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Abstract
Static analyses provide the semantic foundation for tools ranging
from optimizing compilers to refactoring browsers and advanced
debuggers. Unfortunately, developing new analysis specifications
and implementations is often difficult and error-prone. Since analy-
sis specifications are generally written in a declarative style, logic
programming presents an attractive model for producing executable
specifications of analyses. However, prior work on using logic pro-
gramming for program analysis has focused exclusively on solving
constraints derived from program texts by an external preproces-
sor. In this paper, we present DIMPLE, an analysis framework for
Java bytecodes implemented in the Yap Prolog system [8]. DIM-
PLE provides both a representation of Java bytecodes in a database
of relations and a declarative domain-specific language for spec-
ifying new analyses as queries over this database. DIMPLE thus
enables researchers to use logic programming for every step of the
analysis development process, from specification to prototype to
implementation. We demonstrate that our approach facilitates rapid
prototyping of new program analyses and produces executable anal-
ysis implementations that are speed-competitive with specialized
analysis toolkits.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program Analysis; D.1.6 [Programming
Techniques]: Logic Programming; D.2.m [Software Engineering]:
Miscellaneous—Rapid prototyping

General Terms Performance, Design, Languages

Keywords Program analysis, Java, Bytecodes, Prototyping, Logic
programming, Tabled Prolog

1. Introduction
Program analyses provide static answers to questions about the
dynamic behavior of a program. A researcher who wishes to develop
a new program analysis must engage in two separate activities:
devising a specification for the analysis and engineering a suitably
efficient implementation. Developing a correct specification can
be difficult and error-prone, as a correct analysis specification
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must properly treat all of the features and subtle corner cases in
a given language. However, even given a correct specification, the
effort necessary to produce an efficient implementation may be
substantial or prohibitive. The implementer’s task is difficult due
to the disconnect between a formal analysis specification and an
executable implementation.

Analysis designers typically specify analyses in a declarative
style: whether as a system of constraints [2, 12, 33, 21, 27], as type
inference rules [28, 38, 10, 1], or as a fixed-point of a system of
dataflow equations. Many analyses also admit natural specifications
as reachability queries on context-free languages or as logic pro-
grams [29, 11, 36, 40, 42, 22]. General solvers for these sorts of
problems have benefited from advances in logic programming lan-
guage implementation; several are quite efficient. However, most
existing solvers are far from ideal for rapid prototyping of new
analyses.

Consider an idealized version of the process a researcher under-
takes when developing a new program analysis. The designer:

1. Decides which abstract domains are interesting, and how best to
model program properties as mathematical structures;

2. decides how individual kinds of program statements contribute
to the analysis results;

3. writes a preprocessor to extract analysis relations from program
source code; and finally

4. develops some sort of solver (or uses a preexisting specialized
solver) for queries on the generated relations.

Since the analysis itself is likely to be specified declaratively,
it would be ideal to use an analysis framework that could execute
such a specification with little or no modification. Unfortunately,
almost all existing analysis frameworks that support declarative
specifications only aid users with the final step of this process:
namely, providing a solver for analysis rules in a particular for-
malism. Many require extensive preprocessing or time-consuming
automated optimizations before running an analysis, thus discourag-
ing an interactive development style, casual experimentation, and
rapid prototyping of new analyses.

We have developed DIMPLE, a fully-featured declarative anal-
ysis framework for Java. It is “fully-featured” in that it provides
functionality for every step of the analysis design and development
process. It is “declarative” in two ways: first, user-specified rules
are written in a declarative language; also notably, DIMPLE itself
is primarily implemented in the Yap Prolog system [8]. DIMPLE
consists of a typed intermediate representation of Java bytecodes
and a domain-specific language that allows users to specify pro-
gram analysis implementations in an essentially declarative fashion,
much as they might write an analysis specification. Unlike most



program analysis frameworks, DIMPLE represents program texts,
derived relations, analysis rules, and analysis results uniformly –
all as relations in a Prolog database. DIMPLE thus enables analysis
designers to develop declarative specifications for every stage of
analysis development and evaluation: deciding which domains are
under consideration and which program statements are relevant, ex-
tracting relations from relevant program statements, and answering
queries based on a system of relations and analysis rules. Experi-
mental results confirm that, for a large class of analysis problems,
DIMPLE is speed-competitive with best-of-breed program analysis
frameworks and constraint solvers.

DIMPLE is essentially different from other analysis frameworks
in that it offers two important capabilities:

1. DIMPLE provides a total, round-trip solution to analysis design
and evaluation. That is, an analysis designer may use DIMPLE
to produce a declarative specification for every component of
an analysis. DIMPLE allows the user to define procedures for
any necessary preprocessing of the program text in Prolog.
Given declarative, user-supplied specifications, DIMPLE then
automatically generates a statement processing routine that
generates relations from the program text and the rules that
govern analysis results. The underlying tabled Prolog system
then acts as a solver for the analysis rules and relations.

2. DIMPLE provides a relational, declarative model for specifying
program analyses. An analysis designer may thus execute an
analysis specification that is very similar to the sort of specifica-
tion that might appear in a technical paper.

There exist several excellent solvers that have been used to great
effect for analysis problems. However, these tools require that the
analysis designer use some external tool to develop a preprocessor
that translates from program text to relations. Some analysis frame-
works, such as those available within research compilers, enable
users to develop preprocessors as well as solvers within the same
tool, but DIMPLE is the first such framework to enable round-trip
analysis development in a declarative style.

In the DIMPLE framework, program texts (in an intermediate
representation of bytecode instructions), analysis rules, and analysis
results are stored in a database of Prolog relations. Since analysis
results are in the same format as the program to be analyzed, it
is possible for analysis designers to reuse the results of costly
analyses as program annotations – and, in fact, to store these
annotations directly in the same database as the program text instead
of recalculating the analysis results later.

1.1 Overview of contributions
This paper presents the DIMPLE program analysis framework, which
features:

1. A system for encoding an intermediate representation of Java
bytecodes as a database of facts.

2. A declarative framework for program analysis, which enables
analysis users to prototype, develop, and debug new program
analysis specifications by generating analysis implementations
directly from specifications.

3. A mechanism for debugging program analysis specifications that
combines the efficient execution of tabled evaluation with the
tracing capacity of conventional Prolog evaluation.

We also present an evaluation of the suitability of the DIMPLE
framework for developing program analyses. We discuss DIMPLE
implementations of two analyses; we demonstrate both the concise-
ness of the specifications and the high performance of DIMPLE-
specified analyses on realistic, substantial Java programs.

2. Overview of DIMPLE
DIMPLE comprises two parts. The front-end translates from Java
bytecodes to the DIMPLE IR: a set of Prolog relations that fully
describe the input application and library classes. The back-end
provides a framework of rules and a domain-specific analysis
language to implement program analyses as declarative queries
on a database of relations.

We have implemented the DIMPLE front-end as a whole-program
transformation that extends the Soot compiler framework. Soot
[41] converts from stack-based bytecode to a typed three-address
representation called Jimple and generates a conservative method
call graph. Our transformation then translates from Jimple’s abstract
syntax to the concrete syntax of a database of DIMPLE IR relations.
As we have stated, methods are modeled as sets of statements and all
intraprocedural control flow is modeled by an explicit control-flow
graph. It is therefore possible to use DIMPLE to implement either
flow-sensitive or flow-insensitive analyses; the analysis developer
need merely decide whether or not to ignore control flow when
declaring analysis rules.

