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Abstract

It is a commonplace in recent metaphysics that one’s logical commit-
ments go hand in hand with one’s metaphysics. Brouwer, Heyting and
Dummett have each championed the move to constructive (intuitionistic)
reasoning on the grounds of anti-realism. I hope to break this close connec-
tion, to explain why a realist ought to reason constructively.

1 Introduction
Let me start by explaining the terms of the discussion. In this area of philo-
sophical logic there seems to be some confusion in the use of terms such as
“intuitionistic” and “constructive.” It will help to get the use of these terms
somewhat fixed before I start to argue my case.

1.1 Logic
First, logic. The subject Logic is the study of logical consequence. Logical con-
sequence is a matter of the validity and invalidity of arguments. An argument
is valid just when in any case in which the premises of the argument are true,
so is the conclusion. It is often helpful, in discussing logical consequence, to
have a formal language in which to express the premises and conclusions of ar-
guments. One such language is the language of first-order logic, with primitive
expressions for the connectives and quantifiers

∧ conjunction
∨ disjunction
⊃ conditional
∼ negation
∀x universal quantifier

(with x a variable)
∃x existential quantifier

(with x a variable)

For some, logic is at heart the study of the behaviour of these connectives. For
others, the singling out of particular parts of the language is an incidental mat-
ter. All agree that formal logic is about the forms of arguments and inferences,
∗Research supported the Australian Research Council, Large Grant No. A00000348.
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but many disagree about whether the language of first-order logic completely
expresses the forms relevant to logical judgements. For this paper, this argu-
ment is incidental. All of our discussion of logical consequence will take place
comfortably within the language of first-order logic.

We will write validity for arguments as follows:

X ` A.

This states that the argument from premises X to conclusion A is valid. For ex-
ample, if a negated disjunction follows from both negated disjuncts, we could
say the following:

∼A,∼B ` ∼(A∨ B).

The premises are listed to the left of the turnstile, and the conclusion to the
right.

1.2 Intuitionistic logic and Constructivity
Intuitionistic logic is a particular account of logical consequence, at variance
with classical logical consequence, with which I assume familiarity. One way
to introduce intuitionistic logic is by means of constructions. We give an account
of validity of arguments by indicating what it is to construct (for the moment,
take this to mean something like demonstrate, prove or establish) a statement.

• A construction ofA∧B is a construction ofA, together with a construction
of B.

• A construction of A ∨ B is either a construction of A or a construction of
B.

• A construction of A ⊃ B is a technique for converting constructions of A
into constructions of B.

• There is no construction of ⊥.1

• A construction of ∀xA is a rule giving, for any object n, a construction of
A(n).

• A construction of ∃xA is an object n together with a construction ofA(n).

Then we say that an argument is valid if and only if a construction for the
premises provides a construction for the conclusion.2

With this in hand we can see some of the distinctive behaviour of intuition-
istic logic. For example, the inference of distribution

∀x(A∨ B) ` ∃xA∨ ∀xB (1)

is valid in classical logic, but it need not be valid in intuitionistic logic. For
example, it is easy to demonstrate that every string of ten digits in the decimal

1We define � �
as

� ⊃ ⊥, so a construction of � �
is a technique for converting constructions of

�
into absurdity. It shows that there are no constructions of

�
.

2This is certainly not a formalisation of intuitionistic logic, as I have said nothing of what it is for
a construction to ‘provide’ another, what it is to have a construction ‘together with’ another, nor
what these constructions are, or how rules can convert constructions into other constructions. It is
enough, however, to motivate the distinctive features of intuitionistic logic.
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expansion of π is either a string of ten zeros, or it is not. A demonstration of
this fact, however, does not give us a construction of the claim that either there
is a string of ten zeros in π or every string of ten digits in π is not a string of
zeros. Any construction of this statement must either prove that there is no
string of ten zeros in π or to show where one such string is. The constructive
content of ∃xA∨ ∀xB is greater than that of ∀x(A∨ B).

