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Abstract

Processor performance has steadily increased in the pasabdecades. The continuation of this, along
with drop in the price to performance, is critical to accatig the transformations that will result from ap-
plications that demand powerful computing. Unfortungtéde processor industry has faced problems with
the incumbent processing model —out-of-order superspataressor— with increasing design complexity
and power consumption combined with diminishing perforogagains. Processor manufacturers, en masse,
have sidestepped this predicament by moving to multicostesys; the current generation of multicore
systems being multiple processing cores in a chip. In theréutapplications that demand higher and/or
continuously increasing performance must rely on parabgcution in some form to use the processing
cores in a multicore system. Multi-threaded applicatiarshsas enterprise application servers and scientific
programs, can benefit from multicore systems as they areredthsily parallelizable due to the nature
of the application, or have been written by expert programsmeho have carefully orchestrated threads.
However, such applications occupy only a small fractionhaf €nd-user market. Parallelizing the large
fraction of single-threaded programs would require marpeeenced multi-threaded programmers, as well
as significant time requirements to both develop such agpics and debug them. Novel approaches are
required for parallel execution of programs for the upcamgenerations of multicore architectures.

Speculative parallelization is a class of techniques tbhteaes parallel execution from a sequential
program. The basic idea behind proposals in this class mtgpose regions of program code as threads, and
speculatively execute these “threads” in parallel. Wittraakardware support, violations of dependencies
from the sequential program order between the threads semtaed, and the threads’ execution serialized.
This dissertation proposes Program Demultiplexing or PEpexulative parallelization model that has two
novel contributions.

In PD, a speculative thread is composed of a method in a proghamethod (also known as procedure,
function or subroutine) is a fundamental programming aoigstused to express a desired sub-computation
in a program. Methods are a good choice for a parallel exatutiodel such as PD because they are
specified by the programmers and, therefore allow them soreabout performance and correctness. While

there is no mandatory programming rule that a program shioelldomposed of many methods, and each



one should solve a specific sub-task, modern applicatioms@mmonly developed by many developers
who program their tasks as several methods for easier defguggd reusability, and use methods from
one or more libraries and language packages. It is of no dbabmost applications are developed with a
considerable level of reasoning that determines how thklgmo must be solved. Methods are an integral
part in this development process.

With this choice, PD is based on the observation that a séi@u@nogram is a collection of different
methods called by the programmer, one after another, forett@nce in expressing the computation, as
well as to satisfy the default assumption of execution omglsiprocessing core. Parallelism, even if it
may exist between different methods, remains unexploited®D, different methods are “demultiplexed”
from the sequential program order. The execution of a metiwbich is performed when it is called in a
sequential program, is separated, and speculatively tsetatia point earlier, on a different processing core.
The execution model, therefore, may be speculatively dxeggeveral methods in a program, in parallel.

The second aspect of PD is a refinement to the execution meeelhy previous speculative paralleliza-
tion proposals, which was to speculatively traverse thdrobflow graph of a program at the granularity
of speculative threads, and fork them for speculative di@tuThis control-flow based speculative paral-
lelization approach has a shortcoming. Data requirementa §peculative thread are not considered and,
therefore, the execution model may be prone to data violatid his could result in mis-speculations and
discarding of not only the thread that violated the depeogédnit, because of the speculative control flow
traversal, the squashing of all threads that follow. PDymes data requirements of a speculative thread and
determines the most suitable point the thread can begiruggac which is usually much earlier than the
call site of the method that the speculative thread is agtmtiwith. It uses the call site in the program only
for committing the speculative thread and to preserve thaesgial program order.

PD achieves its style of execution with two software gemelabmponents. &igger specifies the point
in the program when a speculative thread may begin executionay be placed directly in the program,
or can be provided as conditions (predicates) based ongrogounters. In the latter case, the conditions
are evaluated dynamically by the hardware which, whenfgatisbegins the speculative thread handler

provides the explicit live-ins of a speculative thread, ethare the parameters of the method that it calls. In



addition, the handler also evaluates branches that theitalnay be control dependent on, to ensure that
the speculative execution of the method is not wasted.

Proposed hardware support for PD consists of speculataeution of the threads, the foremost require-
ment for all speculative parallelization proposals. Reveaches are used to ensure that stores performed
by the speculative thread are tracked. To hold the resultsspieculative thread, until it can be used by the
program or another speculative thread, and to squash alafreeuhread that violated any dependencies,
private caches may be used. This dissertation insteadogespnovel and efficient storage structures
collectively referred to as the execution buffer pool, texahte the contention that speculative threads may
have if they use the private cache(s) of a processing comallfzito support evaluation of triggers, trigger
condition code registers are provided to store the restiftsenlicates of triggers, which are operated on by
micro-code that evaluates the conditions specified in iggers.

A simulation-based implementation of PD is evaluated oeget benchmarks from the SPECCPU2000
suite, programs written in C with no explicit concurrencydéom motivation to create concurrency. Several
results of the implementation are examined, notably thénaust chosen for PD, their size, read and write
sets during speculative execution and the overheads attduring speculative execution, the utilization of
processing cores during speculation, the sizing of prapbsedware structures, performance benefits, and
limitations of program ordered forking model in prior spktive parallelization proposals. PD achieves
harmonic mean speedup of 1.5x on benchmarks evaluated.x€bat®n model has significant potential to

achieve greater performance improvements and scalability wide variety of applications.
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CHAPTER 1

INTRODUCTION

In von Neumann architectures, a sequential program, mamamamly referred to as a program, is
defined as a stored set of instructions. The execution stétese instructions, specified by the register and
memory values, is defined by an instruction pointer or pnogcaunter. The simplest means of executing
a program is to execute the instruction pointed to by thetotbn pointer, which will result in the access
and modification of register and/or memory values, inclgdime instruction pointer. After execution, the
instruction pointer points to the next instruction to beaxed. This process is repeated until the end of
program is reached. Performance achieved by the machirgiiged by the execution time or run time of
the program.

A major accomplishment of the microprocessor industry ésithprovement in performance with every
generation of processors. For example, Intel Corporatimmmarkets processors that are 5,000 times faster
than their first microprocessor in 1971 [147]. Advancemenfsocess and material technology, innovations
in the architectural, micro-architectural, and circuipilementations, and efficient design tools have helped
achieve this significant gain.

Atopic that is of interest, particularly for innovationsitoprove performance, is parallelism. Parallelism
in programs is a fundamental characteristic of the progtzahdenotes the independence of computations
in a program. Parallelism provides the ability to performesal computations (instructions) in a program
concurrently because of their independence. Exploitincait help reduce execution time and improve
performance of a program. The desired extent of paralletisgoncurrency to be exploited by the system
will determine the support needed from the hardware andvaoét subsystems, and will determine the im-
provement in performance that can be achieved. It is negessase different means to exploit parallelism
at several granularities of instructions to achieve imprognts in performance. | describe some of them

next.



ILP. Instruction-level parallel (ILP) [146, 176, 179] executits one of the most popular hardware based
parallel execution models to date; almost every processouilt to exploit ILP. A uniprocessor exploiting
instruction level parallelism employs technigues to ettgzarallelism from few hundreds of instructions.
By using a variant of Tomasulo’s algorithm [192] implemeahie hardware (also called dynamic scheduled
out-of-order processing), false dependencies betwe#mna@tions are eliminated and instructions executed
from the reorder buffer according to their data dependsntience achieving an “out-of-order” execution
model. The changes to the register and memory values made mstauction are held until all prior
instructions in the reorder buffer have committed theimg®s. This ensures that the software system sees
the changes of an instruction in the order of the sequentimyram. Another instruction-level parallel
processing model is the Very Long Instruction Word or VLIVWgessors [34,51,52,66, 158, 159, 172] that
uses software to schedule independent instructions inahe <ycle by means of an explicit instruction
set architecture. Examples of out-of-order processolsidecAlpha 21264 [100], Intel Pentium Pro [50],
Intel Pentium 4 [89], IBM Power4 [190], and VLIW processorgl as the Intel Itanium [132,173]. The
development and use of instruction-level parallel executechniques has been supported by a significant

body of research and by commercial microprocessors.

Distributed ILP.  Traditional ILP uniprocessors have centralized hardweseurces such as the reorder
buffer, load and store queues, that limit the scalabilityhef micro-architecture. In addition, the complexity
of such architectures can result in significant power comiam, heat dissipation, and complex and time
consuming validation. To tackle these shortcomings, yeigthea scalable instruction-level parallel process-
ing system, there have been several recent academic plefmsdecentralization of the cycle critical micro-
architectural structures that are power efficient. Example ILDP [102], TRIPS [169], and RAW [189]
processors. All of these proposals consider new instmistts with low-latency scalar operand networks to
communicate values between distributed processing uHiits.distributed processing units or tiles usually
consist of a local storage (register file), execution uaitg] a programmable switch. Some of these proposals
(RAW and TRIPS) require compile time support to assign utgions to processing units and/or support to
orchestrate the communication of values between the uhits.WaveScalar processor [187] is considered
a data-flow based distributed micro-architecture as itdéisia program into waves, and executes these

waves on processing units that fire dynamically accordinggta dependencies. Several of these proposals



not only target the instruction-level parallelism targeby the out-of-order superscalar processor, but also

parallelism beyond that, at a coarser granularity.

Traditional Non-Speculative Parallelization. Due to diminishing efficiency in increasing the extent of
parallelism that can be exploited by hardware, softwarkrtiegies are used to exploit parallelism at a very
coarse level, say, of the order of several hundred thous@tdictions. The multi-threaded programming
model has long served this purpose. A multi-threaded progeacomposed of several threads and can
be executed concurrently on several processing cores. theedd is in itself a sequential program and
therefore, with corresponding program counters or infisngointers. There has been a significant body of
work in expressing parallel execution as a collection oftipld sequential programs [4,5,13,15-18, 28, 29,
39, 53, 71-73, 79, 80, 85, 99, 109, 113-115, 127, 130, 141,168 160, 195, 197, 206]. This is achieved
by writing a parallel program for a problem, either by havitng programmer express the parallelism
explicitly in the program by managing multiple threads, grdxtracting parallelism automatically from a
sequential program, thus creating a multi threaded agaital broadly refer to this form of non-speculative
parallelization as control-driven parallelization.

There are several software parallelization models thatufadler the umbrella of control-driven par-
allelization, each suitable for a specific set of appligaio The decomposition of a problem into multi-
threaded application will depend on the form and type of lfgism present in it [186]. In the class of
embarrassingly parallel applications, concurrency isleashieved as threads will have no shared state
between them, or frequently access shared data with mimneaifications. For example, server-side
programs such as webservers can have many concurrentlyngutmeads each servicing one or more web
requests. Similarly, parallel compilation applicatiorclsias pmake can compile several C/C++ program
source files concurrently. In these cases, parallelismsig/esxpressed by the programmer using threads.

Another large class of applications is programs that eklstouctured parallelism such as scientific,
multimedia, signal processing, and bioinformatics proggaFor example, scientific programs usually have
instructions that reference an array, perform some stenaiputation on the data values referenced, and
store the computed value(s) back in the array. Parallel@mbe automatically extracted and represented as
a collection of control-driven threads such as distribgittiunks of loop iterations in a scientific program

between many processors. Libraries such as OpenMP can t¢ausansform a sequential program into



a parallel program by means of pragmas placed before cheggmns of code to be parallelized. These
pragmas are processed by the compiler’'s pre-processachwatomatically inserts calls to the library for
dividing the loop iterations across many processors. Ateting of a parallel region, a barrier placed by
the compiler ensures that all processing cores have finigtedassigned task before proceeding with the
rest of the program. Other data parallel means (also knowaigle instruction multiple data stream or
SIMD [67]) such as the MMX [148], 3DNow! [137], SSE [21], Altec [60], and Tarantula [63] instruction
set extensions on processors, can be used for expressiotustd parallelism.

Many applications however, exhibit unstructured pareihelthat is not straightforward to identify and
cannot be easily expressed by the programmer. Moreovely aggslications use irregular data structures
and have data access patterns that are not easy to analyaeearat amenable to automatic parallelization.
Features of modern languages and compiler infrastructurdeer hinder the analysis and parallelization of
the entire program. These include, separate compilatififesf dynamic linking of libraries, dependence on
the runtime system to perform several tasks for a managditafign, usage of language packages, object-
oriented practices such as information hiding, multipleeiritance, and so on. Therefore, parallel algorithms
to problems often have to be carefully constructed by expergrammers, and then programmed in the
desired language with the use of synchronization prinstisech as locks to protect any data shared and
modified between threads. Expectedly, this is a hard taskedsw-level concurrency primitives provided
are difficult to use correctly, and errors in these factitige difficult to detect and debug. Therefore, newer
languages such as Java, ship with standardized and testedrency packages that provide features such
as atomic variables, time-out locks, task scheduling fiaonk for invoking, scheduling, executing and
controlling threads. These eliminate many potential sesiraf problems such as deadlocks, starvation,
race conditions, and excessive context switching betweatended threads, increase reliability and main-
tainability of code, and reduce programming effort. Anotlssue with lock-based synchronization that
the research community has been recently tackling is thaligation of entry into a critical section by
many threads. This, if not minimized, can become a seriotideheck if locks are not judiciously used,
compromising scalability and performance of an applicatiéor this, the research community has been
studying transactional memory programming [7, 81, 83,8488, 128, 133, 134,153-155, 174, 205] to ease

the creation and programming of multi-threaded applicetiolransactional memory introduces the notion



of a transaction, a region of code whose changes are ing&isr atomic. The changes are visible if the
transaction is committed, and discarded when it is squasheahsactional programming allows achieving
higher performance as transactional regions can be entereulirrently by many threads. A transaction is
executed speculatively and, at the end of the executionpritied if it did not violate any data dependencies,
or squashed and re-executed serially, if it did. Transastianlike lock-based regions, are also composable,
and therefore, two or more transactions can be combinedaitdoger transaction without knowing their
internals.

Transactional programming is still a research proposédh wéveral aspects such as programmaubility,
debugging, and hardware support being actively invegiyatVhile programmers inclined to write multi-
threaded applications would benefit from transactionagy@mming, it is not clear if the majority of end-
user single-threaded applications will become paraltelrly case, research in performance improvements
of sequential programs is important even in multi-threaggglications because the majority of them do not
have abundant threads to run on future multicore systemsitbaxpected to have hundreds of cores.

The creation of multithreaded programs remains, and igylitee remain, hard primarily because of
the complexity in developing a parallel algorithm for a desh and the difficulty in debugging such a
solution. Single-threaded programs, on the other hand,irdden the end-user market because of the
relative ease in developing such programs and simplicityelbugging the sequential program execution.
In this situation, we are also witnessing the ominous dedadhperformance improvements through micro-
architectural enhancements that end-users have beem@dowiith every generation of processors. With
desktop systems already shipping with four processorg{%#68,106,131,188], and many more processing
cores expected in the future, the question that systemmsidace is: How do we use the many cores to

improve performance of a sequential (single-threadedjrpara?

Speculative parallelization.  Speculative parallelization is a class of proposals thtngits to use
the many processing cores by creating concurrency from grgmo but also maintaining the sequential
program order. Several proposals have been studied foramlde®w, and it remains a subject of interest
in the research community [3, 40, 41, 45, 61, 81, 82, 125,180;-152, 177, 182, 196]. Proposals in this
category overcome the limitations of traditional paraiadion by creating threads that are composed from

the program and speculatively executing them in paralledifonal hardware support is used to determine



threads that violate dependencies and squash them, anfibtoeesequential program order of concurrently
executed speculative threads.

The performance benefits of these proposals greatly depergbweral aspects which include, the
execution model defined by the composition of speculativeattts, the ordering in which the threads are
forked for speculative execution, and the hardware andvsoft support needed to implement such an
execution model. Among these, the execution model has éodicois threads composed of specific regions of
program code, which are forked for speculative executidh@abardware traverses through the control-flow

graph of the program. | broadly refer to these proposals asaeflow based speculative parallelization.

1.1 Overview of Program Demultiplexing

In this dissertation, | present Program Demultiplexing (RDshort), an execution paradigm based on
speculative parallelization, for sequential programsPD threads composed of methods (also, functions
or subroutines), are “demultiplexed” from the sequentraleo, decoupling the execution of a method from
the call site, which is where it is called in the program. Iguential execution, the call site of a method
represents the beginning of execution of that method, apgpédres on the same processing core as the
program. However, in PD, the execution of a method occursnmthar available processing core, albeit
speculatively, before the call site is reached in the progr@everal such speculative executions of methods
create concurrency in a program. The speculative execigiosually forked after the method is ready, i.e.,
after its data dependencies are satisfied for that execimtstence. Its results are committed, if they remain
valid, when the call site is reached by the non-speculatiegrnam.

Figure 1.1 illustrates the basic idea of PD. The figure on dfiegresents the sequential execution of
a program with method8, B, andD called by the program and meth&@icalled byD. The methods are
executed in the same sequential order as they are called préigram. Parallelism between methods, even
if it may exist, is not exploited. On the right side of the figus the illustration of PD based execution of the
same program. In the PD executi@is forked for speculative execution first, followed ByA, and finally
D; the forking order of a method determined by its dependsnai¢h the program. Speculative execution
of Dis (speculatively) used bg. Similarly, the program uses (commits) the speculativeatis of methods

A, B, andD.



Sequential PD based
Execution Execution
C
Vv
........................ N
a B
V4 D
A COMMIT A V4
USE C
COMMIT B
B V4
COMMIT D
D
C
Y

Figure 1.1: Program Demultiplexing overview. The sequmkecution on the left represents execution of
methodsA, B, andD. MethodC s called insideD. On the right side is the PD based execution. The methods
are spawned for speculative execution (represented byrélyespading over the method). Method D uses
the speculative execution of meth@dMethodsA, B, andD are committed when the call site in the program
is reached. The speculative executions do not violate atlaydigpendencies and this is indicated by the tick
mark on the bottom right of the method’s box.

The highlights of PD are as follows.

No programmer support. Like other speculative parallelization proposals, thecegiual framework

of PD and the implementation discussed in this dissertadiomot rely on programmer support. The
implementation of PD in this dissertation requires aut@daoftware support from a compiler or a binary
postprocessor to instrument for profile information, angbtocess the profiles to generate the necessary

components for achieving PD based execution.

Suitable granularity of speculation for programs. Threads in PD are at the granularity of methods,

a fundamental programming abstraction in modern prograiftsey are used by programmers to often



solve specific subtasks in a program and provide an inteffacthe rest of the program thus, acting as a
natural means of separation of tasks. Having several mgthedorming several subtasks in a program is
likely to expose parallelism between the methods that PD exgjoit. Even though there is no rule that
a method should solve a specific subtask, the advocacy ofsaftkare engineering guidelines is stricter
when developing large scale applications because of teeiefiis of easier reusability and maintainability

of program code.

Efficiently forking speculative threads. PD forks speculative threads for execution without the Khow
edge of their order with respect to the program. | refer ts thibdel as “unordered forking”. Previous
systems for speculative parallelization forked threadgrivgram order [40, 41, 45, 61, 81, 82, 125, 139,
150-152, 177, 182, 196] (or hierarchical tree ordered, seaaf nested speculative threads [3, 161]) by
speculatively traversing the control-flow graph. PD on ttieephand, forks threads by also considering data
dependencies of the threads and determining suitablespaittte program when they may begin execution,
thus more efficiently reaching distant parallelism thaopspeculative parallelization proposals. The order

in which the threads will be used is unknown at the time theyfarked for speculative execution.

1.2 Dissertation outline

In Chapter 2, | provide an overview of previous speculatiagapielization proposals and other closely
related work. In Chapter 3, | introduce the concept of PnogEemultiplexing, the reasoning behind the
choice of speculating on method granularity, the compaenenable PD based execution and examples
of opportunities for PD in benchmark programs. In Chapter grovide details of the software support
required for this dissertation’s implementation of PD. Imapter 5, | describe the hardware support required
for such an implementation. In Chapter 6, | present the et methodology and experimental results.

In Chapter 7, | present a summary of this dissertation, asclids possible future work.



CHAPTER 2

BACKGROUND AND RELATED WORK

Parallelism is one of the key means for improving the perforoe of computer systems, and Chapter
1 categorizes several means of exploiting it. Figure 2.1 spectrum chart of different proposals that
exploit parallelism at different granularities; the captiprovides more details on their organization. This
dissertation is about speculative parallelization ancketqally, in this chapter, | first discuss this category of
proposals in detail. | then cover other non-traditionalfialization and parallel programming means. Even
though these developments are in the research areas dépprajramming and application design which
expect programmers to write correct parallel programssdulis them because of conceptual similarities in

the means of creating concurrency in a program.

2.1 Control-flow speculative parallelization

Speculative parallelization proposals can be categotizegd on several criteria. Some of the key issues

that are considered are as follows:

1. Composition of speculative threads.What should the threads be? Past proposals have considered
loops, iterations of loops, continuations of methods (Wligcthe program executed after the return of

a method), or generic tasks obtained by dividing the program

2. Forking model of speculative threads.How are the speculative threads reached and when are they
forked for speculative execution? Past proposals haveuliaely traversed control flow graph and
forked speculative threads in that order or hoisted spaceléhreads to be forked before they are

reached by the program.

3. Hardware and software support. This spans a large number of subtopics such as, softwar@gupp
to generate a program with speculative threads, means formespeculative execution, support to

store the speculative threads, ensure their correctneds,canmit or invalidate them.
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Inorder Out-of-order RAW ILDP Multi-thread Data-flow
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Figure 2.1: Spectrum of proposals that exploit parallelsindifferent granularities. On the left side is
inorder processor that executes one instruction at a tirdedars not exploit parallelism in a sequential
program. On the right side is data-flow processor that etgoldi the parallelism in a program by executing
instructions in data-flow order. In between the two are ss\y@pposals ranging from out-of-order processor
that can reach parallelism in a window of few hundred indtoms to research proposals on instruction level
distributed processing systems such as RAW, ILDP, TRIP& VdaveScalar, that further extend the reach
for parallelism. This is followed by speculative paraltaliion proposals such as TLS, Multiscalar, SpecMT,
and PD all of which have the ability to obtain parallelismukands of instructions ahead although only at
the granularity of a speculative thread defined by the systduaiti-threaded programming models, placed
on the far right, could sustain parallel execution of sevdnaeads, depending on the application and its
developer.

The first two aspects mentioned in the above list define theutiom model of a speculative paralleliza-
tion proposal, and the last aspect defines the implementafidghe model. | will next describe several
speculative parallelization proposals and in particudiiscuss the composition of speculative threads and
the forking model. | do not describe the differences (oftemtle) in the hardware support needed for the

following reasons:

1. Hardware support does not strictly adhere to a parti@dacept or proposed execution model. Usu-
ally, hardware support for one model can be used to implemeant other speculative parallelization

models.

2. Hardware support for speculative parallelization haanlbmovered in detail by many previous disser-

tations.

3. The aim of my thesis research was to identify and substaentne limitations of reaching parallelism
in speculative parallelization proposals. The hardwappstt is notably not in depth in this disser-
tation for this particular reason. Discussing the concéphe previous proposals in detail will help

uncover the limitations and design new means for allewggtinem.

In the following sections, | categorize speculative patehtion proposals into four categories. They

are: (i) the generic Multiscalar-based, (ii) loop-based, hethod-continuation based, and (iv) transaction



System Focus Software Hardware
Multiscalar [68,69,177] Tasks Identifying and compiling tasks Special purpose hardwatke processing units with fast
operand value communication
SPSM [62] Generic Explicit software based speculative parallelization andultiprocessor with instruction set extensions
analysis
TLS [182-184] Loops Profile based analysis Multiprocessors with support focslagive execution,

DMT [3]
Superthreaded [196]

Hydra [82]
Zhang et al. [208]
MAJC [193,194]
Cintra et al. [45]

Clustered SpecMT [122,125]

Marcuello et al. [123,124]

Module-level [200, 201]
Jrpm [41]

IMT [144]

Du [61]

TCC [81]

Pinot [138]

Prabhu et al. [150, 151]

Mitosis [152]

000 Spawn [161]
Bulk [32]

Subthreads [49]

PolyFlow [2]

IPOT [199]

Loops and method continuations. Hierarchi--

cal tree-ordered forking
Loops

Loops and method continuations
Loops
Loops and method continuations
Loops
Generic
Generic
Method continuations
Loops
Generic
Loops

Generic, programmer specified

Generic

Loops

Generic

Loops and method continuations. Hierarchi-

cal tree-ordered forking
Loops and method continuations

Generic

Generic

Generic

value prediction
Multi-threaded hardware, support for speculative execu-
tion of threads, value prediction, and ordering
No data speculation in threads. Data values are sent kultiprocessor with instruction set extensions
consumers with explicit compiler insert instructions
Profile Multiprocessor with speculative execution of threads
- Multiprocessor with speculative execution of threads
VLIW conpila Support for speculative execution of threads
Profile based analysis Hierarchical CMP hardware with sttfpospeculative
execution of threads
- Based on clustered microarchitecture with support for
speculative execution of threads
Profile based analysis to determine suitable regions anMultiprocessor with speculative execution of threads
forking points in program
Profiling Multiprocessor with speculative execution of threads
Java-based with profiling support Multiprocessor with spetive execution of threads
Identifying and compiling tasks Multithreaded hardwarehwspeculative execution of
threads
Mipltocessor with speculative execution of threads
Transaction based multiprocessor hardware also used
speculative parallelization. Provides programmers with
specifying commit ordering
Compiler infrastructure to extract speculative threadSpeculative multi-threading processor that supports fast
from programs operand value communication, low latency inter thread
communication with an update-based cache coherence
protocol and instructions for thread termination
Analysis of hindrances and opportunities for speculativélydra hardware for speculative execution of threads
parallelization
Elaborate compilation framework for speculative paralMultiprocessor with speculative execution of threads
lelization and choosing program points for forking of
speculative threads

Compilation framework for identifying spawning point
Transactional c@npi

Hardware extensions to deal with ordered tree based

forking

Hardware with speculative execution of threads, signa-

tures used for read and write sets

- Multiprocessor with speculative execution of threads,
and support for dividing threads into multiple speculative
subthreads and checkpointing

- Multithreaded processor with speculative threads
spawned from immediate postdominators

PL support, profile driven detection of good candidateMultiprocessor hardware like TCC

for threads

POSH compiler

Table 2.1: Summary of speculative parallelization profssa

T
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Figure 2.2: Forking of speculative threads in Multiscatan the left is the sequential execution of a program
with four tasks, A, B, C, and D. On the right side of the figurdhe Multiscalar execution, with three
processing cores available for speculative executionsifstaA, B, and C are scheduled one after another
with the tasks identified by means of a task predictor. Spgizel data is communicated from an older task
to younger task. Tasks are committed by the program as thraplete. The execution assumes no violation
of dependencies; no tasks are therefore, squashed. Thelyrding around tasks indicates that they are
speculative. The tick symbol placed at the right side coafiertask indicates that the task is valid and did
not violate any dependencies. This convention is followedughout this dissertation.

based speculative parallelization. Table 2.1 lists alcsfaive parallelization proposals, the regions of
program code that are speculatively parallelized, and #vedware and software support needed for the

implementation.

2.1.1 Multiscalar-based speculative execution

Multiscalar [69, 177] and other similar proposals [122,1238] dealt with speculative parallelization of an
entire program. A Multiscalar system uses special purpasdware with processing cores connected in a
ring topology. The hardware allows communication of reggisfalues from one processing core to another.
Many other proposals have a similar software model but anstese a typical multiprocessor or multicore
system.

The core of these proposals is a software subsystem cogsitia compiler that divides a sequential
program into tasks, a task ranging from few instruction®t@sal basic blocks. The hardware steps from one

task to another in the sequential program, assigning eatitesé tasks to processing cores for speculative
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execution. The motivation behind this approach is to caploecal data dependencies between instructions
within a task, and to minimize data and control dependenoets/een tasks closely coupled in program
order. To establish this, a compiler (or some other softwanh as a binary rewriter) uses program analysis
—static or dynamic with profile information— to choose shitaboundaries for tasks in the program to
maximize parallelism between them.

Figure 2.2 shows the Multiscalar execution model on a syst@mthree processing cores. The figure
shows dynamic execution instances of tasks A, B, C, and D nogram on three processing cores. A task
is predicted and forked for execution on an available prsingscore by a task predictor. In the example,
B is predicted from A, C from B, and so on. If for some reasons Bt predictable, task A has to finish
execution in order for the control flow to resolve, to identf. Since the execution model identifies and
assigns tasks for speculative execution based on seduamiggam order, the commit ordering of tasks is
the same as the fork order of tasks.

A task is speculatively executed and its speculative cteage committed if it reaches the head of the
task queue, or squashed if a dependency is violated. Forpeatask C may read from a location before
task B can write to that same location. Therefore, C has togbashed and re-executed to ensure that
the right value is read by C. Data dependencies may existaaetwasks, and executing tasks concurrently
may lead to violation of such dependencies especially lsecthe tasks are scheduled only according to the

control flow. Many avenues were taken by Multiscalar andteelgproposals to alleviate this problem:

1. By allowing communication between speculative tasksa @alues written by an older speculative

task is passed on to newer ones.
2. By value predicting data values, data dependencies batameculative threads are broken.

3. By dynamic insertion of synchronization primitives inesplative threads, to ensure that a newer

speculative task proceeds only after the older specultslehas performed the store operation.

Multiscalar allowed multiple outstanding executions peygessor, i.e., executions waiting to be com-
mitted or squashed, while other proposals required thasla¢ammit or squash to begin executing the
next task on that processing core. Having only one activewdian per processing core simplifies the

requirements of buffering speculative data in cache, artiving multiple outstanding executions, which
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Figure 2.3: Loop-level parallelization. On the left sidghe sequential execution of several iterations of a
loop. The right side of the figure illustrates loop-levelgibelization performed by a TLS-like system. Loop
iterations are assigned to processing cores for specellexgcution. Dependencies that may exist between
iterations can be resolved with one or more of the means itescin Multiscalar-like system.

requires cache references from different speculativeatteréo be identified. On the down side, it may lead
to holding up of a processing core until the task executedhaldore is committed or squashed, an issue of

concern, if tasks in the system are not balanced.

2.1.2 Loop-based speculative execution

Many proposals specialize the Multiscalar-based appreachfocus on specific regions of code such as
loops since significant portion of a program’s executioretisispent in loops [45,82,182,208]. An iteration
of a loop or the entire loop is treated as a speculative thagalddconcurrently executed with many other
speculative threads. Figure 2.3 illustrates the TLS sy$18@], which follows this approach to loop-based

speculative parallelization.

2.1.3 Hoisting of speculative threads

An alternate approach to speculative parallelization ésthbist-based speculative execution model com-
monly used when only selected regions of program code areechfor speculative threads. The idea is
analogous to compilers hoisting a load instruction in thegpam to tolerate (or amortize) the many cycles
that may be taken to obtain the value depending on where thamay be located in the memory hierarchy.

Several proposals [61,117,124,152] take a similar appro&loisting (albeit, speculatively) the forking of a
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thread before the thread’s head instruction is reachedglpriogram execution. When the program reaches
the thread’s head, it waits until the thread finishes exenutand commits the thread if no dependencies
were violated. The execution model is illustrated in Fig2i4

Hoist-based speculative parallelization proposals useofilg driven approach to identify candidate
program code for speculative threads and the most suitabkepbints. Since a thread is hoisted with
respect to the program execution, alternate means aresaegds provide the live-in register values that
may be accessed by the thread. The common approach is to aseeapvedictor to predict the live-ins.
Another approach is compute-based prediction, in whichesorstructions are executed to compute the
likely live-in values. These values are then provided togpeculative thread. Before a speculative thread
can be committed, the used live-in values should match thies@enerated by the non-speculative program.
One such compute-based predictor is the “pslice” used int[152]. A “pslice” for a speculative thread
is obtained by identifying the live-in registers and consting a backward slice of instructions from the
head of speculative thread back to the fork point in the @ogrThe producers of the live-in values and any
transitively dependent instructions compose the backsizrd.

The key assumption with the hoist-based speculative eixecistthat there are several data independent
instructions between the thread’s fork instruction anchéad instruction in the program. Therefore, it is
anticipated that the program will (partially) cover the legit takes to execute the pslice and the thread

speculatively, beginning at the fork point, before the #lofe head is reached.

2.1.4 Method-continuation speculative execution

Method-continuation level parallelization (MCLP), alsalled module-level parallelization is another spe-
cialized form of speculative parallelization. The progesa this category [40,41,200] focus on speculating
past a method call, i.e., program that follows after a mettebdrns, also called the method continuation.
It is a straightforward means of parallelization becausthefnear definite control flow reachability of the
continuation when the method is called (the rare case is Wwhagrammer has arbitrary control flow in the
program that never returns from the method).