We have implemented the DIMPLE back-end in the Yap Prolog
system [8]. The back-end consists of a domain-specific language
for specifying analyses, a code generator that translates from the
domain-specific language to instrumented Prolog rules, and relations
and rules that describe various aspects of Java’s semantics and
type system. The DIMPLE back-end makes use of the Yap system’s
support for tabled execution. Tabled Prolog [7, 32] supports a table
annotation on certain predicates. The results of a tabled predicate
are memoized; thus, each is evaluated at most once for each tuple of
arguments. Furthermore, a tabled Prolog system can automatically
find a finite fixed point of recursive and mutually recursive tabled
predicates. This property enables analysis designers to specify
many relations that naturally admit a left-recursive definition in a
straightforward and direct way, without considering nonterminating
evaluation.

3. Using DIMPLE
We shall now present a macro-level view of DIMPLE and discuss
a typical user’s interactions with the DIMPLE system while devel-
oping a new analysis. Figure 1 provides an overview of DIMPLE’s
architecture; we shall refer to each component in the following
overview.

A DIMPLE user is likely to begin by creating databases of
DIMPLE IR relations for several interesting programs, in order
to evaluate a new analysis on representative inputs. This task
requires the DimpleGenerator application, which processes Java
class files. DimpleGenerator extends the Soot compiler framework
and produces a DIMPLE IR database with relations corresponding
to every statement in a given application and in each of its libraries.
The DIMPLE IR also includes relations describing the application
and library class hierarchies and relations describing a conservative
approximation of the method call graph. (We discuss the DIMPLE
IR further and provide some example relations in Section 4.)

The user may then load the IR database into the Prolog system
and begin asking queries about the program. This sort of interactive
experimentation can often be a productive prelude to developing
the actual statement processing and analysis rules. By exploring the
sorts of statements and relations that may be relevant to a particular
analysis in advance of specifying the analysis, the user may be able
to note subtle details that might have otherwise been overlooked.
After some experimentation, the user will begin to use the DIMPLE
analysis language to specify a statement processing routine and the
analysis. (We discuss the DIMPLE analysis language in Section 5.)

Most analyses will only need a subset of the relations in the
DIMPLE IR database. All analyses will benefit from simplifying



Figure 1. High-level overview of DIMPLE’s architecture. Shaded items indicate infrastructure developed by other groups; italics indicate
user-supplied inputs

the program relations by preprocessing the input program and
deriving analysis-specific relations from the DIMPLE IR. (At the
very least, doing so will result in a clearer presentation.) Consider
the following DIMPLE IR relation, which corresponds to the Java
statement r12 = r14, where r12 is a long local in method foo and
r14 is an int local in method foo:

stmt(pc1483, assignStmt(local(r12, method(’foo’ ), primtype(long)),
local (r14, method(’foo’ ), primtype(int )))).

It may be more convenient for the analysis designer to derive
a relation that omits some details that are not interesting for a
particular analysis. Perhaps the analysis designer is interested in
knowing that an assignment occurred, but some details, like the
program counter, method name, and variable types, are not relevant
for a particular analysis problem. In that case, the designer could
preprocess the above statement to a much simpler relation, like this
one:

assign(r12, r14).

Of course, the derived relations can be more involved than simple
projections of structures into simpler structures. The statement
processing routine decides which statements are interesting for a
particular analysis, and it may use arbitrarily complex criteria to
do so. To give two realistic examples, particular derived relations
may select only those statements that involve assignments to locals
of reference types, or only those statements that might throw
unchecked exceptions. A DIMPLE user will specify a statement
processing routine in terms of declarative rules in the DIMPLE
analysis language; these rules may use user-defined predicates on
DIMPLE IR statements, DIMPLE’s internal rules (which include facts
and relations dealing with Java’s type system and semantics), or
any Prolog code. By combining arbitrarily complex selection and
projection rules, analysis users can develop extremely powerful
preprocessors in a declarative style. (We discuss the part of the
DIMPLE analysis language that defines statement processing routines
in Section 5.1).

Once the analysis designer has declared statement processing
rules, DIMPLE can preprocess the input program. DIMPLE affords
several options here: for prototyping, when a user may be interested
in having the entire program available, the statement processing
routine will simply assert derived relations into memory. If the user
is interested in developing a production version of a completed
analysis (or simply in using DIMPLE as an advanced preprocessor
for another solver), it is possible to have the statement processing
routine write derived relations to a file, discarding the IR database
so that an analysis will operate strictly on a database of derived
relations.

Keeping the IR database for entire program in memory incurs a
cost in heap usage, but has two key benefits: if one is prototyping
an analysis, one may decide that new or different derived relations

might be useful. Since the whole program is available, one may add
these effortlessly. In addition, having access to the whole program
offers an advantage when debugging analyses: when the whole
program is available, DIMPLE allows users to see precisely which
IR statements contributed to each derived relation.

The analysis designer may then prototype analysis rules inter-
actively, by issuing queries to the underlying tabled Prolog system.
The user may then commence developing analysis rules by writing
them in DIMPLE’s rule definition language. (See Section 5.2 for
more information on the rule definition language.) DIMPLE’s code
generator takes statements in the rule definition language and con-
verts them to tabled Prolog rules. The code generator also generates
support code to aid debugging analysis rules. The analysis designer
will not invoke this support code directly; rather, DIMPLE uses it
to present derivations of why particular analysis results hold. (See
Section 5.3 for more information on this capability.)

By default, generated analysis rules are asserted into the Prolog
database. The code generator can also write the generated rules and
compiler directives to a file, which can be compiled and loaded.
Each of these is appropriate for different situations, and DIMPLE
gives users the opportunity to decide which to use at a given stage
in the analysis development process. The former leads to slightly
slower execution times but affords greater flexibility for prototyping,
since asserted rules may be retracted or abolished. The latter option
is most appropriate for production analyses, since it offers the fastest
possible execution, but does not offer the opportunity to interactively
change the analysis.

We shall now discuss the individual DIMPLE components in
greater detail.

4. The DIMPLE IR
We have developed a typed intermediate representation (IR) for Java
bytecodes that has an essentially declarative flavor: programs are
represented as sets of relations, analyses are specified in a domain-
specific language that adds rules and relations to the database, and
analyses are executed by satisfying queries on generated rules and
relations. Java classes are represented in terms of subtyping rela-
tionships, sets of method declarations and sets of field declarations.
Methods are represented as sets of statements. All intraprocedural
control flow is explicit and is modeled by a control-flow graph for
each method. The abstract syntax of our representation is loosely
based on the Jimple IR for Java bytecodes, which is a component
of the Soot compiler framework. (We call our representation DIM-
PLE to reflect its declarative character and as an homage to prior
intermediate representations like Simple [17] and Jimple.)

DIMPLE, like Jimple, is based on three-address code or register
quadruples. Each statement consists of variables corresponding to
operands, an operation, and a variable in which to place the result.
As a consequence, each statement has a simple, “flat” form: all



operands are either local variables, immediate values, or addresses,
not complex expressions. Object fields and array elements are treated
in a “load/store” fashion: they are loaded from memory, operated
on as locals, and stored back to memory. By contrast, the Java
virtual machine executes bytecode instructions that operate on a
stack. Since the stack is untyped, Java provides separate bytecode
instructions for each potential operand type. [24] (As an example,
there are eight different bytecode instructions to load values from an
array, depending on the element type: one for object references and
one for each of Java’s primitive types.) There are also many “special
case” bytecode instructions that incorporate immediate values in
their opcodes. Of course, the wide variety of bytecode instructions –
and the very nature of stack-based evaluation – greatly complicates
analysis of unmodified bytecode. By basing DIMPLE on an existing
intermediate representation of bytecode that features fewer kinds
of operations than does bytecode, it is possible to express analyses
in terms of a simpler set of rules than it would if DIMPLE were to
operate on bytecode directly.