So, some constructions for ∀x(A ∨ B) are not constructions of ∃xA ∨ ∀xB.
But these constructions are also not constructions of ∼(∃xA ∨ ∀xB), so some
constructions must be incomplete. This leads us to more classically valid infer-
ences which fail in intuitionistic logic. Another inference to fail is

` A∨ ∼A

The law of the excluded middle can be thought of as an inference with no
premises. It is valid in intuitionistic logic if any construction provides a con-
struction forA∨∼A. This fails, for not all constructions will give a construction
of A or one of ∼A. Constructions may well be incomplete. To think otherwise
is to take constructions to provide answers to all questions, and this is against
the spirit of the enterprise. Constructions provide justification for some things
and not for others.

As a result of this failure we have the failure of the inference of double nega-
tion elimination.

∼∼A ` A
We may have a construction of ∼∼A without this providing a construction of
A, for a construction of ∼∼A is a technique for converting constructions of ∼A

into absurdity, and so, is a technique for converting {techniques for converting
constructions of A into absurdity} into absurdity. Double negation elimination
fails because even though we may not have constructions of A ∨ ∼A, we can
always provide a construction of its double negation

∼∼(A∨ ∼A).

It is worthwhile seeing how this works. We wish to provide a technique for
converting constructions of ∼(A ∨ ∼A) to absurdity. Suppose we do have a
construction of ∼(A ∨ ∼A). That would be a technique for converting a con-
struction of A ∨ ∼A to absurdity. If we had that, then we have a technique for
converting constructions of A into absurdity (for any construction of A gives
you a construction for A∨ ∼A). But this is a construction for ∼A, and so we get
a construction of A∨ ∼A, which we can convert into absurdity. So, we have in-
deed gone from a construction of ∼(A∨∼A) to absurdity as desired. We have a
construction of ∼∼(A∨∼A).3 But it does not follow that we have a construction
of A∨ ∼A, lest constructions be omniscient.

This is enough to provide a taste of intuitionistic logic. We will see more as
the argument continues. Intuitionistic logic is motivated by the idea of the con-
struction. As a result, intuitionistic reasoning is often described as constructive
reasoning. An intuitionistically valid argument may be described as a construc-
tive argument.

3Phew!
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1.3 Intuitionism
Intuitionistic logic, therefore, is not inherently wedded to considerations of in-
tuition. Intuitionism is a philosophical view of the foundations of mathematics,
introduced by Brouwer [14] formalised by Heyting [13], and generally applied
to philosophy by Dummett [9, 10].4 For intuitionists, mathematical reasoning is
a function of the intuition of the creating subject. Mathematical proofs are cor-
rect to the extent that they encode the constructions of a creating mathematical
reasoner. To this extent, intuitionism is a variety of constructivism. However,
intuitionism goes further than other varieties of constructivism, in maintaining
that constructive reasoning is appropriate because of the nature of mathemat-
ical entities themselves. The entities are the constructions of the reasoner and
furthermore, mathematical entities only have the properties bestowed upon
them by their construction.

Intuitionism about mathematical objects is a kind of anti-realism, of a piece
with Dummett’s semantic anti-realism. Truths about mathematical entities
cannot outstrip what we can truly say about them, and these cannot outstrip
our capacities to describe those entities. Constructivity seems a fitting partner
of this kind of anti-realism.

This much is fairly straightforward, and is true. However, the marriage
of anti-realism and constructive reasoning is taken to be much more intimate
than what I have expressed so far. Many have taken it that the two go hand
in hand everywhere, and are inseparable partners. In this paper I will argue
that this is not the case. Anyone, regardless of metaphysical commitments, can
and ought reason constructively. Intuitionistic logic is to be freed from its ties
to intuitionism and other anti-realist philosophical views.

2 Everyone can be a Constructivist
I will start by examining closely a particular instance of mathematical reason-
ing which will help us understand the interrelationship between constructive
considerations and the metaphysics of mathematics. The lessons are more gen-
eral than simply mathematical, and we will then go on to see how constructive
considerations may apply globally, wherever reasoning is applicable. In doing
so, this section will show that everyone can be constructivist.

2.1 Construction and Proof
Here is a scenario from Shapiro’s Philosophy of Mathematics [17]. It is a fairly
simple piece of reasoning, which will illustrate the role of construction in rea-
soning and proof.