The parallelism that MCLP exploits is the plausible dataepehdence of the method’s computation with

that of the method’s continuation. There are two forms ofetelencies that may exist between the method
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Figure 2.4: Mitosis-based parallelization. On the lefesid the figure is sequential execution of a program
with A representing loop or task in a program. On the rights&l Mitosis-based execution achieved by
inserting fork instruction that spawns a speculative ttirgaslice that is executed to provide the live-in
registers for the thread, followed by the speculative etieawf A. The speculative execution is committed
when A is reached in the program assuming no dependencieswigtated and the live-in registers were
computed correctly by pslice.

and its continuation: (i) the return value of the method thal be later used by the program, and (ii) the
side effects, i.e., modifications that a method may makeagtbgram’s global state that may be accessed
by rest of the program. The former dependence can sometimegdumvented since return values are
often discarded by the program, or speculated on, espewhkn it is highly predictable based on previous

values returned by that method.

Out-of-order Forking. One unique aspect of MCLP is the ordering in which specudativeads are
forked. In the simple case shown in Figure 2.5, there is omlg speculative thread running until the
methodA finishes execution. The model, when extended to performusaiae execution for every method
encountered, may not fork threads in program order.

Consider the example in Figure 2.6 in which threads are tbteboth the method and its speculative
continuation. The ordering in this model is hierarchicaktbased (also referred to as out-of-order based),
in which a speculative thread is ordered sequentially waigpect to its parent speculative thread, if one

exists. The model is complex and can be detrimental to pedoce if method-continuations are forked
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Figure 2.5: Method-continuation level parallelizationheTsequential execution shows methddnd the
rest of program marked as A-Cont. In MCLP, when the methodhisegkecution, a speculative thread that
executes the continuation of the method is spawned. Asguthat there no violations of dependencies,
the continuation executes until the method returns backeagptogram. At this point, the results of the
speculative thread are committed, and the program corgtiedecution from that point onwards in the
program.

indiscriminately for every method encountered [201]. Addial hardware support is also needed to support

this model [3, 161].

2.1.5 Transactional memory

Transaction-based execution, a central idea in databhssshbeen proposed to overcome the difficulty
in achieving scalability and correct execution with the w$édocks as synchronization primitive. The
key feature of a transaction is the notion of atomic exeauti., all program state changes made by a
transaction has to be either visible or not visible in itdrety to the rest of application. Multithreaded or
parallel programs typically use locks for synchronizatiamen multiple threads may conflict, for example,
to protect entry to a critical section. Locks serialize thdtiple threads to eliminate conflicts—the order of
serialization is the order in which the threads acquire dlek.| Transactional memory has been proposed to
overcome the impediments of locks as a synchronizationifiwan While it has commonly been a software
implementation [84, 86, 133, 174, 205], more recently redeas have been considering hardware support

[7,81,83,87,128,134,153, 154] and hybrid approachesl[®5,167] for transactional execution to reduce
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Figure 2.6: Nested forking in Method-continuation levetglkelization systems. On the left side of the
figure is a snippet of a program. Methddicalls two method#\ and B. MethodB calls methodC during

its execution. The continuations are marked with X, Y, ané@rtial executions of these continuations are
indicated as Xp, Yp, and Zp. During executionMfXp is speculatively executed. Methods encountered in
Mor Xp spawn more threads. In the example, Xp spawns Yp viisrcalled, and Zp wheg is called by

B. WhenCfinishes execution Zp is committed. Similarly, Yp is usediooitted wherB finishes execution.

the overheads. The hardware support identifies conflicts saveral concurrently running transactions.

Transactions that violate dependencies are squashed-andageted serially by the hardware.

Transactional memory and Speculative parallelization. Transactional execution and speculative par-
allelization have similar requirements in terms of spetixgly executing a set of instructions, determining
if any instruction violated dependencies, and acting atingty. However, there are some dissimilarities.
Speculative parallelization deals with a sequential @ogin which the speculative threads are ordered.
On the other hand, transactional programming was intratiteedeal with multi-threaded programs, and
therefore, the transactions from many threads do not havedefermined order. Likewise, the process of
determining if a transaction violated any dependenciesrgaanly among other concurrently running trans-
actions. However, in speculative parallelization, theflicindetection for a given speculative thread is not
only with other concurrently running threads but with ak tinstructions being committed in the program.
Another important distinction between the two is the lack@ihmunication between concurrently running
transactions. In speculative parallelization, specidatalues are commonly passed between threads.
Some transactional system proposals [32, 81] have extahaadsystems to perform speculative par-

allelization. One such proposal is TCC [81] which, unlikbettransaction-based systems, requires every
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instruction to be associated with a transaction. Programuligide a sequential program into transactions,
and provide the ordering of transactions with two paransetsgquence and phase numbers. These numbers
control the ordering of transactions in a program and waitd@mns before it can begin its execution; within

a given sequence number, transactions are committed meisiclg phase order. This allows the programmer
to either achieve sequential ordering, completely unedi¢éransactions, for example, when iterations of a
loop in a sequential program are independent, or more conapdering specifications. Like the Multiscalar
based model, these transactional systems also spawn ajpectihreads in program order and commit in

that same order or another arbitrary order specified by thgrammer.

2.1.6 Discussion

Potential benefits. The performance benefits of a speculative parallelizationlehdepend on several

factors. Foremost, is the parallelism that exists in theygm (as studied by Austin et al. [12] and Lam et
al. [108]) which depends on the characteristics of the @nogrthe algorithm used, and the programming
implementation. The second factor is the execution modehefspeculative parallelization system. It
includes the composition of the speculative threads to miaei performance potential [95, 96] and how
the threads are spawned for execution [161]. Finally, thelémentation also plays a crucial factor. This
includes all the experimental parameters such as commntignidatencies, number of processing cores for
performing speculative execution, and any other resouostraints. The first factor is solely dependent
on what problem application developers are trying to solith & computer program and how they solve
it. The second factor is the crucial aspect and determinasthe hardware and software support can be

provided.

Limitations.  An important assumption | have made in my discussion so thiisthe speculative threads
never violate dependencies and the system is assumed tonbaves-speculations. In practice, this is
unlikely to be the case. The general principle in specwdapiarallelization is to traverse the control flow
graph of a program speculatively at the granularity of a @sthread which can usually vary between a
few instructions to several basic blocks. This allows thecexion model to encapsulate several control
flow decisions inside a task and reach parallelism in a progreore distant than instruction-level parallel

processors. A key limitation of this approach, as illugtdain Figure 2.7, is that a mis-speculation in a
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Figure 2.7: Mis-speculations in Multiscalar-based spaiteé parallelization. Task B violated dependencies
and must be squashed. Tasks that follow B, for example, C migyave violated dependencies, but are still
squashed as per the execution model.

thread results in squashing that and all other threadsdheawfit. In addition to this, a thread is scheduled
only according to the speculative control flow and withowt aansideration of its data requirements. This
aspect limits the ability to reach “distant” parallelismchase intermediate data dependencies may lead
to mis-speculations in threads, further increasing thencbs of squashing the threads. The probability
of occurrence of these violations increases as the numhesifictions considered for parallel execution
increases. This may result in the discarding of large ansoah{possibly independent) work and thereby,
delaying the reachability of a distant independent task dugher. For example, indiscriminate usage of
method-continuation level parallelization has been shimAmurt performance as the speculative threads are
forked on reachability of control flow without any analysigtioeir data dependencies [201].

The speculative parallelization model has been quite sséalein extracting reasonable amounts of
parallelism from applications. However, the limitationsthe ability to reach “distant” parallelism must be
addressed as its exposure and exploitation is likely to beiarin the future, especially, as the number of

processing cores increase.
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2.2 Other related speculative execution models

Shadow processing. Shadow processing system introduced the notion of creatiagy of an application
with additional code in it referred to as the “shadow” pragid 45]. This shadow program for example, can
be used to perform additional checks such as null pointerkshénitializing and freeing memory allocated,
and any other violations that may crash the program. To sppetie execution of the shadow program
the system communicates few key values from the main progoathe shadow. This eliminates some
computation and minimizes the number of instructions inghadow. Several proposals have enhanced
this execution model with different forms of main and shadowgrams, for different purposes. For
example, Sundaramoorthy et al. proposed the Slipstreatemsyd 85] (that originated from AR-SMT
[163], a hardware fault detection system), to improve th#gpmance of the program. The main program
is speculatively optimized, and the shadow program obte#hses from the main program, fetches and
executes instructions more efficiently because of the hirdsided, and/or verifies if the main program
execution was correct. The Master-slave speculative Ipzation system [214] further enhances the
model, by parallelizing the execution of shadow prograna, sgmeculatively optimizing the main program.
The parallel shadow program ensures that the speculatiirepragram executes correctly. Like Slipstream

execution, data values are passed from main to shadow pndgranable parallel execution.

Pre-execution. There have been a number of research proposals investjgatatution models that can
broadly be classified as speculative data-driven multithrey [36, 47,48, 64,101, 118, 135, 164-166, 178,
211,212] (also commonly referred to as pre-execution,dierout, or subordinate threads). This category
of schemes typically targets cache misses and branch rdispioas, two performance impediments in
processors. In this approach, a thread consisting of agfieed! chain of dependent instructions leading up
to a load or branch instruction (i.e., a data-driven thread$pawned from specific points in the program.
The set of load or branch instructions for which the threadgganerated are usually identified by profiling
and are those that often miss in the cache or result in branspredictions. Each thread creates the
performance degrading event (cache miss or branch migpyedrlier than it would have occurred in normal
program execution, thereby allowing its latency to be @amwed with other program instructions (that occur

prior to the event in the sequential program). An ensembgeici threads, executing on multiple processing
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cores, can effectively overlap the latencies of multiplggrenance degrading events, thereby ameliorating
their performance impact. In order to reach the cache missamch misprediction, pre-execution techniques
construct backward slices of dependent instructions flaptoblem causing instruction to the point where
the thread can be forked. Several proposals in this catammgr various hardware and software means of
identifying the problem instructions, generating theesb€ instructions to execute, and support for executing

them in a system.

2.3 Data-flow machines

An alternative approach to von Neumann machines is data+fl@shines, an intuitively appealing data-
driven execution model, that have been studied extensinghe past several decades. Data-flow machines
[10,56,58, 76, 78,103, 143,168, 175] are fine-grained datallelism machines that execute programs ex-
pressed as data-flow graphs. Since communication betweenteon units in the system is fast, scheduling
happens at the granularity of instructions. Control-flokliminated in programs and unlike von Neumann
machines, there is no synchronization required betweematatependencies.

The dataflow execution model has many appealing propeitielading the ability to expose and exploit
arbitrary granularities of parallelism. The parallelismdn application is constrained only by the data
dependences in the application, and not by arbitrary cobamendences that are an artifact of the imperative
programming language. Despite the power and elegance afattaflow execution model, it has not been
widely adopted. An important reason for this is the couplifghe execution model to the data-flow based
programming languages [10, 59, 129, 136]. Many of the apptios that were easy to express parallelism
in such languages had significant inherent parallelisms Pparallelism may also have been easily exploited
in imperative programming, and similar benefits may be aettile. The data-flow languages, unlike
imperative programming languages, were difficult to writeai@e class of programs due to the lack of
available features. The other issue with the fine-grained flaw architectures is the enormous scheduling
and communication overhead. To handler this, Sarkar andhéssy [170] and lannucci [91] proposed
statically partitioning a data-flow program into subprogsaand executing them in a data flow order;

subprograms by themselves were executed sequentially.
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The dataflow execution model also did not explore the notfospeculative execution, which is likely
to be the key to extracting parallelism from a wide range qfligptions. Despite the lack of commercial
success of the general dataflow execution model, we can nuake sbservations about the impact of
dataflow execution concepts on other program executiordfgare. The ubiquitous dynamically scheduled
superscalar paradigm uses dataflow execution principtagpled with speculation, for a small group of
instructions that have been extracted from a sequentigrano (written in an imperative programming
language). The WaveScalar system [187], an instructiorl ldistributed processing system, executes
instructions whose firing rules are determined by the data-fif instructions in a “wave” which represents
boundaries in a sequential program specified by a compilerileBly, the PD execution model borrows from
dataflow execution model. Like dynamically scheduled ssgmdar processor, it applies dataflow execution
principles, coupled with speculation, to programs writterimperative languages. Unlike dynamically
scheduled superscalar processor, it uses program metathds than instructions as program units (i.e.,
nodes in the dataflow graph), and processing cores rathefuhational units to execute the program units.
Moreover, the mechanics of how program units are launcheeikiecution (on to processing cores) and how

their results are gathered and committed will be different.

2.4 Functional programming

In functional programming languages, computation is regméed as a mathematical function. A program'’s
execution is expressed in a functional manner: a functierécution is triggered when its inputs, which
denote other functions, are available. Functional prognarg languages have been very conducive for
parallel execution. There have been several projects iourcently executing methods in purely functional
languages, as they do not have any side effects [74, 171]tillidg supports evaluation of parameters in
parallel, and allows programmers to express explicitlycinecurrency of a method [162]. Knight presented
speculative parallelization of Lisp programs [104]; Lispniot a purely functional language and hence the

need for speculative execution.
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2.5 Other relevant parallel programming models and languags

PD resembles message-passing based parallel programaramjgms such as the seminal Actors [88] and
Linda [31] models. In Actors, concurrent objects are spaiered communicate with each other solely via
messages, and allow concurrency even within a single attm.execution model is message driven, thus
allowing latency tolerance. Charm [90] was an implemeatatf the Actors model. The Linda system does
not share messages like Actors. Instead, threads genegatiésras tuples that are held in the tuple space.
The tuples are not intended for a specified receiving thradive tuple, at some time during the execution,
fires, carries out some computation, and transforms to aalgést tuple that can be accessed by another
receiving thread.

In the past, numerous parallel language constructs, lg@gdesigns, and libraries have been proposed
for creating parallel programs. These include ABCL [207n€urrent Smalltalk [54], CA language for J-
machine [42], pC++[25,121], C**[110], a data parallel i of C, Mentat, a concurrent C++ [77], pSather
for Eiffel [65], ESP-C++ that supports concurrent object&”], transparent remote method invocation,
and blocking as well as non-blocking, future based mesga@ic++ that provides parallel constructs for
C++ [6, 33], POOL-T [93], Amber [38], OOMDC/C [43], Charm+#8T7], and Cilk, a runtime system that
manages several threads consisting of Cilk procedures [24]

More recently, several proposals have been studied in thgrgmming languages and applications
domain to exploit different forms of parallelism found ingdipations without any speculation. These include
software support to extract parallelism or libraries andéw languages to express it. Some such proposals
are discussed next.

Martel et al. [126] present different parallelization sdgies to exploit distant parallelism in the
SPECIint95 suite. Time-shifted modules [213] is anothemgre-based approach to execute modules which
have limited interaction with the program concurrently.eTthodules communicate by means of message
gueues. DSWP or decoupled software pipelining [140] eixpline-grain thread level parallelism in loop
bodies of programs. The execution of a single iteration afop lis subdivided and spread across multiple
processing cores in a multicore system. When the compilercozate subdivisions that form an acyclic
dependence graph, each subpart can be independently ekdotrning a pipeline. DSWP allows better

utilization of cores and better latency tolerance when spigieline parallelism can be extracted from
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the program. Palatin et al. [142] convert some SPEC integegrams into better software engineered,
component based programs, which consist of tightly endafggicomponents, each isolated from the rest.
Communication between components is explicitly perforimeithe program. They assume a simultaneous
multi-threaded hardware with support of very light-weiddtking support. Ranger et al. [157] evaluate
the MapReduce model [57], a model created by Google for eqdin development on data-centers with
thousands of servers, for multi-core systems. The authargide an API for efficiently writing code,
and using the runtime system for automatically creatingatis, scheduling, and partitioning them across
processing nodes. Zhong et al. [209] propose Voltron, ahitecture that exploits both instruction-level
parallelism and fine-grained thread level parallelism bteeding multicore system with a low-latency
operand communication network between processing corhs. h@rdware exploits two different modes.
The coupled mode is the lock-step operation of a processirgwith other cores. In this mode, compiler
orchestrated control flow is executed on many processingscemilar to a VLIW processor. In the
decoupled mode, cores operate independently on sepamgréim threads. The threads are used to exploit
DSWP [140] and speculative execution of loop iterations.

In the programming languages domain, object-oriented gethéanguages such as Java and C# have
several constructs for creating light-weight threads irapplication. The future primitive in Java [116]
used in conjunction with a method call, allows a program tavwgpa light-weight thread that executes a
method, while the program continues to execute beyond thelte programmer must probe and determine
whether the method’s execution has completed, and thesstoe return value or program state produced
by the method. The execution is conceptually similar to MGh&del discussed earlier; however, MCLP
executes the program along with the method speculativeiynsoire no dependencies are violated. The safe
futures [204] work achieves MCLP based execution but by medusoftware based speculative execution
within Java virtual machine. Like MCLP, the continuationtioé method is executed, and any dependencies
violated by this code with the method results in the managstém rolling back all the changes made by
the method’s continuation. In C# language, the delegatesitime allows programmers to create several
tasks/methods, which are executed concurrently, withitsees@ithe threads used as and when needed [19,
20]. X10[37] is an object-oriented programming languagderided for creating high-performance parallel

programs capable of using several hundred cores in a md@tsystem. The stream programming model
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is based on defining kernel functions or operations whichraipeon each data element of a stream in a
pipelined fashion. The Streamlt [75] and Brook [27] langem@re based on this programming model.
They are intended for easily writing parallel streamingligagtions (in particular, DSP, image, and video

processing applications), that can run efficiently on roale systems.

2.6 Chapter summary

In this chapter, | discussed previous speculative paizdligbn proposals. They were classified into pro-
posals that speculatively parallelized: (i) entire progray dividing them into tasks, (ii) loops and loop
iterations, (iii) chosen regions of program code by hogstiheir speculative execution and overlapping
them with the program, (iv) method continuations, and (ihsactions specified by programmers. All of
these proposals spawned threads only in control flow orddoandid not consider data dependencies of a
thread to determine the most suitable point for execution.

| also discussed several parallel programming languagesstruicts, primitives, and libraries that help
in parallelization of programs. Although these were notsieive techniques, and relied on programmers
or software (such as compiler) to express and extract pésall from a program, many are conceptually
similar to PD.

The next chapter will discuss the Program Demultiplexingoetion model in detail. It will cover the
evolution of programming methodologies and the role of mé#in current programs, qualitatively arguing
that methods are suitable for speculative execution. ltthén cover the execution model and the means to

achieve such an execution.



27

CHAPTER 3

PROGRAM DEMULTIPLEXING MODEL

Over the years, programming methodologies and styles hesue & dramatic change. Early computers
were programmed in assembly language, which gave way taggroging in first-generation of high-level
languages such as FORTRAN and BASIC. FORTRAN has contirmeshtain a popular language for writ-
ing scientific applications because of the advancementstonaatic parallelization. These languages were
followed by a more structured and modular procedural prognang style such as C, which led to modular
development, the division of a complex application into tiple files with separate compilation. Recent
trends have moved towards object-oriented programmirguiages such as C++, which further emphasizes
modularity. Despite the overheads when compared to a puogkegrogramming style, the object-oriented
style has gained popularity as it allows for a streamlinecelibgpment of large-scale applications. This has
helped in cutting down the chances of bugs, ease of maintalarge-scale programs, and facilitating the
reuse of code across different applications. The most tetmrelopment in programming languages has
been the prolific use of managed object-oriented languagdsas Java and C#. These languages have been
gaining significance because of their object-oriented auogning style, and benefits such as automatic
garbage collection of allocated but unused memory, and sgpety checks obtained from being executed
on a runtime system. Any proposed parallel execution mdualld be suited for the emerging multicore
systems and for contemporary programming style and largguayf should match the characteristics of
those styles, as programming practices determine theiqgahbigt of a parallel execution model.

PD leverages the programming style of encapsulating celetenputation as a method, to perform
speculative execution at that granularity. The focus of ttiapter is further discussion of this choice for
speculative execution and the framework of PD. This chdpterganized as follows. | present background
material on methods, their semantics and memory state, @ngitation into a sequential program. | then

provide reasoning behind the choice of methods for speealaecution in PD. Then, | discuss the PD
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execution framework, implementation sketch, and presentesexamples of the execution model from

benchmark programs.

3.1 Methods

A method, also referred to as a function, procedure, or aostiile, is a portion of code written to perform
subtasks within a larger program. In this dissertation, Il wge “method” to denote any of these variants
written in any programming language even though the diffesgnonyms have subtle, but not strict differ-
ences in connotations depending on the programming laegused. The general interpretation of the terms
is described next.

Subroutine commonly used in BASIC, is the most generic term.picedureis used to represent a
subtask that does not return any value back to the progracha&mctionis a procedure that returns a
value back to the program. Both the definitions are commos$peiated with the Pascal programming
language. Amethod commonly used in object-oriented languages, has a stdefaition, and denotes the
implementation of a subtask for a given “object” in the peogr The purpose of a method is to provide
a mechanism for accessing and modifying the private datadto an object, an instantiation of a class.
A method accesses private data of its object in a way consigtith the intended behavior of the object.
Rather than thinking of a method as a “sequence of commaikasinl subroutines, a programmer using an

object-oriented programming language will consider a me@tio be an “object’s way of providing service”.

3.1.1 Benefits of methods

A program is written as several methods, with each methodraggly defined in the program. The methods
can be called one or more times in the program and can be shétedther programs through libraries and
packages. Methods avoid the undesirable situation of tieygeeode that performs the same computation in
multiple places in the program. This saves space and allomwsster loading of the program into memory
and better use of cache space available in the hardware.olftettiso form a logical segmentation of the
entire problem, enable easier visualization of the strectif a large and complex program, make it easier
to debug and maintain, and can (often) be used by people ttherthe programmer who constructed the

method.
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gsort: quick sort:
326 pushl sebp 426 pushl sebp
327 movl %esp, %ebp 427 xorl Secx, %ecx
void gsort (double *a, int 1, int r) { 328 pushl Sedi 428 movl %esp, %ebp
int i, m; 329 pushl %esi 429 subl $12, %esp
330 pushl sebx 430 movl 12 (%ebp), %eax
i=1+1; 331 subl $32, S%Sesp 431 movl Secx, 4(%esp)
332 movl 12 (%ebp), S%Seax 432 movl Seax, 8 (%esp)
if (1 >= r) return; 333 movl 16 (%ebp), %edx 433 movl 8 (%ebp), %eax
334 movl 8 (5ebp), %edi 434 movl %eax, (%esp)
A 335 movl seax, -16(%ebp) 435 call gsort
} 336 mov1l -16 (%ebp), %esi 436 leave
337 movl %edx, -20(%ebp) 437 ret
338 movl -20 (%ebp), %eax
quick _sort (double *a, int n) { 339 incl sesi
gsort (a, 0, n); 340 cmpl %eax, -16(%ebp)
} 341 jge .L69
(a) C program code (b) Compiled assembly code

Figure 3.1: Compilation of methodgsort andqui ck_sort written in C, into assembly code. The figure
illustratesqui ck_sort passing the three parameter), andn to the methodjsort , qsort accessing
them, andysor t declaring/using local variables in stack.

3.1.2 Program state of a method

Computation in a method can access and modify two kinds afrpro state:local and global. | next

describe the typical use and implementation of these twodgrams.

Local state The local state is the program data that is not visible oattie method, and is commonly
implemented using a stack. The stack is a FILO (first in lag} stoucture and is a specially reserved part
in memory. A stack is used for local variables within a metland sometimes for passing parameters to
the method from a program. Every time a method is invokedetit @ new “frame” on the stack with a new
place to store its local variables. The variables are ahaayjise same offset within the frame, but the frame
can be at different starting addresses within the stack. nde method exits, the frame is removed from
the stack. This deallocates all local variables makingrzlpaof memory used very easy. One common way
for the program to provide parameters to a method is achibyetie caller method writing the parameter
values to its stack frame, and the callee accessing themtfreraller’s frame.
Figure 3.1 illustrates the compilation of a snippet of C pamy into assembly code Figure 3.1(a) is

the C source code, in which variablesandmare local togsort , as they are declared inside the method

gsort . Variablei is initialized immediately after the declaration. The satmethod in the program code

1The dissertation will present assembly code and stack tayased on the Intel x86 instruction set architecture to httie
simulated machine used for evaluation.
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isqui ck_sort and it calls methodjsor t with three parametes, the valued, andn. In Figure 3.1(b), |
present the code compiled into assembly language with the §é&¢ compiler and Q2 optimization flag.
The line numbers with respect to the original source codegimown in the figure) are on the left side of the
assembly lines. First, line 435 calls the methlymdr t from the methodjui ck_sor t . The parameters are
written in lines 431, 432, and 434 at different offsets in ¢he ck_sor t ’s stack framé. In gsort , the
parameters are accessed in lines 332, 333, and 334 andracistoegisters. Note that the register used for
addressing now is thebp register. In line 327, thebp register is assigned the value of thep register,
and the methodsor t reserves its stack frame by subtracting 32 out of the stackgresp (stack grows
downwards) (line 331). Thebp register is used bgsor t to access the parameters. During the call from
qui ck_sort togsort,the oldebp andei p pointers are saved in the stack. The stack layout during the
call and the frame semantics is shown in Figure 3.2. Thezetbe parameters gfsor t accessed by that
method are at offsets 8, 12, and 16 from the base po&tier The instruction pointer prior to the call to
gsort is located at offset 4 fronebp, and this value is used when the return instruction is exechy

gsort.

Global state The global state, also referred to as the program statesilslevito all program entities, but
may be semantically limited according to the specificatioha programming language, for example, in
object-oriented languages. The global state is often aeddsy a method by means of variables declared in
the global name space or by means of pointers passed to adrethmarameters. Typically, it is used for
data structures that are needed by several parts of thegpnagther than temporarily by the method.

The global state is usually implemented in a memory streckmown as the heap. The heap is a block
of memory that is managed by the heap allocator often imphtedein system libraries and operating
systems. The heap allocator routines suchmakl oc andfree (and the object oriented equivalents
new anddel et e) operate on the heap memory (such as requesting or releasnry blocks) as per
the semantics of the heap, keeping it consistent. A prograrst explicitly use these routines to acquire
memory as and when needed for its computation, and dealooamory after use. For example, when

memory blocks of a certain size are requested by the progrargllocator finds a free memory segment,

2This dissertation presents assembly code in AT&T syntaxir@ooperand appears first, followed by the destinationasper
of an instruction.
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updates its book keeping structures, and returns the mdoaaijon(s) of the allocated memory back to the
program. The heap allocator is responsible for allocatimgnory in a consistent manner to all programs
running in the system, and achieves it in such a way that aomaimi of memory is wasted.

The global program state modified by a method representsidieeceffects of a method. During a
method’s execution, the side effects are specified by thewet, and the global data accessed are specified
by the read set. The nature of these sets is defined by theapnogng language. For example, many
procedural languages usually allow methods to access akel changes to the entire program state. There-
fore, after the execution of a method, its changes could bélgito the remainder of the program. In
object-oriented languages, side effects of methods aem ofiore limited as object-oriented programs tend
to be more structured, written to access or make changesdbjeat with which they are associated with.
Managed object-oriented languages such as Java and C#epkacenore restrictions on the memory that
can be referenced by the program for guaranteeing the safdita accessed (type safety) and maintaining

compatibility across many architectures.

3.1.3 Semantics and calling conventions of a method

A method can be called from different parts of the program thedocation from where it is called by the
calleeis referred to as theall site The method may be called with one or more parameters, whicbften
used to specialize the computation in the method. A methognetarn a value back to the program (the
caller) and the program continues its execution with thernetd value, using it if needed.

Additional instruction(s) need to be placed in the prograuth the method to transfer control between the
program and the method. The call instruction saves proedahking information on the stack (specifically,
the ei p and ebp registers) and jumps to the method (program counter) spdcifith the destination
operand. The return instruction, the last instruction entered when executing the method, returns the
control flow back to the program by popping the conteeisg( andebp pointers) saved on the stack. The
return address is placed on the top of the stack, and theot@mteturned to the instruction that follows the

call instruction in the program.
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old %eip Higher
Memory

I old %ebp Addresses

fcn param #n

1 function 1

1
, Pparameters

fcn param #2 12 (%ebp)

fcn param #1 8 (sebp)
4 ($ebp)

old %eip

| old %ebp <—|%ebp|

local var #1 -4 (%ebp)

local var #2 -8 (%ebp)

saved %reg

saved %Sreg |-e—

Figure 3.2: Stack layout. The active frame is guarded bg#y@andebp pointers. The frame space is used
for storing local variables (shown local var #1 and #2) andngaregisters during the method’s execution.
The parameters are saved by the caller on its stack frameebitie call is made. After the call, the callee
method accesses the parameters from the caller’s staclthgitbp pointer. During the callebp andei p
pointers are saved. They are restored (popped from the) stéueln the called method returns.

Parameters

The parameters of a method, if any, need to be passed to itebgrdigram before the computation can
begin. Depending on the compilation model and the architeatf the hardware, different conventions are
followed for this purpose. In general, there are two commeans of passing arguments to a method. They

are:

1. Parameter values are written to registers by the progsénich are then accessed by the method. This
is an efficient means of passing parameters, as memory redds@mory writes are not necessary.
However, itis limited by the number of registers availalgethis purpose. For example, in the SPARC
architecture, which has a register file window of 32 regssténe caller can write the parameters to
eight “out” registers. On executing a call instruction to athod, the register window points to a

new set of registers but with the overlap of “out” registefshe callee with the “in” registers of the
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caller. Therefore, the method can access the parametessdpfiem the “in” registers. On the Intel
x86 architecture, registers are rarely used for passingnpeters because of their limited number.
Recent versions of GNU C and C++ compilers for the Intel x8hisecture, perform register based

parameter transfer as an optimization, often only withimmgilation unit (a program source file).

2. The default approach in case enough registers are nddlategior passing all the parameters or if the
register based convention is not followed, is to use thekstBise compiler generates code that writes
the parameters to specific locations in the stack. The mathndhen access its parameters from the
locations on the caller’s stack frame. Figure 3.2 illugsaihe mechanics of frames in the stack, the

locations of the parameters, and the local variables intduk s

Return value

Almost all architectures pass the return value of a methomutih a reserved register. For example, in the
Intel x86 architecture, the return value is often stored ieserved register such as the accumulator register
(eax). Some compilers perform special optimizations within enpdation unit (a program source file), to

use multiple registers to pass values between methods.

3.2 Role of methods in a program

Speculative threads in PD are composed of methods. To lapttigation behind this choice, | first begin
by describing the commonly prescribed steps for writinggpams and composing methods.

Methods allow programmers to decompose a problem into gesebtasks and enable them to write a
complex and lengthy program. The decomposition procesf issa matter of programmer’s choice and
may require experience and skill acquired over time. Alpons, programming languages, and software
engineering textbooks recommend pursuing a set of steps io ¢he process of choosing methods. For
example, in the boolart of Programming[105], Knuth elaborately describes his recommendatioms fo

developing methods and writing a program for a given problebniefly describe this next.

The whole program is divided into small number of pieces. hEatthese pieces may be

considered as methods, even though they may be called oxly. oifhese pieces can be
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successively refined into smaller and smaller parts, hasimgespondingly simpler jobs to do.
Whenever some computational task arises that is alreadyraog elsewhere, the programmer
may replace the occurrences with a call to a method, andmpetfte computation task in that
method. All methods constructed can be studied again tordete if any need to be enlarged,
for example, computation that is always performed just teefw after the use of the method.

Similarly, several methods may need to be merged if they atedconly once.

With programming languages such as C++, the above recomatiend are further supplemented with
object-oriented principles, which state that a programukhde comprised of individual components or
“objects” that coexist and act on each other. Objects areposed of data and methods; methods access
the data associated with the object, and any other speaiaittioned objects, according to their semantics.

(An important exception are static methods that are assatisith a class.)

3.3 Role of methods in PD

The above description strongly suggests that methods aagtachoice for speculative execution as they
provide an intuitive means for programmers to hold dependamputations. PD’s goal is to create concur-
rency in a sequential program’s execution by speculatiercuting methods in the program in parallel. The
execution of a method in a program is dependent upon anotégroais execution if a memory location in
its read set is directly in the write set of the other methodp@hdences between methods result in ordering
between methods, and this partial ordering should deterrtia execution order. However, a compiler,
inspite of any parallelism that may be available betweernous, cannot automatically parallelize a program
into multiple threads because of side effects (i.e., théeva@t) of methods that are not always identifiable
or ambiguous. Since static analysis of a method’s sidetsf{ec, lack thereof) is not possible, the compiler
assumes that all methods might have side effects and thatledheould be dependent upon any prior
method. This implies that the methods should be executdukimotal order in which they are arranged by
the programmer in the sequential program.

In PD, methods in a sequential program are “demultiplexedinfthe total sequential order, and exe-
cuted according to their data dependencies specified byattialpordering between the methods. However,

since the partial ordering is not guaranteed to be correxct,t@ ensure the sequential program order, the
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methods are executed speculatively. The process of dgmenlitig is to decouple a given method’s call site
and its execution. In sequential execution, the call site wfethod represents the beginning of execution of
that method, while the execution of a method in PD occursidpgeely on another processing core, usually

after it is ready, which is expected to be well before the sigdl in the program.