We shall now examine some representative DIMPLE structures
in order to convey the declarative flavor of DIMPLE:

local(L, M, T). Indicates that a local variable with name L and of
type T exists in method M. The name, L, is an atom and is unique
throughout the entire program and its library code. The method,
M, is represented as a structure with one constituent: an atom
corresponding to the method’s Java bytecode signature.1 There
is an example local /3 relation in Figure 2.

stmt(PC, Stmt). Indicates a statement of kind Stmt at globally-
unique program counter PC. Stmt is a structure corresponding to
one of 14 different IR statement types. The set of IR statements
include assignments, heap loads and stores, object monitor
entrances and exits, jumps, method invocations, returns, and
exception generation.

assignStmt(LHS, RHS) This sort of structure must only appear as
the Stmt constituent of a stmt/2 structure. It indicates that the
value described by RHS is to be stored in the location described
by LHS. Either, but not both, of LHS and RHS may be a structure
describing a reference to a field of a heap object in a valid
DIMPLE program; at least one must be a local /3 structure. The
examples in Figure 2 show statements copying a value from
local Lb to local La, loading a value from the F field of the
object referred to by Lb, and writing a value to the F field of the
object referred to by La.

ifStmt(La, PC) As with assignStmt/2, an ifStmt/2 must only appear
as the Stmt constituent of a stmt/2 structure. ifStmt/2 describes
a conditional branch: if the boolean value stored in La is true,
control will transfer to statement at the program counter specified
by PC.

5. The DIMPLE Analysis Language
The DIMPLE analysis language consists of two parts: a statement
processing language and a rule definition language. The statement
processing language describes statement processing routines, or
subprograms that decide what derived relations should hold given
the presence of certain program statements. The rule definition
language facilitates descriptions of analysis rules in terms of these
derived relations. A DIMPLE user, then, will go through several steps
when developing a new analysis:

1 A bytecode signature is a “mangled” name that uniquely identifies a
method. It consists of the name of the declaring class, the method name,
and encodings of the parameter and return types. Please see the Java Virtual
Machine Specification [24] for more information.

1. Developing Prolog procedures to be used before the statement
processing routine (as an additional preprocessor on the program
text), or during the statement processing routine.

2. Specifying statement processing rules, indicating that certain
derived relations should be added to the Prolog database if their
free variables can be instantiated in some condition. DIMPLE
will then automatically generate a statement processing routine
based on these rules.

3. Specifying analysis rules. These rules define analysis result
relations as functions of derived relations. DIMPLE automatically
translates these into tabled Prolog rules; it also generates special
“tracing versions” of predicates to assist in debugging.

DIMPLE exploits the tabled execution model in order to allow
users to develop analyses in an essentially declarative style. This
essentially declarative style is very similar to the formal definitions
of analysis algorithms used in the literature. In this way, DIMPLE
provides expressive power similar to other declarative database ap-
proaches for program analysis, such as the Datalog-based bddbddb
system [42]. In addition to the capabilities afforded by tabled or
Datalog-style execution, DIMPLE exposes additional functionality.
Because DIMPLE is implemented in tabled Prolog, the efficiency
and clarity of tabled execution and the full power of Prolog are both
available to users. Prolog’s extralogical features, such as the cut,
assignment, and assertion and retraction of relations and rules, are
available to statement processing routines and custom preprocessing
code.

5.1 The statement processing language
Once an analysis designer has decided how to map concrete program
statements to elements of abstract domains, it is necessary to develop
a routine to extract program statements of interest. DIMPLE’s
statement processing language automatically generates such a
statement processing routine given a set of rules describing when
particular statements are interesting. These rules may simply refer
to DIMPLE IR statements: for example, asserting that a relation
holds between two local variables when an assignment between
them occurs in the program text. DIMPLE statement processing rules
may also refer to types and methods: for example, we may only be
interested in variables of certain types, or statements that execute
in particular methods. In fact, DIMPLE affords analysis designers
the opportunity to develop arbitrarily complex statement processing
rules, since the statement processing routine may use unrestricted
Prolog code and has access to a full representation of the program
under analysis, including a class hierarchy and conservative call
graph approximation.

Statement processing rules take the form Head <−− Body. Head
must be a functor with at least one variable constituent; this variable
must appear in Body as well. Body may contain relations about
statements (e.g., stmt/2) as well as relations about the types of
expressions within statements, relations about the class hierarchy,
relations about a conservative method call graph, and user-defined
relations. The default DIMPLE statement processing routine will
exhaustively identify where every Body relation holds, adding each
unique corresponding Head to the database exactly once. The
statement processing rules are executed in order, so relations added
to the database by the head of some rule r are available to the body
of every statement processing rule executed after r. The statement
processing routine also keeps track of why each derived relation
holds. As a result, an analysis designer can use a simple query to
determine which source program statements and conditions led to a
particular relation.

The case studies in sections 7 and 8 include representative
examples of the statement processing language.



Example relation Description
local (r12, method(’<java.lang.Object: <init>()V>’), reftype( ’ java.lang.Object’ )). Declares a local r12 of type Object in the

constructor for Object.
stmt(pc4201, assignStmt(La, Lb)). Represents an assignment between two locals;

i.e. La = Lb;
stmt(pc4202, assignStmt(La, instanceFieldRef(Lb, F))). Represents a load from an instance field;

i.e. La = Lb.F;
stmt(pc4203, assignStmt(instanceFieldRef(La, F), Lb)). Represents a store to an instance field;

i.e. La.F = Lb;

Figure 2. Example DIMPLE IR relations

5.2 The rule definition language
As we have seen, DIMPLE’s statement processing routine interprets
the user’s specifications. As it runs, the statement processing routine
populates the database with relations describing the state of the
program as is relevant to the current analysis. Statement processing
rules act like filters: the statement processing routine finds all
solutions to each, in order, but each rule is only solved for once.

DIMPLE represents analysis rules in a similar way to prepro-
cessor rules (analysis rules use the <== operator instead of <−−),
but the meaning of analysis rules is very different. The DIMPLE
code generator produces tabled Prolog rules from analysis rules.
Therefore, analysis rules are like procedures that may call each
other. (Statement processing rules, on the other hand, may call other
Prolog procedures, DIMPLE internal rules, or relations generated by
statement processing rules that have already executed.)

Many specialized analyses and transformations depend on more
general analyses. For example, analyses to determine whether or not
an object is stack-allocable typically either incorporate or rely upon
a points-to analysis. Other examples include constant propagation,
partial evaluation, and some schemes for type inference – all of
which depend on a reaching definitions analysis. Because DIMPLE
analyses and programs are stored in the same format, it is extremely
straightforward to annotate programs with analysis results and
serialize analysis results for use in later sessions. A user might
develop an analysis, query for an exhaustive solution to the analysis
rules, and save the relations derived from the analysis results to
the database for use by the statement processing rules of more
specialized analyses.

The case studies in sections 7 and 8 include representative
examples of the rule definition language.