PROFESSOR A: Next I will prove the Bolzano–Weierstrass Theorem: every
bounded infinite set has at least one cluster point. Let

���
be an arbitrary,

bounded infinite set. To prove the theorem, we must produce a point �
with the property that every neighbourhood of � contains infinitely many
points in

���
. . . We divide

���
into four equal squares by intersecting lines.

One of these smaller squares must contain infinitely many points of
���

. . .
choosing such a subsquare, label it

���
. We have

��� ⊆ ���
and both are

closed and bounded. Now repeat this process. Divide
���

into four squares
4However, it is unclear to what extent Dummett is an intuitionist over and above being a con-

structivist. It is better, I think, to defer to his own label for his position: he is a semantic anti-
realist [10].
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. . . By continuing this, we generate a sequence of closed squares
� � . . .

appealing to the nested set property, there must be a point � that lies in all
the sets

� � . This is the point that will turn out to be a cluster point for
�

.

At this moment, a student with a double major in mathematics and philos-
ophy raises her hand and is recognised.

STUDENT: You are using a constructional language in this lecture. You
do not actually mean that you or some ideal mathematician has done this
construction, do you? How can anyone do an infinite number of things,
and then after all of them — on the basis of them — do something else, in
this case pick the point � ?

PROFESSOR A: Do not take this lecture literally. Of course, there is no such
constructional process. I am describing a property of the plane. From prin-
ciples of cardinality, I infer the existence of infinitely many points in some
square

���
, and then in

���
. The axiom of replacement implies the existence

of the whole sequence 〈 � � 〉. Finally, from the nested-set property, I deduce
the existence of a point in all of the

���
s. I let � be the name of one such

point. Now this is what I mean by this lecture; the constructional language
makes it easier for you to see. [17, page 184]5

There are a number of things going on in this example. Firstly, it shows how
images of ‘construction’ are used to clarify the processes of reasoning leading
to a mathematical proof. As Professor A indicates, this language does not have
to be taken literally; it may be used as a heuristic device.

However, the language is not merely heuristic. If you are presented with an
infinite set of points and are asked to find a cluster point for that set, the process
you are given in this proof is one you might think to use. However, to use it,
you must, as the student points out, perform an infinite task. The Professor
is wrong in thinking that the infinite task is impossible. Sometimes, you can
actually do it, depending on which infinite set you are given. For example, if I
am given the unit square [0, 1] × [0, 1], then I can choose each Cn as [0, 1/n] ×
[0, 1/n] and my limit point will be (0, 0). I can perform infinitely many choices
if they choices are “easy” enough. However, the choices are not always that
simple, and indeed, there is no algorithm providing for each infinite set of
points a cluster point for that set.

Shapiro uses this example to motivate an understanding of the difference
between intuitionist and classical mathematics. His explanation is a good ex-
ample of the orthodox view of the relationship between classical and intuition-
istic mathematics, so it is worth quoting at some length.

One crucial difference between the classical constructive mode of thought
[by this, Shapiro means the “constructing” language used in mathemati-
cal demonstration] and the intuitionistic mode is that the former seems to
presuppose that there is a (static) external mathematical world that mir-
rors the constructs. A traditional Platonist (such as Proclus) might claim
that the existence of the mathematical world is what justifies or grounds
the constructs . . .

Whatever its metaphysical status, the supposition of an external world sug-
gests certain inferences, some of which are the nonconstructive parts of
mathematical practice rejected by intuitionism. For example, if a classical

5In this quote I have changed Shapiro’s ‘ � ’ to ‘ � � ’ to clarify the reasoning. Shapiro starts with
the set � then calls it � � without explaining the transition.
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mathematician proves that not all natural numbers lack a certain property
(i.e., she proves a sentence in the form � ∀ � ��� ), she can infer the existence of
a natural number with this property (∃ � � ). Following existential instantia-
tion, she can give a “name” to some such number and do further construc-
tional operations on it. In the proof of the Bolzano–Weierstrass theorem
. . . we have a similar instance of excluded middle at work. At each stage,
the constructor knows that at least one of four squares has infinitely many
points from the given set, but he may not know which one. Nevertheless
the constructor can pick one such square, and go on from there.

