasable stores

store set

oracle

optimized
S

Underst

0
0

50

100

150

c
u

m
.
sl

ic
e
 s

iz
e

ATIC LOADS

• Mis-spe
• Easily p

Removin

Redu

 and Guri Sohi
000 13

Additional Observations

O

L

400 500

ribution
O

N

S

Understanding the Backward Slices of Performance Degrading Events - Craig Zilles
International Symposium on Computer Architecture (ISCA-2000), June 2

FTEN DATA DEPENDENCES ARE CLUSTERED NEAR CRITERION

• possibly influences pre-execution mechanisms

T UNCOMMON FOR SLICES TO OVERLAP

• create a single “multi-slice”

ICES ARE BURSTY

• due to program structure

0 100 200 300
distance (in dynamic instructions)

0
10
20
30
40
50

cu
m

.
sl

ic
e

si
ze Regions with no cont

ckward Slices of Performance Degrading Events - Craig Zilles and Guri Sohi
al Symposium on Computer Architecture (ISCA-2000), June 2000 14

Additional Observations

A DENCES:

nt regions are part of slice, but all paths from
ch contribute to the slice equivalently.

O DITIONAL FUNCTION CALL

....;

CTION();

FUNCTION() {
SAVE A;
....
RESTORE A;

}

T PLICATION

u rastructure to handle these cases

RI
F

C

O

C

C

Understanding the Ba
Internation

LSE CONTROL DEPEN

control depende
the bran

MMON CASE: CON

INT A =
IF (B) {

FUN

}
IF (A)

HER CASE: CODE RE

rrently refining inf

TERION

 and Guri Sohi
000 15

Summary

R EM” INSTRUCTIONS

P

hile maintaining

12 instructions
an 95% accuracy
P

S

Understanding the Backward Slices of Performance Degrading Events - Craig Zilles
International Symposium on Computer Architecture (ISCA-2000), June 2

E-EXECUTION: GENERAL TECHNIQUE FOR HANDLING “PROBL

• Use the program to predict the program
• Requires small, accurate slices

ECULATIVE SLICES:
• Exploit common-case behavior to reduce slice size w

accuracy
• Some slices can be reduced to less than 10% of the 5

preceding the criterion while maintaining greater th
O Much future work to be done

• Requires sophisticated profile information

	lda r8,-8432(r29)
	cmoveq r18,r1,r0
	ldl r1,-19952(r29)
	s4addq r16,r8,r8
	stl r31,0(r8)
	and r4,r5,r5
	sll r5,4,r5
	ldq r23,-19408(r29)
	ldl r27,-19944(r29)
	addl r1,1,r1
	addq r0,r5,r5
	bis r31,r31,r0
	stl r1,-19952(r29)
	ldq r7,8(r5)
	cmoveq r18,r1,r0
	and r4,r5,r5
	sll r5,4,r5
	addq r0,r5,r5
	ldq r7,8(r5)
	follow dependences backward from criterion instruction
	both data and control
	Experiment Overview
	Initial characterization of slices
	Categorization of instructions in the slice
	• largest contributors:
	O control and memory dependence resolution
	O NOT dataflow

	Exploiting well-known phenomena to reduce slice size
	• highly-biased branches
	• stability of memory dependences

	Motivation
	Processors achieve only a fraction of peak performance on many programs
	• Performance Degrading Events (PDE)
	O branch mispredictions
	O cache misses

	larger caches and predictors
	• handle easy cases
	• concentrates PDE’s to a fraction of “problem” static instructions
	O uncorrelated (data-dependent) branches
	O hash table lookups and pointer chasing

	Motivation, cont.
	Program behavior is deterministic Æ
	build predictors which use the program!

	Motivation, cont.
	The effectiveness of pre-execution is determined by the sub-program

	Overview
	• Motivation
	• Program Slicing
	• Experiment Overview
	• Methodology
	• Conservative Slices
	• Example Speculative Optimizations
	• Additional observations
	• Conclusions

	Program Slicing
	The sub-program includes only the subset of instructions which can influence the problem instruct...

	Methodology
	• Spec95 integer benchmarks
	O Alpha architecture, optimized -O4
	• Profiled to identified “problem” static instructions
	O Frequently caused mispredictions or cache misses
	• Generated assembly-level slices
	O Looked at the 512 dynamic instructions leading to the criterion
	O Removed nops, and sp/gp computation dependences

	Conservative Slices
	Programs have ambiguous memory dependences and complex control flow Æ conservatively constructed ...
	• 50% of program necessary to compute all store addresses
	• 80% of program necessary to resolve all branches

	Solution: exploit the fact that slices only provide hints
	• construct speculative slices
	• assume common-case behavior
	O profiling is required to detect the common-case

	Two example optimizations:
	• both targeting ambiguous memory dependences

	Speculative Optimizations
	A conservative slice must compute the address for every store which could alias with a load in th...
	The set of memory dependences actually realized is a sub-set of those which are possible
	• Profile to identify the store sets
	• Only compute store addresses for these stores

	Speculative Optimizations, cont.
	When memory dependences exist, often the load communicates with the most recent store from its st...
	• much like communication through registers

	Exploit to reduce slice size:
	1. Assume a communication pattern (imprecise transformation)
	2. Remove load and store from the slice

	Speculative Optimizations, cont.
	Static loads are highly biased with respect to this behavior
	• Mis-speculation can be avoided
	• Easily profiled to classify the dependences

	Additional Observations
	Often data dependences are clustered near criterion
	• possibly influences pre-execution mechanisms

	Not uncommon for slices to overlap
	• create a single “multi-slice”

	Slices are bursty
	• due to program structure

	Additional Observations
	False control dependences:
	control dependent regions are part of slice, but all paths from the branch contribute to the slic...
	common case: conditional function call

	Summary
	Pre-execution: general technique for handling “problem” instructions
	• Use the program to predict the program
	• Requires small, accurate slices

	Speculative slices:
	• Exploit common-case behavior to reduce slice size while maintaining accuracy
	• Some slices can be reduced to less than 10% of the 512 instructions preceding the criterion whi...
	O Much future work to be done
	• Requires sophisticated profile information

	int A =;
	if (B) {
	Function();
	}
	if (A)
	Function() {
	save A;

	restore A;
	}
	other case: code replication
	Currently refining infrastructure to handle these cases
	Understanding the Backward Slices of Performance Degrading Instructions
	Craig Zilles and Guri Sohi
	University of Wisconsin - Madison
	International Symposium on Computer Architecture
	June, 2000
	Slices built using store sets approximate size of oracle slices
	store r9 -> 0(r17)
	add r10, r11 -> r12
	store r12 -> 0(r18)
	load 0(r19) -> r13
	add r13, r14 -> r15

	store r9 -> 0(r17)
	add r10, r11 -> r12
	store r12 -> 0(r18)
	load 0(r19) -> r13
	add r12, r14 -> r15

	Removing such load-store pairs can further reduce slice size with little affect on accuracy
	Reduced address sub-slice to 1/4 of conservative size
	Pre-executed sub-program feeds prediction for branch fetched by the main thread
	Pre-fetch memory similarly
	Only pre-execute instructions which defy normal predictors
	• Sub-program must enable faster execution of the problem instruction
	• Sub-program size determines “overhead”

	How can we build sub-programs to minimize their size while maintaining accuracy