5.3 Code generation and tracing
Tabled evaluation provides several benefits. Many sorts of proce-
dures enjoy improved execution efficiency when evaluated with
tabling. Furthermore, tabled evaluation admits natural, declarative
definitions of left-recursive procedures. However, these benefits
come at two costs: a memory cost and a development cost.

The memory cost is rather straightforward to treat. Tables for
procedures may take up a great deal of memory, and the balance
between space and execution time may not justify tabling certain
predicates. As a result, DIMPLE allows users to designate certain
analysis rules as untabled; the code generator will simply generate
standard Prolog rules for these.

The development cost presents a rather trickier problem. Typi-
cally, it is not possible to trace a tabled procedure, since it will be
evaluated at most once for a given tuple of arguments. For many
applications, the tradeoff between ease of debugging and execution
time would be acceptable. However, we are interested in enabling
researchers to prototype new analyses rapidly. As part of this pro-
cess, a researcher may be interested in determining precisely why a
particular spurious analysis result holds.

The DIMPLE code generator solves this problem by generating
two versions of rules: standard versions, which are tabled and

execute normally, and tracing versions, which are not tabled and
can execute in a metainterpreter that produces a rule trace. Given a
standard rule R, we generate the tracing version R′ as follows:

1. Give R′ a new name that does not belong to any extant proce-
dures; create a relation in the database indicating that the name
for R′ is the tracing version of the rule R.

2. Make a copy of R’s body; this will become the body for R′. Map
every call to a non-recursive procedure in this new body with a
call to the tracing version of that procedure. Note that we do not
generate tracing versions of relations generated by the statement
processing routine. The code generator only replaces calls to non-
recursive procedures in order to ensure that the metainterpreter
will terminate when asked to explain any terminating relation.

Given these tracing versions, a user can drill-down to fully
explain any individual analysis result. As an example, consider
a user who wishes to explain why the relation v_pt holds with
arguments r12 and pc45. When the user asks DIMPLE to explain
why v_pt(r12,pc45) holds, the metainterpreter will consult the
tracing versions of the various clauses for v_pt. Assume that, for
this example, the relevant clause of v_pt is recursive and depends on
an assign/2 relation generated by the statement processing routine:
namely,

v_pt(Ref,Obj) <== assign(Ref,Int), v_pt( Int ,Obj).

The generated tracing version of this clause would be very similar,
except that it would not be declared as a tabled procedure. If there
were calls to non-recursive analysis rules inside the body of this
clause, then they would be replaced with calls to tracing versions.
However, the call to assign/2 would not change, since assign/2 is
a fact generated by the statement processing routine; the recursive
call to v_pt/2 would not change, since the code generator does not
replace calls to recursive rules. Therefore, the tracing version of this
clause, in standard Prolog syntax, would consist of:

dimpleTRACE_v_pt(Ref,Obj) :− assign(Ref,Int), v_pt(Int,Obj).

In this example, the metainterpreter will see that assign(Ref,Int )
holds with Ref = r12 and Int = r14; it will then consult the table
for v_pt/2 and see that v_pt( Int ,Obj) holds with Int = r14 and Obj =
pc45. Therefore, the user is able to see which rule led to the (perhaps
spurious) result; if one wishes to trace further, e.g., to determine why
v_pt(r14,pc45) holds, one may iteratively query the metainterpreter
for more details.

6. Experimental evaluation
We used DIMPLE to implement two analyses: a subset-based points-
to analysis (Section 7) and an effects inference analysis (Section 8).
We evaluated the performance of these implementations on thirteen
benchmarks from the SPECjvm982 [37] and DaCapo [4] suites. (We
used version 2006-10-MR2 of the DaCapo suite. Note also that we

2 SPEC and SPECjvm are registered trademarks of the Standard Performance
Evaluation Corporation.



are using the compiled versions of these applications as inputs to our
analysis and are not generating competitive benchmark results by
actually running the applications.) These are realistic and substantial
Java applications. The names and characteristics of the benchmarks
we used are detailed in Figure 3; we show the number of classes in
each application, the number of classes transitively reachable from
its main method (that is, including library classes), and the total
IR statements for the class and all of its dependencies in the Java
standard library.

We present performance results for “production” versions of
analyses: that is, we have used the statement processing routine
to preprocess the program database for each benchmark to a new
file so that only derived relations of interest are in memory. (If a
DIMPLE user were prototyping an analysis, it might be desirable
to leave the entire statement database intact and accessible at the
expense of using additional memory; this capability is unnecessary
for production analyses.) We have also instructed the code generator
to write new rules to a file (which is then compiled statically), rather
than assert these rules dynamically; this results in faster executions
but means that users cannot reliably retract and alter rules.

All performance numbers are from DIMPLE running under Yap
5.1.1 on a Pentium 4-based Linux machine running at 3 ghz with 2
gb of RAM. While it is possible to configure Yap to evaluate tabled
queries with multiple threads, we did not do so.

app total total IR
benchmark classes classes statements suite
antlr 228 1594 416174 dacapo
bloat 360 1757 466886 dacapo
chart 1246 4237 1189539 dacapo
db 14 1448 361797 specjvm
eclipse 413 1819 455273 dacapo
hsqldb 577 1483 370384 dacapo
jack 67 1501 379645 specjvm
javac 182 1616 404305 specjvm
jess 159 3844 948596 specjvm
luindex 349 1618 396145 dacapo
pmd 2779 2249 555476 dacapo
raytrace 35 1469 366874 specjvm
xalan 1830 1487 367150 dacapo

Figure 3. Benchmark workloads under which we evaluated DIM-
PLE implementations of analyses

7. Case study: Andersen’s analysis
Consider a family of fundamental program analyses: points-to
analyses, which provide answers to the question: “Which (abstract)
memory locations might this reference-valued variable refer to at
runtime?” Andersen’s analysis [2] is a points-to analysis; it provides
a reasonable tradeoff between precision and worst-case execution
time for many applications. Andersen’s analysis also enjoys an
intuitive, succinct specification in terms of constraints on a points-to
graph: one could easily describe it to an implementer by writing
the most important analysis rules on a cocktail napkin. However,
producing a good imperative program that implements Andersen’s
analysis is a rather difficult task – early implementations were quite
slow and did not scale. The first truly scalable implementation of
an Andersen-style analysis, due to Heintze and Tardieu [16], was
reported seven years after Andersen’s dissertation was published.

In this section, we present a DIMPLE implementation of Ander-
sen’s points-to analysis for Java. (Andersen’s analysis was initially
designed for C; several groups [3, 36, 42, 33] have refined it to
take advantage of Java’s type system and lack of unrestricted point-
ers; these various extensions are fundamentally similar.) We have
adapted the analysis rules from the bddbddb implementation of a
context-insensitive subset-based points-to analysis, due to Whaley
and Lam [42]. We developed the statement processing rules in order

/∗ newly−allocated objects ∗/
pt(La,Id) <−−

stmt(Id , assignStmt(local(La,Ma,Ta)), newExpr(Loc,Type)).

/∗ assignments between locals ∗/
assign(La,Lb) <−−

stmt(_, assignStmt(local(La,Ma,Ta), local (Lb,Mb,Tb))),
reference_type(Ta).

/∗ static fields ( i .e ., globals) ∗/
s_load(La,Field) <−−

stmt(Id , assignStmt(local(La,Ma,Ta), staticFieldRef (Field ))),
reference_type(Ta).

s_store(Field , La) <−−
stmt(Id , assignStmt(staticFieldRef(Field ), local (La,Ma,Ta))),
reference_type(Ta).