Intuitionists demur from such inferences and constructions because they
understand the principles as relying on the independent, objective exis-
tence of the domain of discourse. For them, every assertion must report
(or correspond to) a construction. In the present example, an intuitionist
cannot assert the existence of a natural number with the said property, be-
cause such a number was not constructed. The intuitionist cannot choose
a square with infinitely many points from the given sets, because such a
square was not identified. Bishop [5] understands the law of the excluded
middle as a principle of omniscience. [17, page 187]

Here the orthodox view is clear. Classical reasoners accept such infinitary con-
structions because they do not step from truth to untruth. If not everything is
not Φ then something is Φ, regardless of the availability of a construction of
this object. For intuitionists, this is unacceptable, for there may well be no such
object.

What about the non-intuitionist? What if we are happy with the idea of
an objective mind-independent mathematical realm? (We may not think that
there is such an objective mind-independent realm; we may think, however,
that mathematics proceeds as if there is such a realm. The distinction is irrele-
vant here [1, 11, 12, 17].) Can constructivist considerations have any force for
us? I think that the answer to this may still be positive. Although as non-
intuitionists we may well be happy that there actually is a cluster point of the
infinite set, we may agree that it may well be impossible to find. Being pre-
sented with an infinite set does not in and of itself give one the means to find
a cluster point for that set. All are agreed on this point, at least in cases where
we are unable to complete the infinite division-and-choice task discussed in
the proof. This consideration has force whatever your view of the nature of
the mathematical universe, and this distinction, between the constructible and
the non-constructible, is modelled in intuitionistic reasoning. In this way, in-
tuitionistic reasoning can appeal to the non-intuitionist. You need not be an
anti-realist for those considerations to have force. Shapiro describes the situa-
tion in the following way:

The supposition that there is a static mathematical universe that mirrors the
dynamic language sanctions these infinitary procedures. Consider, once
more, the aforementioned proof of the Bolzano–Weierstrass theorem . . . On
the classical view, each construct refers to a fact in the static mathematical
world. The construction of the first square

� �
reflects the existence of a cor-

responding square in the plane. A more neutral way to put it is that the
construction proceeds as if there were a corresponding square in the plane.
Similarly for

� �
and

� �
. From the discourse, it becomes clear that the

construction could be continued as far as one wished. This reflects the exis-
tence of a square that corresponds to

� � for any particular natural number
� . The crucial supposition is that the corresponding squares exist whether
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or not the construction is actually performed. The existence of the entire
sequence of squares is then deduced. By the nested-set theorem, there is a
point � in all of the

� � s. The proof concludes with the demonstration of
some facts about � .

In this example at least, the supposition allows one to proceed as if an
infinite process had been completed — more precisely, the supposition of
a static universe suggests that one can infer the existence of what would
be the result of such a process, in this case a point in every element of the
infinite sequence of squares. In the jargon of mathematics, we pass to the
limit.

Because, as noted, intuitionistic construction proceeds without this sup-
position, its ideal constructors are not endowed with the ability to finish
infinite tasks. [17, page 188]

Note here that all of the considerations Shapiro brings in favour of an construc-
tive understanding of proof apply independently of the nature of the objects
being reasoned about. What we take our ideal constructors to be able to do is a
feature of our understanding of construction; it is not a feature determined by
the nature of the things constructed. We can impose constructive limits in our
reasoning about anything we like.

2.2 A Semantics
At this point, it will serve us well to clarify how this is done. To do this we need
to give a more detailed constructive analysis of the logical particles. Our inter-
pretation will be a version of the Brouwer–Heyting–Kolmogorov interpretation
(‘BHK’ for short) of the logical constants. To show that our approach follows
the constructive tradition I will introduce this by quoting Errett Bishop:

To prove the statement (
�

and � ) we must prove the statement
�

and prove
the statement � , just as in classical mathematics. To prove the statement
(

�
or � ) we must either prove the statement

�
or the statement � , whereas

in classical mathematics it is possible to prove (
�

or � ) without proving
either the statement

�
or the statement � .