3.4 Motivating examples

Chapter 1 provided an overview of PD based execution moddltlis chapter, thus far, has discussed the
reasoning behind the choice of methods for speculativeutxec | now present some potential opportuni-
ties for PD based execution of methods in an application.

A software application is composed of many layers, eachrlayesents possibilities for PD based
execution. Examples include: (i) library operations on, fil®, network, and memory buffering, (ii) man-
aged system utilities (depending on the programming lagejusuch as garbage collection, (iii) application
modules such as data structure packages, software tes)@ati(iv) the actual application. Many of these
are equally amenable for software based parallelizatinfadt, managed runtime system features such as
garbage collectors are parallelized. Similarly, Java a#ido@ckages that provide abstract data structures
such as linked lists, hash tables, maps, queues, heapsftanevery efficient implementations, which
support concurrent execution when invoked by multipledbdsee However, as the integration of methods
becomes tighter in an application, the process of creatiftgvare threads becomes more difficult because
parallelism is neither easily identifiable nor readily d&flie. The notion of speculation and speculative
parallelization is an important feature that can creategoency from programs not easily achievable by
other means.

| begin with a simple example of a random number generatan frawol f benchmark in Listing
3.1. The program data that the random number generator théthomr andomaccesses arseed
andr andVar S, locations that are never touched by the program. The menedeyences are therefore,
clearly partitioned between the application aralcmr andommethod. For correctness, it is necessary
that memory operations to a given address are performedques@al program order. Therefore, the
Yacmr andommethod can speculatively execute, and provide (i.e., capth@ results of the execution

when it is called by the program (as shown in Figure 3.3).
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001 static int randVarS ; / x random nunber x/

002

003 #define A RAND 16807L / = good generator multiplier x/
004 #define M RAND 2147483647L [+ 2 % 31 - 1 %/

005 #define Q RAND 127773L I« m/ a x/

006 #define R _RAND 2836L /[« mnmod a */

007 #define ABS(val ue) ( (value)>=0 ? (value) : -(value) )

008

009 / x

010 M _RANDD may have to be changed on different systenms. On ultrix
011 it is as bel ow

012 #define M_RANDD (double) 1.0 / 2147483647.0

013 =/

014 #define M _RANDD 4.65661287524579690000000000000000e- 10

015

016 /* returns a random nunber in [0..2%31 - 1] «/
017 int Yacmrandon()

018 {

019 register int k_rand ;

020

021 k_rand = randvarS / Q _RAND ;
022 randVarS = A RAND * (randVarS - k_rand x« Q RAND) - (k_rand x= R _RAND)
023 if( randvarS < 0 ) {

024 randVarS += M RAND ;

025

026 return( randvarS ) ;

027

028 } /% end acmrandom x/

029

030 Yset_random seed( seed )
031 int seed ;

032 {

033 seed = ABS(seed) ;

034 if( seed == 0 ){

035 seed++ ;

036

037 randVar S = seed ;

038 } /* end set_random seed x/
039

040

Listing 3.1: Speculative thread for the methéacmr andomin t wol f

Library operations such as dynamic memory management,onletdile buffer, input stream manipu-
lation operations are all opportunities for PD. In Figuré,3.present an example of program performing
memory allocations and deallocations in the program. Mgmmeanagement is an integral part of any
program as it enables using the heap memory space for sfmiggam data of an application. The memory
allocator itself has bookkeeping state to keep track of #@hmemory that is separate from the application’s
program state. Execution of these methods rarely intexfesieh the program except for the parameters
(which could create dependencies with the program and @omturrency) and the value returned by the

method. For exampleval | oc’s ordering with other memory allocator calls (suchf aee, r esi ze, and
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Yacm_random ()
Yacm_random ()

Yacm_random ()

Yacm_random () r

Yacm_random ()

Yacm random ()

Figure 3.3: On the left is a sequential program with call¥ae mr andomin benchmark wol f . On the
right is a PD based program with calls Yacmr andomseparated and executed speculatively. The gray
box denotes speculative execution.

other methods that modify bookkeeping structures of merabhogator) is the only requirement for correct

execution.

Examples from SPEC CPU2000 integer suite | now provide some examples from integer programs
in the SPEC CPU2000 suitggap implements a language and library for computing in groummteIn

the following example, | consider the methbdwBag for PD. The method has over 500 call sites in the
program, and contributes 17% of the total run time (when rith train inputs) — 7% fromNewBag, and
10% from theCol | ect Gar b method that is executed withilewBag. NewBag takes two parameters,
thet ype of bag to be created and #$ ze. Thet ype parameter can take 30 possible types but is limited
to very few depending on the method that cAlésmBag. Thesi ze parameter can also be easily identified
depending on theype. For example, thei ze is always four whem ype = T_LI ST. In executions with
train inputs, the method was invoked 6.8 million times a6 of the calls the parameters used were the
same as that of a previous cdllewBag is likely to be a good candidate for PD based execution becaius
easily identifiable parameters, frequent invocations,thadask of mostly creating and initializing structures

for the program, that are unlikely to conflict with the restlud program.
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A = malloc ()
B = malloc ()
A = malloc () <
free (A)
-
S
B = malloc ()
free (3)

Figure 3.4: On the left is a sequential program with callsh®rmemory allocator methods. On the right is
a PD based program with callst@l | oc andf r ee separated and executed speculatively.

ncf spends 22% of its run time in methodea_conput e r ed_cost and
bea.i s_dual _i nf easi bl e with the average number of instructions executed in the austhbeing 9 and
12, respectively (Listing 3.2). The methods are invokediado93 million times each in an execution with
train inputs (lines 016, 017, 024, and 02%ea_conput e_r ed_cost computes the cost (an arithmetic
expression on the benchmark’s data structure arc) and feéddea_i s_dual _i nf easi bl e, which
returns a boolean value based on an expression (lines 0@B}ok®a_conput e_r ed_cost is dependent
on the arcs and its potential which is updated by the metheftdr esh_pot enti al and sometimes by
updat e_t r ee. With PD, the methodbea_conput e_r ed_cost and
bea.i s_dual _i nf easi bl e can be triggered when an arc (or its potential) is updatezifvilo methods
can concurrently execute for different updated arcs. Daddyais indicates that the distance (measured in
the number of dynamic instructions executed) betweeir esh_pot ent i al andupdat e_t r ee, to the
call sites of these methods in the program, is three time® tiam the number of instructions the methods
execute. Suitably forked, their speculative executionddcbe overlapped with the program, as illustrated

in Figure 3.5(b).
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001 cost_t bea_conpute_red_cost (arc) {

002 return arc->cost - arc->tail->potential + arc->head->potential
003 }

004

005

006 int bea_is_dual _infeasible ( arc, red_cost ) {

007 return ( (red_cost < 0 & arc->ident == AT_LOVER)

008 || (red_cost > 0 && arc->ident == AT_UPPER) )
009 }

010

011 arc_t =*primal _bea npp( m arcs, stop_arcs, red_cost_of _bea ) {
012 if( initialize) {. . . } else {

013 else {

014 for( i =2, next =0; i <= B & i <= basket_size; i++ ) {
015 arc = pernfi]->a

016 red_cost = bea_conpute_red_cost( arc );

017 if ( bea_is_dual _infeasible ( arc, red_cost ) ) {

018 L

019 }

020 }

021 . . .

022 for( ; arc < stop_arcs; arc += nr_group ) {

023 if( arc->ident > BASIC) {

024 red_cost = bea_conpute_red_cost( arc );

025 i f( bea_is_dual _infeasible( arc, red_cost ) ) {

026 Lo

027 }

028 }

030

Listing 3.2 Speculative  threads for  methodsbea_conput e_r ed_cost and
bea.i s_dual _i nf easi bl einncf.

vpr is a FPGA placement and routing application. It spends 86%safun time in operations on
its heap data structures. 7% of its run time is fram oc_heap _dat a (Listing 3.3), a method to al-
locate memory in the heap structure. The program spendsesieof the 86% inget _heap_head,
expand_nei ghbour s, node_t o_heap, andadd_t o_heap with its routing inputs. The application
calls these methods to alter the value of elements in the, tgtpthe head of heap, and insert a new
node onto the heap, respectively. | illustrate PD, in FigBu&a), with the simple example of method
al | oc_heap_dat a, shown in line 003 in Listing 3.3. The method allocates a &ufrdata if
heap_f r ee_head is not set; otherwise, it recycles the recently freed chuhfnemory by the method
free_heap_dat a, as shown in lines 013 to 021. Therefore, speculative ek®tofal | oc_heap_dat a
can be forked when the call site bkap_f r ee_head or the call site ofal | oc_heap_dat a during the
previous invocation are reached.

craf ty is a computer chess program. Since it is an automated garyiagkpplication, it spends its

execution time evaluating the chesshoard, planning itsesicand eventually making them. A number of
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Search () > MakeMove () jUnmakeMove ()

(@) Speculative threads MakeMove and
UnmekeMoveincrafty

refresh potential()

»
*bea_compute_red cost () bea_compute_red cost()

bea_is_dual_infeasible() bea_is_dual_infeasible()

S

(b) Speculative threadbea_conput e.red_cost and bea.i s_dual _i nf easi bl e in
ncf
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Figure 3.5: lllustrations of PD based speculative exeagtmf methods from benchmark programsaf t y

andncf

001

002 static void node_to_heap () {

003 hptr = alloc_heap_data ();

004 . . .

005 add_to_heap (hptr);

006 }

007

008 static void free_heap_data (hptr) {

009 hptr->u.next = heap_free_head;

010 heap_free_head = hptr;

011 }

012

013 static struct s_heap xal |l oc_heap_data (void) {
014 if (heap_free_head == NULL) {

015 /'« No el ements on the free list «/
016 heap_free_head = nmy_mall oc (NCHUNK % sizeof (struct s_heap));
017 Lo

018 }

019 tenp_ptr = heap_free_head;

020 heap_free_head = heap_free_head- >u. next;
021 return (tenp_ptr);

022 }

025

Listing 3.3: Speculative thread for methatll oc_heap_dat a in benchmark pr
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001 BI TBOARD AttacksTo(square) {

002 regi ster Bl TBOARD att acks;

003 Lo

004 att acks=And(w_pawn_at t acks[ squar e], Bl ackPawns) ;

005 attacks=0r (attacks, And(b_pawn_att acks[ square], Wi t ePawns) ) ;
006 attacks=Or (attacks, And(kni ght _attacks[square], O (Bl ackKni ghts,
007 Whi t eKni ghts)));
008 attacks=0Or (attacks, And(AttacksBi shop(square), Bi shopsQueens));
009 attacks=Or (attacks, And(AttacksRook(square), RooksQueens));

010 attacks=0r (attacks, And(ki ng_attacks[square], O (Bl ackKi ng,

011 Wi teKing)));
012 return(attacks);

013 }

014

015 int ValidMove (ply, wtm nove) {

016 . . .

017 . . .

018 case king:

019 i f (abs(Fron(nove)-To(rove)) == 2) {

020 . . . if (('(WiteCastle(ply)é&)) ||

021 And( Cccupi ed, Shiftr(mask_3,1)) ||
022 And( AttacksTo(2), Bl ackPi eces) ||
023 And( Att acksTo(3), Bl ackPi eces) ||
024 And( AttacksTo(4), Bl ackPi eces)) .
025 else if .o

026 And( Cccupi ed, Shiftr(mask_2,5)) ||
027 And( AttacksTo(4), Bl ackPi eces) ||
028 And( Att acksTo(5), Bl ackPi eces) ||
029 And( AttacksTo(6), Bl ackPi eces)) .
030 .o

031 And( Cccupi ed, Shiftr(mask_3,57)) ||
032 And( AttacksTo(58), Wi tePieces) ||
033 And( Att acksTo(59), Wi t ePi eces) ||
034 And( Att acksTo(60), Wi tePieces)) .
035 .o

036 And( Cccupi ed, Shiftr(mask_2,61)) ||
037 And( Att acksTo(60), Wi t ePi eces) ||
038 And( AttacksTo(61), Wi tePieces) ||
039 And( Att acksTo(62), Wit ePi eces)).
040 }

042

Listing 3.4: Speculative thread for methétlt acksTo in benchmarlcr af t y

methods can benefit from PD of whicki t acksTo is a method where the application spends 6% of its
execution time (Listing 3.4, call sites in lines 022 to 03%he At t acksTo method, used to produce a
map of all squares that directly attack the specified squiaes(001 to 012), is called by several methods in
the program with easily identifiable parametéraj i dMove, which is used to verify that a move is valid,
is one of them. The speculative executionfft acksTo can, therefore, be forked at the beginning of
execution ofval i dMove method (illustrated in Figure 3.5(a)).

Listing 3.5 presents another examplecinafty. Sear ch is a recursive method to implement the

minimax search (lines 001 to 014). The method first checkmisge, then calls thivakeMove method
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- )
free heap data () ValidMove () “|attacksTo() [JAttacksTo ()
> alloc heap data () AttacksTo () AttacksTo()
- - AttacksTo() JAttacksTo()
«
~ >y alloc_heap_data ()
(a) Speculative threaall | oc_heap_dat a in vpr (b) Speculative threadt t acksToincrafty

Figure 3.6: lllustrations of PD based speculative exeagtiof methods from benchmark programgr
andcrafty

(line 016), and then in some cases decides to undo by caliingik e Move method (line 026). This method
accounts for 10% of the application’s execution time andaited at several other points in the program;
the example in Listing 3.5 is one call site. The parameterd/bkeMove andUnmakeMove, as well as
its dependencies, are satisfied at the beginning oSt ch method. Suitably forked, the speculative
executions can be overlapped with the program code exeauiates 002 to 015 (as illustrated in Figure

3.6(b)).

3.5 Program Demultiplexing framework

In this section, | provide a sketch of an implementation oftR&t will be further discussed and evaluated
in this dissertation. The PD framework is illustrated in ufig 3.7. Suppose, a methddat a given call
site has been chosen for speculative execution. tiipger, a component of PD which, when “fired”, i.e.,
its conditions satisfied, forks a speculative thread fordhl site of A. In order to begin the speculative
execution ofA, the parameters, if any, are generated by speculativelyuérg another component of PD,
the handler The handler may then invok& with these parameters depending on its control flow. The
parameters are recordeispeculatively executes, while the read and write sets dfpleeulative execution
are monitored and gathered at the end of the execution. 8eprculative executions may be ongoing on

different processing cores. A speculative execution id loetil it is used or invalidated. It is invalidated
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001 int Search (al pha, beta, wm depth, ply, do_null) {

002 P

003 while ((current_phase[ply]=(in_check[ply]) ? NextEvasion(ply,wm :
004 Next Move(ply, wm)) {
005 extensi ons=(threat) ? 0 : -1 NCREMENT_PLY;

006 if (Captured(current_nove[ply]) && Captured(current_nove[ply-1]) &&
007 R

008 ) {

009 if (Piece(current_nove[ply])==pawn &&

010 ((wtm && To(current _nove[ply])>H5 && Tot al Bl ackPi eces<16 &&
011 L

012 p_val ues[ Captured(current_nmove[ply])+7]) {

013 L

014 1

015

016 MakeMove (ply, current_nove[ply], wm;

017 if (first_move) {

018 if (last[ply]-last[ply-1] == 1) {

019 ext ended_r eason[ pl y] | =one_r epl y_ext ensi on;

020 one_repl y_extensi ons_done++;

021 if (extensions < 0) extensions+=ONE_REPLY_TO_CHECK;

022 }

023 val ue=- ABSear ch( - bet a, - al pha, ChangeSi de(wt ),

024 dept h+ext ensi ons, pl y+1, DO NULL) ;

025 if (abort_search) {

026 UnMakeMove(ply, current _nove[ply], wm;

028

Listing 3.5: Speculative threads for methddsk eMove andUnMakeMove in benchmarlcr af ty

if the program commits to a location that is in the read®s@utstanding speculative executions available
are searched when a PD marked call site is reached by theapnagrby another speculative thread (called
the requestor in this dissertation). Instead of executignhethod then at the call site, the results of the
execution are used if they have not already been invalidated if the parameters that were used for the
execution match the ones at the call site. If a speculatieewgion ofA is in progress, the requestor may

decide to wait for the execution to complete, or abort thesladive thread and instead execute the method.
For an illustration, see Figure 3.8. Next, | enumerate thglementation support that is needed, each of

which will be discussed in more detail in the following seos.

1. Choosing methods and the respective call sites for paifigr PD based execution.

2. Generating handler(s) for a chosen call site so that thdlbacan set up the speculative thread and

provide parameters for the speculative execution of thénaethat it may call.

3This description assumes that the write set is maintainedbgte granularity. However, a practical implementation oaly
collect the write set at a block level (for example, an entisehe line) and must therefore invalidate a speculativeathif a
committed store is in a block that is in the read set and alslodnvrite set.
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Figure 3.7: Program Demultiplexing framework. The framewilustrates PD based execution of a call
site for methodA in the program. On the left side is the sequential executf@amogram with the call site
of A and its execution shown. On the right is the PD based executith the speculative execution &f
when the corresponding trigger is fired, and the call sitd n$ed to commit the speculative execution.

3. Generating trigger(s) for a chosen call site, which isallgiset to fire when the dependencies of the

handler and the method are satisfied.

4. Determining hardware support to perform speculativegxens on processing cores, storing the re-

sults of speculative threads, ensuring their correctragssfinally committing the speculative threads.

3.5.1 Methods for PD

Suitable methods and their call sites need to be chosen fBE&d execution. Itis desirable to speculatively
execute all methods in a program. However, this is not alveeysevable due to two reasons. First, the
program may have limited parallelism between methods elibeause of the characteristics of the problem
being solved or because of programming practices. In therlaase, a program may spend significant
execution time in a few methods; speculative execution mfelanethods increases the probability of

violating dependencies resulting in wasted executionsois#ly, hardware resources needed for speculative

“The size of a method is measured by the number of dynamiaiigins executed.
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Figure 3.8: Program Demultiplexing illustration in whidmetprogram waits for the speculative thread to
finish execution before the thread can be committed. Thergnognay instead abort the speculative thread
and execute the method at the call site.

execution, such as limited processing cores and cacheroespuestricts the extent of speculation that may

be performed.

3.5.2 Handler

In sequential execution, a method is invoked at a call sithénprogram. Any parameters needed for the
method are communicated by the callee through the stacisteeg) or other alternate means. With PD,
a method is speculatively executed when the correspondipgget fires. Therefore, some other means is
necessary to provide the parameters. The handler consigtegram code generated specifically for PD
with means to generate the parameters and to call the metittothe parameters. The speculative thread is

said to have completed when the end of the handler is reached.

3.5.3 Trigger

A trigger is used to begin the speculative execution of tle@eated handler and is chosen to indicate the

readiness of a speculative thread. The separation of ggetrsite from the call site determines how much of
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the speculative execution can be overlapped with the pnogirad the extent of performance benefits. In this
dissertation, the trigger is specified as conditions basetti® program counters of committed instructions.
For this reason, speculative threads can be forked only éyntim-speculative program and not by other

speculative threads.

3.5.4 Handling speculative threads

When a trigger fires, a free processing core is found, andgbeusative execution of the handler begins.
Depending on the code (and the control flow) in the handlenal invoke the method, and begin the specu-
lative execution of the method. Hardware support is useatfopm speculative execution, which involves
monitoring accesses made during the execution and engbahthe architected state of the program is not
modified. This prevents the execution of instructions thatify privileged state or instructions that may
have unspecified side-effects in the speculative threadin@the speculative execution of a method, the
read and write sets are tracked. Speculative threads donmohanicate data values with each other. Finally,
at the end of the execution, the read set, write set and daya, tb be identified and retrieved, and stored
along with the parameters and stack pointer used, for futseeand to ensure that the speculative thread has
not violated any dependencies. Additional hardware sirastare needed to store the speculative threads,
and to determine any conflicts. The program, or any otherudgige thread, on reaching a PD marked
call site, searches for available speculative executionshiat call site. The results (write set and return
value) are committed if requested by the program, or intedrato the speculative state of the requesting

speculative thread.

3.6 Chapter summary

This chapter provided an overview on the PD based executmtemmFirst, | presented background on the
role of methods in programs, the semantics of compiling ehottand the motivation behind the choice
of methods for speculative execution. | then presentedrakexamples and opportunities for creating
concurrency with PD in benchmark programs. Finally, | présé an implementation overview of PD,
describing the software and hardware support needed forhie next two chapters will focus on the

implementation of PD.
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CHAPTER 4

AN | MPLEMENTATION OF PROGRAM DEMULTIPLEXING

A key factor that must be considered in order to constructngpiémentation of PD is to decide the
division of work between hardware and software. While somsgeats of the implementation, such as
profile generation and creation of handlers and triggeespeactical with software support, others such as
speculative execution of methods may require hardwareastippcause of lower overheads. In addition,
several tradeoffs such as the complexity and cost of harlingslementation versus the benefits of such an
implementation must be considered.

Implementations of PD can span several permutations ofW@eland software support requirements,
each with advantages and disadvantages. For example, veasafonly implementation of PD can be
deployed with no hardware support, in comparison to a hamehsaftware implementation that requires
non-trivial extensions to the current generation of maolicsystems. In addition, a hardware-software
implementation cannot always achieve the generality divgo implementation. It can implement only
specific common cases, and may leave the rest for the softawaandle gracefully. On the other hand, the
benefits achievable from software only approach may bedunitue to the potentially prohibitive cost of
software based speculative execution. A hardware-softwaplementation may be able to achieve greater
benefits with reasonable implementation cost and complexit

This dissertation describes a hardware-software implémtien of PD that | have chosen. It was chosen
not only because of its practicality, but also because of &k lof experience (and perhaps, the lack of
evaluation tools) in a software-only approach. The expedeand insights gained from the hardware-
software implementation may be used to refine the PD exetatadel and applied to other implementations
(such as the software-only approach). With that, this arapbvers the software support needed for the
implementation, and is organized as follows. First, | déscthe assumptions made for the implementation.
The profiling support needed for the implementation, andstees to be carried out for generating a PD

based application are discussed next. Finally, severahpbes from benchmark programs are provided.
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4.1 Software support

| assume the software support for the implementation of Piiiks on top of a binary rewriter or postpro-
cessor. The toolset operates on precompiled binary of thkcagion, and no part of the program code is
altered, rewritten, or restructured for PD. A compiler méspde used, but this would require access to the
source code which may not be available for some applicatiéndiscussion of the pros and cons of this
approach is deferred for later discussion (Section 6.2 touhe binary-level implementation, the software
support has to consider the compilation model of the prograar this purpose, | limit the dissertation to
the compilation model used by the GNU gcc compiler for C paogg. Due to simplicity of implementation,

| also assume that all parameters are passed through the ata@mmon case in the Intel x86 architecture
due to limited availability of registers. With these asstioms, the following aspects of the implementation
are performed by software. First, suitable methods and ¢tladlisites for PD based execution are identified.
Then, handlers and triggers are generated for these igehtiéill sites. Program analysis, both in the static
form as performed by the compiler, and dynamic form by medpsafile data (offline and/or online), are

crucial for accomplishing the tasks.

4.2 Profile information

The software support for the implementation relies on prafiformation. In this section, | describe the
different types of profile data used. | have broadly classifieem as: (i) execution time profile, (ii)) memory

profile, (iii) branch profile, and (iv) call profile. Detaild these profiles are discussed next.

Execution profile.  The execution profile, collected at a method granularityystgis of a method’s
runtime, instruction count, execution cycles, and theediffit call sites that invoke the method. It is used
to determine the run time contribution of a method'’s exexuto the total execution time of a program,
and for identifying suitable candidates for PD. A tuple iistprofile has the method’s program counter—
the program counter of the first instruction in the method kick the control is transferred when the call
instruction is executed by the program, the program cousitéhe call site, the number of instructions

executed dynamically, and the execution time spent in théhode The tuple may also have debugging
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information such as the method’s name, the call site’s lumalmer, source file name and other debugging

information. The list of entries in a tuple has the following

Call Site PC

Method PC

Execution Time Cycles

Number of Instructions Executed

Call Site Info (source file name and line number)

Memory profile.  The memory profile consists of a set of tuples, each tupleistimg of the program
counter of a load or store instruction, the type of instauttii.e., load or store instruction to heap or stack
location, address of the read or write operation, and thebeurof bytes. It is collected for the entire

program. A tuple in this profile would therefore have:

Program Counter
Instruction Type

Read or Write Address
Number of Bytes

The read set of a method’s execution is aggregated from thfdgwhich is then used to determine the
trigger points for the call site. The profile is also used talelish memory dependence between instructions,
especially for those that reference the stack as they adedder handler generation.

Creating a profile with tuples collected for the run of thegweon is likely to consume significant storage
space and offline processing time. On-the-fly memory prgfilimhere a profile is created in memory and
processed for the desired information at run time of the anog is preferred. This may be easily achieved
by instrumenting the program to create the profile, as welh @socess the profile. A practical way of doing
itis through libraries such as Pin [119] or DynamoRIO [26hiSTdissertation uses a similar implementation.

More details are presented in Chapter 6.

Branch profile.  The branch profile, also collected for the entire programsists of the program counter
of a branch instruction, the number of times the branch is@eel, and the number of times it is taken or not-

taken during execution. The profile also carries the braagets of indirect branches and calls encountered
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during program’s execution. These targets are used in mhtee address computation operand in the

indirect branch during generation of handlers. A tuple &ia%f:

Program Counter

Target Program Counter (for indirect branches)
Number of times Taken

Number of times Executed

This profile is used for handler generation to partly aid ited®ining whether a branch has to be included.
It is also used to determine the chances of control flow mésglation between the trigger site and the call

site.

Dynamic call graph. A dynamic call graph is a graph with nodes consisting of m@$hia a program,
in which a methodMis connected by the set of methods that ¢aliiuring their execution. A dynamic
call graph, unlike a static call graph, has only the set ofho@s that call a method during the execution
observed. This information, along with execution time peofif methods, is used determine the call sites
of a method for which handlers and triggers need to be geswefat PD based execution. The dynamic call

graph is also used along with the control flow graph for thestroietion of handler.

4.3 Static information

Besides relying on profile information, some key compilatstructures are also needed for the implemen-

tation. These are:

Control Flow Graph. A control flow graph is a graph consisting of basic blocks ard aepresenting

flow of control between basic blocks. It is used for the geti@meof handlers and triggers.

Data Dependence Graph. The data dependence graph, specifically the post dominatris required
to determine if the call sites chosen for PD are control ddpehon any branches between the trigger and

call site, and for the generation of triggers.
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As a side note, some profiling data used in the implementatiap be substituted with compiler based
static analysis. For example, memory dependence betwstngtions is required only for instructions that
reference the stack. Stack references are usually not amisgand, therefore, the compiler may be used
to determine dependent instructions without the need fanamg profile information. In addition, precise
analysis is not required from the compiler because of thewdptive nature of PD. For example, memory
profiling may be combined with ‘may be’ dependence analysisnfstatic alias analysis to determine

suitable triggers.

4.4 Overview of the implementation: the different phases

The rest of this chapter will describe the software suppmrttfe implementation of PD which comprises of
three essential steps: (i) choosing methods for PD, (iipgemg handlers for the chosen call sites, and (iii)
generating triggers for the chosen call sites. These tlpertions are not independent, but are inter-related,
as will be evident in the following sections. For exampleg doimplementation issues with generation of
handlers and triggers, or due to lack of performance bemneiilsspeculative execution, some call sites may
not be suitable for PD execution. They may be eliminated adidates for future PD based execution runs.
Similarly, determining the suitable handler for a call sitil depend on the location of the trigger which,
in turn, depends on the read sets of both the handler and ttidi€lo accomplish this, steps (ii) and (iii),
i.e., generation of handlers and triggers for the chosdrsitak, are iterated twice (for convergence). The
second iteration is used to perform some subtasks in a sepetijuires feedback from other steps, and vice
versa. The details are given in the discussion of the georrat handlers and triggers in Sections 4.6 and

4.7.

4.5 Choosing methods for PD

Not all methods in an application are suitable for spectgatixecution. First, the execution profile is used
to determine methods that contribute significantly to ttegpam’s total execution time. Then, the profile

is used to determine the frequently executed call sitesettiosen candidate methods. The intention is
not to consider call sites that are rarely invoked for spmtted execution, as they may not contribute to

performance improvements. The list of methods and cal gitevides an initial list of methods for the rest
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of the implementation. The set of call sites for PD based @@t may be refined during each step in the
implementation, and finally, when benefits of PD for the chasall sites are available from execution runs
(for example, through hardware performance counters). eSeatl sites may not be suitable for PD due to

the following reasons:

1. The generated handlers and triggers for a given call si#g not be able to achieve significant
separation between the trigger site and call site, thudifignconcurrency between the speculative
execution(s) and the program. This could be due to limitetio the handler implementation or due
to hardware restrictions on speculative execution. It mag be because of the program code as

written by the programmer and/or the execution model'silitglto extract parallelism.

2. The probability of the program reaching the call site @it trigger site may not be high. This may

result in speculative executions being discarded, thusimgaexecution resources.

3. Hardware resource constraints, such as storage liontain holding the write set of a speculative
thread, and the presence of privileged system calls insidethod, may prevent speculative execution

of a method.

4. The method called at a given call site may have limitedlfgdisan due to dependencies with the rest

of the program.

Several operations may need to be initiated by the hardwhenwa call site is reached. For example,
the non-speculative program or a speculative thread magy ttedetermine if there are any outstanding
speculative threads when it reaches a call site. Thesetaperanay be performed on encountering every
call instruction. Since it is unlikely that every method letprogram (including user and system library
functions) is going to be chosen for PD, a marker instrucpadmal | is placed before the call site of a
candidate method chosen for PD. Tcal | instruction has the upper and lower bound stack addresses
of parameters (or equivalently, the number of bytes occlpieparameters) as operands. As shown in the
following example, thgdcal | instruction indicates that there may be speculative thoedstanding for

the method r ee_heap_dat a, called by the followingcal | instruction.

novl Yeax, (%esp)
pdcal | 0x4
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cal l free _heap_data

The marker instructions are inserted statically to a birsary therefore, are conservative. The presence
of pdcal | indicates that the call sithayhave outstanding speculative threads. The hardware ontaxgc

apdcal I may trigger micro-code that initiates the search for antaatting speculative thread.

4.6 Generating handlers

A handler is speculatively executed when its associatgderiis fired. The primary purpose of a handler
for a given call site is to predict if the program’s controMiavould reach the call site, when the program is
at the trigger site and, if so, invoke the speculative exenutf a method with its parameters. The handler
which is not considered as part of the program, thereforepujgles the the method’s execution from its call
site.

There are several ways for achieving the task of a handleevatuate the reachability of the control
flow to the call site, the handler may evaluate branches tipa¢dicts will also be executed by the program
between the trigger and call site. Another approach woul luse a task predictor, similar to Multiscalar.

To provide parameters for the method’s speculative exacuthe following approaches may be taken:
() value-based prediction, (ii) programmer-specifieddizton, and (iii) computation-based prediction. All
of the three means are predictive because the execution afididr is speculative. Therefore, the values
generated by the handler must be verified with the actuahpeters provided at the call site. | next describe

these three means.

Value-based prediction. Parameter values for a method’s execution can sometimeighly korrelated
with values used for invoking that method in previous exenst A value-based predictor may be used
to collect the history of previous values and used to preitietparameters for the method’s speculative

execution.

Programmer-specified prediction.  Since programmers have the best idea of the program code in th
application, it may be effective to let programmers provide handlers. Programmer-specified handler

requires that the application writer provide alternate msez generating the parameters that can be executed
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at the trigger site. This approach would require programsagport and possible language extensions to

introduce handlers in the program.

Computation-based prediction. Instead of predicting the parameter values or requiring@mmmers to

specify them, a computation-based predictor obtains theegaby extracting some instructions “automati-
cally” from the program and executing that code. The instoms extracted from the program deals only
with the computation of the parameter values and, thergftrenot include any independent computation
that may be present in the program. The common means of dgiexgetas type of a handler is by the process

of backward slicing of dependent instructions that proviteparameter values at the call site.

Unlike value-based prediction, computation-based ptediénvolves recomputing parameters, i.e., per-
forming computation that is also performed by the programd, may have higher overheads because of its
execution. The backward slice to generate a predictor nsayiatroduce additional dependencies with the
program, which may limit the parallelism. However, valuesed prediction is only effective for certain call
sites with parameters that are repeatable across muftigleations. Programmer-specified handlers are also
beyond the scope of this work and require altering the pragrade of the benchmarks used for evaluation.
| choose computation-based handlers for the implementadis it is a generic approach applicable to any
call site assuming handlers can be generated to deal widnetit programming constructs. In the following
subsection, | discuss the process of generating handlenselays of backward slicing. | will present the
heuristic choices, handling different programming cars#, optional optimizations, and integrating them

to an application binary.