/∗ formal and actual parameters ∗/
formal(La, Index, Method) <−−

stmt(Id , identityStmt ( local (La,Ma,Ta), parameterRef(Method, Index))),
reference_type(Ta).

formal(La, this , Method) <−−
stmt(Id , identityStmt ( local (La,Ma,Ta), thisRef(Method, Type))),
reference_type(Ta).

actual(La, Index, Method) <−−
unitActual ( Callsite , Index, local (La, Ma, Ta)),
unitMaySelect(Callsite , Method), reference_type(Ta).

/∗ return values ∗/
ret_caller (La, Method) <−−

stmt(Id , assignStmt(local(La,Ma,Ta), X)), invocation(X,_),
unitMaySelect(Id, Method), reference_type(Ta).

ret_callee (La, Method) <−− stmt(Id, returnStmt(local(La,Ma,Ta))),
reference_type(Ta), containsStmt(Method, Id).

/∗ instance fields ∗/

% La = Lb.F
load(La,F,Lb) <−−

stmt(Id , assignStmt(local(La,Ma,Ta),
instanceFieldRef(local(Lb,Mb,Tb), F))),

reference_type(Ta).

% La.F = Lb
store(La,F,Lb) <−−

stmt(Id , assignStmt(instanceFieldRef(local(La,Ma,Ta), F),
local (Lb,Mb,Tb))),

reference_type(Tb).

Figure 4. Andersen’s analysis: select statement processing rules
(rules treating arrays and exceptions are omitted)

to translate from DIMPLE IR statements to the relations used by
Whaley and Lam’s specification.

Andersen’s analysis is a flow- and context-insensitive, inclusion-
based points-to analysis. This means that subprograms are treated as
sets of statements (rather than as graphs of statements); that analysis
results for a particular method are merged among all call sites of that
method; and that a variable may refer to a subset of the locations
that another variable refers to. (Readers who are interested in more
information on categories of points-to analyses should refer to Hind
[19, 18] for a thorough overview of the field.)

We defined statement processing rules to extract relevant re-
lations from the IR database. (Only a subset of all the DIMPLE
IR relations affect points-to information.) Figure 4 shows how we
encoded these in preprocessing the program text:

1. Object allocation statements create a new abstract object, which
we name by the program counter of the allocation site. Object al-
location statements imply an immediate points-to (pt/2) relation
between the local variable receiving the object reference and the
newly-allocated object.

2. Assignment statements (including heap and array loads and
stores) indicate that the variable or location on the left-hand side



% case 1:
v_pt(Ref,Id) <== pt(Ref,Id ).

% case 2:
v_pt(Ref,Id) <== assign(Ref, RefI), v_pt(RefI, Id ).

% case 3:
v_pt(Ref, Id) <== s_load(Ref, F), s_store(F, RefI ), v_pt(RefI, Id ).

% case 4:
v_pt(Ref, Id) <== formal(Ref, I , M), actual(RefI, I , M), v_pt(RefI, Id ).

% case 5:
h_pt(Obj1, F, Obj2) <==

store(Ref1, F, Ref2), v_pt(Ref1, Obj1), v_pt(Ref2, Obj2).

% case 6:
v_pt(Ref, Id) <==

load(Ref1, F, Ref), v_pt(Ref1, Id1), h_pt(Id1, F, Id ).

% case 7:
v_pt(Ref, Id) <==

ret_caller (Ref, Method), ret_callee(RefI, Method), v_pt(RefI, Id ).

Figure 5. Andersen’s analysis: complete analysis rules

of the assignment may refer to a superset of the locations that
the right-hand side of the assignment may refer to. Standard
assignments between locals imply an assign/2 relation; loads
and stores of instance fields imply load/3 and store/3 relations.
(We treat array accesses – not shown in the figure – as field
accesses to a distinguished field name and static fields as global
variables.)

3. Method invocations indicate that the local variables correspond-
ing to formal parameters (indicated by formal/3 relations) must
refer to a superset of all abstract objects referred to by variables
passed as actual parameters (indicated by actual/3 relations).
(Recall that we use a precomputed conservative approximation
of the dynamic call graph; the unitMaySelect/2 relation indi-
cates that a particular program counter may invoke a particular
method.)

Let us now consider the actual analysis rules. Andersen’s analysis
is perhaps simpler to understand if we consider it as a graph problem.
An exhaustive solution to the points-to question, as given by the set
of all tuples under the v_pt/2 relation, is simply the transitive closure
of the assignment relation from abstract heap objects Id to reference
variables Ref. With this in mind, we can consider the rules, as shown
in Figure 5:

1. v_pt(Ref,Id) holds when Ref immediately points to Id.

2. v_pt(Ref,Id) holds when Ref has received a reference from some
other variable RefI, and v_pt(RefI, Id) holds.

3. v_pt(Ref,Id) holds when Ref may have been loaded from a static
field F, F may have had some reference RefI stored to it, and
v_pt(RefI, Id) holds.

4. v_pt(Ref,Id) holds when Ref is formal parameter I of some
method M, RefI is actual parameter I of a call site that may
invoke M, and v_pt(RefI, Id) holds.

5. h_pt(Obj1,F,Obj2) holds when some field F of an abstract heap
object Obj1 may refer to the abstract heap object Obj2.

6. v_pt(Ref,Id) holds when Ref may have been loaded from a field
that has had Id stored to it.

7. v_pt(Ref,Id) holds when Ref may receive its value from a
method that returns some RefI such that v_pt(RefI, Id) holds.

unsound exceptions sound exceptions
input points-to CPU points-to CPU

benchmark relations pairs (×106) time (s.) pairs (×106) time (s.)
antlr 347290 12.29 8.15 12.31 8.13
bloat 476635 19.39 13.66 19.41 13.54
chart 586337 4.72 3.92 4.74 3.88
db 267418 5.39 3.25 5.41 3.38
eclipse 401474 12.04 12.08 12.06 11.91
hsqldb 304451 6.62 4.81 6.64 4.56
jack 278813 5.93 3.94 5.95 3.81
javac 333841 6.77 4.65 6.79 4.29
jess 793032 32.91 27.23 32.94 25.34
luindex 322634 7.30 7.26 7.32 7.42
pmd 427279 10.65 7.00 10.67 7.01
raytrace 270804 5.38 3.52 5.39 3.50
xalan 302150 6.17 4.13 6.18 4.13

Figure 6. DIMPLE performance for points-to analysis

Figure 6 shows the performance for this analysis on each of our
benchmarks: the number of relations returned by the statement
processing routine, the number of pairs Ref × Obj for which
v_pt(Ref,Obj) holds, and the CPU time to calculate exhaustive
points-to results. We implemented two versions of the analysis: one
treats exception objects in an unsound manner; the other features a
sound (but imprecise) conservative treatment of exceptions. (The
sound analysis conflates all exception objects into a single bottom
object. It is actually faster than the unsound analysis even though
it finds more aliasing. Since there are fewer abstract objects, some
calculations on the points-to graph are simpler.) Note that DIMPLE
calculated analysis results for each application in under thirty
seconds; most results were available in under ten seconds.

8. Case study: effects inference
In this section, we present an effects inference analysis to aid
program understanding. In so doing, we show an example of using
DIMPLE to extend an existing analysis. We also demonstrate how
the interactive nature of DIMPLE makes it easy to validate intuitions
and apply these to improving an analysis. Before we introduce our
particular analysis, we shall discuss the problem in more detail.