The connective “implies” is more complicated. To prove (
�

implies � ) we
must show that

�
necessarily entails � , or that � is true whenever

�
is

true. The validity of the computational facts implicit in the statement
�

must insure the validity of the computational facts implicit in the state-
ment � , but the way this actually happens can only be seen by looking
at the proof of the statement (

�
implies � ). Statements formed with this

connective, for example, statements of the type ((
�

implies � ) implies � ),
have a less immediate meaning than the statements from which they are
formed, although in actual practice this does not seem to lead to difficul-
ties in interpretation.

The negation (not
�

) of a statement
�

is the statement (
�

implies � � � ).
Classical mathematics makes no distinction between the content of the
statements

�
and not (not

�
), whereas constructively the latter is a weaker

statement. [5, pages 7,8]

Note here that we are recursively defining the behaviour of complex mathe-
matical statements in terms of the behaviour of simple ones. You can under-
stand this as giving the meanings of the connectives in terms of the meanings
of something more fundamental or prior to them, in particular, the notion of
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proof. However, this is not compulsory. You can read this analysis as giving
the sense of the notion of constructive proof. Here is what it is to give a proof
of a conjunction: it is to give a proof of each conjunct. Here is what it is to give
a proof of a disjunction: it is to give a proof of either disjunct. Here is what
it is to give a proof of a conditional: it is to convert proofs of the antecedent
into proofs of the consequent. And so on. Seeing the BHK interpretation in
this light makes it open to all, even those who think that classical reasoning is
applicable in the domain in question. The BHK interpretation gives an analysis
of constructive reasoning about objects.

Here is a formal account expanding on the BHK interpretation which both
does justice to the practice of constructive mathematics and opens the way for
a reading of that practice for non-intuitionists. This truth conditional seman-
tics is simply Kripke’s semantics for intuitionistic logic. This semantics makes
use of constructions which are partially ordered by strength (written ‘w’). We
abbreviate “c is a construction of A” as “c  A”.

• c  A∧ B if and only if c  A and c  B.

• c  A∨ B if and only if c  A or c  B

• c  A ⊃ B if and only if for any d w c, if d  A then d  B.

• c  ∼A if and only if for any d w c, d 6 A.

• c  ∃xA(x) if and only if for some a constructed at c, c  A(a).

• c  ∀xA(x) if and only if for any d v c and for some a constructed at d,
d  A(a).

The clauses for conjunction and disjunction are straightforward transcriptions
of our pre-formal notion of constructions. The rules for implication and nega-
tion are motivated by the BHK interpretation in the following way. A construc-
tion proves A ⊃ B if and only if when combined with any construction for A
you have a construction for B. The assumption guiding Kripke models is that
a construction for A ⊃ B combined with one for A will be a stronger construc-
tion.6 So, a construction c provesA ⊃ B if and only if any stronger construction
d for A is also a construction for B.

Constructions are incomplete and hence should not be expected to construct,
for every claim A, either it or its negation ∼A. Constructions have computa-
tional content, so a construction of A ∨ B should be a construction of A or a
construction of B. This jointly ensures that A ∨ ∼A ought fail. This can not
necessarily be constructed.

The rules for the quantifiers are also straightforward. A construction for
∃xA(x) must first construct an object, and then construct the claim that this
object has property A. (We presume no special facts about which objects are
constructed at any stage, except that every construction constructs some object,
and if a construction c constructs some object and d w c then d constructs this
object too.) For the universal quantifier, we must be more circumspect. To con-
struct ∀xA(x) we need more than just a construction for A(x) for each object
x available at this stage. For there may well be stronger constructions which

6This is the assumption challenged by relevant accounts of implication. In constructive mathe-
matics, where relevance is not at issue, this account is appropriate.
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construct more objects. If we have a construction for ∀xA(x) and a stronger
construction providing a new object a, this stronger construction must con-
struct A(a) too. So, for c  ∀xA(x) we need d  A(a) for each d w c where d
constructs a.