4.6.1 Backward slicing

Formally, the backward slice at a program pains$ the program subset that may affectt is a commonly
used technigue for understanding, restructuring, andgighg programs, and has been extensively studied
in the programming languages community [22, 191, 202, 208 goal of this work is to obtain handlers
for call sites through backward slicing of the program; tlgmeathm is not optimized to minimize space and

time overheads but merely designed for functionality.
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001 main:

002 pushl %ebp

003 nmovl %esp, %ebp

004  subl $24, %sp

005 andl $-16, %sp

006 | eal -4(%bp), Y%eax
007 subl $16, %esp

008 novl %eax, 4(%esp)
009 nmovl $.LCl1, (%sp)
010 cal | scanf

011 novl -4(%bp), Y%eax
012 movl %ax, (%esp)
013 call m

014 | eave
015 ret
016 m

017 pushl %ebp

018 movl %esp, %ebp
019 subl $8, %sp

020 movl $.LCO, (%sp)
021 novl 8(%bp), %eax
022 movl %eax, 4(%esp)
023 call printf

024 | eave

025 ret

Listing 4.6: Assembly listing of a simple program that readslue from the user and passes the value as a
parameter to methoah

A collection of backward slices obtained from the programmsied as a handler and acts as a computation-
based predictor of parameter values. Each slice is useddmpute a parameter value, and the first step is
to write the generated parameter value to the stack. (Natetke operation is performed backwards starting
from the call site and, therefore, writing a parameter védube stack is the first step.) The parameter values
must be written at the same locations as the call site willeathem, as the method will have to access the
values from these locations irrespective of whether theyspeculatively executed in PD or executed from
a sequential program. In the example shown in Listing 4.8, rsults in the inclusion of line 012 in the
slice of the parameter for methodwhich is called in line 013). Methorhis shown to access the parameter

value in line 021. The algorithm proceeds as follows.

The source registers for each of the stack writes of parametees form the elements of the
live-in set for the backward slicing algorithm. For the exadein Listing 4.6, it begins with

registereax.

For every register or condition code in the live-in set, tleresponding instruction(s) that
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writes to the register or condition code is determined; #aeyincluded in the slice, along with

any branches that the instruction(s) is/are control depengpon.

For every instruction in the slice, depending on its type, sburce register, scale, and index
registers, if any, are included as elements in the live-inlsecase of a branch instruction, the
condition code that is used to determine the decision of thedh is included in the live-in set.
In case of a memory load instruction, the address, if in thekstis included in the live-in set;

otherwise, the algorithm terminates.

For every memory address in the live-in set, which can onlalsack location, the corre-
sponding store instruction that writes to that memory asklie determined; the instruction is

included in the slice.

The goal is to terminate the backward slice of every liveatue with a load instruction to some heap
location. If the computation terminates with a load to alstlcation, the search continues for a store
operation that writes to that address, and so on. The abawa $euristics will produce a handler that
may have stack references in it, but will not have any contutanvolving the heap. This choice is
made because stack references are short lived comparesidatdnin heap, and are usually associated with
computations whose results are consumed immediately. elis¢lbond iteration, this generated handler is
suitably adjusted according to the location of the trigdénis process is discussed later in this section.

Several aspects of the program code need to be dealt withgdtive backward slicing process. They
include: (i) identifying memory handling instructions thare dependent, (ii) handling constant values,
(i) handling branches, (iii) handling other control flowrsctures such as loops, and (iv) handling inter-

procedural dependencies. These issues are discussed next.

Establishing memory dependencies

It is necessary to establish memory dependences betwegratmhstore instructions so that they can be
analyzed by the algorithm. Of particular importance to thergy algorithm are instructions that reference
the stack. Memory addresses for load and store instruatimm&e ambiguous at compile time, and available
only during execution. The memory profile is used to deteenniemory dependence between load and store

instructions. In some cases, this may not be accurate, swglifficult to establish dependencies especially
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001 nmovl Ox1, (%esp)
002 call m

Listing 4.7: Assembly listing of a simple program that catiethodmwith constant valud

with changing input sets and phase behavior in an applitatidowever, in this implementation, since
the handler generation algorithm deals only with depernidsnigetween instructions that reference stack
locations, ambiguity is not an issue. Stack referencesasdyrambiguous because they often deal with

local variables and the allocation is performed by the cdanpivhich can easily establish the dependencies.

Constants

The simplest case in the slice generation is handling cotsstaisting 4.7 illustrates an example in which
a live-in register’s source is a constant value. The lisfirgsents a call to methadwith constant valud..

The slice will terminate with the inclusion line 001.

Branches

Instructions in a backward slice may be control dependerdrenor more branches in the program. This
control dependence can be divided into two cases. The figst@aals with the reachability of the call site
from the trigger site. Consider Figure 4.1 that illustragpsculative execution for a call site. The trigger fires
during the execution of the program, forking the specutativead. Meanwhile, the program may execute
several branches and may or may not reach the call site,ualgnhot using the speculative execution that
was fired. To minimize the number of such wasted speculdireatls, branches that the call site is control
dependent upon, and instructions that compute those krarak included in the handler. For example, in
Figure 4.2 the call site favin block B3 is dependent on the branch evaluated in block Bl tuerefore, is
included in the handler.

The second case is the control dependence of an instrudtesides the call) included in a slice. To
illustrate this case, consider the example shown in Figuse #he parameter value itself is dependent on
the branch in block B1. Depending on the path taken, the vafluemay ben or m Both paths and the

branch are therefore, included in the handler.



58

PD based
Execution

Trigger site

Speculative
execution of
method M

Dynamic control flow graph

Call site

Figure 4.1: Reachability of the call site from the triggetesiShown in the figure is the dynamic control
graph (hence, not a straight line of committed instructidng branches and loops taken in the program).
The reachability of the call site will depend on the intermagel branches executed between the trigger site

and the call site.

Loops

Branches may introduce loops in a program. A loop must beighebandled because instructions in a
loop body may have cyclic dependencies. In this implem@mahandlers do not have loops but instead,
include instructions obtained by unrolling the loop in tliegram.

During the first iteration, a handler for a call site is getedavithout any knowledge of the trigger points
for that call site. In the second iteration, with the knovgef the location of trigger points, the code in the
handler is adjusted. There are three possibilities fordbatlon of the trigger points (refer to Figure 4.4 for
the control flow graph). They may be: (i) located outside tegplwhen the method has no dependencies
with the rest of loop body, (ii) located inside the loop whée tmethod has loop carried dependencies,
and finally, (iii) located inside the loop because of metsadépendence on loop body. Of these, case

(iii) is the simplest and requires no special handling. GC@sean have many implementations, and the
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Bl

N

B2 B3
call M
B1
bnz B3
B4 B2
br B4 B1'
B3
call M bnz B3'
dummy
B5 B4
br hend
B3'
1 BS call M
hend
(a) Control flow graph (b) Layout of the program (c) Layout of the handler

Figure 4.2: A call site for methollin basic block B3 that is control dependent on the branchaclkoB1.
The control flow graph, the layout of the program, and the Ul the handler in the binary are shown in

the figure.

Bl

e

B2 B3
X =n X =m

S

B4
call M (x)

B5

1

Figure 4.3: A call site for metholthat takes one parameter The value o is dependent on the branch
in block B1.

discussion is postponed to the end. Case (ii) may result andlar that steps forward several iterations and

then speculatively calls the method. Note that due to therittgn’s restriction on not including any store
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Bl

B4

!

Figure 4.4: lllustration of handler generation for loopsieTcall site for method is located basic block B3.
The trigger point for the call site is in basic block B2.

instructions to the heap, unrolling is not performed if ttezator is a heap location (the same is true if the
iterator is register allocated).

To further explain case (i), consider a simple example ofloam number generator being invoked
inside a loop, which is independent of the computation inltieg body. The best means to capture this
parallelism is to speculatively execute several calls érttethod in parallel. This may be done by placing
several triggers, explicitly or implicitly, by means of ardmy loop, that forks speculative executions of
the method. An alternate way is to include the loop in the karahd substitute the call instruction with
an “asynchronous call” to the method, which invokes the aall continues with the rest of the code.
This implementation takes a simpler approach and does mouéx the method in parallel, but invokes in

sequential order.

Interprocedural

Two types of interprocedural dependencies may be intratidceing the generation of a slice. In the first
case, the producer for an element in the live-in set may beetiien value of another method invoked by the

caller. In the example shown in Listing 4.8, methads called with parametex, which is the return value
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int g () {

/1 do sonme conputation

return 1

}
void f () {

x =49 ();
m (%)
}
void m(int x) {

o

Listing 4.8: Example code for interprocedural dependeneiben generating handler for method The
parameter valug is produced by another methgd

001 m

002 o

003 movl 8(%bp), %Yeax
004 o

005 ret

006 g:

007 -

008 movl $1, %eax
009 ret

010 f:

011 o

016 call g

017 nmovl %ax, (%esp)
018 call m

019 o

Listing 4.9: Example handler for code shown in Figure 4.8 P call site is in line 018y (which will be
copied during relayout) returns the value 1 which is progtide the parameter fon

of another method, called by the caller methadd. Slicing may proceed to include instructions in method
g. In the given example, the return value is not dependenttivélest ofgy. The instructions that are part of
the handler are shown in Listing 4.9. (The call targets mastdijusted and this process is discussed later.)
If slicing of the dependence is not possible, the algorithrminates at the point of return value dependence
and the trigger site for the execution will be set at this pwirthe program.

In the second case, the producer for an element in the liweimay be a parameter value. In the
example shown in Listing 4.10, the handler is generated fthodm called by the caller methogl. The
caller method is also called with the same parametely another methoti. Slicing may further extend

to all the call sites for the caller method by replicating trandler code for every dynamic call site, and
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void m(int x) {
/1 conpute with x

D S
}

void g (int x) {

/1 ... some conputation

m (x);

}

void h () {
X =

oo
g (x);
}

Listing 4.10: Example code for interprocedural dependenaivhen generating handler for method
Methodh calls methody with parametex which is passed on to methoa

continuing the operation for each one of them. This wouldlpoe multiple handlers for the given PD call
site. Otherwise, slicing terminates at the head of the icalkthod and the trigger is set to begin speculative

execution from this point.

4.6.2 Termination

An important decision in the generation of the backwardesicdetermining when to terminate the opera-
tion. The factors that need to be considered in the heuftitermination are the length of the handler, in
terms of the number of dynamic instructions, its contribtio the speculative execution, and the separation
that can be achieved between the speculative executiorhanchtl site of the method in program. More
computation in the handler increases the number of ingbnitin it. This increases the overheads of
speculative execution, but may also further the separatidmgger site and call site and improve the extent
of parallelism.

One other aspect that must be considered during slicingdéagare that a slice does not extend beyond
the trigger point for a call site. Figure 4.5 illustrates aarmple in which a method’s read set consists of
memory locationX. LocationX is written to by the program along the path of the backwarkslAfter the

trigger points for a method’s call site are identified, itlisas that the method cannot begin execution before
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Figure 4.5: Dynamic control flow graph of a program is showd backward slicing process for a call site
of methodMis marked. MethodMduring its execution reads from heap locatirwhich is written outside
of the method by the program and in the path of the handlertridger point for the call site d¥ican occur
no earlier than the assignmentXand the slicing process may be terminated here.

the write toX. Therefore, in the second iteration, the handler geneiatétue first iteration is trimmed to

ensure that head of all the slices in the handler do not extastithe corresponding trigger points.

4.6.3 Optimizations

Numerous opportunities exist for choosing the code for tedler; they were briefly discussed earlier in

this chapter. In this subsection, | discuss some optinuratto the handler. (None of these are implemented

in this dissertation.)

Multiple call sites.  The compute-based handler discussed in this dissertatignhiawve high execution
overheads, especially if considerable separation (inderfnexecution cycles) is needed between the trigger
site and the call site to overlap the execution of a spesaldtiread. The overheads of executing a handler
may be amortized if multiple call sites that share similanpatation due to their proximity in program use

the same handler. For example, consider a hammock with tivsites for methodMas shown in Figure
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Figure 4.6: Methodinvoked in bothi f andel se part of a condition. The implementation generates two
handlers for the two call sites.

4.6. In the implementation discussed in this dissertatiao, different handlers are generated for the two
call sites in blocks B2 and B3. Both evaluate the branch indBdetermine whether to cdill Instead, the

two handlers may be combined and the branch speculativaelyaed only once.

Infrequent paths.  The handler may be speculatively optimized, such as by eétian of infrequently
executed branches and substitution of dependent chaimstofictions with the result. Several other op-
timizations, proposed by other speculative parallel@@atproposals [61, 152, 210], can also be applied to

handlers. In general, these optimizations may affect tharacy of correctly computing the parameters.

Global data dependencies. The scope of handlers may be expanded and can be used toatéireome

data dependencies (besides parameters) between the nagithakde program. For example, as shown in
Listing 4.11, assume methadreads from variablg, a global variable written before the method is called
by the program. By expanding the scope of handler to includgkesvto the heap, and by capturing backward
slices of not just the parameters but also heap memory toaticcessed by the method, the extent for

parallelism for PD may be further improved.
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001 void f () {
002

003 g = val;
004 ...

005 m();

006 }

007

008 void m() {
009 int tenp;
010

011 ...

012 tenmp = g;
013 ...

014

015 }

018

Listing 4.11: Global variabley is written before methodnis called. Methodmaccesses the variabte
during its execution.

4.6.4 Incorporating handlers into program

Once the handlers are generated, they are incorporatethimtoinary. The program counters of the head
instruction of the handlers are associated with the triggg€he handlers and triggers are laid out in separate
segments in the binary (see Figure 4.7). For comparisonrafpeters generated by the handler and at the
call site,pdcal | instructions along with parameter bounds are insertedrbdfee the call to the method

in the handler. Instructions that do not alter the contralflre incorporated in the handler without any
alterations. Branch targets are altered to jump to locatieithin the handler and not back to the program.
An example is shown in Figure 4.2, in the form of control flowgin. The branch in block B1 is included in
the handler and, therefore, its target is changed from B33to IBthe branch is not taken, the handler falls
through to a dummy block (the handler does not have any ict&ins for the corresponding block B2), and
terminates.

Another example in Listing 4.12 illustrates the handlerrfathodmin Listing 4.8. Since the handler
includes instructions from another methgpda dummy method)- t is created in the handler. The code in
g-t is the subset of code frognin the program. Note that all stack pointer manipulatingririons (lines
002 to 005) are also included from the methgdto ensure that any stack referencegrt (all of which
obtained frong) are not altered. It is necessary that the handler execeteathtog- t ensure that theet

instruction included ig- t is matched. A handler is terminated witthand instruction.
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Candidate call sites

are marked with

pdcall and parameter
o o o bounds

Program
Code

Consists of
all handlers

Except for call
does not control
transfer to
program code

Handler
Segment

Trigger and
corresponding
handler are linked

Parameter bounds

marked with pdcall

Microcode to
evaluate triggers

Trigger
Segment

Trigger is linked
to handler head

Figure 4.7: Layout of the program with triggers and handl€all sites chosen for PD are prepended with
pdcal | instructions in the program code. The handler segment stsnaf all handlers laid out. Control
is transferred to the program only by a call instruction thétates the speculative execution of a method.
The trigger segment has the evaluate and register portiba#l the triggers. A trigger is linked to its
corresponding handler.

001 g-t:

002 pushl %bp

003 novl %esp, %bp
004 subl $24, %sp
005 |eave

006 novl $1, Y%ax
007 ret

008 handl er _head

009 call g-t

010 nmovl %ax, (%esp)
011 call m

Listing 4.12: Layout of the handler in the presence of a aaltiie code presented in Listing 4.8. A dummy
callg- t returns the valué which is saved to the stack, and is passed to the speculatestion ofm Note
that all instructions that manipulate the stack pointeg ere includedy- t to ensure that the references are
to the same location.



67

4.7 Generating triggers

The notion of a trigger allows initiating the speculativeeertion of a method at a point in the program
different from the call site. The separation of the call atgljer sites provides the capability to break from
sequential ordering, execute one or more methods out ofgmogrder concurrently, and later use the call
sites to determine when the speculative executions of rdstlifovalid, should be committed. The executions
have to be speculative and committed in program order toigeeae notion of sequential execution, and
because triggers are only indicative of when speculaties@ions may begin, not definitive. If this had
been the case, the compiler could have parallelized thegmogtatically.

A trigger in PD is an expression composed of a set of conditidormally, predicates. A predicate
is constructed from program counter of an instruction wijuadity and inequality operators. A set of
conditions may be logically operated on bynd operators to create the expression for a trigger. The
expression, when evaluated to true, indicates that thgdrigas “fired”. An example of a simple trigger is,

(PC = 0x1234578)

In the example, the trigger fires when instruction at progcammter 0x12345678 commits.

(PC = 0x8495423 and previous PCs != 0x8593251)

In this example, the trigger fires when instruction with P@485423 commits, and the program did not
commit instruction with program counter 0x8593251 duritggexecution. (The instructions that are used
to match the != condition is dependent on the software micide generated for the trigger. This is further
described in Section 4.7.4.) One or more triggers are atdatea call site of a method in the program
that is a candidate for PD based execution. A trigger is uséadicate the “readiness” of a method. The
expression of a trigger is constructed to fire when the aasatihandler, and subsequently the method can
begin speculative execution and usually not violate ang dependencies. Choosing the expression for a
trigger is one of the key factors that determines the exteaseful speculation that may be performed for
the corresponding call site.

Conceptually, triggers for a call site can be derived from skmmatry, i.e., data requirements of the
method, during its executions. Method summaries are cortynsed in scientific program parallelization
by compilers to analyze and achieve parallel execution. aBse PD has to deal with programs with

unstructured and ambiguous memory references, summa@®icbe easily generated by a compiler
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through static analysis. For this, the implementatioresetin dynamic profile information. Even though
ambiguous memory references, i.e., pointer referencespnogram, can access any part of the program
state, in reality, programs exhibit bounds in addressesra@r€ed. This aspect either creates stable read
sets or stable producer code across several executions eftedn It is also likely to have methods with
unrealizable triggers in this implementation.

The steps involved in the generation of trigger for a givelh site of a candidate method chosen for
PD will be covered in the rest of this section. This processtrve repeated for every call site chosen for

speculative execution in the program.

4.7.1 ldentifying trigger points

The first step in determining the trigger for a call site is &tedimine what the trigger points are. A trigger
point, specified for every execution of a given method’s sé#, represents the point or instance in the
sequential execution of a program when the read set (i.a,rdguired) for the execution of the method and
its handler is available. If the speculative execution bggit this point, the method will be able to execute
speculatively without being invalidated for dependenadations. The handler is also included in the read
set, and in determining the trigger point, because a metaodat speculatively execute without it.

To determine the trigger point for a given call site’s examutthe memory profile is used to collect the
read set of the execution of the method and its handler. Tinisrearizes the method’s data requirements for
speculative execution. The read set is the set of all mensoatibns that are accessed during execution and
are not provided by the execution. Therefore, if in an exeautocation X is written first, and then accessed
later, that location is not part of the read set. With simitsoning, the read set will never have a memory
location that belongs to the local stack frame. On the otla@dhthe read set may have references to the
caller’s stack, due to: (i) passing of a stack pointer as arpater, (ii) passing a parameter by reference to
the method’s execution or, (iii) handler's dependencidte dependence to the caller’s stack in cases (i) and
(i) are unavoidable in this implementation, while casg (lepends on the generated handler.

Having obtained the read set, the memory profile is again tesddtermine when it is available during
the program’s execution. The last write that completesdhd set’s requirements is ttrgger pointfor that

execution. Figure 4.8 reviews the steps discussed for thergecase when the read set has no references
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Figure 4.8: Identifying trigger point for an execution of thed A. The trigger point is found by collecting
the read set of the execution of the method and its handledetedmining when the read set is ready during

the sequential execution.

Sequential
Execution
Handler
Trigger A
Point
> Read Set of available

Handler
with Stack
Dependence

/

Figure 4.9: Identifying trigger point for an execution oftined A which, along with its handler, is dependent
on a value in the caller’s stack frame (caller meti@shaded gray). The trigger point cannot be any earlier
than the creation of that value in the stack frame.
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to the caller's stack. The trigger point for the executionAo@nd its corresponding handler is identified
and shown in the figure. Figure 4.9 is a similar example, bustilates trigger point in the case of stack
dependence in the read set. Assume that the stack refesetocthe caller’s stack (the caller is shown with
gray shading in the figure), the trigger point cannot be mlaaglier than the creation of the dependent value

in that stack frame.

4.7.2 Collecting trigger points

From the program’s execution, several trigger points allected for the chosen call site. The goal is not
to observe all executions of that call site, but to achievedgooverage by collecting a large set of trigger
points. The trigger points may not always be unique due tore@sons. First, executions of the call site
may have varying read set requirements depending on thmptees passed and the program state accessed.
Second, the program may exercise different control flowgstmeach the call site. The set of trigger points

will depend on the application, its characteristics, andéhavior to different input sets.

4.7.3 Specifying triggers

The final step is to take the set of trigger points from the ioev step and produce triggers for the call
site. The goal is to ensure that the trigger for a call sitesfinea timely fashion, i.e., speculatively execute
a method before its call site, but also without violating algpendencies of the program. The burden
of choosing call sites for PD and determining suitable &iggfor useful speculation is on the software
implementation.

One of the first requirements that will determine whetherradidate call site can be chosen for PD is
the cardinality of the trigger points set. Smaller cardigamplies lesser hardware requirements and easier
implementation, and is practical when a method has a stabtégset due to control flow convergence and/or
stability in program code that produces the read set for ththau's execution. Experimental results for the
benchmark programs evaluated in this dissertation inglitteit methods that are small to medium (relative
to the benchmark program'’s largest method, measured irstefislynamic instructions executed), and tend
to have a small set of trigger points (under three). In addjtthe cardinality can be significantly reduced

with optimizations that are not studied in this dissertatiout some of which described later.
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Another requirement that determines the suitability oflagige for PD is the path taken by the program
after the trigger has fired. A low probability of the non-splative program reaching the call site implies
wasted speculative executions.

The trigger points are converted into triggers for a cak $itat passes the above tests. Before this
process, trigger points must be adjusted. First, to simpii€ implementation, the program counter of a
trigger point is transformed into the program counter oflést instruction in its corresponding basic block.
Second, the program counter of a trigger point that is inaittlether method chosen for PD based execution
is moved out of that method and replaced with the program teoummediately after the call site. This is
performed because speculative threads can only be forkadtfre non-speculative program in the current
implementation. To maximize benefits, trigger points thatanly inside methods that are definitely going
to speculatively executed must be promoted outside of thiteade This may be achieved by conservatively
promoting the trigger points outside of the method, and theesed on the feedback from a PD execution,
adjusting if necessary.

After the transformations, every element in the triggemnpseet is converted to a trigger. The trigger for
a given trigger point is the ‘logical and’ of its equality, cathe negation of all other trigger points which
dominate it. This ensures that multiple triggers do not fined given call site and fork many speculative
threads. Two examples of this issue are shown in Figure htiCFggure 4.11. Figure 4.10 shows a call
graph; method# andB call C, which callsM The trigger point foMis T1 when the program takes the path
A — C— M and T2 when the path B — C — M Both T1 and T2 should not fire when the program takes
the pathA — C— M Similarly, Figure 4.11 shows trigger points T1 and T2 lechin basic blocks B3 and
B4. Again, both T1 and T2 should not fire when the program eeschasic-blocks B1, B3, B4, and B5.

Only T2 should fire; otherwise, the speculative thread fdrkem T1 is unused.

4.7.4 Incorporating triggers in a program

Having generated the triggers for many call sites, the next s to specify these triggers and incorporate
them in a PD based binary. There are two approaches for p@rfgrthis, the static and the dynamic

approach. | discuss these options next.
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Figure 4.10: Dynamic call graph, in which methaandB call C, which callsM T1 represents the trigger
point in the path oAto Cto M and T2 represents the trigger pointBfo Cto M
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Figure 4.11: lllustration of two trigger poinf6l and T2 in basic blocks B3 and B4 for a call site (not
shown).
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Static approach

In the static approach, as the name indicates, the triggeispacified statically, i.e., placed directly into the
binary. During program’s execution, when an instructphf or k handl er Jpc is committed, it indi-
cates that a speculative thread has to be forked with exechéginning at program counteand| er pc.
The trigger is specified by the compiler, but the location rhayaltered if the application is executed on a
managed runtime system such as Java [116], C# VMs, or LLVMT1] or a dynamic code madification
system such as DynamoRIO [14, 26]. ISA extension to impleéntempdf or k instruction is the only
hardware support that is needed.

Since the static approach specifies a trigger by incorpayatidirectly into the application, it is most
useful for a call site that has only one trigger site. A cab $hat has more than one trigger points requires
the support for generalized expressions constructed bgrtmess described in the previous subsection. To

support this, the dynamic approach, described next, issmehted in this dissertation.

Dynamic approach

The dynamic approach is a generic way to support and evalugters. Any form of expression may be
specified for a trigger and evaluated with hardware support.

Unlike the static approach that incorporafidf or k instructions into a PD based program binary, in
this approach, triggers are implemented as micro-codepstspprovided by software and evaluated with
hardware support. Micro-code of the triggers in a prograelad out in the binary in a separate segment
as shown in Figure 4.7. The micro-code is a representatidhedfrigger’s expression in a form that can be
executed by the hardware for evaluation. The result of tlauation will determine if the trigger has been
fired.

To support this approach, the fundamental requiremenis Fardware are: (i) storage for holding the
results of the predicates, called trigger condition codgsters, (ii) logical operators and access/modify in-
structions extended or new instructions, to operate orritgpger condition code registers, and (iii) execution
resources to evaluate the micro-code by means of execution.

The storage for results of predicates are provided witlyénigondition code registers, bit-level storage

similar to condition code registers in Intel x86 architeet[92]. The first piece of the micro-code snippet for
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tsetpc X tO
tsetpc Y11

Listing 4.13:t set pc registers a program counter (first operand) and a triggeditton code register with
the hardware. The register is set when the program comnaiigigiiruction at the specified program counter.

cnpb $1, %1

je L1
testb %0, %0
j ne L2

L1:
tend

L2:
xor %0, %0
xor %1, %1
pdf ork handl er _pc
jmp L1

Listing 4.14: evaluate portion for evaluating a trigger.eTdode checks if 0 is 1, andt 1 is 0. If true, the
trigger condition code registers are reset, and a speeailditiead is forked to begin from program counter
handl er _pc. If false, the trigger ends withend.

a trigger is thaegisterportion. It deals with registering the program counterstédiiest with the hardware,
so that the corresponding trigger condition code regissgr be set for further use. For example, assume that
the trigger isPC = X and previ ous PCs ! = Y; the program counters of interest afandY used

in the two predicates. Each of these are registered with dingware usind set pc instructions (shown

in Listing 4.13), that instruct the hardware to set condititmdet 1 when program counteX is committed,
andt 2 whenY is committed. The working of these instructions is similamtatchpoints implemented in
hardware [92, 94, 180] and used to interrupt the executicghefprogram when it reaches a specified point
(for example, to transfer control to a debugger so that tbgnammer can examine the state of the program
and debug).

The second piece of the micro-code for a trigger is eélialuateportion, which evaluates the trigger
when one of the associated trigger condition code registerset. For the example, the evaluate portion
must determine if O is one and 1 is zero, and the micro-code is shown in Listing 4.14. If treuteof the
evaluation is true, a speculative thread is forked whichinsegxecution from the corresponding handler’s
program counter. Additionally, the evaluate portion muesdldvith resetting trigger condition code registers,
which is usually after the trigger’s condition is satisfied.

Similar to the static approach, a managed application wilable to remove triggers for a call site if
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the speculative executions are not beneficial, alter theradace mis-speculations or increase parallelism,
or insert new triggers for additional call sites. Theseuess can also help an implementation take into
account phase changes which may alter the trigger pointstaadd new methods to the hot path, or limit the
hardware resource requirements by removing some triggerinaerting new optimized ones. All of these
may be performed during the execution of a PD based prograedizn the feedback from the speculative
threads, similar to hot path optimizations commonly perfed in Java based managed applications [8, 9,

11,14, 30, 44].

4.7.5 Optimizations

The implementation thus far described is a first-cut meanddaving triggers for PD. Optimizations can
improve the efficiency of the execution model by minimiziig fnumber of trigger points for a given call
site, thus allowing a static approach for the implementatiominimizing the hardware support that may be
needed for the dynamic approach.

One form of optimization is to minimize the number of triggday identifying two or more call sites
(same or different methods) that have the same or similggeriexpressions. Such call sites may share the
same trigger which, when fired would invoke speculative etiens of multiple handlers.

The other form of optimization is to minimize the number éfger points and optimize the predicates
in a trigger. This may be achieved through several means. don®ore trigger points for a call site may
be eliminated and replaced with a trigger point in the cdritow convergent point. The extent of parallel
execution, and in turn performance benefits, may be sadtifidth this optimization. Figure 4.11 provides
an example in which a call site has two trigger poifisand T2 in the program. Instead of specifying two
triggers for the call site’s two trigger points, the triggeam be simplified by just specifying a single trigger
at the control flow convergent point blo&d. Note thatT1 is altered and is no longer the earliest point in
program when the read set of the method and handler is alailab

Another way to minimize trigger points is to use other formsgnstruction attributes such as memory
read and write addresses in predicates used in the expregsadrigger. In the illustration shown in Figure
4.12, a call site has two trigger pointsl and T2 at instructions that are modifying the same memory

location X. These trigger points can be alternately specified by aesipgtdicate based on memory write
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Figure 4.12: lllustration of two trigger poiniEl and T2 at a memory write instruction to variab}for a
call site.
addresg MEMAR == X) . (Itis assumed that no other part of the program modifies tamaony locationX

in this example.)

4.8 Examples

Having discussed the details of the software implemeniatiprovide examples of triggers and handlers
for some call sites chosen for PD based execution in SPEC GBQJibteger benchmarks. Each example
consists of two parts. The first part presents source cailggliwith line numbers from the program source
file. The second part is the handler generated for a calldstetified in the first listing. Triggers for the call
site will also be discussed.
Consider the example from benchmankol f in Listing 4.15. The handler generated for method

t er mnewpos_a, called at line 96, is shown in Listing 4.16. The handleridigtcontains the program
counter from the compiled binary, the method name, file namné line number of the instruction included
in the handler, and finally, the disassembled instructi®esides having the call instruction to the method,
and writing the parameter values to the stack, the handikrdes the branch evaluation in line 95 as the call

site is control dependent on it. The handler then perforinhalcomputation necessary for generating the
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13 ucxx2( )

14 {

15

32 delta_vert_cost =0
33

34 acellptr carray[ a ]

35 axcenter
36 aycenter

acel | ptr->cxcenter
acel | ptr->cycenter

37 aorient = acellptr->corient

38 atileptr = acellptr->tileptr

39 al eft = atileptr->left

40 ari ght = atileptr->right

41 aternptr = atileptr->ternsptr
42

43 bcel I ptr carray[ b ]

44 bxcenter
45 bycenter

bcel | ptr->cxcenter
bcel | ptr->cycenter

46 borient = bcellptr->corient

47 btileptr = bcellptr->tileptr

48 bl eft = btileptr->left ;

49 bri ght = btileptr->right ;

50 bternptr = btileptr->ternmsptr

51

52 newbi npenal = bi npena

53 new owpenal = rowpenal

54 newpenal = penalty

55

56 new ol d( bright-bleft-aright+aleft )

57

58 find_new pos()

59

60 allLoBin = SetBin( startxal = axcenter + aleft ) ;

61 alH Bin = SetBin( endxal = axcenter + aright ) ;

62 blLoBin = SetBin( startxbl = bxcenter + bleft ) ;

63 blH Bin = SetBin( endxbl = bxcenter + bright ) ;

64 a2LoBin = SetBin( startxa2 = anxcenter + aleft )

65 a2Hi Bin = SetBi n( endxa2 = anxcenter + aright ) ;

66 b2LoBin = SetBin( startxb2 = bnxcenter + bleft )

67 b2H Bin = SetBi n( endxb2 = bnxcenter + bright ) ;

68

69 ol d_assgnto_new2( alLoBin , alHiBin , blLoBin , blHi Bin

70 a2loBin , a2H Bin , b2LoBin , b2H Bin )

71

72 a = sub_penal ( startxal , endxal , ablock , alLoBin , alH Bin )
73 b = sub_penal ( startxbl , endxbl , bblock , blLoBin , blH Bin )
74 ¢ = add_penal ( startxa2 , endxa2 , bblock , a2LoBin , a2H Bin )
75 d = add_penal ( startxb2 , endxb2 , ablock , b2LoBin , b2H Bin )
76

77 newbinpenal += a + b + ¢ +d

78

79 bi npen_chg = newbi npenal - bi npenal

80 rowpen_chg = new owpenal - rowpenal

81 newpenal = (int)( roLenCon x (double) new owpenal +

82 bi npenCon * (doubl e) newbi npenal )

83

94

95 if( ablock !'= bblock ) {

96 termnewpos_a( aternptr , anxcenter , bycenter , aorient ) ;
97 termnewpos_b( bternptr , bnxcenter , aycenter , borient )
98 } else {

99 termnewpos( aternptr , anxcenter , bycenter , aorient )
100 termnewpos( bternptr , bnxcenter , aycenter , borient ) ;
101 }

Listing 4.15: Program code from benchmarkwl f. PD call sitet er mnewpos_a, line 96 and
sub_penal , line 72.
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0x8069603 ucxx2 ucxx2.
0x8069610 ucxx2 ucxx2.
0x8069623 ucxx2 ucxx2.
0x806962d ucxx2 ucxx2.
0x8069633 ucxx2 ucxx2.
0x8069643 ucxx2 ucxx2.
0x8069647 ucxx2 ucxx2.
0x806964a ucxx2 ucxx2.
0x8069654 ucxx2 ucxx2.
0x806965d uCxx2 ucxx2.