Standard type systems characterize the ranges of values that
expressions may produce and that variables may assume. Effect sys-
tems [25] extend type systems to also characterize the computational
effects (e.g., reads or writes to shared state) of expressions, state-
ments, and methods. Thus, a type system might tell us that method
foo takes an int parameter and returns a reference to Object, but
an effect system would also tell us that method foo may write values
in regions X and Y and read values from regions X and Z. (A region
is simply a subset of the heap.) Just as a type system may use explicit
type annotations (as in Java or C) or infer types for variables and
expressions (as in ML or Haskell), effect systems may either require
user annotations of effecting behavior or infer this information.

There are many applications of effects inference analysis. Several
notable examples include finding expression scheduling constraints
(as in Lucassen and Gifford’s original work [25]); automatically
providing annotations for a model checker or specification language
[35]; and, most commonly, improving region-based memory man-
agement [39], in which object lifetimes are inferred at compile-time
to enable a stack discipline for dynamic allocations, so that an en-
tire region of objects may be deallocated at once. The analysis we
present in this section is designed to aid program understanding
and debugging, so it does not calculate region lifetimes; rather, it
answers the question: given some method X, which abstract loca-
tions may X read or write? We shall use the Point class declared in
Figure 7 as an example as we introduce our analysis. Before we do
so, we shall review some relevant Java features.



public class Point {
private float x, y;

public Point(float x, float y) {
this.x = x; this.y = y;

}

public void setX(float x) { this.x = x; }
public void setY(float y) { this.y = y; }

public float getX() { return this.x; }
public float getY() { return this.y; }

public void translate(float dx, float dy) {
this.x = this.x + dx;
this.y = this.y + dy;

}
}

Figure 7. A simple Point class

8.1 Side effects in Java
Java enforces a strict divide between heap data and stack data. In
particular, Java supports references instead of unrestricted pointers.
References may only refer to heap locations (objects or arrays); it is
not possible to create a reference to a stack value.

Parameters are passed by value in Java. Therefore, the only data
that can be shared between methods – the sort of data that we are
interested in inferring effects on – are heap objects. The only way
to access or modify heap data (thus, shared state) is via an array
element reference or an object field reference.

Because Java is a typed language, it is not possible to refer to an
object of type C via a reference of type D, where D is not a supertype
of C. Doing so will result in either a compile-time or run-time error.
At the IR (or bytecode) level, all field accesses are to fully-qualified
names, including a field name and the name of its declaring class.
Therefore, we can examine the IR for the Point.setX method
and determine that it may only modify one abstract location: the
Point.x field of some object that is an instance of Point or some
subclass thereof. In the language of effect systems, we could say
that Point.setX writes into the region Point.x.

We could devise a very basic effects inference for Java by
preprocessing a program database to reject everything except heap
reads and writes, method invocations, and the conservative call
graph. We would write our analysis to indicate that a heap read
had a READ effect on the field it accessed, that a heap write had
a WRITE effect on the field that it accessed, and that a method
invocation statement had the union of all effecting statements from
every method that might be dispatched from that call site. Such a
basic analysis would use Java’s type system to provide extremely
coarse memory disambiguation. Its results would be sound but
perhaps not very useful – there would be no way to distinguish
between writes to some field C.F through references X and Y , even
if it were possible to statically guarantee that X and Y did not refer
to the same object.

8.2 A simple effects inference analysis
We can develop a more precise analysis by building on the points-to
analysis from Section 7. Java’s type system provides an extremely
coarse form of memory disambiguation; we can use a points-to
analysis to discriminate among locations with finer granularity. We
shall consider abstract objects to be regions. Therefore, an inferred
effect will consist of READ or WRITE, an abstract object (or the
distinguished location global), and a field name. (We discuss but
do not show the DIMPLE rules for the analysis we present in this
section; many are substantially similar to the rules for the improved
analysis that we present in Section 8.3.)

public void foo() {
Point pt = new Point(0,0);
pt.translate(1,1);

}

Figure 8. foo exposes a shortcoming of the simple analysis

This simple effects inference analysis proceeds as follows: First,
it preprocesses the input database, extracting statements of interest.
For the purposes of this analysis, we are exclusively interested in
method invocations and reads and writes to heap locations. The
analysis rules define the reads/3 and writes/3 relations to describe
side effects, as follows:

reads(PC, Loc, F) holds when:

1. the statement at program counter PC reads from the instance
field F from a reference R and v_pt(R,Loc) holds;3 or

2. Loc is the atom global, and the statement at program
counter PC reads the static field F; or

3. the statement at program counter PC may invoke a method
that contains some statement PC′ for which reads(PC’, Loc, F)
holds.

writes(PC, Loc, F) holds in analogous situations as does reads/3,
except that writes/3 holds when fields are written to instead of
read from.

Andersen’s analysis is a better discriminator between memory
locations than is Java’s type system, but it is limited by its insensi-
tivity to contexts. Recall that Andersen’s analysis merges analysis
results for every context in which a method is invoked. (Here we
construe “context” broadly to include call stack strings and receiver
objects.) Specifically, consider the foo method from Figure 8.

A novice Java programmer would correctly note that the scope
of foo’s side effects are confined to the object constructed in its
first line. However, because the simple effects analysis is using
Andersen’s analysis to disambiguate between memory locations,
it will not fare as well. Since foo only consists of two method
invocations (a constructor and translate), its READ and WRITE
sets are the unions of those sets for all of the methods it invokes.
Because of context-insensitivity, these sets may be very large. The
constructor has WRITE effects for the x and y fields of every object
that may be referred to by this – that is, every Point object that has
been created with that constructor! The translate method likewise
has READ and WRITE effects for the x and y fields of every object
that is pointed to by a reference that has had the translate method
invoked on it.

8.3 Parameterizing on receiver objects
It seems plausible that the READ or WRITE sets of most instance
methods will contain primarily fields of the receiver object (i.e.,
this). Were this the case, we could parameterize our analysis so that
when we encountered an effect involving this, instead of keeping
track of all possible objects that might be referenced by this, the
READ and WRITE sets would merely record an effect to this. Given
this sort of parameterized analysis, for example, the WRITE sets
for Point.setX would include only the x field of this. When our
analysis encountered an invocation like pt.setX(y), it could then
calculate which objects pt might refer to, and generate WRITE sets
for the method invocation by instantiating this in the WRITE set
for setX with each such object.

3 The rules treating array references are similar to those treating instance
fields; thus, we have omitted them here as we did in Section 7.



simple analysis parameterized analysis
input reads/ writes/ CPU input reads/ writes/ CPU

benchmark relations call call time (s.) relations call call time (s.)
antlr 596121 775.65 775.69 6.74 701468 312.49 123.27 4.65
bloat 818542 1362.86 1362.82 12.42 937325 338.01 101.65 7.41
chart 1103095 315.13 315.18 3.24 1381994 104.98 47.55 2.66
db 461756 571.73 571.78 2.90 548614 174.26 50.17 1.79
eclipse 681224 816.21 816.13 10.37 790904 266.79 87.47 8.00
hsqldb 524218 616.24 616.30 3.96 611857 205.88 68.16 2.62
jack 485683 566.38 566.43 3.21 576476 177.80 54.45 2.07
javac 557415 626.42 626.36 3.75 656425 178.55 48.70 2.23
jess 1363131 2415.52 2415.51 26.02 1592712 518.13 91.65 11.10
luindex 559118 644.11 644.18 7.00 653728 211.68 69.72 5.48
pmd 754279 730.86 730.90 6.08 889959 239.13 87.00 4.03
raytrace 467481 543.48 543.53 2.94 556009 167.16 47.78 1.84
xalan 519984 594.69 594.75 3.73 606898 196.82 63.71 2.46

Figure 9. Performance results for effect inference analyses

isthis (L) <−− formal(L,this,M).
isthis (L2) <−−

formal(L, this ,M),
assign(L2, L),
all (Source,assign(L2, Source),[L]).

receiver(Id , L) <−−
unitActual (Id , this , local (L, _, _ )).

