
Strengthening the inversion Tactic in Coq

Anne Mulhern

May 10, 2010

Coq’s inversion tactic fails when it is required to invert an hypothesis in Prop to
prove a goal that is not in Prop.

There are some exceptions to this rule.

• If the type of the hypothesis has zero constructors the inversion tactic succeeds.

• If the type of the hypothesis has just one constructor, and deconstructing the term
yields no further information about the term than is already given by the type,
the inversion tactic succeeds.

Terms with types that fit these conditions are always invertible. The Derive Inversion
command behaves analogously to the inversion tactic.

The type, False, is a canonical example of a type that has only invertible inhabitants,
since it has zero constructors, hence zero inhabitants. The type, and, is another canonical
example of a type that has only invertible inhabitants. The type, odd, is a non-example.
Like and, it has just one constructor. However, the arguments to its unique constructor,
odd S are more informative than its type.

We argue that the condition

whenever the inductive definition has just zero or one constructors and the arguments
to its unique constructor, if any, are no more informative than its type

is too strong. The weaker condition

whenever the type of the term to be inverted fully determines its constructor (with some
technical restrictions, which we are only able to mention briefly)

which is implied by the stronger condition is more appropriate. We have extended Coq’s
inversion tactic within the Ltac language so that it succeeds when this condition holds.

The inversion tactic derives for each constructor in the inverted term all the necessary
conditions that must hold for the term to be proved by that constructor. Some of these
conditions may lead to an easily proved contradiction, in which case the inversion tactic
(or the Derive Inversion command) automatically derives the contradiction and proves
the subgoal for that constructor. The statement “the type of the term fully determines its
constructor” is thus equivalent to the statement “the inversion tactic will automatically
solve all goals or it will automatically solve all but one goal (if the goal is in Prop)”.

1



We treat the “zero constructor” case first, as it is by far the simplest. The definition
of odd has just one constructor, odd S. However, the hypothesis odd O leads immediately
to a contradiction for that constructor, since one of the necessary conditions for odd O

to hold is that O = S n. Consequently, it is possible to prove the sublemma, odd O ->

False. Regardless of the sort of the goal, when there is an hypothesis odd O, inversion
is possible by

1. automatically constructing a proof of odd O -> False

2. applying this proof to the hypothesis odd O to derive a contradiction

3. making use of the contradiction to prove the goal

This result generalizes to any situation where, for every constructor, the necessary condi-
tions that must hold for the term to be proved by that constructor yield a contradiction.

For the “unique constructor” case, it is possible to discover the necessary conditions
for that constructor to hold. The definition of even has two constructors, even O and
even S. If the hypothesis is even (S n) for some n then a necessary condition for the
even O constructor, O = S n, yields a contradiction. Consequently, it is possible to
prove the sublemma forall n, even (S n) -> odd n, since odd n is the necessary
condition for the constructor even S. Regardless of the sort of the goal, when there is
an hypothesis even (S n) for some n, inversion is possible by

1. automatically constructing a proof of forall n, even (S n) -> odd n

2. applying this proof to the hypotheses n and even (S n) to prove odd n

3. inserting the hypothesis odd n into the context of the current goal

This result generalizes to many situations where, for all but one constructor, the nec-
essary conditions that must hold for the term to be proved by that constructor yield a
contradiction.

The even S constructor has just one necessary condition, odd n. In general, however,
a constructor will have several necessary conditions. In that case, the return type of
the automatically constructed sublemma must be the conjunction of these necessary
conditions. Since terms in and are always invertible, regardless of the sort of the goal,
the result of applying the automatically generated sublemma to the hypothesis will yield
a conjunction of terms that can alway be decomposed into separate terms.

This approach works well for the sort of inductive definitions that appear to arise
naturally in mechanizing metatheory [1]. For example, the definition for local closure
has exactly as many constructors as there are constructors for the definition of terms
in the lambda-calculus. If the type of any proof of local closure is fully precise then
the type fully determines the constructor. Moreover, each constructor has in general, a
fairly simple type, e.g, an application is locally closed if both its subterms are locally
closed. The return type of the inversion sublemma is the conjunction of the statements
of local closure for each subterm of the application.

2



However, it is not possible to invert every term where the type uniquely defines the
constructor. For example, suppose that the hypothesis is ex (fun x => even x). ex

has just one constructor, ex intro, with type forall x, P x -> ex P. However, the
necessary sublemma must introduce a new variable, the witness, as well as a proof that
P holds for the witness. Clearly, this sublemma must be impossible, otherwise one could
extract the witness and make use of it to build a goal in any sort.

We have implemented our stronger inversion tactic entirely within the Ltac tactic
language. We have made use of a sandboxing technique, i.e., we assert our intention to
prove True by means of the hypothesis to be inverted. In the subgoal thus constructed
it is possible to make use of Coq’s standard inversion tactic to discover what the type of
our automatically generated subgoal should be, to prove it, and to return the proof and
the type to the original goal. If the return type of the sublemma is False, then it can
be used to solve the original goal. If the return type of the sublemma is a conjunction of
propositions then this conjunction can be decomposed, and the parts inserted into the
proof context. If the inversion tactic leaves more than one subgoal in the sandbox, or
the remaining subgoal is not tractable, the stronger inversion tactic fails. Our stronger
tactic defaults to the standard inversion tactic wherever that will succeed.

We argue that it would be desirable to strengthen the inversion tactic within the
Coq system, in the way that we have described and to strengthen the Derive Inversion
command in the identical manner.

Our strengthened tactic optionally memoizes the sublemmas that it automatically
generates. We would be interested in a new tactic that facilitates caching and lookup of
sublemmas generated during the execution of Ltac tactic scripts.

References

[1] Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and
Stephanie Weirich. Engineering formal metatheory. In POPL ’08: Proceedings of the
35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 3–15, New York, NY, USA, 2008. ACM.

3