34 nov 0x80ea9%4c, %edx

34 nov 0x80eaab54, %eax

34 nov (%edx, %eax, 4) , Y%eax

34 nov Y%eax, Oxffffffd8(%ebp)
36 nov oxffffffd8(%bp), ¥ecx
37 novsbl 0x4(%cx), Yeax

37 nov Yeax, Oxffffffcd(%ebp)
38 nov 0x20( %ecx) , Y%eax

41 nov 0x8( %eax) , Yeax

41 nov Yeax, Oxffffffdo(%ebp)

0x8069a02 ucxx2 ucxx2.c 95 nov 0x80eaal8, ¥eax
0x8069a07 ucxx2 ucxx2.c 95 cnp % ax, 0x80eaadc
0x8069a0d ucxx2 ucxx2.c 95 je 8069e30 <.LBB14>
0x8069al13 ucxx2 ucxx2.c 96 nov 0x80ea9c4, %eax

0x8069al1l8 ucxx2 ucxx2.
0x8069alb ucxx2 ucxx2.
0x8069ale ucxx2 ucxx2.
0x8069a22 ucxx2 ucxx2.
0x8069a27 ucxx2 ucxx2.
0x8069a2b ucxx2 ucxx2.
0x8069a2e ucxx2 ucxx2.
0x8069a32 ucxx2 ucxx2.

96 nov oxffffffca(%bp), Yedx
96 nov oxffffffdo(%bp), ¥ecx
96 nov %eax, 0x8( %esp, 1)

96 nov 0x80ea9f 4, %eax

96 nov %edx, Oxc(%esp, 1)

96 nov %ecx, (%esp, 1)

96 nov %eax, 0x4(%esp, 1)

96 call 8050b80 <term newpos_a>

O0OO0O0000000000000O00000O0O0

Listing 4.16: Handler fot er mnewpos _a in benchmark wol f . For program code, see Listing 4.15.

0x80696d8 ucxx2 ucxx2
0x80696€9 ucxx2 ucxx2
0x8069751 ucxx2 ucxx2
0x8069756 ucxx2 ucxx2
0x8069762 ucxx2 ucxx2
0x8069764 ucxx2 ucxx2
0x8069767 ucxx2 ucxx2
0x8069769 ucxx2 ucxx2
0x806976a ucxx2 ucxx2
0x806976C ucxx2 ucxx2
0x8069773 ucxx2 ucxx2
0x8069779 ucxx2 ucxx2
0x8069789 ucxx2 ucxx2
0x806978f ucxx2 ucxx2

60 nov 0x80ea694, %ecx

60 nov 0x80eabe8, %ebx

62 nov 0x80ea9b0, Yeax

62 nov 0x80eaal4, %es

62 add %esi , Yeax

62 nov Y%eax, Oxffffff8c(%ebp)
62 sub %ebx, Y%eax

62 cltd

62 idiv %ecx

62 test Y%eax, Yeax

62 |s 8069ee0 <. LBE14+0x60>
62 nov Yeax, Oxffffffbd(%ebp)
63 nov 0x80eaal0, %ed

63 add %edi , Yes

0x8069791 ucxx2 ucxx2.c 63 nov %esi , Yeax

0x8069793 ucxx2 ucxx2.c 63 nov Y%esi, Oxffffff88(%ebp)
0x8069796 ucxx2 ucxx2.c 63 sub %ebx, Y%eax

0x8069798 ucxx2 ucxx2.c 63 cltd

0x8069799 ucxx2 ucxx2
0x806979b ucxx2 ucxx2
0x80697a2 ucxx2 ucxx2
0x80697a8 ucxx2 ucxx2
0x80698dd ucxx2 ucxx2
0x80698e2 ucxx2 ucxx2
0x80698e5 ucxx2 ucxx2
0x80698e9 ucxx2 ucxx2
0x80698ee ucxx2 ucxx2
0x80698f 2 ucxx2 ucxx2
0x80698f 5 ucxx2 ucxx2
0x80698f 9 ucxx2 ucxx2
0x80698f ¢ ucxx2 ucxx2
0x80698f f ucxx2 ucxx2
0x8069903 ucxx2 ucxx2
0x8069ed0 ucxx2 ucxx2
0x8069ed7 ucxx2 ucxx2
0x8069edc ucxx2 ucxx2
0x8069ee0 ucxx2 ucxx2
0x8069ee7 ucxx2 ucxx2
0x8069eec ucxx2 ucxx2

63 idiv %ecx

63 test %eax, Yeax

63 js 8069ed0 <. LBE14+0x50>
63 nov Y%eax, OxffffffbO(%ebp)
73 nov oxffffffb4(%bp), %ecx
73 nov oxffffffbO(%bp), Yedx
73 nov %ecx, Oxc(%esp, 1)

73  nov 0x80eaal8, %eax

73 nov %edx, 0x10( %esp, 1)

73 nov oxffffff8c(%bp), Yedx
73 nov %eax, 0x8( %esp, 1)

73 nov oxffffff88(%bp), Yeax
73 nov %edx, (%esp, 1)

73 nov %eax, 0x4(%esp, 1)

73 call 8049950 <sub_penal >
91 novl $0x0, oxffffffbO(%bp)
91 jnp 80697b8 <. LCFI 5+0x1ba>
91 lea 0x0(%si, 1), %es

91 novl $0x0, Oxf fffffbd(%ebp)
91 jnp 8069789 <. LCFI 5+0x18b>
91 lea 0x0(%si, 1), %es

OO0O0O00O000O0000O00000000000000000O0000000000O0

Listing 4.17: Handler fosub_penal in benchmark wol f . For program code, see Listing 4.15.
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parameters and terminates at line 34. All live values in #medher are terminated with accesses to the heap,
as per the handler generation algorithm. Therefore, spteeilexecution of the handler and the method (if
called), will only consist of heap locations in the read anttexset. The handler presented in Listing 4.16
is before it has been laid out; branch targets copied fronptbgram binary must be remapped to targets
within the handler. For example, line 95 in the handler ispog to a target back in the program. The
target is modified and set to the end of the handler, whichasrstructionhend placed immediately after
the call tot er mnewpos_a. The method has four parametartser npt r ,anxcent er ,bycent er , and
aori ent. To provideat er npt r , the handler includes code in line 41, which in turn depentdbne 38,
and line 34.anxcent er is a heap location with no computation in the program codevehbycent er

is computed in line 45, but is not included in the handler beedycent er is allocated on the heap. The
handler generation heuristic forbids store instructiothtoheapaor i ent is computed in line 37 which is

in turn computed in line 34. The trigger for the call site ie ttxample will depend on the data needed for
the handler and the method.

Listing 4.17 presents the handler for call site in line 72thmdsub_penal . Lines 62 and 63 in the code
are macros and they are included in the handler. The hamdliairates at line 60. After studying the trigger
points, the execution afub_penal is found to conflict with an instruction insidel d_assgnt o_new2
that is called in line 69. Therefore, the trigger is placediediately after line 69, and the handler is adjusted
accordingly. (It will just have the instructions associbteith line 73.)

Program code from benchmaplar ser is shown in Listing 4.18. The handler for call site
formmat ch_li st inline 510 is presented in Listing 4.19. After considerihg trigger points for this
call site, the method’s executions are found to have depmieke within the loop body. The handler,
therefore, increments the iterator twice (line 509) (deieed by the trigger points), and then calls the
methodf or mmat ch_l i st. Note that in this example, the trigger is set to line 510 hwviite handler
accessing data from the stack frame to perform its computati

A similar example from benchmax¢ af t y is shown in Listing 4.20. The handler for call site
UnMakeMbve, line 134, which is inside a loop, is shown in Listing 4.21.eTjamp target in line 126 will

be altered to jump thhiend during relayout. The trigger is placed immediately aftaelil27. Line 127 is
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509 for (w=start_word; w <= end_word; w++) {

510 n = m= formmtch_list(w, le, Iw re, rw;

511 for (; m=NULL; nFm >next) {

512 d = m>d

513 mar k_cost ++

514 /' in the follow ng expressions we use the fact that 0=FALSE. Could elim nate
515 by al ways saying "region_valid(...) !'= 0" «/

516 left _valid = (((le !'= NULL) && (d->left !'= NULL) && prune_match(le, d->left)) &&
517 ((region_valid(lw, w, |e->next, d->left->next)) |

518 ((le->multi) & region_valid(lw, w, le, d->left->next)) |

519 ((d->left->nulti) && region_valid(lw, w, |e->next, d->left)) |

520 ((le->multi && d->left->multi) & region_valid(lw, w, le, d->left))))

521 if (left_valid & region_valid(w, rw, d->right, re)) {

522 found = 1;

523 br eak;

524 }

525 right _valid = (((d->right !'= NULL) && (re != NULL) && prune_match(d->right, re)) &&
526 ((region_valid(w, rw, d->right->next,re->next)) |

527 ((d->right->nulti) && region_valid(w rw d->right,re->next)) |

528 ((re->nulti) && region_valid(w, rw, d->right->next, re)) |

529 ((d->right->nulti &% re->multi) && region_valid(w, rw, d->right, re))));
530 if ((left_valid & right_valid) || (right_valid & region_valid(lw, w, le, d->left)))
{

531 found = 1;

532 br eak;

533 }

534

535 put _match_list(nl);

536 if (found !'= 0) break

537 }

Listing 4.18: Program code froar ser . PD call sitef or mnat ch_l i st (), line 510.

0x8052eea region_valid parse.c 509 incl oxffffffed(%bp)
0x8052eea regi on_valid parse.c 509 incl oxffffffed(%bp)
0x8052e40 region_valid parse.c 510 nov Oxc(%bp) , Y%eax
0x8052e43 region_valid parse.c 510 nov 0x14( %bp) , %edx
0x8052e46 region_valid parse.c 510 nov 0x8( %ebp) , %ecx
0x8052e49 region_valid parse.c 510 nov Y%eax, 0x10( %esp, 1)
0x8052e4d region_valid parse.c 510 nov 0x10( %ebp) , Y%eax
0x8052e50 region_valid parse.c 510 nov %edx, Oxc(%esp, 1)
0x8052e54 region_valid parse.c 510 nov oxffffffed(%bp), Yedx
0x8052e57 region_valid parse.c 510 nov %ecx, 0x8( %esp, 1)
0x8052e5b region_valid parse.c 510 nov %eax, 0x4( %esp, 1)
0x8052e5f region_valid parse.c 510 nov %edx, (%esp, 1)
0x8052e62 regi on_valid parse.c 510 call 804d900 <form match_list>

Listing 4.19: Handler fof or mnat ch_l i st () in benchmarkpar ser . For program code, see Listing
4.18.

126  while (noves--) {

127 current _nove[ pl y] =x(next _nove++);

128 #if !defined(FAST)

129 if (ply <= trace_l evel)

130 SearchTrace(ply, 0, wm al pha, bet a, "qui esce", CAPTURE_MOVES)
131 #endi f

132 MakeMove(ply, current _nove[ply],wm;

133 val ue=- Qui esce( - bet a, - al pha, ChangeSi de(wt n), pl y+1);
134 UnMakeMove(ply, current _nove[ply],wn;

135 if (value > al pha)

136 i f(value >= beta) return(val ue)

137 al pha=val ue

138

139}

Listing 4.20: Program code from benchmarkaf t y. PD call sittUnMakeMove (), line 134.
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0x8067d3e Qui esce quiesce.c 126 cnpl $oxffffffff, Oxffffffed(%bp)
0x8067d49 Qui esce quiesce.c 126 je 8067df d <. LBE4+0xc5>
0x8067dbc Qui esce qui esce.c 134 nov 0x14( %bp) , %edx

0x8067dcl Qui esce quiesce.c 134 nov 0x10( %ebp) , %ecx

0x8067dc4 Qui esce qui esce.c 134 nov %edx, (%esp, 1)

0x8067dc7 Qui esce qui esce.c 134 nov 0x8141660(, ¥%edx, 4) , Y%eax
0x8067dd0 Qui esce qui esce.c 134 nov %ecx, 0x8( %esp, 1)

0x8067dd4 Qui esce qui esce.c 134 nov Y%eax, 0x4( %esp, 1)

0x8067dd8 Qui esce qui esce.c 134 call 806bc80 <UnMakeMove>

Listing 4.21: Handler fonMakeMove () in benchmarlcr af t y. For program code, see Listing 4.20.

143 bool ean TrGet Obj ect (tokentype «Token,

144 ft F, It Z zz *Status, addrtype +Chj ect)
145 {

146 dbheader «*CoreDb = Nul |l Ptr;

147

148 if (TnFetchCoreDb (Token, M St at &Cor eDb) )

149 i f (Normal («Status))

150 HrFet chDbQbj ect (CoreDb, Token->Handle, MStat, Object);
151

152 if (xStatus == Hm Cbj ect Not Pai r ed)

153 xStatus = Tm Obj ect Not Pai r ed;

154

155 TRACK( Tr ackBak, " Tnet Obj ect \n") ;
156 return (STAT);

157 }

743 bool ean Hnet chDbObj ect  (dbheader «Cor eDb, handl et ype Handl e,
744 ft F, It Z ,zz «Status, addrtype *Chj ect)
745 {

746 xObj ect = Null Ptr;

747

748 if (Normal (+Status))

749 if (HmGet Obj ect Addr ( CoreDb, Handl e, MStat, bject))

750 if (*xObject == NullPtr)

751 |

752 xSt at us = Hm Obj ect Not Pai r ed;

753 }

754

755 TRACK( Tr ackBak, " HnFet chDbQbj ect \n") ;
756 return (STAT);

757 }

758

743.
744.
745.
746.
747.
748.
749.
750.
751.
752.
753.
754.
755.
756.
757.
758.

bool ean MenmGet Addr  (nunt ype Chunk, indextype I ndex,
ft F, It Z zz *Status, addrtype «Addr)

{
addrtype ChunkSl ot Addr = Nul I Ptr;

i f (ChkGet Chunk (Chunk, Index, sizeof(addrtype), MStat))
if (+Status != Set EndOf Set)
{
«*Addr = *(((addrtype *)(Chunk_Addr (Chunk))) + |ndex);
ChunksSl ot Addr = (addrtype )((char x)Chunk_Addr ( Chunk) + Index);
}

TRACK( Tr ackBak, " MenGet Addr \n") ;
ret urn( STAT) ;

}
Listing 4.22: Program code from benchmaréir t ex. PD call siteChk Get Chunk, line 749.

NNPNPNNNODNNNDNNNDNNNDN

not included in the handler because of the write to a heagitogacur r ent _move. (Heap writes in the

handler are not allowed in the implementation.)



0x80a793c
0x80a7970
0x80a7972
0x80a7974
0x80a79c0
0x80a79c4
0x80a79c7
0x80a79cf
0x80a79d7
0x80a79db
0x80a79dd
0x80a79el
0x80a79e4
0x80a79e7
0x8072f a0
0x8072f al
0x8072f a3
0x8072f a6
0x8072f a9
0x8072f ac
0x8072f af
0x8072f b2
0x8072f b4
0x8072f ba
0x8072f bc
0x8072f be
0x8072f c2
0x8072f c5
0x8072f c9
0x8072f d1
0x8072f d5
0x8072f d8
0x8072f el
0x8072f eb
0x8072f e9
0x8082189
0x808218f
0x8082195
0x8082198
0x808219c
0x80821a4
0x80821ac
0x80821b4
0x80821b8
0x80821bb

tmc
tmc
tmc
tmc
tmc
tmc
tmc
tmc
tmec
tmec
tmc
tmc

TnGet bj ect
TnGet Obj ect
TnGet bj ect
TnGet Ooj ect
TnGet bj ect
TnGet Obj ect
TnGet bj ect
TnGet Obj ect
TnGet bj ect
TnGet bj ect
TnGet Obj ect
TnGet bj ect
TnGet Chj ect tmc
TnGet Gbj ect tmc
Hm_Fet chDbCbj ect
Hm_Fet chDbChj ect
Hm_Fet chDbCbj ect
Hm_Fet chDbCbj ect
Hm_Fet chDbCbj ect
Hm_Fet chDbChj ect
Hm_Fet chDbCbj ect
Hm_Fet chDbChj ect
Hm_Fet chDbCbj ect
Hm_Fet chDbCbj ect
Hm_Fet chDbCbj ect
Hm_Fet chDbCbj ect
Hm_Fet chDbCbj ect
Hm_Fet chDbChj ect
Hm_Fet chDbCbj ect
Hm_Fet chDbChj ect
Hm_Fet chDbCbj ect
Hm_Fet chDbChj ect
Hm_Fet chDbCbj ect
Hm_Fet chDbCbj ect
Hm_Fet chDbCbj ect
Mem_Cet Addr
Mem _CGet Addr
Mem_Cet Addr
Mem _Get Addr
Mem_Cet Addr
Mem _Get Addr
Mem_Get Addr
Mem _Get Addr
Mem_Get Addr
Mem_Get Addr

mentO.
memlO0.
mentO.
memlO0.
mentlO.
memlO0.
mentlO.
memlO0.
mentO.
memlO0.

145
149
149
149
150
150
150
150
150
150
150
150
150
150

hm c
hmc
hm c
hmc
hm c
hmc
hm c
hmc
hm c

hm
hm
hm
hm
hm
hm
hm
hm
hm
hm
hm
hm
c
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nov
nov
test
je

nov
nov
nmov|
nmov|
nov
nov
nov
nov
nov
cal

745
745
745
745
745
745
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748
746
c 748
c 748
c 749
c 749
c 749
c 749
c 749
c 749
c 749
c 749
c 749
c
745.
745.
745.
749.
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749.
749.
749.
749.
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82

0x14( %bp) , %ebx
(%bx) , Y%eax

Y%eax, Yeax

80a79c0 <. LCFl 29+0x7e>
%ebx, 0x10( %esp, 1)
0x18( %ebp) , Y%eax

$0x0, Oxc(%esp, 1)
$0x0, 0x8( %esp, 1)

%eax, 0x14( %esp, 1)
(%esi ), Yeax
Y%eax, 0x4( %esp, 1)
oxfffffff4(%bp), Yeax
Y%eax, (%esp, 1)

8072f a0 <Hm Fet chDbbj ect >

push %ebp

nov %esp, Y%ebp

sub $0x28, Y%esp

nov Yesi, Oxfffffffc(%ebp)
nmv 0x18( %ebp) , %es

nov Y%ebx, Oxfffffff8(%bp)
nmv Ox1lc(%ebp), %ebx

nmov (%esi), Y%eax

novl $0x0, (%ebx)

t est Y%eax, Yeax

j ne 8073007 <. LCFl 47+0x58>
nov %ebx, 0x14( %esp, 1)

nmv Oxc(%ebp) , Yeax

nov %esi, 0x10( %esp, 1)
novl $0x0, Oxc(%esp, 1)

nmov %eax, 0x4( %esp, 1)

nmv 0x8( %ebp) , Yeax

novl $0x0, Ox8( %esp, 1)

nmv 0x878( %eax) , Yeax

nov Y%eax, (%esp, 1)

cal | 8082180 <Mem Get Addr >
nmov 0x18( %ebp) , %ebx

nmv 0x8( %ebp) , ¥es

nmov Oxc(%ebp) , %ed

nmv %ebx, 0x14( %esp, 1)
novl $0x0, 0x10( %esp, 1)
novl $0x0, Oxc( %esp, 1)

novl $0x4, 0x8( %esp, 1)

nmv %edi , Ox4( %esp, 1)

nmov %esi, (Y%esp, 1)

cal | 807f 960 <Chunk_ChkGet Chunk>

Listing 4.23: Handler foChk Get Chunk from benchmarksor t ex. For program code, see Listing 4.22.

Consider program code from benchman@r t ex in Listing 4.22. The handler fothk Get Chunk,

called in line 749.2, is shown in Listing 4.23. After analysif the trigger points, it is determined that

the execution is dependent on line 148. Therefore, thedridggr the call site is placed at this point

in the program. The handler first starts with code framGet Obj ect. The branch in line 149 is

evaluated. During layout, pp instruction to the targethend is placed after th¢ e instruction. The

handler then callsinFet chDbObj ect (shown adHmFet chDbObj ect because of macro), which then

calls HnGet Cbj ect Addr (which is MemGet Addr because of macro), which finally calls the PD call

site Chk Get Chunk. The handler includes all stack pointer manipulating ingions to ensure that stack

offsets in the instructions are still valid. The targetshef tall instructions in lines 150 and 749 are corrected
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40 switch (next_status[ply].phase) {
50 case HASH MOVE:

51 | ast [ pl y] =Gener at eCheckEvasi ons(ply, wwm last[ply-1]);

61 if (hash_move[ply]) {

62 next _status[ply].phase=SORT_ALL_MOVES;

63 current_nove[ pl y] =hash_nove[ pl y];

64 if (VvalidMve(ply,wmcurrent_nove[ply])) return(HASH MOVE);
65 el se printf("bad nmove from hash table, ply=%l\n",ply);

66 }

Listing 4.24: Program code from benchmarkaf t y. PD call site forval i dvbve() , line 64.

0x805f 439 Next Evasi on nexte.
0x805f 43c Next Evasi on nexte.
0x805f 43f Next Evasi on nexte.
0x805f 446 Next Evasi on nexte.
0x805f 451 Next Evasi on nexte.
0x805f 45b Next Evasi on nexte.
0x805f 4a5 Next Evasi on nexte.
0x805f 4ab Next Evasi on nexte.
0x805f 4b2 Next Evasi on nexte.
0x805f 4b4 Next Evasi on nexte.
0x805f 6d0 Next Evasi on nexte.
0x805f 6d8 Next Evasi on nexte.
0x805f 6el Next Evasi on nexte.
0x805f 6e5 Next Evasi on nexte.
0x805f 6e9 Next Evasi on nexte.

40 nov 0x8( %ebp) , Y%edx

40 | ea (%dx, %edx, 2), Y%eax

40 | ea 0x0(, Y%eax, 4), %es

40 nov 0x80f 0660( %esi ) , Yeax
40 cnp $0x7, Yeax

40 je 805f 486 <. LCFI 5+0x4d>
51 nov 0x8( %ebp) , Y%edx

61 nov 0x8179620(, %edx, 4) , Y%eax
61 test %eax, Yeax

61 jne 805f6¢9 <. LCFl 5+0x290>
64 nov Oxc(%bp), %ecx

64 nov %edx, (%esp, 1)

64 nov Y%eax, 0x8( %esp, 1)

64 nov %ecx, 0x4( %esp, 1)

64 call 8070df 0 <Val i dMove>

OO0OO000O0O0000O00000OO0

Listing 4.25: Handler foial i dMbve in benchmarlcr af t y. For program code, see Listing 4.24.

during relayout. Their targets are instructions immedydialowing the call. Executing the call instruction,
ensures that the stack operations performed by the speeulatead are identical to the operations that will
be performed by the program. Return instructions are nafired, as the handler terminates immediately
after the speculative call ©6hunk _ChkGet Chunk.

Finally, another example from benchmarkaf t y that illustrates more complex control flow is shown
in Listing 4.24. The handler for call sitéal i dMove, in line 64, is presented in Listing 4.25. Analysis
of trigger points indicates that the trigger can be set atbiginning of the method that the call site is
located in (not shown). The handler includes the branchiméil and the switch evaluation in line 40. The
jump targets are altered during layout, and in the fall tgfoaase, jump instructions are insertechend

instruction.

4.9 Chapter summary

This chapter discussed the software support for the impietion of PD. Three inter-dependent steps

were covered, namely, identification of call sites suitdblePD based execution, generation of handlers,
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and generation of triggers for the identified call sites. Seheteps are performed with the use of profile
information and other program analysis data structures.Chlapter concluded with several implementation
examples from the benchmark programs. In the next chagiegsent the hardware support required for the

implementation. The implementation is evaluated in Chafte
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CHAPTER 5

HARDWARE SUPPORT FOR PD IMPLEMENTATION

This chapter describes the hardware support for the impitatien of PD and concludes the discussion
on implementation. First, | outline the hardware supposgdeel for the implementation, and then expand

on each of them further in this chapter.

Speculative execution. The major aspect of hardware support is the speculativeuégecof threads. In
particular, extensions to the processing cores are needgetulatively execute load and store instructions.
Changes performed by stores cannot modify architected, siat must be observed and held separately, so
that they can be later used or discarded. Similarly, loattingons must be monitored and provided with
speculative data created by prior stores. Private cachieiprocessing cores are commonly used for this

purpose.

Support for handlers. The handlers are generated by the software and incorpdrdatethe application
binary. Hardware support is needed to speculatively erdbathandler with additional support to deal with

any changes made by the handler depending on the code in it.

Holding executions. Each speculative thread consists of the read set, writensetata, return value,
parameter values, and stack and base pointers. The hamhuat@rovide some storage structure that holds
the speculative threads until they are invalidated in ¥iotaof a dependency, or used by the program or
another speculative thread. Private caches, commonly insgokeculative parallelization systems for this

purpose, may be used. Alternately, the threads may be pla@iliary storage structures.

Validating executions.  Speculative executions must maintain sequential prograler @nd, therefore, a
thread that violates a dependency must be invalidated hisoptirpose, the read set of a thread must be held

along with the results of that speculative thread. If a stora location by the non-speculative program is
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Figure 5.1: Model hardware with four processors conneabetivo levels of private caches (shown with
only one box C), and a shared cache connected to memory.

present in the read and write sets of a speculative threatithiread is invalidated. Another essential step in
the process of validating executions is to determine if tieameters used for speculative execution of the

method match the ones provided by the non-speculative gmogt the call site.

Using executions. The final step of a hardware implementation is to commit oraisalid speculative
thread. First, the stack frame of the speculative threadjissted to match the stack pointer of the requestor
(i.e., program or another speculative thread which is gamagise an execution). Then, if the thread
is requested by the non-speculative program, the write att dnd return value are committed to the
architected state. If requested by another speculatiwadhrthe results and the read set are integrated

into the speculative state of the requesting thread.

Support and evaluation of triggers. The triggers are generated with software support and incated
into the binary. Two means, static and dynamic, were digzligs Section 4.7.4, each requiring different
hardware and software support. For the generic dynamic tasdardware must provide suitable register
storage for predicates, extensions to the instructionrséitacture to access and modify the registers, and

evaluate the conditions in triggers efficiently.

5.1 Model hardware

The hardware support for PD can be implemented for any sdadgchitecture with support for paral-
lel threads such as simultaneous multithreaded processups multiprocessors, and in general, shared-

memory multiprocessors. | assume a multicore system withasmmore levels of private caches, with a
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shared cache connecting all processing cores (refer Figiye The evaluation deals with a limited, up to
eight, number of processors. The caches are kept coheraneéys of a snoopy protocol, and the private

caches are assumed to be writeback.

5.2 Performing speculative execution

This section deals with the foremost requirement for PDécexion model, which is performing the specu-

lative execution. Speculative execution of threads in Ridl (a other speculative parallelization systems),

though conceptually similar to speculative execution sfrinctions in instruction-level parallel processing

systems, requires different hardware implementation.Lm dystems, speculative execution is performed
within a processing core; an instruction is held in a reotudfer, executed with results held in some non-

architected storage, such as the physical register filoastire queue. It is eventually squashed, or when
it reaches the head of the reorder buffer, committed. Thiglt®in discarding the instruction’s changes, or

applying them to the architected state.

In speculative parallelization systems (PD, inclusiv@gaulative thread execution is achieved across
several processing cores. For simplicity, assume thatybies is only running the program of interest.
The processing core running this sequential program gtesarits correctness. Speculative threads are
executed on other processing cores and are held until thewqurashed when a dependency with the
program is violated, or committed/used when they are regddsy the (non-speculative) program or by
other (speculative) threads. Speculative execution afeathin a processing core is achieved by readying the
live-in registers that may be needed, executing the ingbme in the thread, but ensuring that the architected
memory is unaltered by the execution. This is achieved bglihglthe changes made by stores separately,
usually in the private cache of the processing core, andigirmy them to dependent loads. Program
locations accessed and modified by the thread are taggediiteoand read sets, respectively, along with
the modified architected registers. These are held in grizathes or auxiliary storage structure(s) until the
speculative thread is invalidated or committed. The spdivgl thread is squashed and its data discarded, if
it had referenced a location during its execution that isifrextiby the program, as it indicates violation of

data dependencies.
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In PD, a speculative thread consists of a method with paemnetpresenting the explicit live-in values.
The private cache(s) of the processing core used for sgaeudxecution holds the speculative store data. A
peripheral structure, called Speculative Tag Unit or STatks the read and write sets during the execution.
A speculative thread is aborted when a speculative cackarlithe last level private cache is evicted or
when the STU is full, as references may no longer be trackedcdinpletion of speculative execution, the
data of a speculative thread is stored in an auxiliary setashge structures, collectively referred to as the
Execution Buffer Pool.

The accesses and changes made by a speculative thread caokiee @t the granularity of a byte to
the entire cache line. Finer granularity requires moreeghits to keep track of, increases overheads, but
prevents false sharing, and invalidation of speculativa ttat fall in the same cache line but access different
addresses. In this implementation, four writers are supgddsy dividing a cache line into four sub-blocks.
Every sub-block in a cache line has a dirty state bit, andtihdilly a “speculative access” bit which is used
to identify if a sub-block is accessed during the specudatixecution (Figure 5.2). The propagation of a
speculative access bit across the private cache hierasdipilar to that of a valid bit in a cache line.

During speculative execution, cache sub-blocks accesgdllebmethod, but not the handler, set the
corresponding speculative access bit. Since speculdtigads do not communicate data values in the
implementation, cache misses obtain data from the memdrgmrthe cache of the processing core running
the non-speculative program. Of these, misses due to loads the method (but not the handler) are
recorded in the STU. A store does not request for exclusieesscor send invalidate requests to other
processing cores for the cache line it is to modify. If theesie to a sub-block that was not previously dirty,
and is performed by the method (but not the handler), it isnged in the STU with the corresponding W bit
set. Stores performed by the processing core running thgggrorepresents the sequential program order,
and sends invalidate messages, as usual, over the bus. éspirng core that is running a speculative thread
applies the following filtering rules to the invalidationgreests: (i) it does not respond to any requests when
it is executing a handler and, (ii) it does not respond to estpiwith addresses in the stack segment that
are below the stack pointer communicated at the beginnirgp@tulative execution. An unfiltered request
aborts the speculative thread if it invalidates a sub-bleitk its “speculative access” bit or dirty bit set.

The speculative thread begins with the execution of the lbandAn available processing core for
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Figure 5.2: Extensions to the cache for speculative exatuticlude four sub-blocks per cache line with
each sub-block having a speculative access bit. The spizeufag unit is used to track the read and write
sets of a speculative thread.

speculative execution is found. All speculative access &it cleared in the private caches to indicate
that no cache line has been accessed yet. The processingwitikes to speculative mode, and receives
the call site’s program counter, handler's program couriter stack and base pointers. These are saved
in the processing core’s special PD state registers, wihv#tiues of the handler's program counter, stack
and base pointers copiedéo p, esp, andebp registers respectively. The speculative execution begjins
the handler's program counter. At the executiompdfcal | instruction, which is followed by theal |
instruction that begins speculative execution of the makthite parameter bounds are available. The bounds
are saved in the PD state registers, the dirty bits set inuhébbocks of the private caches are all cleared
(they may be flash cleared), but remain valid. Note that tleedative access bits are not set during the
execution of the handler.

At the end of the method’s speculative execution, the readvaite sets are collected from the cache.
This is achieved by processing the entries in the STU (theewget entries have W bits set in STU). Dirty
lines in the cache are all cleared, and the processing ctnseo normal mode of operation. Sub-blocks
in the write set that belong to the local stack frame (adée&®low the stack pointer) are marked. The

parameter sub-blocks are also included in the write set aaréted. Along with the read set, write set and
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Id Callsite PC Parameter Bounds Value Pointer Pointer
<0:log N> <0:31> <0:31> <0:31> <0:31> <0:31> <0:31>
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Figure 5.3: Methods table holds all speculative threadsertry consists of the speculative thread identifier,
call site program counter, addresses of the parametensn netlue and stack base pointer used.

its data, the return value register, the parameter boundig®malues, the stack and base pointers, the call

site’s program counter are all collected and form the dagacated with the speculative thread.