/∗ globals ∗/
read_global(Id, F) <−−

stmt(Id , assignStmt(local(_,_,_), staticFieldRef (F ))).

write_global(Id , F) <−−
stmt(Id , assignStmt(staticFieldRef(F), local (_,_,_ ))).

/∗ instance fields ∗/
read_effect(Id , this , F) <−−

stmt(Id , assignStmt(local(_,_,_), instanceFieldRef(local(L,_,_), F ))),
isthis (L).

write_effect (Id , this , F) <−−
stmt(Id , assignStmt(instanceFieldRef(local(L,_,_), F), local (_,_,_ ))),
isthis (L).

read_effect(Id , L, F) <−−
stmt(Id , assignStmt(local(_,_,_), instanceFieldRef(local(L,_,_), F ))),
\+ isthis (L).

write_effect (Id , L, F) <−−
stmt(Id , assignStmt(instanceFieldRef(local(L,_,_), F), local (_,_,_ ))),
\+ isthis (L).

/∗ invocations ∗/
callgraph_edge(Id, Callee) <−− unitMaySelect(Id, method(Callee)).

/∗ methods containing effecting statements ∗/
in_method(Id, Method) <−− containsStmt(Method, Id),

(read_effect(Id , Lr, Fr) ; write_effect (Id , Lw, Fw)).
in_method(Id, Method) <−− containsStmt(Method, Id),

(read_global(Id, Fr) ; write_global(Id , Fw)).

method_contains(Method, Id) <−−
in_method(Id, Method).

Figure 10. Select statement processing rules for parameterized
effects inference

Of course, a plausible intuition doesn’t provide sufficient justi-
fication for building and validating a new analysis, no matter how
straightforward it is to do so in a given framework. Fortunately,
DIMPLE makes it easy to collect empirical evidence for our intu-
itions: we may simply query the program database to see if certain
conditions obtain.

In order to do so, we define an isthis /1 predicate that holds when
a variable is a this reference – that is, when it refers exclusively to

reads(Id, global , F) <==
read_global(Id, F).

reads(Id, O, F) <==
read_effect(Id , L, F), v_pt(L, O).

reads(Id, this , F) <==
read_effect(Id , this , F).

method_reads(Method, Loc, F) <==
method_contains(Method, Id), reads(Id, Loc, F).

reads(Id, Loc, F) <==
callgraph_edge(Id, Callee),
method_reads(Callee, this, F),

receiver(Id , V),
v_pt(V, Loc).

reads(Id, Loc, F) <==
callgraph_edge(Id, Callee),
method_reads(Callee, Loc, F),

Loc \= this .

Figure 11. Select analysis rules for parameterized effects inference
(rules treating WRITE effects are omitted)

the receiver object of the current method. (The DIMPLE IR generator
attempts to minimize the lifetimes of locals. Therefore, each method
has one local variable that corresponds to this and possibly many
variables that alias that local.) Then, we can use DIMPLE to query
the program text and determine whether our intuition is correct; viz.,
most instance field accesses are to this instead of to some other
object.

For the benchmark programs we examined, this particular intu-
ition happens to be correct. As a result, we know that it is probably
worthwhile to develop a new analysis that generates parameterized
summaries of effects information for methods; our analysis can then
instantiate these summaries at call sites to indicate that effects to
this may only impact objects referenced by the receiver at the
call site. Figure 10 contains the statement processing rules for this
improved analysis, and Figure 11 contains the analysis rules. (We
omit rules related to WRITE effects in the analysis rules presented
here, as they are very similar to the rules for READ effects.)

Figure 9 shows performance numbers for the simple and parame-
terized analyses on each benchmark. For each benchmark, we show
the number of effects inferred (to abstract locations) for each method
call site. Note that the parameterized analysis, while not as precise
as a context-sensitive analysis, dramatically improves the precision
of our analysis. (Note also that the effects analyses are more time-
efficient than the points-to analyses – this is the case because they



do not need to calculate exhaustive points-to information and may
simply query on demand.)

9. Related work
Work related to the research we have reported here falls into two
categories: declarative representations of programs and program
analysis specifications, and techniques for efficiently solving declar-
ative analysis queries. We discuss notable results in each of these
areas that are most relevant to our work. We conclude by placing
DIMPLE in context in the field and recapitulating its contributions.

9.1 Declarative frameworks for analysis
Dawson, Ramakrishnan, and Warren [9] argued that a general-
purpose logic programming system (the XSB Prolog system) could
be used to evaluate declarative formulations of program analysis
problems. Their work demonstrated that the evaluation model of
tabled Prolog is suitable for answering program analysis queries
efficiently and completely. However, their evaluation was restricted
to analyses of functional and logic programs consisting of tens
to hundreds of lines of code and therefore did not evaluate the
scalability of their techniques.

Heintze [14] demonstrated that many program properties could
be faithfully approximated by sets – and, thus, that many program
analyses could be formulated as a system of set constraints. Heintze
and Jaffar [15] present an overview of work in this area; in Section
9.2, we describe some notable tools based on this abstraction.

Reps [29] demonstrated that many interprocedural dataflow anal-
yses could be formulated as reachability problems on context-free
languages. Since there is a well-understood correspondence be-
tween context-free languages and declarative programs that recog-
nize them, this approach implies declarative formulations of a large
class of analysis problems. Reps, Schwoon, Jha, and Melski [30]
later generalized this approach to include analysis problems that
could be specified as reachability problems on weighted pushdown
systems.

Several researchers have investigated the class of problems that
are expressible as CFL-reachability problems. Notably, Melski and
Reps [26] gave a general algorithm for translating from any CFL-
reachability problem to a set-constraint satisfaction problem. Later,
Kodumal and Aiken [20] provided an algorithm for converting from
Dyck CFLs, a subset of all context-free languages, to systems of
set constraints; their algorithm is less general than the Melski-Reps
reduction, but produces more efficient implementations in the special
case of Dyck CFLs. Many static analysis problems can be expressed
as Dyck CFLs; a representative example is given by Sridharan et
al. [36], who formulated demand-driven points-to analysis for Java
with a Dyck CFL.

Liu and Moore [13] encoded the semantics for the Java Virtual
Machine in the ACL2 theorem prover by developing an interpreter
for the JVM in pure Lisp. As a consequence of their work, it is
possible to use ACL2 to reason about Java programs. In a similar
vein, Leroy [23] developed a certified compiler for a C-like language
in the Coq proof assistant. There is, of course, a strong and obvious
analogy between using a theorem prover or proof assistant to reason
about programs and using a logic programming system to reason
about programs.

9.2 Solving declarative analysis queries
Prior to the work described in Section 9.1, Reps [31] showed how
to automatically derive demand-driven versions of dataflow anal-
ysis algorithms – that is, analysis procedures that calculate exact
results for a particular subset of the program or for a particular pro-
gram point. His technique relied on the magic-sets transformation:
applying this transformation to a logic program implementing an

exhaustive analysis algorithm results in a demand-driven version of
the algorithm.