5.3 Execution buffer pool structures

A speculative thread after its execution may be held in thatwr cache, like previous speculative paral-
lelization systems, or in an auxiliary cache storage stinectOutstanding speculative threads (i.e., threads
that have completed execution waiting to be used or squastedd in cache might place undue pressure
on it. Therefore, this implementation uses auxiliary casturage, called the Execution Buffer Pool, to
eliminate the contention of conflicting accesses from othezads on that processing core.

The data of a speculative thread upon completion is moveal tme Execution Buffer Pool. The
execution buffer pool consists of the four structures: (eTroot structure is the Methods Table which
holds the list of speculative threads outstanding (Figudg. 5ii) The Write Set Table holds the write sets
of all speculative threads, and their parameters (Figut@}. (iii) The Read Set Table holds the read sets
of all speculative threads (Figure 5.4(b)). (iv) The Ingalion Cache holds the read and write set tags of
all speculative threads for efficient invalidation of spative threads (Figure 5.5). The implementation in
this dissertation assumes a centralized execution bubi@r -or multicore systems with a large number of
processing cores, the execution buffer pool may be dig&ibior a collection of (one to four) processing

cores.
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(a) Write set table (b) Read set table

Figure 5.4: Write (shown on the left) and read set tablesihglthe write and read sets of speculative
threads. The write set in addition holds parameter valyes;iically marked, so that the addresses are not
considered for invalidation.

The data of a speculative thread is placed in the methods taid tagged with a thread identifier
ti d. Every entry in the methods table consists of the methodIsita program counter, parameter values
specified by the upper and lower bound addresses, the retlua register, and the stack/base pointers. The
methods table is used to search for outstanding executiandiven call site’s program counter. Allocation
and deallocation of entries is performed for a given idegttifAssume the number of entries in the table to
be N for the rest of this discussion. Every entry requiteg N bits for an identifier, 32 bits for call site’s
program counter, 32 bits each for return value, stack poeme base pointers, and 64 bits for parameter
bounds.

The read and write set tables are indexed by the thread figenti d. Every entry in the write set
consists of the thread identifier, the sub-block addregsd#ta, and local stack frame and parameter sub-
block markers. Every entry in the read set consists of theathrdentifier and the sub-block addrefeg. N
bits are used for identifier, 28-bits for sub-block addressl 16-bytes for data for a sub-block of a 64-byte
cache line. Allocation and deallocation of entries is penied for a given thread identifier. The hardware
for these tables may be organizedMdanks with a fixed number of entries for holding the read antewr
set, so that they may be efficiently accessed with latendes/@ent to accessing the level two cache.

The number of entries may be determined based on the hardwamglexity, access cycle constraints, and
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Figure 5.5: Invalidation cache is m-way set associativéaddress tag, an® bitvector for representing
the speculative threads. The last entry of a set is desigeateverflow, with the bitvector used as a counter.

studying benchmark programs that will be executed with PBpéculative thread whose read and write sets
do not entirely fit in these tables may be placed in an overfablet a less efficient resource as it will hold
the overflows for all speculative threads and must be agsadiasearched, but is typically less commonly
accessed.

The invalidation cache is a separate set-associative dikehstructure that is used to efficiently deter-
mine if an address is in the read or write sets of a speculétiead that is stored in the execution buffer
pool. Without the invalidation cache, an address must becked in the entire read and write set tables
of all speculative threads to determine a match. Every lnthé cache consists of the sub-block tag to
represent an entry in the read or write set, and data cargisfi/V bits representing the thread identifiers
(known as the bitvector). A set in the cachenisway associative, with the:-th entry’s data block used
as an “overflow” counter. The invalidation cache may alsodpagately maintained for the read and write
sets and/or distributed for every processing core. Acese&séhe invalidation cache are not critical to
performance, and may be accessed with latencies equitalantessing level two cache.

The operations to allocate and deallocate a speculatieadhand the operations on the invalidation
cache are described next.

To allocate a speculative thread, an entry in the methods tsfallocated (if available, otherwise, the

thread must be aborted) and the thread identifier is obtaifféwk read and write sets are placed in the
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corresponding tables. If the number of entries in the readnaite set tables are fixed, entries that overflow
must be placed in the overflow table. Every entry in the redadasel an entry in the write set that is not
specially marked (as parameter or local stack frame sutkpl@s passed to the invalidation cache. The set
for the sub-block address is determined, and all lines arecked for the address. If the sub-block address
is found, the bit that represents the speculative threaatifibr in the bitvector is set. If the address is not
found, and if an entry besides the reserved overflow entryasable in the set, the tag is installed and the
bitvector corresponding to the thread identifier is set.ftea entry is not available, the overflow counter of
that set is incremented if the value is less than the maxinwem2” — 1; otherwise, the speculative thread
is aborted (deallocated).

To deallocate entries associated with a given thread fiEmtivhich is performed when a speculative
thread is squashed or committed, the corresponding entryabdated from the methods table. Then every
entry in the read and write set tables for the given threadtifier is invalidated, and the sub-block address
is sent to the invalidation cache. For every such addressntllidation cache determines the set, and if an
entry is found in the set, the bitvector is modified and theesponding thread identifier is reset, marking
the line invalid if the entire bitvector is zero. If an entiymot found, the overflow counter for the set is

decremented.

5.4 Invalidating executions

One of the essential aspects of speculative parallelizasido maintain the validity of the results of the
executions. The implementation in this dissertation usegér” invalidation, which sends all committed
stores performed by the program to the invalidation cachd,as usual to other processing cores. Every
address received by the invalidation cache is searchecaindiresponding set. If an entry is found, every
bit set in the bitvector represents the thread identifiehefdpeculative thread that violated dependencies,
and must be squashed. (The deallocation process was agkedbier.) If an entry is not found in the set,
the search for a violating speculative thread continuemdfonly if, the overflow entry for that set is greater
than zero. In such a worst case, entries in the read set tatblerdries not specially marked in the write set
table are searched to determine which speculative thready, accessed the address. If an entry is found,

that speculative thread is squashed.
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An invalidate request will abort an ongoing speculativeditt on a processing core, if the address is not
filtered (discussed in Section 5.2) and is found in the peicatche with speculative access bit set. System

events such as timer and device interrupts also terminatulgiive threads.

5.5 Committing and using executions

When the program or a speculative thread (referred to astieestor) reaches a call site that is annotated
with pdcal | instruction, the call site program counter is sent to thenods table and to other processing
cores. The methods table is searched for any matching gntti@osing the oldest one, if more than one
entry is found. If no entries are found, and if a speculativeedd is ongoing in a processing core, the
requestor may stall until the execution completes. (Parémice counters that indicate the usefulness of a
speculative thread may be used by the requestor to detesmiather to abort the speculative thread, and
instead, execute the method at the call site on the its psoesore.)

Once a speculative thread is found, using or committing tineads proceeds as follows. Data for a
completed speculative thread is obtained from the writetad@de, or from the processing core executing
the thread if the thread’s execution is ongoing. First, btaimling the parameter bounds at the requestor’s
call site (available in th@dcal | instruction inserted before the call site), and from thecafsive thread,
values passed by the program and the handler are compatled vilues do not match, the thread is aborted,
and the requestor must execute the method.

If the parameters used by the speculative thread and thes/aovided by the requestor match, the
next step is to retag the local stack frame sub-blocks in tlite wet to the requestor’s stack pointer. To hide
the latency of all of the above operations, they may be teitiavhen gpdcal | instruction is fetched by
the front end of the processing core (with the help of somdeareding) and performed concurrently as the
pdcal I and the subsequengl | instructions move through the pipeline and are committepler@ions
performed by the requestor to use a speculative threadthfferal | instruction is committed are in the
requestor’s critical path.

Finally, the entire write set data for the speculative tbrisaintegrated through the private cache of the
requestor. If the requestor is the program, the write set dahon-speculative and committed. This will

result in actions that are performed when a store is comahifyethe program, such as sending invalidate
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messages to other processing cores and the invalidatidre cicthe requestor is a speculative thread, the
data is integrated as part of its speculative write set. €hd set is also be integrated to the requestor’s read
set.

The integration process must be implemented by stallingatheestor for as few cycles as possible. One
way to implement this is to stall the requestor until the /st tags (and the read set tags if the requestor is
a speculative thread) are transferred. The requestor caequl with the execution while the data sub-blocks
of the write set are transferred. Load and store operatien®ined by the requestor during this transfer
that conflict with the requestee’s tags stall the requestor.

Another implementation is to let the requestor continuecatien while the tags and data sub-blocks of
the write set (and the read set tags if the requestor is algpi@etthread) are being transferred. If a conflict is
detected between the data of the speculative thread the¢dsand the instructions that are executed during
the transfer by the requestor, the processor’s rollbackham@sm, which is used for speculative execution,

may be used to squash and re-execute the instructionstadteal site.

5.6 Supporting triggers

In the last chapter, two means of implementing triggers wiseussed. The static approach inserted
pdf or k instructions to fork speculative threads directly into bivgary. The hardware support needed is the
instruction set extension to supppdf or k. The generic dynamic approach requires hardware support fo
(i) trigger condition code registers, which are used to @ predicates and store a true or false boolean
value, (ii) instruction set extensions, to access and mpddijger condition code registers and perform
logical operations on them, and finally, (iii) support foeeuting the microcode and determining if a trigger
has fired.

To support the register part of a trigger (refer Section#t@r more details on the software implemen-
tation of triggers), wher set pc is executed, an entry consisting of the predicate’s prograumter, the
trigger condition code register, and the location of thduata part of the trigger is placed in the Trigger
Evaluation Unit. The program counter of the predicate issteged with BF, a Bloom filter [23] (shown
in Figure 5.6). The BF has a 1-bit hash bucket with some pneel@fhash function. During program’s

execution, all program counters of committed instructians passed through BF. If the hash bucket for
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Figure 5.6: Program counters of committed instructions plaough a Bloom filter to determine if Trigger
Evaluation Unit must be searched. The Trigger Evaluatioit lubids all program counters used in predicates
of triggers, their trigger condition code registers, angigpam counters of evaluate parts of triggers.

the program counter is not set, the program counter is notgbpany trigger's expression. Otherwise, the

program counter is sent to the trigger evaluation unit wiadirentries are searched for a match. If one is
found, the corresponding trigger condition code regisdeset, and the trigger evaluated by executing the
evaluate part of the micro-code. The evaluate micro-co@xésuted either on free thread contexts on the
processing core running the program (similar to SSMT [3&i)off-loaded to some other processing core,
provided the trigger condition code registers are acclestlit.

The BF is accessed for every committed instruction andetbes, may be accessed by one or more
committed instructions per cycle. A buffering structureyrba inserted between the committed instructions
and the BF, especially if the BF is not accessible every cyldie trigger evaluation unit entries are searched
only during a hit to the BF, which is typically very infrequeand, therefore, need not be optimized for fast

access.
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5.7 Discussion of other implementation aspects

In this section, | discuss implementation aspects of Pradb@multiplexing that are not considered in this

dissertation.

Scheduling of threads

When triggered, speculative threads are scheduled orabi@iprocessing cores on a first-come first-serve
basis. More complex scheduling policies may be able to nerlg processing unit resources better.
For example, a speculative thread may be more critical ta¢imeputation that follows the program and,

therefore, may speed up the program more than other thr8adb.a speculative thread should be scheduled
as soon as the trigger is fired, even if it requires abortirgftaer less critical thread, to free up resources.
Complex scheduling policies will only be practical if opggoas such as choosing a processing core for

speculative execution are performed by software.

Storing speculative executions in cache

Private caches may be used to hold the data of speculatiead$fiinstead of using the invalidation cache
and read/write set tables. No additional hardware storagetsre is needed and a speculative thread can
be easily committed as the dirty data of the thread is helthéncache. However, the disadvantage is that
the cache is used to hold read and write sets of all speceilitreads that are outstanding on a processing
core. Any thread that causes a speculative cache line Gaates modified) to be evicted must be squashed.
Next, | describe the requirements for using private cacheldlding speculative threads.

The methods table is required to hold the list of outstandimgculative threads. Each sub-block in the
cache is extended with the thread identifier bitvector, st the cache can serve as both the invalidation
cache and read/write set tables. The mechanics for speeutadecution are altered from this dissertation’s
implementation as follows. First, at the beginning of a siegiove thread, cache lines are not invalidated.
Second, when a speculative thread accesses or writes tol@tks, the corresponding thread identifier bit
in the bitvector is set. Finally, if a speculative threadtesior accesses a dirty sub-block, or if a cache line

that has a “speculatively accessed” sub-block must beeasljitihat thread is aborted. The third requirement
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prevents a speculative thread from accessing or modifyggpablock after it is modified by an outstanding
thread. Multiple speculative threads are, however, altbiweaccess a clean sub-block.

Invalidation and commitment of speculative threads candbéesed by extensions to the coherence
protocol as suggested by Steffan [181]. When a speculatirgad is invalidated (committed), all dirty
references of that thread must be evicted (committed) fleercache. This may be achieved by searching
all cache lines and identifying dirty sub-blocks with capending thread identifier bitvector set. A more
efficient approach would be to supplement this scheme wihattite set table for holding just the write
set tags of a speculative thread, and populating it with titdes from STU at the end of its execution.
The write set table for a given thread identifier may be usatbtermine the cache sub-blocks that must be
evicted (committed).

In order for a speculative thread (requestor) to use theltsesii another thread (requestee), if the
requestor is running on the same processing core as thestequthe dirty lines of the requestee must
be identified (by means discussed in the previous paragrapt)the thread identifier bitvector adjusted by
setting the requestor’s bit, and resetting the requeshiée’d on the other hand, the requestor and requestee
are on different processing cores, dirty sub-blocks musetreved from the requestor’s cache, invalidated,

and written to the requestee’s cache.

Other hardware choices

Program Demultiplexing can be implemented on several athdticore and multithreaded hardware. Each
of these choices presents benefits and disadvantagesusslisome hardware choices next.

An asymmetric multicore system consists of cores with ciffik computational power. Several asym-
metric cores have been proposed due to their ability to geogbod serial performance by having few high
performance (say, out-of-order) cores and good througbyptiaving many (say, inorder) cores, in a power
efficient manner. For PD, asymmetric systems are a goodebeicause speculative threads may not always
need powerful processing cores because of the concurrbatyD may generate. In addition, parallelism
may also provide the ability to tolerate long latenciesaastof hiding it with out-of-order execution.

Shared memory multiprocessors may not be very suitablePopétause of the costly communication
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latencies between processing cores. In typical applicative may not have parallelism that is suitable for
executing on processing cores with hundreds of cycles fmmgonication.

Fine-grained multithreading and simultaneous multitdieg hardware are techniques that are com-
monly used. Fine-grained multithreading time-shares raé\vhreads on a processing core and may be
used to tolerate long latency events such as cache missesty Hwead executes for a given number
of cycles or until an event such as cache miss occurs. On e dand, simultaneous multithreading
shares processing core resources among several threadsaseously, to better utilize wasted resources.
Therefore, instructions from several threads may coexiatprocessing core’s pipeline. In both these cases,
threads scheduled on different thread contexts can shangrittate cache hierarchy, and benefit from the
short communication latencies. The PD implementation pastever, be extended to differentiate multiple
threads’ contents in the cache, which can be achieved byingackche lines or sub-blocks with speculative

thread identifiers.

5.8 Chapter summary

This chapter discussed the hardware implementation forARBt, the support required for speculatively
executing a thread, much of which already covered in sewisakrtations on speculative parallelization
systems, was discussed. Then, the means of storing, iatiatid and committing speculative threads, by
the use of methods table, invalidation cache, and read aitel set tables, was described. Finally, | covered

the support needed for evaluating the triggers that ardgedwby the software.
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CHAPTER 6

EVALUATION

In this chapter, | present an evaluation of the implementiatif PD. The first part of this chapter will
describe the hardware simulation infrastructure, sofwaolchain support for PD, and the benchmarks
that are used for the evaluation. The second part of the ehapll present experimental results for the

implementation of PD.

6.1 Hardware simulator

| evaluate the implementation with a simulation based nrecinodel. The simulation infrastructure is
based on Virtutech Simics [120], a functional, system Ieuslulator that can simulate multiple processors
along with the appropriate chipset and motherboard, ancgaripherals or devices attached to the system.
The simulated system can boot an unmodified operating syatelnun software installed on the disks of a
simulated system. My implementation uses a system basdtedntel x86 instruction set architecture with
Pentium 4 processors on an Intel 875P chipset with IDE disk& system is configured to run the Linux
operating system with kernel 2.6.8.

Simics does not model the processor micro-architectur@eontemory hierarchy in the system. How-
ever, it allows user-written modules to be attached to it. adklition, it provides a micro-architectural
programming interface that allows the capability to contne functional simulator inside of Simics. Every
instruction executed by Simics is divided into five stagedcH, decode, execute, memory operation, and
commit. Any instruction can be inserted by the user modutetime functional simulator and can be stepped
through these five stages to eventually commit the instinctr to squash the instruction and rollback the
changes made by the instruction. Several instructions eaimderted into Simics, concurrently stepped
through the stages, and may be executed out-of-order angdotheir data dependencies or before memory

dependencies are resolved.
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System Virtutech Simics 2.0. Multiprocessor system witgheilntel Pentium 4
processors on an 875P chipset with IDE disks running Debiand (Kernel
2.6.8).

Processor Core  3-GHz out-of-order 4-wide superscalaregsmr with 7 pipeline stages. No
cracking of instructions to micro-ops. 64-entry reordeffdiu 1024-entry
YAGS branch predictor, 64-entry return address stack. liostduction issues
only after all prior stores are resolved.

Memory System Level-1 private instruction cache is 32-KBect mapped, with a 1-cycle hit
latency and with fetch buffer that prefetches the next lihevel-1 private
data cache is 32-KB, 2-way with a 2-cycle hit latency, whtek and write-
allocate. Level-2 private, inclusive, and unified cache-MB, 4-way, with
a 10-cycle hit latency. Level-3 is a shared cache, 4-MB widDaycle hit
latency. Line size is 64 bytes for all caches with four subeké (16 bytes
each) and MSI states for cache coherence. Cache-to-caoisetrs take 12-
cycles. Main memory is 512 MB DRAM with a 400 cycle accessraye

Table 6.1: Details of the simulated hardware

The architectural simulator uses this micro-architedtpragramming interface. The base processor
core is a 3-GHz out-of-order 4-wide superscalar procesébrsgven pipeline stages. The instructions are
not cracked to micro operations but executed as CISC ing&ingc The micro-architecture has a 64-entry
reorder buffer with 32-entries for the load and store que#ed024-entry YAGS based branch predictor,
and a 64-entry return address stack. Load instructionserpijpeline can issue only after all prior stores
in the pipeline have been resolved. Each processing cor82i&8 level one private instruction and data
caches, followed by a 1MB level two private unified cache, aielel three unified 4MB cache. All levels
are inclusive and write-back. More details are provideddhl& 6.1.

The experimental infrastructure discussed does not refleanmercially available chip multiprocessor.
The level of details that can be simulated has to be deliegrearefully since it contributes to simulation
time, which already is very expensive. A reasonable levatarfiplexity is sufficient for exploring the
benefits of PD, specifically to study the importance of orteri.e., unordered forking of speculative threads
over the control flow based approaches of prior speculatwalieglization systems. Complete modeling of
the entire system is unlikely to change the insights obthfram this evaluation. It nevertheless, may affect

the extent of performance achieved.
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Memory profile A window of 50 previously executed methodshariéspect to the call site is
used to determine the trigger point for an execution of thiesite. References
are collected at 16-byte granularity and processed ontineéntification of
trigger points.

Execution profile  Collected with train inputs for the entitm of the benchmark program using
GNU gpr of .

Overheads All profiling information is collected and prosms online for trigger and
handler generation. The benchmark programs consume 8000MB2tGB
of memory for profiling data, and is processed for handledstéggers which
takes under 5 seconds on an Intel Pentium 4 machine.

Table 6.2: Details of the PD profiling system
6.2 Software toolset and implementation

The software implementation is provided with a compiledabynof the program. First, debugging informa-
tion such as the source file name and line number for all iotms in the application binary is extracted.
The binary is then fed to the software tool chain that is Hudin Diablo [198], an open source program
that is capable of reading Intel x86 program binaries andnstructing compiler data structures. From this
tool, the control flow and program dependence graphs arénelta

The generation of handlers and triggers for the chosen itedl elies extensively on profile informa-
tion. One approach is to generate all the profile informatimough instrumentation and then process
the profile information offline to generate the handlers aighérs. An alternate approach that is used
in this dissertation is online generation and processingrafile information. The simulator discussed in
the previous section, besides performing its core tasknofilsiting the hardware architecture, also collects
the necessary profile information. This, along with compdata structures (control flow and program
dependence graphs), are used to generate the handlersggedstifor the list of call sites provided to the
simulator. | generated the list of call sites by studying ¢xecution profile of the benchmark programs.
Details on the profiling system are listed in Table 6.2.

Using program binaries for constructing the software supfay PD, instead of using the program
source code or intermediate compiler representation, thaadivantages and disadvantages. The primary
advantages are that the implementation does not requirenpiler infrastructure and can be applied to
program binaries without access to source code. The distaya is the complexity of dealing with the

Intel x86 instruction set architecture and its esoterituiess, for example, the stack based access of floating
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Benchmark | Description Input | Input sets used

bzip2 Data compression utility Train

crafty Chess program Train

gap Computational group theory Train

gcc C compiler Train

gzip Data compression utility Train

mcf Minimum cost network flow solver | Train

parser Natural language processing Train

perl Perl Train | Three runs for scrabble, perfect, and diff
twolf Place and route simulator Train

vortex Object oriented database Ref lendian2.raw

vpr FPGA circuit placement and routingTrain | Two runs for place and route

Table 6.3: Benchmarks simulated from the integer suite @GEPU2000 and input sets used

point registers. With the availability of source code anifadle compiler infrastructure, software support
for PD may be implemented in the middle phases of the compilere an intermediate representation of
the program is available. In the middle phases, the inteiat®depresentation usually has semantics as
rich as the program itself and hence can be used to identdp@ kwitch statement, and other control flow

constructs easily. This can be useful in the generation dleas and triggers.

6.3 Benchmarks

| use the integer programs in SPEC CPU2000 benchmark sunipileml for the Intel x86 architecture using
the GNU gcc compiler version 3.3.3 for evaluation. The PDeldgzrogram is compiled with optimization
flags -O2 -mregparm=0 -fno-inline -fno-optimize-siblingHs, and the sequential program, which is used
for performance evaluation, is compiled with -O2 -mregpadh The benchmarks are wrapped with
additional libraries along with minor additions to prograiode to enable speculative execution in the
presence of the operating system and system events. Th&isded in the next section. The benchmarks

are run for 200 million instructions after the initializati phase, except for the run to collect execution

SIntel x86 program binaries commonly use the stack for pagsamameters. GNU gcc provides a flag -mregparm=N that allows
using N registers for this purpose instead. However, itiregurecompilation of the entire system (including, liteay with the
same flag. This is beyond the scope of this dissertation. emdtag -funit-at-a-time has been introduced since GNU gécBhis
flag, among other optimizations, uses registers for pagmngmeters only within a compilation unit (i.e., source) filefunctions.

The gcc task force has documented that this flag improvesnpeahce by 1% SPEC CPU2000. This flag is also not used for
compiling the benchmark programs in this dissertation.
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profile, which is performed for the entire run with profile aabllected using GNU gprof. The benchmarks
evaluated and input sets used are listed in Tablé.6.3

The SPECCPU2000 integer programs were chosen becauserthepramonly used in speculative
parallelization publications and, therefore, facilitatenparison of opportunities across different proposals.
The benefits with these programs could be significantly leas tvhat we might see in future applications
due to the following reasons. First, many of the benchmar&dightly coupled and perform one specific
task. Realistic applications may be significantly larged amay perform several tasks. For example, even
the new SPEC CPU2006 has 30 times more source code than tie GPE2000 programs. Second, the
benchmark programs are written without any serious corddide of good software engineering principles.
Several applications spend significant fraction of executime on a few, very large methods. Others have
an esoteric programming style that hinders the opporasitr parallelism. On the other hand, large scale
applications are built with the use of software packagbésaties, and significant reuse of code. All of these
indicate modular development and superior software ergimg, which means that the opportunities for
PD style of execution are expected to be higher.

Floating point programs are also not considered for thaueti@n because they tend to exhibit structured
parallelism and, therefore, are easily parallelizablehvgibftware libraries, for example, OpenMP. The
floating point programs in SPEC CPU2000 in particular, haaenlsuccessfully parallelized with minimal

programmer effort, as in the SPEC OMP suite.

6.4 Creating speculative threads

An important aspect of this work is implementing speculatitireads on a full-system simulator. While
such an evaluation is not needed for PD and can astronognioallease the execution time of simulating
the target multicore system, the issues in implementingidpve parallelization in the presence of an
operating system must be studied. This section briefly dsesithese issues.

The Linux operating system running on the simulated mulé@ystem tries to use the available process-

ing cores for scheduling other processes in the system east, lto run the idle loop. Hiding the processing

®eon is a C++ program in the SPEC CPU2000 integer suite thattisvaluated since my software tool chain does not support
C++ programs.
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001

002 void t1 (void) {

003 unsi gned | ong mask = 2;

004 if (sched_setaffinity (0, sizeof (unsigned |long), &mask) != 0)
005 printf ("sched_setaffinity (): tl1 failed\n");

006 | abel 1:

007 goto | abel 1;

008 }

010 void t2 (void) {

011 unsi gned | ong mask = 4;

012 if (sched_setaffinity (0, sizeof (unsigned |ong), &mask) != 0)
013 printf ("sched_setaffinity (): t2 failed\n");

014 | abel 2:

015 goto | abel 2;

016 }

018 void main () {

019 pthread_t threadl, thread2;

020 pthread_attr t t1 attr, t2_attr;

021 unsi gned | ong mask = 1;

022

023 pthread_attr_init (&1 attr);

024 pthread_attr _init (&2 attr);

025

026 if (pthread_create (& hreadl, &1 _attr, (void %) &1, 0) != 0)
027 printf ("pthread_create (t1): failed\n");

028

029 if (pthread_create (& hread2, & 2 _attr, (void %) &2, 0) !=0)
030 printf ("pthread_create (t2): failed\n");

031

032 /1 ... have as many pthread_create’ s as nunber of processors ...
033

034 if (sched_setaffinity (0, sizeof (unsigned |ong), &mask) != 0)
035 printf ("sched_setaffinity (): failed\n");

036 A

037 }

038

Listing 6.26: Use of pthreads to create wrapper threadsrtimaidle loops usually, and are hijacked to run
speculative threads.

cores or speculative threads running on them from the dpgraystem is not a realistic system solution for

the following reasons:

1. The processing core on receiving a timer or device inpertiiat is intermittently delivered by the
operating system invokes a service handler to process ithaduler determines which processing
core gets to service the interrupt, and that is determineddan the system load. If a speculative
thread is not visible to the operating system, the operaysgem may deliver the interrupts to the
processing cores that are executing speculative threiads, the OS believes the processors are idle.

This interrupts the speculative thread and aborts it.
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2. A speculative thread may incur misses to the TLB duringxescution. The Intel Pentium 4 architec-
ture services some TLB misses (those that do not require/imgepage tables) without any support
needed from the software. However, if the speculative ttg@ad/or the processing cores they run on
are invisible to the operating system, the global segmeayisters are not initialized by the operating
system. The hardware, therefore, will not know the proceserating the TLB misses on the hidden
processing cores. This affects the operating system, whiitipanic and crash, instead of servicing

the misses.

On the other hand, running speculative threads on OS-gigitticessors without the operating system’s
knowledge is catastrophic to the system; the OS may panicesh. For example, the OS may try to
schedule a process on a processing core, which may be alng@aging a speculative thread. To deal with
these issues, this dissertation transforms a singledbteprogram into a multi-threaded program, with one
thread running the SPEC integer application, and sevenar dreads running a dummy idle loop, inserted
into the program source code. This is shown in Listing 6.2Be& 026 to 030 in the example creates two
dummy threads executing methadd$ andt 2. Each of these threads execuseshed_set affinityto
set its affinity and attach to a processing core (cores 2 aimdtBjs example), and then executes the idle
loop. A speculative thread hijacks a processing core thairining the idle loop, for its execution. The
processing core, after finishing the speculative executieturns to its idle loop. In addition to this, to
prevent speculative threads from being interrupted fromiceetimers, disk timers, and other intermittent
events in the system, the IRQ load balancer’s affinity igedt¢o prefer a processing core in a system that

does not have an idle thread attached.

6.5 Evaluation

Several aspects of the implementation are presented irsdluison. They are broadly divided into the

following categories, and expanded in the following sulises.
1. Methods and call sites chosen for PD based execution.
2. Potential for performance improvements with the chosdisites with PD.

3. Results on handlers generated for the call sites.
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4. Results on triggers generated for the call sites, anddtiware implementation results on the trigger

evaluation unit.

5. PD implementation data which include, speculative eftecwverheads, results on the methods table,
read and write sets, and invalidate cache, processing tibration for speculative execution, cycles

wasted, and the effect on private caches during speculatieution.

6. Performance improvements with PD including evaluatidth fatencies modeled between execution
buffer pool and processing cores, hardware resource fionitg and a restricted program ordered

forking model.

6.5.1 Methods

Table 6.4 presents the execution profile of the benchmark®r every benchmark evaluated, the table
presents the methods that execute for more than one percém program’s execution time. The first
column presents the run time contribution of a method, tkhers lists the number of times it is called, and
the third, the name of the method.

The methods in the table are used to obtain the initial setaoflicdate methods that PD can focus
on because speculative execution of these methods, ifvatiée may improve program’s performance.
I choose the frequently called methods as the candidateotietior PD. Examples includéval uat e,
Eval uat ePawns in crafty, bea_conput ered_cost in ncf; these methods are called tens of
thousands to millions of times by the program. They are Wguaindred to thousands of instructions,
making them ideal opportunities for speculative executiglethods infrequently called, such aert |t
in bzi p2 anddef | at e in gzi p, are not chosen due to their large size (they can be infeorbe targe,
otherwise, they will not be in the execution profile tablehieh makes speculative execution unlikely due
to limited speculative storage, and dependencies with éseaf the program, which limits parallelism.
Studying the tables, benchmark prograozs p2 andgzi p have very few opportunities for PD, whereas,
benchmarks such &s af t y, gap, per | , par ser, andvort ex have many.

The number of methods and their call sites chosen for PD stedliin Table 6.5, rows 1 and 3. For

comparison, the second row presents the total number ofosi&tincluding libraries, in the program. Only

"The results presented in this subsection are for entirean@NU gprof. For more details, see Section 6.2.
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Figure 6.1: The number of dynamic instructions executetiénmethods considered for PD

0.2 to 8% of methods are chosen for speculative executidn®t. The percentage execution time that the
program spends in the call sites selected is listed in rowlbs &xecution time provides the upper bound
on the percentage of program’s execution time that can beucantly executed with the program and,
therefore, the maximum attainable performance improvésnen

The methods selected are then provided as inputs to theaseftaol chain (See Section 6.2). By means
of profile information, handlers and triggers for the caksiof the methods are generated. The total number
of call sites that the software tool chain selected is ligtedw 4 of the table. Some call sites are eliminated
from the initial list due to implementation issues when gatieg handlers and triggers.

| conclude this subsection by presenting the number of dymamtructions executed by the methods
selected for PD in Figure 6.1. The bars represent the meamjatd deviation, 90-th percentile, and maxi-
mum of the method sizes. For the two compression progrbmisp2 andgzi p, none of the infrequently
called (large) methods were included for PD, and the fretipealled methods in them are typically less
than a hundred instructions. The number of times they akaw contributes to a large percentage of the
program’s execution time. The rest of the benchmark prograas average method sizes in fifties to several
hundreds of instructions. Benchmagkc is the exception with method sizes usually in the thousaids o

instructions. The performance results later presentetatel that the large size of the methodsgioc
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bzip2 % Exec. Calls Name gcce % Exec. Calls Name
30.75 24204832  fullGtU 20.10 25313  propagatelock
18.07 31 sortlt 19.52 26454  nevbasicblock
14.40 22  generateMTFValues 9.30 25064  schedulblock
12.99 22  getAndMoveToFrontDecode 4.26 28 lifeanalysis
9.19 22  undoReversibleTransformatiéast 3.29 56 threagumps
4.11 22  sendMTFValues 3.10 215 forcemovables
2.16 46709960  spegetc 2.52 memset
1.71 30004816  speputc 2.42 44161  recoraneconflict
1.58 840223  simpleSort 2.08 114066 schednalyzeinsn
1.30 17549524  bsW 1.69 215  countoop_regsset
1.10 16705144  getRLEpair 1.21 5960 findreg
crafty % Exec. Calls Name gzip % Exec. Calls Name
19.41 12255414  Evaluate 33.63 82599334  longeshatch
8.78 4594853  EvaluatePawns 11.17 5 deflate
7.10 4413628  GenerateCaptures 9.56 122481874 dally
6.93 11954229 MakeMove 8.50 5115 fillwindow
6.88 119382079  FirstOne 8.47 3668 inflatecodes
6.71 19750559  Attacked 6.71 125222294  senbits
6.20 94568670 PopCnt 5.52 2 deflatefast
4.95 11954225 UnMakeMove 5.02 3668 compresilock
4.86 1272  Search 4.67 10250 updcrc
4.17 7709098 Swap 3.44 memcpy
3.74 8610885 Quiesce mcf % Exec. Calls Name
3.61 9233312 NextMove 35.31 5235 refresipotential
3.57 8659517  AttacksTo 21.88 104573  primabeampp
2.67 12063583  SwapXray 18.64 93235666 beeomputered cost
2.32 27302935 LastOne 9.14 6  priceoutimpl
2.19 2493056  LookUp 4.29 93235666 bew_dualinfeasible
1.42 315353 GenerateCheckEvasions 2.93 104567  sorbasket
1.42 281116  GenerateNonCaptures 1.88 1022350 replaceeakerarc
gap % Exec. Calls Name 1.76 92516472  computeed cost
9.15 4  CollectGarb 1.00 104567 updattree
8.94 42974935 EvVar parser % Exec. Calls Name
6.24 6860751 NewBag 10.18 11361658 hash
4.57 7251117 EvEImList 7.09 10084223 tablpointer
4.16 3431400 EvFunccall 6.44 11515427  prunmatch
3.53 1863720 ChangeEnv 6.19 25993211  xalloc
3.12 6113342  ExitKernel 5.67 2589707  formmatchlist
3.12 204565  DiffVecFFEVecFFE 5.15 25820721  xfree
2.70 2304118 EvRecEIm 3.74 684389  regiavalid
2.49 3167288  LtPP 3.09 8038607  possihleonnection
2.49 314194  EvFor 2.96 __ctypeb_loc
2.29 3108312 Evif 2.58 467 freeable
2.29 2154630 EvAssList 2.19 43340 clearable
2.08 3711457  EvVarAss 2.19 __pthreadinternaltsd.address
2.08 2811377 Ne 2.06 9788229  powehash
2.08 2372634 EQFFE 2.06 2588929 catenate
2.08 1350063  Prodint 2.06 8410 buildclause
2.08 215030 ProdFFEVecFFE 1.93 9504250 tabléookup
1.87 2791812  Diff 1.80 5006344 match
1.66 1333693 Prod 1.55 1384118 hasB
1.66 344475  FunAppend 1.55 1237 count
1.46 1759148 EvAnd 1.42 4885415  rightablesearch
1.46 904183 Resize 1.42 663342 leficonnectorlist_update
1.46 174946  QuolP 1.29 3511965 fasmatchhash
1.25 298978  FunisBound 1.03 2545165 leftablesearch
1.04 6113342  EnterKernel 1.03 467  inittable
1.04 430753  MakeList

Table 6.4: List of methods that contribute greater than agregnt of the execution time, the number of
times the methods are called, and their names
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perl % Exec. Calls Name vortex % Exec. Calls Name

27.33 19493591 regmatch 12.63 481266209 Chun&hkGetChunk
8.04 14459657  Perhy_bcopy 10.11 286162243 MenGetWord
6.54 58517594 regrepeat 8.49 144000 Parbelete
4.88 24674440 Pepp_padsv 7.28 memcpy
420 11109892 Pesv_setsv 5.73 144692956 MenGetAddr
3.06 17382160 Pepp_nextstate 4.63 _int_malloc
2.85 19493591 regtry 3.70 18185478 OaGet
2.54 3977825  Pernlegexecflags 3.66 176132271 TmFetchCoreDb
1.92 6672736  Peppp.and 3.06 101130315 TmGetObject
1.66 5556109 Perv_upgrade 2.85 101130315 OaGetObject
1.45 5300124 Pefkeavescope 2.30 101130315 HaofretchDbObject
1.40 6513307 Perbv_setpvn 2.11 48751402 MenGetBit
1.40 1218778  Pefpp_match 2.10 156232  SaFindin
1.35 161 Perfkunopsstandard 1.79 13352195 OaCompare
1.14 5423898 Penv_clear 1.77 50458735 TmlsValid
1.14 2900601 Penpp.gvsv 1.30 4128498 Tre€ompareKey
1.14 1148534  Pembp_entersub 1.22 288001 SaDeleteNode
1.04 9083326  Penppconst 1.10 7385700 DbmGetVchunkTkn
1.04 7322234  Penpp_sassign 1.00 41196116 UMoveBytes
1.04 2429929  Pering get vpr % Exec. Calls Name

twolf % Exec. Calls Name 34.02 15491273  gdteaphead

30.30 3189275 newlboxa 24.68 8845923  expandeighbours

14.60 2023349  newdbox 11.31 28972981 adtb_heap
8.69 2730486  ucxx2 9.49 43692353 nod®_heap
7.93 120  uloop 6.38 10746  routaet
6.58 1724967 teromewposa 6.23 28972981 allabeapdata
4.47 1464308 ternmewposb 1.59 28972981 frebeapdata
3.21 5855046  sulpenal 1.21 10746  resgpathcosts

3.12 6596085 XPICKINT

3.12 5855046 adgenal

2.45 3011773  acceptt

2.28 12983918 Yacmandom
2.19 2730486  oldassgntonew?2
2.19 2023349  teromewpos
1.52 468153  dbayos?2

1.10 3124560 nevold

1.01 _IO_vfscanf

Table 6.4: List of methods that contribute greater than agregnt of the execution time, the number of
times the methods are called, and their names... contd

Benchmarks bzip2 | crafty | gap gcc | gzip | mcf | parser| perl | twolf | vortex | vpr
Methods 5 23 14 10 5 4 11 37 10 10 15
Total Methods 279 307 | 1051 | 2464 | 321 | 214 527 | 1297 | 386 1156 | 471
Call Sites 23 188 48 32 25 5 133 57 26 174 30
PD Call Sites 13 109 42 20 16 5 44 38 26 110 12
Execution Time | 35.0 | 659 | 51.9 | 506 | 54.2 | 535 | 56.5 | 79.1 | 894 | 555 | 63.6

Table 6.5: Number of methods and call sites considered fob&d@d execution

makes them a poor choice for speculative execution becduseited parallelism and hardware resource
constraints.

Standard deviations for the benchmark programs are cloge togher than the mean, with 90-th
percentile more than the mean, indicating that the methiads are widely distributed. Exceptions include

the benchmarpar ser whose mean (= 243) is much higher than the 90-th percent®¥)=ndicating the
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benchmark has a few very large methods (thousands of itisingy and many small methods with tens of

instructions.

6.5.2 Potential for PD-based execution
This subsection presents the potential for PD, which is fiiléyato begin speculative execution of a method

before its corresponding call site in the program. This ex#jed by the ratio R defined as follows:

R= CyCleCall Site — CyCleTrigger Point
FExecution Cycles

R is the ratio of the difference of the cycle when the methatlitmhandler are ready to execute, i.e., the
trigger point, and the cycle when the program reaches thesital to the number of cycles to execute the
method. In the case when the method (caller) being evaldatdeD calls another method (callee) during
its execution, the trigger point is computed also includimg callee, only if the callee is not considered for
PD. All the cycle times are obtained from the sequential etien of the program.

The ratio R is not a direct measure of performance benefittaforreasons: (i) The execution cycles
used for the computation is measured on the processing gongng the program. In PD based execution,
this number is expected to be different as the speculatieathexecutes on another processing core (refer
Section 6.5.6 on overheads of speculative execution)T'iiig)data is collected for every call site individually,
which is without the influence of other methods. In a PD basetion, however, the cycle time for a
given call site and its trigger point used in the ratio wilkwand depend on other call sites speculatively
executed.

The ratio, however, gives an indication of how much a metmerferes with the rest of the program,
as it determines the parallelism that is available and hoWthve method’s speculative execution could be
overlapped. A ratio close to O indicates that a method aniditsller's execution is ready only just before
the method is called, therefore no overlap is possible Wwithgrogram. A ratio close to 1 indicates the
method can be executed immediately after it is ready; it neltile to finish execution just before it is
called when overheads of speculative execution are caesidé ratio>> 1 indicates possible opportunity

for completely overlapping the execution even with any beads.
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Figure 6.2 plots the ratio R averaged over all executionsgifen method’s call site on a logarithmic Y
axis. Each point in the graph represents a call site chosd?ioFrom the graph we see that many call sites
could begin execution well before they are called. Note thatcall sites plotted in the graph were chosen
after analyzing their execution time contribution and siEkese metrics have already pruned methods that
may be unsuitable for PD.

A more insightful graph is the cumulative plot of the peregya of execution time, plotted on the Y axis,
over ratio R on logarithmic X axis, as shown in Figure 6.3. sTtniaph gives an idea of the percentage of
the program’s execution time and the extent to which thatgpgage may be overlapped with the rest of the
program. For example, 46% of benchmarkr ser 's execution time has a ratio R of flywol f with 50%
of its execution time with ratio greater than 0.8, andaf t y with over 60% greater than 0.8. From this
graph, reasonable performance benefits from benchngagspar ser,crafty, twol f, andvpr are
expected. As pointed out earlier, the data cannot be usediias arder measure of performance benefits

because of the interaction of speculative threads in PDthélprogram’s critical path.

Sensitivity of R to varying handlers and triggers.  The results presented so far are for a specific
implementation of a handler. R may vary with other impleragohs. The rest of this subsection will
focus on the effect on ratio R with different implementatiaf handlers and restrictions on trigger points.
Figure 6.4 plots the ratio R assuming the trigger points oaaocur earlier than the beginning of the method
that calls the method being considered for PD. This previtietgeneration of any interprocedural slices in
the handler (discussed in Section 4.6.1). The followingtlagenoteworthy points from this graph. Overall,
the ratio has not dramatically changed, even though almsain some benchmarks are clearly visible. For
ncf , the limitation of handler has reduced the ratio for one sigédl drastically (10s to 0.1). In general, this
form of handler can severely restrict the separation of&igsite and call site if the program invokes many
methods during its execution. For example, benchmarkaf t y, par ser, andvort ex, all have the
points in the graph located lower than the points in Figubeb@cause these programs spend their execution
time over many methods. Benchmargr also has some perturbations and some paints shift closantb (
below) the X axis.

Another study, shown in Figure 6.5, plots the ratio R assgntirat the handlers do not evaluate any

branches. This reduces the dependencies that the handfdrawna with the program and could affect the
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Figure 6.2: Ratio R (described in the text) plotted for difa call sites in the benchmark. The trigger point
for a call site in this study is the earliest the method andaisdler can begin speculative execution.
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Figure 6.3: Cumulative plot of the execution time versusrdi® R plotted in Figure 6.2
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Figure 6.4: Ratio R assuming the trigger points cannot bertyhe scope of the method that has the call
site of the method being considered for PD
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Figure 6.5: Ratio R assuming the trigger points are basednodlérs that do not compute any branches
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Mean St. Dev 90%ile Max
bzip2 1.28 0.39 1.81 2.25
crafty | 12.61 13.02 34.20 53.80
gap 4.46 7.08 8.64 38.70
gcc 27.67 96.64 19.92 477.00
gzip 1.90 4.06 1.27 21.37
mcf 10.68 5,64 1471 15.48
parser| 1.92 2.13 447 11.46
perl 1.00 0.01 1.00 1.06
twolf 4.60 11.10 5.86 42.80
vortex | 3.03 7.02 4.44  48.90
vpr 2.53 3.81 6.02 13.51

Table 6.6: Ratio of the cycles elapsed between call sitedrptbgram and its trigger point assuming many
outstanding executions compared to just one

location of trigger points. All benchmarks see very littfeeet when branches are excluded, indicating that
it may not have significant impact on the trigger points.

In the results so far presented, it is assumed that more thespeculative thread can be outstanding for
a given call site, before they can be committed or squashadule B.6 presents the ratio Ofycleca site —
Cyclerrigger Point fOr the case studied so far, which is having several outstgneixecutions for a given
call site, versus, having just one outstanding executiothicall site. In the latter case, the trigger point for
a speculative thread can only be after the previous threa@sution has been committed or squashed. For
example, assume that a program calls methodpeatedly with different parameter values (say, a pointer
to a data structure). Also assume thperforms some computation with that parameter and eacheof th
executions are independent. Having only one outstandiegution severely limits the opportunities for
concurrent speculative executions, especially if thedations ofMhave no conflicts. In benchmarkcf
this is noticeable from the high mean of 10x. Similarlycinaf t y, a chess-playing program, few methods
are called to analyze several different moves. Restridhieghumber of outstanding speculative executions

severely limits the parallelism.

6.5.3 Handlers

Table 6.7 presents the number of instructions present indghdlers generated for PD, as the mean, standard

deviation, 90-th percentile, and maximum. These numberslependent on the handler generation algo-
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bzip2 crafty gap gcc gzip mcf  parser perl twolf vortex wvpr
Mean 291 30.29 3315 2750 10.70 19.60 14.66 10.08 21.79 36.9617 8.
StdDev 1.70 54.02 3523 2083 6.19 17.76 1853 11.63 22.60 24.74 8 8.3
90%-ile 6.40 66.00 9140 46.90 20.00 37.60 42.00 27.50 36.80 73.60.7016
Max 7.00 301.00 125.00 102.00 22.00 50.00 90.00 40.00 94.00 002528.00

Table 6.7: Number of instructions in handlers generated imtierprocedural slicing

bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr
Mean 270 1320 554 853 6.88 10.40 5.28 6.18 954 10.26 5.50
StdDev 129 13.06 200 5.15 3.03 1280 4.64 6.53 14.46 2.88 6.19
90%-ile 4.60 31.00 8.00 1590 11.00 23.00 11.00 13.40 11.00 13.00 5012.
Max 7.00 69.00 11.00 21.00 12.00 33.00 39.00 32.00 78.00 31.00.0021

Table 6.8: Number of instructions in handlers generatedmwit interprocedural slicing

rithm and the heuristics, the program, and its programmiragacteristics. The mean for the benchmarks
varies from two to forty instructions. The maximum gives@ackr idea on the complexity of the handler for
different benchmarks. For examplezi p2 has a maximum of seven instructions in the handler, whereas
craf ty has 300 instructions. This is due to two reasons: (i) fewearpaters passed inzi p2 than
crafty and (ii) cr af t y's extensive use of the stack to communicate data valuesiprbgram. Since
the handler generation algorithm includes stack relateapcation, more instructions are included during
the slicing process iar af t y. For comparison, Table 6.8 presents the number of instmgin the handler
without interprocedural slices. The additional constrdimits the number of instructions in the handler.
Benchmarkgr af t y, gap, andgcc have 5 to 10 times smaller handlers than in the previous case.
Table 6.9 presents the fraction of instructions that a leancintributes to a speculative thread. (By
default, the handler is assumed to have interproceducassin all of the evaluations in this chapter.) Figure
6.6 presents the fraction of a speculative thread’s ex@tuatycles spent executing the handler. On average,
the handler introduces 8% to 36% instructions in a speoeldtiread which take 5% to 15% of the execution

time. In the worst case, roughly 30% of the thread’s exeautigcles are spent in the handler for many

bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr
Mean 0.07 0.32 0.38 0.18 0.18 0.40 0.22 0.12 0.13 0.27 0.20
Std Dev 0.05 0.28 0.32 0.20 0.11 0.19 0.23 0.15 0.16 0.17 0.18
90-%ile 0.15 0.76 0.85 0.47 0.31 0.55 0.56 0.31 0.33 0.52 0.38
Max 021 094 0.92 0.63 0.37 0.59 0.90 0.61 0.57 0.62 0.50

Table 6.9: Ratio of the number of instructions executed yhiindler in a speculative thread
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benchmarks. Foer af t y, this is over 55%, because the handlers contribute up to 94éstouctions to a
speculative thread. This is followed by benchmaglesp andpar ser also with over 90% of instructions
from the handler.

A handler for a speculative thread is generated by the sodtivdrastructure. Therefore, the software
is responsible for determining the optimal number of indinns that must be in the handler to minimize
overheads and maximize performance benefits. For exangdelts presented in this subsection can be
incorporated into the handler generation process to déterhow the handler can be adjusted, i.e., deter-
mining whether to include more instructions in it and polssincrease the separation of the speculative

execution from the call site, or make it shorter, to minimize overheads.

6.5.4 Triggers

In this subsection, | discuss trigger points for call sitessen for PD, their sensitivity to different input
sets, and results related to the evaluation of triggerst,Figures 6.7 and 6.8 present the average number
of trigger points (along with the standard deviation, 9@#ncentile, and maximum). The handler used in
Figure 6.7 contains interprocedural slices; those in E@gu8 do not. For the results presented, a speculative
thread whose trigger site is also the call site, i.e., a dpteea thread forked when the previous outstanding

thread for that call site is committed, is considered to havérigger point, and accounted as zero.
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Figure 6.6: Fraction of speculative thread’s executioneym the handler
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The number of trigger points with interprocedural slicemisre than the ones without them. Interpro-
cedural slice based handlers extend for more number olctgins, usually require more program state
and, therefore, increase the number of trigger points. ®ibenchmarks evaluated, the average number
of trigger points is between one and two. This implies thigiglers for a call site, if optimized, may be
incorporated statically, instead of using the dynamicustidn support discussed in Section 5.6.

For gap, the average is less than one because many call sites havinmgger points, as many spec-
ulative threads are forked when a previous outstandingusmiae thread for that call site is committed.
Benchmarlcr af t y has few hundred call sites for PD, unlike many other bencksarhe large size of the
handlers for the call sites (discussed in Section 6.5.8)dinices many more dependencies with the program.
This results in the worst case of six trigger points with iptecedural slices, and five without. Benchmark
vort ex, has over nine trigger points because of one notable prognagncharacteristic. The program
code extensively uses macros to create specialized méfttomadgeneric implementations (several hundred
are created from few generic methods). Macros are procésstnd compiler toolchain’s preprocessor and,
when compiled, the binary only has the generic method caligger points are generated for the generic
versions of methods and not for the specialized methods.

Table 6.10 presents the number of trigger condition codisterg needed for these benchmarks. These
are set or reset when the program commits an instruction edgrgm counter that is registered with the
trigger evaluation unit. The registers are further usedef@uating the trigger. The number of registers
required is dependent on the number of call sites chosenddrd®ed execution and the number of trigger
points for each of the chosen call sites. Based on thesehbwmksvort ex, crafty andpar ser
require the maximum number of trigger condition code regsbecause of the number of call sites selected
for PD (refer Table 6.5). While on the other hanat,f requires only seven registers.

The next set of rows in the table presents the hits and nunibialse positives to the Bloom filter, BF,
in the trigger evaluation unit (refer Section 5.6). Progremointers used in the predicates of triggers are
registered with the Bloom filter, BF. The program countersariimitted instructions are passed through the
BF to determine if further action, i.e., searching and sgtthe trigger condition code register, is required.

The second row in the table (titled Hits), lists the fractafprogram counters of committed instructions

that hit in the BF. A hit indicates that the program countelyrba registered; there may be false positives.
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Figure 6.7: Trigger points with interprocedural slices ineendler

It is necessary to minimize the number of false positiveshad the BF does not return a hit for a program
counter that is not registered. Several different configoma are therefore presented next, to determine
the optimal number of hash buckets needed and the hashiegnsctinat transforms program counter into
bucket index.

The third row in the table (titled, 8Kb) presents the numbiéalse positives with eight kilobits of entries
in the filter. The hashing used is the XOR of lower 13 bits wils &6 to 23 of the instruction’s program
counter.

The fourth row (titled, 16Kb) presents false positives férKilobit entries with the hashing function
based on the XOR of lower 14 bits with bits 16 to 23 of the inginn’s program counter. The number of
false positives is significantly reduced because of lesséisions due to more number of bits available in
the filter.

Benchmarkcr af t y has the maximum number of false positives. 75% of the hith @#b filter are
false positives, which is significantly reduced with 16 Klefil(to 39%). Benchmarkar ser has 50%
reduction,t wol f has 75% reduction, andor t ex has 80% reduction in false positives with the larger

filter.
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Figure 6.8: Trigger points assuming no interprocedurakslin a handler

bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr
Registers 24 132 41 39 28 7 122 41 33 147 22
Needed
Fraction 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02 0.02 0.04
Hits
8Kb 0.00 0.75 0.01 0.08 0.00 0.00 0.08 0.08 0.12 0.22 0.00
16Kb 0.00 0.39 0.00 0.05 0.00 0.00 o0.04 0.03 0.03 0.04 0.00

Table 6.10: Statistics related to the trigger evaluatioit: utumber of trigger condition code registers, hits
and false positives in the Bloom filter

Benchmark | Input used

bzip2 Reference input, input.graphic
crafty Reference input

gap Reference input

gcc Reference input, 166.i

gzip Reference input, input.graphic
mcf Reference input

parser Reference input

perl Reference input, diffmalil

twolf Reference input

vortex Reference input, lendianl.raw
vpr Reference input, placement phase

Table 6.11: Input set used for trigger point sensitivitydstu

bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr
0.97 0.61 0.66 0.90 0.87 1.00 0.71 0.82 0.85 0.62 0.86

Table 6.12: Fraction of common trigger points with differa@rput sets
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6.5.5 Sensitivity of trigger points

Unlike identification of call sites for PD based executiom generation of handlers for these call sites, the
identification of triggers relies extensively on profilearhation and may be sensitive to the behavior of the
program. (Even though static information from the compiter described in Section 4.3, can help reduce
this.) A poor choice of triggers can increase mis-speaiatiin the system and result in wasted execution
resources. In this subsection, | study the sensitivity ighgr points, which are used to identify triggers, to
different input sets.

An important requirement for collecting profile data for tipeneration of triggers is to achieve good
coverage of the control flow in the program. This is dependaenthe program and its behavior with
different inputs. For example, a program may have two differset of inputs each executing different
set of methods and/or instructions in control flow pathshsagvpr with placement and routing inputs.
Some programs may not have different execution paths whan sets are scaled suchgsi p, whereas
some other programs may be dependent on the scale and thatiesnud the input, for examplgcc.
Besides this, it is likely that profile information for a pregn which is collected and processed for triggers
on one set of inputs, is used on another set of inputs.

In Section 6.5.4, the trigger points were obtained for thmuia presented in Table 6.3. To determine
the sensitivity of these trigger points with different inp@and possibly, completely different phases, trigger
points were collected for another set of inputs shown ind@#&bl1. It is not known whether the phases that
the benchmark programs are in match the phases for the rim&wuts shown in 6.3. Table 6.12 presents
the fraction of trigger points that match between the twaitrgeets. On average, 80% of the trigger points
match between the two input sets. Benchmarkaf t y, gap, andvor t ex have the lowest percentage
of roughly 63, mainly because these programs are large, awithplex control flow paths than the other
evaluated benchmarks.

Even though it is desirable to have a high correlation ofgeigpoints between different inputs, lower
correlation in the benchmarks may not necessarily affedopeance. The low fraction of matching trigger
points is likely due to the methods executing in differerigds of the program; control flow paths that were
not exercised when run with train inputs may be used withresfee inputs. Detailed program analysis is

required to determine the nature of behavior of trigger soivith changing inputs.
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6.5.6 Speculative execution overhead

Figure 6.9 presents the overheads of separating a methagstéon from its call site, and performing it on
another processing core. On the Y axis is the ratio of theesyesed for speculative execution of a method in
PD, over the cycles used by the method during sequentialiggac The speculative execution of a method
is measured by the number of cycles taken to execute thelggigeuhread in its entirety (i.e., including the

handler). The following are the effects that a speculativead in PD may have:

1. Negative effect due to execution of the handler.

2. Negative effect due to compromised locality of data beeatne method does not execute on the

processing core that the program runs on.

3. Positive effect due to increase in the cache capacity. A&&d program uses the cache resources
of many processing cores, which may lower capacity and abnflisses. Spatial locality between

speculative threads that execute on a processing core s@peala positive effect.

4. Second order negative effects such as poor branch pogdatcuracy because of the use of many
processing cores, and the inability to train the predictdrall processing cores for an outcome of a

branch.

The data in the figure can be divided into three categori¢Sniialler methods have higher overheads.
Therefore, the ratio is significantly greater than 1. (ii)rder methods have lower overheads because
negative effects such as additional cache misses are aetbrii herefore, the ratio is close to 1. (iii) Some
large methods finish speculative execution faster tham toeinterpart in sequential execution. Therefore,
the ratio less than 1.

Benchmarkrcf , has ratio of 7 (7x overhead of speculative execution in Rigplbise speculative threads
in the benchmark are small, and frequently miss in the caére. locality that may exist is lost due to
threads executing on many processing cores. The worst eashead fomtf is 14x for a speculative
thread that executes a method of 10 instructions. All bereckenhave worst cases between 3 to 9x. This
is expected since small methods chosen for PD have high eagsh The average numbers for benchmarks

are, however, dominated by medium sized (100s of instmis}imethods in benchmarkgr ,t wol f ,gcc,



123

andpar ser with overheads between 1 to 2x. Benchmaudk t ex has 1.5x overhead because of good
cache locality, even though many speculative threads ibéhehmark are less than a hundred instructions.
cr af t y andgap call smaller methods more often than average sized metfididsresults in poor locality,
and high average overheads of 3.3x and 2.6x respectivelyceJioor cache locality is one of the main
reasons for the overheads, one way to lower the overheadsngptement data prefetching support in the
hardware. The usefulness of a data prefetcher will greatfyedd on when the prefetch requests can be
issued, and when the data is available. Novel data prefestchay be needed specifically to deal with short
running speculative threads in PD.

Figure 6.10 presents further insights into the overheadspetulative execution with respect to the
sizes of methods. The results are separated into methodkabe, (i) less than 50 instructions, and (ii)
greater than 50 instructions. Becauseaf t y andgap speculatively execute many small methods, the
averages presented in Figure 6.9 are dominated by theseemsif@odx and 3.4x overhead for less than 50
instructions), rather than by methods with greater thanns@rctions (1.1x overhead). The explanation
provided in the previous paragraph foor t ex is also accurate for these results; the benchmark has very
low overheads (1.23x). Noticeably, for all the benchmarkethods with greater than 50 instructions have

overheads between 1x to 1.9x.
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Figure 6.9: Overheads of speculative execution of a meth®&D over sequential execution
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H less than 50 instrs
O greater than 50 instrs

Speculative exec. overheads
N
Il

bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr

Figure 6.10: Average overheads of speculative executi®Diover sequential execution separated into two
bars: methods with less than and greater than 50 instrgction

bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr
146 0.82 052 084 095 54 054 0.74 0.73 0.71 1.02

Table 6.13: Minimum of the overheads of speculative exeouth PD over sequential execution

Table 6.13 presents the minimum overheads of a specul&tigad in the evaluated benchmarks. Due
to extra cache capacity, for several benchmarks the mininsuless than one, which implies that some

speculative threads takes less time to execute than thaitegparts in sequential execution.

6.5.7 Cache references

PD based execution, unlike sequential execution, uses ipEITEssing cores. The overheads associated
with this usage are likely to increase the number of requiesthe instruction and data caches of the
processing cores, when compared to sequential executibis. ificrease is because of: (i) the references
made by instructions in the handler during its execution @hdccesses performed by speculative threads
that are aborted or squashed.

Figure 6.11 plots the fraction increase in requests in lewel instruction and data caches during PD
based execution over sequential execution. In almost airams, exceptcf andgap, the increase in
instruction cache references is higher than that of datheca®©n average, the references increase by 20%

in the instruction cache and 16% in the data cache.
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Figure 6.11: Fraction increase in cache requests with PBdbasecution over sequential execution in level
one data and instruction caches.

For level one instruction and data caches, Figure 6.12 d@fifgesents: (i) the miss rate with sequen-
tial execution, (ii) the miss rate on the program’s progegsiore with PD based execution, and (iii) the
cumulative miss rate of all speculative processing corase @bservation that stands out is the high miss
rate in the data cache of speculative cores, which conésiat the high overheads of speculative execution.
Benchmarkhcf in particular has a 25% miss rate on speculative processiregs cwhich takes speculative
threads seven times more execution cycles than in sequexdeution (refer Section 6.5.6). On average,
the miss rate on speculative processing cores is 11%. Ortibeltand, the miss rate on the non-speculative
processing core is 3%. This is largely unchanged from the rnate during sequential execution (average of
4%) because speculative threads are committed throughitlaéepcache and, therefore, will have a similar
effect as sequential execution.

The observations from studying the instruction cache naitesrare different. The miss rate on the non-
speculative processing cores are lower than the miss rategdiequential execution. This is because of the
increase in total cache capacity and because the non-afieeyprocessing cores must access and execute
only instructions that are not executed by committed saisel threads. The miss rate of the speculative
cores in PD is also lower for many benchmarks (exaggb, bzi p2, par ser, andt wol f) because of
temporal locality exhibited when speculative threads oeghod are scheduled in the same processing core.
In addition, unlike data cache lines, instruction cachediare not written to, and hence, not invalidated by

the program.
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Figure 6.12: Miss rate per instruction for level one indtiaut cache in sequential execution (label: Miss
rate (Seq. Exec)), non-speculative processing core in RBdoaxecution (label: Miss rate (PD, Non-spec
P)), and on speculative processing cores in PD based exedlabel: Miss rate (PD, Spec Ps))
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Figure 6.13: Miss rate per instruction for level one datahedan sequential execution (label: Miss rate (Seq.
Exec)), non-speculative processing core in PD based amadlébel: Miss rate (PD, Non-spec P)), and on
speculative processing cores in PD based execution (e rate (PD, Spec Ps))
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Misprediction fraction in
Seq. program 0.05  0.07 0.01 0.05 0.08 0.05 0.06 0.04 0.14 0.02 0.08

Cumulative misprediction fraction on processing cores exaiting speculative threads in
PD program  0.13  0.09 0.04 0.04 0.13 0.09 0.10 0.06 0.15 0.04 0.10

Table 6.14: Fraction of branches mispredicted in sequemtagram and cumulative fraction of branches
mispredicted on processing cores executing speculatieads during PD based execution

6.5.8 Branch mispredictions

Section 6.5.6 discussed several factors that contributetoverheads of executing a speculative thread. One
of the factors is the overheads introduced by poor brandfigiien in an out-of-order superscalar processor
pipeline. For example, the decision of a branch in a spaeal#tread is used to train the predictor table of
the processing core executing the thread. Another execatithe same speculative thread, if performed on
a different processing core, will not benefit from the trdipeedictor table. Table 6.14 presents the fraction
of branches mispredicted in a sequential program, and theledive fraction of branches mispredicted in all
processing cores used for execution of speculative thi@dush is the ratio of the total number of branches
mispredicted over the total number of branches in all spdisel threads). On average, the misprediction
fraction in sequential program is 6%, which increases to®%RFPD execution. All benchmarks exceutc
have poor branch prediction accuracy in speculative tlsreddhe prediction accuracy may be improved
with an intelligent scheduling policy that schedules ak@yative executions of a given method on one

processing core.

6.5.9 Methods table

The average and maximum number of outstanding speculdiieads in a system is presented in Figure
6.14, with their average occupancy cycles in Table 6.15hése results, there is no limit to the number of
entries in the methods table, to study what might be an apptepnumber to achieve maximum benefits.
The data does not include speculative threads that do nopletanwhen the call site in the program is

reached as they are used or committed immediately upon etiompl and not placed in the methods table.
The number of speculative threads outstanding is directlyeddent on the number of call sites chosen

for PD based execution. It is also proportional to the cyelepsed between the completion and use of a
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Figure 6.14: Number of oustanding speculative threaddyditg threads that stall the requestor)

bzip2 crafty gap gcc gzip  mcf parser perl twolf  vortex vpr
39.90 1295.22 281.97 213.13 61.36 709.30 318.06 134.27 38331108.85 489.42

Table 6.15: Average number of cycles outstanding speual#ttreads are held

speculative thread. This is shown in Table 6.15. For exang@achmarkcr af t y has over hundred call
sites for PD based execution and, therefore, has over 78d$iteeld for around a thousand cycles. On the
other hand, compression progratmsi p2 andgzi p have few call sites for speculative execution. The
speculative threads are used 40 to 60 cycles after complatid, therefore, very few speculative threads are
being held by the system. The performance benefits (presamtgection 6.5.13) are dependent not only
on the number of outstanding threads presented here, luthalgraction of program’s execution that they

cover.

6.5.10 Read and write sets

Figures 6.15 and 6.16 presents the average, standardidey®-th percentile, and maximum number of
sub-blocks in the read and write sets of a speculative threspectively. (Sub-blocks are 16 bytes. For
more details, see Table 6.1.) This data accounts for read/atedsets of all threads in the system, including
those that are in progress when the program reaches theponding call site.