Saha and Ramakrishnan [34] adapted techniques for incremental
and goal-driven evaluation of tabled Prolog in order to formulate
incremental and demand-driven versions of program analyses. They
evaluated their work on a version of Andersen’s analysis for C,
treating programs consisting of tens of thousands of preprocessed
statements. As with the subset-based points-to analysis we present
in Section 7, their analysis is flow-, field- and context-insensitive. (It
is difficult to derive a sound field-sensitive analysis for C, since C
admits many unsafe features. In contrast, the points-to analysis we
presented is flow- and context-insensitive, but field-sensitive.) Their
work focuses on applying techniques for improving the performance
of logic programs to improving the utility of logic programming as
a tool for program analysis.

Several special-purpose systems have been developed to allow
declarative specifications of program analyses. The BANE toolkit
[12] and its successor BANSHEE [21] generate specialized solvers
for program analyses specified as constraint-satisfaction problems.
An analysis designer would use these tools by developing a prepro-
cessor to extract relevant constraints from the program text and then
declare the analysis itself in terms of constraints on terms or sets.
BANSHEE enjoys a rich type system and static checking of type-
safety for analyses. BANSHEE also achieves high performance – a
BANSHEE implementation of Andersen’s analysis for C analyzed
hundreds of thousands of lines of preprocessed C code in seconds
and millions of lines of preprocessed C code in under a minute.
Like the work of Saha and Ramakrishnan, BANSHEE also provides
support for incremental evaluation of analysis queries.

The bddbddb system of Whaley et al. [42, 22] is a specialized
implementation of Datalog based on binary decision diagrams [6],
or BDDs. The BDD representation represents boolean functions
as directed acyclic graphs, and is able to exploit redundancy in
relations in order to solve queries on large relations efficiently.
Indeed, the BDD-based implementation of Datalog in bddbddb
can even enable users to solve queries on relations whose explicit
representations would not fit in memory on any extant computer.
Whaley and Lam demonstrate the performance of two bddbddb
implementations of Andersen’s analysis [42]: the context-insensitive
implementation is roughly comparable to the performance we have
achieved in a similar analysis with DIMPLE. Where the BDD-based
representation excels, however, is in handling context-sensitive
analyses – many of which would produce results too large to
represent explicitly in a Prolog database. However, the performance
(and tractability) of BDD-based analysis approaches depends on
the size of the BDD graph, which in turn depends on the variable
ordering that the BDD user has chosen. Bollig and Wegener showed
that algorithmically choosing a “good or optimal” variable ordering
for a BDD is NP-complete [5]. bddbddb requires the user to specify
a variable ordering, but it features a machine learning-based process
for automatically identifying a good ordering candidate from among
several heuristically determined possibilities.

9.3 DIMPLE in context
The work we discussed in Section 9.1 primarily treats declarative
formalisms for programs and program analysis problems. Obviously,
the choice of a formalism for expressing analyses is somewhat
subjective. However, in our opinion, the relational model of logic
programming approaches (including DIMPLE) is rather easier to use
than constraint- or set-based models.

In contrast, the work mentioned in Section 9.2 treats implemen-
tation techniques for efficient tools to handle evaluating analysis
problems expressed in terms of various formalisms. DIMPLE already
benefits from advances in logic programming system implementa-
tion; the efficient execution of a tabled Prolog system makes whole-



program analyses feasible. However, users who wish to exploit
capabilities not directly available in the underlying Prolog system
(such as bddbddb’s support for the very large relations required for
context-sensitive analyses) could easily use DIMPLE as a front-end
for a specialized solver. Such an approach would use the DIMPLE IR,
statement processing language, and analysis language, but would
override the DIMPLE code generator by writing a Prolog procedure
that translates from user analysis rules to the Datalog format ex-
pected by bddbddb, to set constraints, or to any other format or
formalism expected by an external tool.

Perhaps the best characterization of our work is that DIMPLE
provides an interface, framework, and language to facilitate using a
logic programming system for program analysis. The related work
under discussion either presents formalisms for program analysis
or advances the state of the art of logic programming, perhaps with
immediate application for program analysis problems. Since we
have developed an application that exploits many of the features of
an advanced logic programming system, contributions that improve
logic programming systems are complementary to ours.

The DIMPLE system enables analysis designers to rapidly proto-
type new program analyses in an interactive fashion. Unlike every
other system under discussion, DIMPLE enables analysis designers
to use logic programming for every phase of the analysis develop-
ment process. DIMPLE is also unique in that the entire program
text is available to the analysis designer for prototyping. However,
DIMPLE enables users to discard irrelevant relations for efficient
execution of production analyses.

While the other analysis frameworks we have mentioned rep-
resent excellent research contributions, no other system under dis-
cussion is as suitable for prototyping and interactive, exploratory
development as DIMPLE. The DIMPLE analysis developer need never
leave the declarative world of Prolog and the DIMPLE IR, whether
preprocessing input programs, defining statement processing rou-
tines, or declaring and evaluating analysis rules. In contrast, other
systems like BANSHEE and bddbddb require the user to develop
a specialized preprocessor for source text that extracts relations of
interest, to declare a set of rules or constraints, and then to feed
preprocessed program text and the user-declared rules into a special-
ized solver. If there is an error in the preprocessor or rules, the user
must start over; in DIMPLE, one may simply assert or retract addi-
tional rules or relations as necessary. Other factors that inhibit casual
experimentation and rapid, interactive prototyping come from im-
plementation details: BANSHEE analyses are C programs that link
with a specialized solver library. bddbddb specifications require a
good BDD variable ordering. Deciding on a good ordering is nontriv-
ial and requires either a user with a profound understanding of the
BDD abstraction and the problem domain or a user who is willing
to wait for the bddbddb tool to automatically apply time-consuming
heuristics and learning techniques to find a good ordering.

We plan to improve DIMPLE in the future by incorporating some
of the best ideas from these other systems. In particular, we in-
tend to investigate ways to support large relations with significant
redundancies, as does bddbddb. We are also interested in using DIM-
PLE to develop tools based on abstract interpretation or operational
semantics, like the aforementioned work involving ACL2 and Coq.

10. Conclusion
This paper has presented DIMPLE, a framework that facilitates rapid
prototyping, development, and implementation of program prepro-
cessors and static analyses. Because the analysis designer can defer
decisions about which program statements are relevant – or even
which analysis rules are necessary – until the analysis is actually
producing results, DIMPLE encourages experimentation and interac-
tive development and provides for a spectrum of executable analyses
from flexible prototypes to efficient production implementations.

More generally, we have confirmed prior work that has asserted
the suitability of general-purpose logic programming systems for
program analysis tasks; we have also reinforced these assertions by
demonstrating scalability with substantially larger input programs
than were treated in prior evaluations.

DIMPLE is unique in that it is designed to encourage interactive
experimentation with new analysis ideas; it also enables analysis
designers to use declarative specifications for every step of the anal-
ysis design and implementation process. We have demonstrated the
usability of DIMPLE by showing the actual executable specifications
for two realistic, fundamental program analyses and the preprocess-
ing phases necessary for each. Finally, we have demonstrated that
DIMPLE implementations of two analyses are efficient enough for
production use; our DIMPLE implementation of Andersen’s analysis
is in fact speed-competitive with a BDD-based specialized solver.
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