The size of read and write sets depend on the method’s sizecamplutation performed. Since call sites

of large methods were eliminated as candidates for PD, ithisslthe read and write sets of speculative



129

1000 5
] OMean
O Std Dev
E90%ile
W Max
100
" 1
i 4
[8]
8 ]
o
) —
= ]
a |
10 A
1+ ‘
bzip2 crafty gap gce gzip mcf parser perl twolf vortex vpr

Figure 6.15: Read set size (in sub-blocks) of speculatiresatis

threads to roughly 20 and 30 sub-blocks, respectively, fostnbenchmarks. Benchmavior t ex was
earlier described in this section to have several small austlof few hundred instructions. Its mean read
and write set sizes are 13 and 10 sub-blocks, respectioggrithan that of other benchmarks. It also has a
low standard deviation, and 90-th percentile close to thearme

Few large methods in some benchmarks contribute to the nuaxiof 100 sub-blocks in the read and
write sets. The performance results (presented in Sectmd6) indicate that these methods contribute a
sizable fraction to the improvements. Benchmarlaf t y has many small methods contributing to the low
average, with some large methods contributing to the oversiiB-blocks in the read set. Benchmagks
andper | have large read and write sets, making the chances of spiegewdaecution with limited entries
in the read and write set tables low. The smallest methodsechfor PD are in benchmarkcf . This is
reflected in the read and write set sizes of 6 and 1 sub-blpaieEpectively.

Studying the sizes of the read and write sets are importanomly for deciding the size of several
hardware structures but also for determining which methiodgpeculatively execute. First, the write set,
which represents the dirty data of a speculative threadgld in the private caches of the processing core
during its execution. During a method’s speculative exeoutirty data cannot be evicted from the cache
and, in such a case, results in the termination of the thrElaglse methods must be eliminated as candidates

for speculative execution. The size of the read and write akdo determines the size of the hardware
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Figure 6.16: Write set size (in sub-blocks) of speculativeads

structures such as the speculative tag unit and executiter imool. The speculative tag unit must be sized
to hold the tags of read and write sets during the speculatteeution. An overflow in the STU aborts the
thread. On completion of a speculative thread, its read aiité gets are moved to the read and write set
tables. If these tables have a fixed number of entries peadhmserflow either aborts the thread, or places
the remaining tags (and data) in the overflow table, which beayndesirable for efficiency. The invalidation
cache is populated with the read and write set tags and magsbalsized to have minimal overflows. The

sizing of the structures will be further discussed in Secfd.13 on performance improvements with PD.

6.5.11 Invalidation cache

The invalidation cache is introduced in this implementatior the sole purpose of efficiently determining
if the address of a store committed by the program is presetitel read or write sets of the outstanding
speculative threads. Without the invalidation cache,eeatry in the read and write set tables for all the
speculative threads must be searched, which is likely tmé#fi¢ient, even though the operation is not on
the program’s critical path. Thus, additional storage amicl in the form of invalidation cache is used to
minimize the overheads. (Alternatives to the invalidatgathe are private caches as discussed in Section

5.7 or signatures proposed in Bulk [32].)
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Fraction 0.00 0.00 0.14 0.38 0.01 0.23 0.21 0.00 0.91 0.03 0.04
sets overflow
# overflows 0.0 2.5 8 11 18 4 3.8 00 114 32 2.8

Table 6.16: Fraction of sets that overflow and the number efftows for an invalidation cache of 1024
sets, 8-way

The invalidation cache organization is discussed in Sedi@. The size and the associativity must
be chosen to minimize the number of overflows per set. Taldlé presents the fraction of sets in the
invalidation cache that overflow, and the average numbevefflows in these sets. The invalidation cache
has 1024 sets, each 8-way associative. The worst case beloacurs in benchmarkwol f; 91% of
the sets overflow and requires an additional average of Iitriee. 14% to 38% of the sets overflow in

benchmarkgcc, par ser, ncf, andgap. They require an additional 1.8 to 11 entries per set.

6.5.12 Utilization

Figure 6.17 plots the utilization fraction for the sevengassing cores that are used for speculative execu-
tion. The utilization fraction is the ratio of the cycles spby a processing core for speculative execution,
over the cycles spent by the non-speculative processirggtoaexecute the PD based program. The graph
only accounts for the execution of speculative threads dratcommitted or used by another speculative
thread. The processing core spends the rest of the cyclest@g speculative threads that are aborted or
squashed, and stalling when the write and read sets of a etedppeculative thread are transferred from
its private caches to the execution buffer pool.

The utilization of processing cores may be used to deterth@@lausible performance benefits. How-
ever, there is no direct correlation as the performance owgments will depend on the overheads of
speculative execution and the extent of overlap betweethtikads in the system. Based on the data from
the figure, the highest cumulative utilization (Cumulativtdization is obtained by adding the utilization
fraction on all seven processing cores presented in théngrag multiplying by 100. The highest possible
cumulative utilization can be 700%.) is from benchmasks ser (185%),gap (176%),cr af t y (157%),
vortex (197%), followed byvpr (137%),t wol f (74%), per| (63%), andncf (103%), and finally

gcc (17%) andbzi p2 (52%). These numbers are representative of the discussesented in this
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Figure 6.17: Ratio of the cycles spent by a processing corefeculative execution over the cycles spent
by the non-speculative processing core in PD based exeacufibe graph presents the ratio for the seven
processing cores used for speculative execution in thersyst

section so far. Benchmarks afty, vort ex, gap, andpar ser were observed to have the maximum
opportunities (refer Section 6.5.1) and, therefore, hagk btilization. On the other hand, methods chosen
from benchmarksrcf , bzi p2 did not cover significant fraction of program’s executioméi (refer Table

6.5) and, therefore, utilize only a small fraction of thelegdfor speculative execution.

6.5.13 Stall cycles

During PD based execution, when a call site is reached,andstg speculative threads in the methods table
and any ongoing speculative threads in other processings @re searched for a match. If the call site
matches with an ongoing speculative thread, the requdstts sntil the thread finishes execution, and then
initiates the operations to commit the thread. For perforceraeasons, it is best that the requestor wait only
if the number of cycles it is going to stall for the speculatihread to complete is less than the cycles the
requestor would take to execute the method. Otherwise,pbeutative thread slows down the requestor,
an undesirable effect. While discussing the software #tifa@ture in Chapter 4, it was suggested that the
call sites chosen for PD be refined based on the feedback fi@b laased execution. This is an instance

in which if it is observed that PD based execution for a caé burts program’s performance, that call site
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Fraction 0.02 0.03 0.01 0.01 0.16 0.00 0.14 0.20 0.11 0.28 0.18
cycles stalled
Fraction 0.28 0.13 0.04 0.74 0.66 0.00 0.25 0.53 0.27 0.32 0.22

threads stall the program

Table 6.17: Fraction of cycles a requestor stalls for a dpéiea thread to complete, and the fraction of
threads that stall the requestor

must not be speculated. | performed this step by hand, dbgergsults from simulations, and refining the
set of methods that can be used for PD.

Table 6.17 presents fraction of execution cycles that a RBdprogram stalls waiting for the speculative
thread to complete. It ranges for 0% forf to 28% forvor t ex, with an average of 10% of cycles stalled
in all the benchmarks. During this time, the requestor st@ither speculative executions may be ongoing).
The fraction is dependent on two aspects: (i) the size of tleewdative threads, which depends on the
methods chosen for PD and the program’s characteristidgjiixthe separation between the trigger site and
call site for a speculative thread achieved by the corredipgririgger and handler. The numbers presented
in the table may be taken into account to determine the apiptegdrigger site for a speculative thread.

The second row in the table lists the fraction of used spéealdhreads whose corresponding call
sites are reached by the requestor before their complefidklarge fraction indicates that majority of the
speculative threads are stalling the requestor, oftendbke i speculating on large methods. Benchmarks
gcc andper| are dominated by large methods, and 74% and 53% of the thstalighe requestor.
Performance improvements with PD are likely to be insigaificfor these benchmarks. A program that has
small methods for speculative execution, but significaattfon of threads stalling the requestor, implies
high overheads of speculative execution and/or specal#tireads forked not well before their respective
call sites. Benchmargzi p, with 66% of the threads stalling the requestor, is an exarapsuch a case.

Finally, among the threads that stall the requestor, Figui8® presents the fraction of the thread’s
execution time that the requestor waits. Minimizing theambers may be beneficial to the requestor, as
it represents the portion of a speculative thread in itscatippath. These numbers, along with the fraction
of threads that stall the program presented in Table 6.1&rm@e the performance benefits of speculative
threads. For benchmarlggc andper | , 74% and 53% of speculative threads stall the requestootmiy

65% of their execution time.
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Fractioncycles 0.09 0.22 0.10 0.06 0.22 0.05 0.38 0.07 0.17 0.22 0.13
Fraction threads
utilized 0.09 0.20 0.29 0.50 0.15 0.10 0.19 0.30 0.70 0.90 0.33

Table 6.18: Fraction of cycles wasted by speculative tred¢lalt are squashed, or aborted by the handler

bzip2 crafty gap gcc gzip mcf parser perl twolf vortex wvpr
0 0 0.06 O 0 0 0 0 014 O 0

Table 6.19: Fraction of speculative threads aborted beocafuaviction of a speculative cache line

6.5.14 Wasted execution cycles

This subsection discusses the number of wasted cyclespenipspeculative execution, which is either due
to handler aborting without calling the speculative exiecubf a method or, a speculative execution that is
discarded due to a dependence violation. The cycles speottxg the handler in a speculative thread that
is later committed or used is not considered as wasted dmaaucles.

The first row in Table 6.18 presents the ratio of the executiares on the speculative processing cores
that is discarded, over the cycles for PD based executiorav@rage, 15% of execution cycles are wasted,
with benchmarks that achieve higher performance benefgsusksed later in Section 6.5.13) having higher

fraction of wasted cycles. These areaf t y with 22% of cyclespar ser with 38%, andvort ex with
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Figure 6.18: Fraction of speculative thread’'s executiat the requestor stalls (only among threads that
stall the requestor)
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22%. Benchmarks with low utilization of processing coresdpeculative execution (refer Section 6.5.12)
such adzi p2, ncf, andgcc have only 9%, 5%, and 6% of cycles wasted, respectively.

Of the cycles wasted, several speculative threads may kedobut aborted by the handler. The fraction
of speculative threads that actually begin speculativegi@n of a method is presented in the second row
of the table. There is a large variance across the benchmranging from 9% to 90%, with an average of
34%. The fraction of threads aborted strictly depends obtheches included for evaluation in the handler.
If the call site is control dependent on one or more branch@shwvhen executed rarely takes the path to
the call site, including these branches in the handler tiréfore result in more frequent aborts. However,
the cycles to speculatively execute an handler that at®ldsvier than speculatively executing a method that
will be squashed.

The fraction of speculative threads that are aborted whper@uative cache line is evicted (refer Section
5.2 for more details) is presented in Table 6.19. 6% and 14#teothreads igap andt wol f are aborted.

The rest of the benchmark programs does not have any sgeewdathe line evictions.

6.5.15 Performance

This section has so far covered several results that caroagllgrdivided into three categories: (i) methods
chosen for PD and their characteristics, such as size, nuofiloall sites, and execution time, (ii) potential
for performance improvements with the chosen call sitésrésults on software components of PD namely,
handlers and triggers and, (iv) hardware implementatisalte which consisted of overheads of speculative
threads, cache miss rates, mis-speculations, invalilagche overflows, stall cycles, and processing core
utilization.

This subsection discusses the performance benefits of fhlenmentation. | use the hardware imple-
mentation listed in Table 6.1 and the “Base” group of paransein Table 6.20. Speculative threads are
scheduled every 50 cycles. Trigger evaluation code is no¢rgeed by the software infrastructure, but a
10 cycle execution latency is modeled for evaluating a &iggnd determining if it has fired. 5 cycles are
used to communicate the handler program counter and stantepoto the speculative processing core.
The system is assumed to have no bandwidth limitations vatbverheads for transferring write and read

sets to and from the processing cores. The invalidationecaold trigger evaluation unit sizes are listed in
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Figure 6.19: Performance benefits from PD with two, four, ahd eight processing cores

the table. The methods table and read/write set tables spenasl to be large enough to accommodate all
speculative threads and their respective read and wrige set

Figure 6.19 presents the performance benefits, with respesgquential execution, from PD on the
evaluated benchmarks for two, four, six, and eight proogssbres Speedups range from 1.1.x to 2x,
with a harmonic mean of 1.47x. The results follow the trerat thas been set up by other results studied
so far. Compression programzi p andbzi p2 were expected to have minimal benefits because of very
few opportunities and their tightly coupled algorithmsgytachieve 1.2x performance improvement in this
evaluation. Benchmarkwol f achieves 1.4x speedup, whgeap, crafty,vpr, parser, andvort ex
are the best performing benchmarks, averaging 1.8x witht @igocessorscr af t y has several speculative
threads because of the nature of the program, while gaft andv pr , the initialization, setup, and lookup
of structures used by the programs result in the performbaoefits. Benchmargcc andper | show lot
of potential opportunities, but do not result in any impnosats, averaging 1.1x. Many methods in the two
programs are speculatively executed with very little acygnvith other threads or the program. Benchmark
ncf is crippled by few opportunities and high speculative execwverheads. In all the benchmarks, eight
processing cores are rarely used by speculative threaggsasvident in the utilization study presented in

Figure 6.17. Maximum benefits are achieved with four to socpssing cores.

8The sequential program is compiled with the flags specifiékiction 6.3. Unlike PD based execution, the sequentiaranog
does not use any profile information. Profile guided optitMrawas been found to improve performance of the sequential
execution of SPEC CPU2000 integer benchmarks compiled t@Hntel C compiler, a state-of-the-art optimization cdep
by 7% on an Intel Pentium 4 system. Profile guided optimizatimay also be performed on a PD based application.
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Base

Scheduling First-come first-serve policy of scheduling csiettive threads.
Threads are scheduled every 50-cycles.

Trigger evaluate 10 cycles fixed for all triggers

Forking 5 cycles to communicate call site and handler progeaunter, stack
and base pointers

Invalidation cache 1024 sets, 8-way

Trigger eval. unit  16Kbits Bloom filter. Upto 150 trigger atition code registers.

Execution buffer pool latency and bandwidth

Bandwidth & 10 bytes per cycle; two cache lines per 12 cyaésdm read and

Latency write set tables; 3 tags per cycle when using a sativeithread.
PD hardware structures

Methods table 20 entries

Spec. tag unit 50 entries

Read set table 20 entries per thread

Write set table 30 entries per thread

Table 6.20: Details of the simulated machine: Program D#pbexing implementation parameters

6.5.16 Inorder forking

A novel aspect of PD that distinguishes it from prior propesa the unordered forking of speculative
threads. This subsection compares this over the prograeramtar “inorder” forking models of previous
speculative parallelization models. The inorder model Bf Referred to as Inorder PD, uses the PD
implementation discussed in this dissertation so far, gixf one critical restriction. Speculative threads
are allowed to begin execution only after threads that vélcbmmitted earlier in the program have begun
execution. This restriction ensures that the threads bsgg@tulative execution in program order and,
therefore, will be committed in that same order. The InoflBrimplementation however, has two notable
aspects that differ from prior speculative parallelizativoposals: (i) Mis-speculations in Inorder PD do not
propagate to other speculative threads and, thereforgtlmmthread that violated dependencies is squashed,
and (ii) Inorder PD does not allow communication betweertsiative threads, because the implementation
of PD does not support it. To deal with nested method callckvhésults in nested speculative threads,
Inorder PD implements hierarchical tree ordered forkinguggested by Renau et al. [161]: the inner most
method begins speculative execution before the outer dstho

Useful utilization of processing cores with Inorder PD isggnted in Figure 6.20. The Y axis represents

the ratio of the cycles spent on speculative executionsdgelien processing cores that are eventually used
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Number 040 1437 2.03 053 0.17 3.73 217 052 1.16 1.73 2.54
of threads
Cycles 98 1374 520 885 78 626 442 217 458 227 408
Held

Table 6.21: Number of speculative threads outstandingdrdier PD and the number of cycles they are held
before being committed
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Figure 6.20: Ratio of the cycles utilized for useful spetiwaexecutions over the cycles for Inorder PD
based execution for the seven processing cores

by the program, over the cycles for Inorder PD based exatulibe lack of utilization of processing cores
three to seven implies that the forking model is severelyrictive, and is unable to find speculative threads.
Compare this with the useful utilization with PD in Figurel. Benchmarkcr af t y has the highest
cumulative utilization (defined as the sum of utilizatioadtion for the seven processing cores, multiplied
by 100) at 101%, followed by benchmarkpr andvor t ex at 83%. The rest of the benchmarks cover 7%
to 45% of execution cycles. Notably, benchmgi&p andpar ser, which utilizes up to 185% and 176%
of execution cycles (the top two among all evaluated benckshan PD, with Inorder PD uses only 34%
and 45% respectively (5th and 7th when sorted in increasidgraf utilization among benchmarks with
Inorder PD). The program ordered forking severely resttice speculative threads that can be forked.
Performance is presented in Figure 6.21. The implementa@wameters are the same as discussed in
Section 6.5.13. As expected the lower utilization of thecpssing cores results in performance that does

not match PD. Inorder PD performs well @or t ex andvpr achieving 1.3x and 1.5x speedugr.afty’s
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Figure 6.21: Performance benefits with Inorder PD

bzip2 crafty gap gcc gzip mcf parser perl twolf vortex wvpr

Fraction
Cycles 0.08 0.20 0.11 0.01 0.18 0.05 0.20 0.06 0.16 0.27 0.13

Table 6.22: Fraction of cycles wasted by speculative tredlaat are squashed or aborted in Inorder PD

high utilization results only in 1.3x speedup. The remanrenchmarks average 8% improvements, with
an overall average of 1.15x.

The average number of speculative threads outstandingeitntirder PD system, and the number of
cycles they are held is presented in Table 6.21. The numbautsfanding speculative threads is two times
lower compared to PD. They are held on average for 56% mote<tttan PD (refer Section 6.5.5). This is
because of the program performing most of the executionarder PD, which results in a thread being held
for more cycles before the program can reach the correspgrddill site. Table 6.22 presents the fraction
of cycles spent in speculative executions that are disdafgar almost all benchmarks, the mis-speculation
fraction is nearly equal or less than that of PD. On averdge|riorder PD implementation has 15% lower
mis-speculations as compare to PD.

In summary, the two implementations, PD and Inorder PDgediffnly in the ordering in which the
speculative threads are forked. Inorder PD forks speweldtireads in program order, whereas PD does
not. The impact, in terms of utilization of processing coraad the performance improvements are,
however, vastly different. On average, Inorder PD imprgvesormance by 20%, whereas PD achieves

60% improvements. The forking model of Inorder PD affecesahility to fork speculative threads to create
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concurrency. Supporting communication of speculativa datues between thread would allow a thread to
be forked before its data dependencies are satisfied, uplikeand obtain them speculatively from other
older (i.e., earlier in program order) speculative threddss in turn, might improve the effectiveness of the

forking model.

6.5.17 Performance with latency between execution buffergoml and processing cores

The performance benefits presented in Section 6.5.13 adsuniienited bandwidth and no overheads to
communicate between the execution buffer pool and the psiouog cores. This subsection presents a
realistic implementation of PD. The hardware used for thiweation additionally models the parameters
listed in the latency and bandwidth group of Table 6.20.

In general, increasing the latency of communication to andhfthe execution buffer pool has the
following effects: (i) Increase in the number of cycles acpative processing core is held after the thread
has finished execution. It is assumed that the processirggozor be released only after all the data of a
speculative thread has been transferred to the executiter lpool. (i) Increase in the number of cycles
the program or a requesting speculative thread has to walitin the write (and read set if the requestor
is a speculative thread) set(s). It is assumed that the semustalls until all the tags of the write set (and
read set, if the requestor is a speculative thread) areferaed. The write set data is transferred without the
requestor stalling (more details in Section 5.5).

Figure 6.22 presents the performance benefits for this mmgigation. On average, performance im-
provement drops by 11% from the implementation in Sectiénl@, with benchmarkpar ser ,vort ex,
andvpr facing over 25% loss in improvements. On average, the beadtsrsee improvements of 40%

over the sequential execution.

6.5.18 Performance with limited hardware resources

This subsection evaluates performance with further @&ins to the implementation. The additional
parameters used are listed in the PD hardware structurep gnahe table. For this implementation, the
methods table can hold 20 speculative threads, the spizeutagy unit has 50 entries, the read set table is

fixed with 20 entries per speculative thread, and the writdadde is fixed with 30 entries per speculative
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thread. These numbers were determined based on the resaitisskd in previous subsections (Section
6.5.9 and 6.5.10), and chosen to cover the average of the Pétentiles presented.

Overflows in the methods table, speculative tag unit, reathbée, or write set table, aborts the specu-
lative thread. The fraction of threads that are aborted dukis restriction over the base case is presented
in Table 6.23. This has no effect on benchmadsks p2, gzi p andncf as expected (see results on read
and write set sizes in Section 6.5.10). However, other bmacks, in particularper | , vort ex, vpr,
andt wol f see 20% to 72% of the speculative threads aborted due to thhedr® restrictions. Figure 6.23
presents how these restrictions affect performance ingonents over the sequential execution. Performance
improvements drop by an average of 15% from the previous @esechmarkt wol f has the worst effect
with 38% drop in performance over PD with limited bandwidBerformance focr af t y andgap lowers
by average of 24%yortex andvpr by 10%. Benchmarkgzi p andntcf do not have any impact
as expected. Performance improvementrfof lowers by 14% because 20 entries in the methods table is
insufficient; upto 29 speculative threads can be outstgndiiming execution. (Refer Figure 6.14 for number
of outstanding speculative threads.) The results cleadicate that the performance improvements from
PD is not only because of the small methods that fit in the di@tiuffer pool structures used in this
implementation but also because of speculatively exegldirger methods, even if they are not completely
overlapped.

In summary, the choice and the sizes of hardware structutes be carefully deliberated to maxi-
mize benefits. However, a real implementation may have tb \dith programs that cannot always be
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Figure 6.22: Performance benefits from PD with latencies eteatl between execution buffer pool and
processing cores
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bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr
0.00 0.07 0.08 0.10 0.00 0.00 0.02 0.72 0.20 0.44 0.35

Table 6.23: Fraction of threads aborted because of limigedviaare resources

benchmarked and profiled to optimally size the structuréss also unrealistic to build a hardware with

unlimited resources. Further research is needed to dehlosges that the hardware may not be able to
speculatively execute successfully. The simplest optiotoirevert to sequential execution, a benefit of
speculative parallelization. Another alternative is tb deftware perform the speculative execution at a

higher cost.

6.6 Chapter summary

This chapter evaluated an implementation of PD. The experiah infrastructure consisted of a hardware
simulator and software toolset based on the Intel x86 in8tm set architecture. The evaluation was
conducted on integer programs from the SPECCPU2000 suiexver& results were presented. First,
opportunities, i.e., methods that form significant fractiof program’s execution time were presented.
Candidates for PD were chosen from these methods. The @btEmtPD based execution was presented
by introducing the ratio of the number of cycles between tiggér site and the corresponding call site
in the sequential program over the number of cycles to egeiti® method. Several different variants of
handlers were generated, their length (number of instms}i impact on the potential, and the fraction of
cycles that they contribute to the speculative thread wieidiesd. Results on triggers included a study of the

number of trigger points, their sensitivity to changinguhgets, and sizing of the hardware structure, the
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Figure 6.23: Performance benefits from PD with latencies eteatl between execution buffer pool and
processing cores, and with limited hardware resources
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trigger evaluation unit. Then, with a PD based executionesys| discussed the overheads of speculative
threads, read and write sets of speculative threads,atidiz of processing cores for speculative execution,
the number of outstanding speculative threads and thelesyetween completion and use, the fraction of
cycles the program is stalled for completion of speculatiweads, and overflows in the invalidation cache.
PD is a speculation based technigue bound to increasetadtivthe system. This was quantified with
wasted speculative cycles and increase in cache accesses.

Several results related to performance improvements wesepted. Performance benefits of PD with
increasing number of processing cores were studied. Toamipe benefits of PD”s forking model over the
forking model of prior speculative parallelization systerm new model called Inorder PD was implemented.
This implementation had a restrictive program orderedifigrlof speculative threads. The comparison
results indicated lower utilization of processing cored Bwer performance improvements. Finally, per-
formance improvements of PD with limited bandwidth betwerecution buffer pool and processing cores,

and hardware resource restrictions were presented.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Industry designers have recently turned to multicore syst® uphold Moore’s law. The out-of-order
superscalar processors that have been so successful fiashseveral years have problems with scalability,
complex design, significant power consumption, and dirhingg returns. The multi-threaded programming
model that is commonly used to execute an application orralgmmcessing cores also has its shortcomings.
Programmers of multi-threaded programs must understangrdblem, decompose it into several threads,
program in the desired language with the parallel programgnsupport provided, debug any correctness
issues, and achieve scalable performance with an incgeasimber of processing cores. Clearly, this is a
demanding set of tasks seldom applicable to large numbeaiogfgammers. Newer generation of multicore
systems that support novel software models seem to be asitgdesthe near future. Solutions must be
able to use the multicore systems without burdening therpromer, like the multi-threaded programming
model now does.

Speculative parallelization has been studied for manysyasione plausible solution for creating con-
currency from a sequential program. It preserves the séigl@xecution of a program, but attempts to
gain parallelism from the program by dividing it into threadnd executing them speculatively in parallel,
with hardware support to ensure that these threads did ntteithe sequential program order. Several
proposals have studied different aspects of the executiotlemin particular, focusing on the hardware
support needed, and the composition of speculative threads

This dissertation introduced a speculative parallelimatnodel called Program Demultiplexing or PD.
Speculative threads in PD are composed of methods in a pnogsich | believe is an apt choice for
speculative execution for the following reasons. The latme nature of applications has made program
code complex and has required adherence to software erigimg®inciples in the development process
for achieving modularity of code, flexibility of reusing itybmany programmers, and maintainability of

applications. Among many principles advocated to achibesd, dividing the program into many methods,
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each targeting a specific subtask of the application is orleeofundamental ones. In addition, languages
such as Java and C# are being widely adopted because ofatd-objented programming style and managed
execution environment. These languages make modulargroging a fundamental aspect of the program
design, and provide a managed system to handle routinefprped tasks such as dynamic allocation
and freeing of memory, ensuring safety of data referenaes$ n@anaging addresses of objects used in the
program. Even though this dissertation does not evaluatedehfior these languages, methods have always
been, and will remain, a natural choice for programmers tapsulate dependent computation.

The second aspect of PD is the novel execution model. Metlevdsa though called in sequential order,
may be executed in parallel because of the parallelism thgtaerist between them. This implies that a call
site for a method in the program is specified for convenienceonveying the execution to the hardware
and may not represent its earliest possible execution. Ebpsen call site of a method, PD speculatively
executes the method at the trigger site, which often occagee than the call site. At the call site, if
the speculative execution is still valid, the thread is usedommitted, and the program continues with its
execution. The trigger site, therefore, specifies the gnittie program when the speculative executions of
a method for a particular call site can begin, without usuétblating any of the dependencies that they may
have with the program.

The trigger site is determined by observing several exegsitof a call site chosen for PD. A trigger
point represents the point in the program when the deperatefor a given method’s execution and its
corresponding handler are satisfied. Trigger points daltefor several executions are analyzed, and the
suitable triggers are determined. Since the trigger sparsg¢es the method’s execution from the sequential
program, on firing of a trigger, the corresponding handlespisculatively executed to launch the method.
The handler performs the tasks of providing parameters aedigting the reachability of the program
to the call site, when the program is at the trigger site. Thiachieved by speculative precomputation,
i.e., speculatively executing a backward slice of insitanst composed of instructions that compute the
parameters and branches that these instructions and thsiteainay be control dependent on. Wasted
execution in PD can, therefore, be due to evaluation of fearitht aborts and does not invoke the method,
and speculative threads that are executed but are latesiseg.

The hardware support for PD in this implementation is hgaséised on prior speculative parallelization
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proposals. Speculative execution of threads is perfornre@wvailable processing cores in a multicore
system. Private caches are used to hold the changes andexeeade by a speculative thread, which
are tracked by a speculative tag unit. After the thread'setken, one means suggested in the dissertation
for storing and validating the data of a speculative thre#d its use, is the auxiliary set of storage structures
referred to as the execution buffer pool. They consist ofethimds table which holds the list of outstanding
speculative threads, a read set table that holds the readrss$ting of locations referenced, a write set table
that holds the write set consisting of locations modified tieddata, and an invalidation cache, to efficiently
determine if an address is the read or write sets of a speautatead. The invalidation cache is accessed
on every store location committed by the program to detegrifithere is any outstanding speculative thread
that has referenced that location, and if so, indicates ardimce violation and the thread is squashed.

The implementation results were studied on a simulatiordasulticore system consisting of Intel x86
processors. The software support included generation radligs and triggers from application binaries.
Several integer programs from the SPEC CPU2000 suite werkfos evaluation. The evaluation focused
on frequently called methods in these benchmarks, singauguglly represent a large fraction of program’s
execution time, and have read and write sets of size that eameld by hardware with modest storage
requirements. Several results of the implementation weeidied, which concluded with the performance
improvements of PD and the benefits of PD’s unordered forkiuglel over a PD implementation with
a restrictive program ordered forking model used in pricecshative parallelization proposals. Applying
PD based execution model to larger scale applicationsa$ylilo create more opportunities for speculative
execution with higher scalability and greater performaingerovements.

The PD model is a generic framework that can extended in méfgraht directions. | discuss some

promising avenues for future work next.

Software implementation. The scope of handlers and triggers used in this implementati PD can
be expanded by altering the heuristics. Handlers and nsggay be optimized to minimize overheads and
maximize potential for parallel execution. Alternate aaits of handler and even alternate implementations

of the execution model may be studied.
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Hardware implementation.  The implementation can be extended to support communicatialata
values between speculative threads, and allowing speautareads to be forked not only by the program,
but by other speculative threads. Similarly, tighter imédign of processing cores, such as communication of
register values via a low-latency inter-operand networdla allow handlers to obtain values from registers
of other processing cores with low latency, instead of a&ingsthe memory. Extensions to the hardware

proposed in this implementation are required to supportynoéthese ideas.

Runtime system implementation. |also see an implementation of PD in a managed system env@on

to be very promising due to a number of reasons. The softwararwnity, in large, has been migrating
to managed execution environments and object-orientegléages due to its benefits with better software
engineering, manageability of code, and productivity aigpammers (for example, Microsoft Windows
Vista running on the .NET managed environment). For PD, ielelthat this means higher chances of
identifying parallelism at the granularity of methods atiterefore, more opportunities. A managed envi-
ronment implies dynamic optimizations and online profilifgith online profiles, the PD based program can
be dynamically optimized with insertion and deletion ofitrers depending on changing phases, application
behavior, performance benefits, and wastage of executgpurees. Runtime system also provides the
appealing choice of performing software based speculakesution and evaluating triggers without any
hardware support.

PD must be extended to support this kind of an environmenst,Rhe system must be implemented
on a different compilation model in which programs are cdethbio an intermediate representation, and
converted to native machine instructions only at executioe.

Second, handlers must be able to handle features of objecii@d languages such as dynamic poly-
morphism, i.e., run time method binding or dynamic dispatcfeature that is used when multiple classes
contain different implementations of the same method. alget of a call site is resolved during program'’s
run time, for example, by looking up a virtual table or vtable support this feature, the task of the handler,
besides providing parameters, must also determine thettair¢he call site. The speculatively chosen target
is speculatively executed and forms part of the specul#tirgad’s data. Before a speculative thread can be
committed or used, the target of the call site must also bepened with the parameters, to determine if the

handler called the right target method and used the coregangeter values.
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Finally, triggers that rely on a memory profile must be awdrgarbage collectors, and could obtain
information on when heap locations are live and dead, andidenthem to identify opportunities in an
application. In addition, garbage collectors can move a gatue from one location to a different location
during program’s execution. Correctness is an issue if audptive thread performs some computation on
a location (i.e, the location belongs to the read or writg, sehich is later (non-speculatively) moved by
the garbage collector to a different location. To deal wihitis problem, the garbage collector may perform
a fake write to the source location of a data value which itdig to move. This generates an invalidate
message to the execution buffer pool and squashes speeulattads that have accessed or modified the

source location.

PD on future applications. In the future, we are likely to see many programming langsdigat provide
easy means of expressing problems in a particular domaieseltiomain specific programming languages
may also have support to automatically obtain concurrermy fan application. One interesting possibility
is unifying these parallelization models with PD to creaighbr level of concurrency. For example, a
speculative thread in PD can be further optimized by othgedslative or non-speculative) parallelization
models. Similarly, PD can be used to speculatively paradielegions of code that have not already been
parallelized by other means. Unifying many parallel modaélsbe the key in using hundreds of processing

cores that are likely to be available in the near future.
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