Now we can formalise and clarify the failure of the inference of distribution.
∀x(A∨B) ` ∃xA∨ ∀xB fails because we may well have c  ∀x(A∨B) without
having c  ∃xA or c  ∀xB. A construction may be enough to ensure that every
object constructed at any later stage is either an A or a B. However, we may
neither have every future constructed object an A nor an object constructed
now which is constructed as a B. Consider this simple model with two stages
c1 @ c2, at which c1 constructs one object 1 and c2 constructs two objects 1 and
2. Let us further suppose that c1  B(1) and c2  B(1) and c2  A(2). We do
have c1  ∀x(A∨ B) but we do not have c1  ∃xA (as no object constructed at
c1 is constructed as having property A) but neither do we have c1  ∀xB, for
c1 is extended by c2 at which not every object is indeed a B. This is a model for
the reasoning situation discussed earlier. We may well have an construction
which provides for us assurance that every digit in the decimal expansion of
π is either even or odd. Suppose construction cn provides the first n digits
of π, and that every construction tells us that every digit of π is either even or
odd. (That is straightforward, because for this you need know only that π has
a decimal expansion.) So, c1  ∀x(Even(x) ∨ Odd(x)) but c1 6 ∃xEven(x) ∨

∀xOdd(x) because c1 does not provide us an even digit for π (it gives us only
the first digit — 3— which is odd) and it certainly does not prove that all digits
of π are even. So, this model of the reasoning gives the same account of the
failure of distribution as before. A construction of ∀x(A ∨ B) need not itself be
a construction of ∃xA∨ ∀xB.

So, this model coheres well with the considerations underpinning intuition-
istic logic, yet it is available to the realist. The central feature is the elaboration
of the notion of a construction. Nothing in this notion requires that we be anti-
realists about objects in question. Nothing requires us to believe that all of the
digits of π are not yet “there” to “make” mathematical claims true or false. We
simply need a notion of construction which models our access to mathematical
truth and mathematical demonstration. Intuitionistic logic demands at most
a modest, realistic account of our access to mathematical objects and mathe-
matical truths. We need not be anti-realists about those objects to appreciate
this.

2.3 Where is Truth?
But what of mathematical truth? If we endorse intuitionistic logic, what can
we say about the truth of ∃xA ∨ ∀xB, if we know that ∀x(A ∨ B) is true? The
inference from the former to the latter fails in intuitionistic logic. Suppose the
premise is true. Is the conclusion true? What does our appeal to intuitionistic
logic say about mathematical truths?

The first thing to admit is this: our appeal to intuitionistic logic doesn’t
say very much about truth at all. The failure of non-intuitionistic inferences
such as distribution means only this: there is a construction of the premises
which is not a construction of the conclusion too. This says nothing in and of
itself about whether it may be that the premise is true and the conclusion is
not. Here is a simple example: in constructive mathematics you cannot prove
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that every real number is either greater than zero, equal to zero, or less than
zero (the trichotomy law). The reason is straightforward. A real number is
an infinite series of successive approximations to a point on the real line. For
example, it may be presented as a descending sequence of intervals (pn, qn)
bounded by rational numbers pn and qn, descending so tightly that the dis-
tance |pn − qn| between the endpoints is no more than 1/2n. The real number
given by this sequence can be thought of as the limiting point of that sequence,
the point on which the intervals converge. Now, suppose that someone is pre-
senting you with such a sequence, one step at a time, and each interval they
have given you so far includes 0. (Say, the first n intervals they give you are
(−1/2n+1, 1/2n+1).) A construction which gives us the first n intervals making
up the number does not in and of itself give us any assurance as to whether the
number is greater than zero, less than zero, or zero itself. The only way to do
that is to be presented with the whole sequence. It need not follow that not all
real numbers are greater than or equal to or less than zero. We do not have
a constructive proof the trichotomy law It does not follow that the law is not
true. Such a conclusion only follows if all that the only truths about numbers
are those that may be constructed.

The situation is the same with the law of the excluded middle. The fact that
not all constructions are constructions ofA∨∼A is one thing. It does not follow
that A ∨ ∼A is not true, or even, not necessarily true. It is consistent to main-
tain that all of the truths of classical logic hold, and that all of the arguments
of classical logic preserve truth, with the use of constructive mathematical rea-
soning, and the rejection of certain classical inferences. The crucial fact which
makes this position consistent is the shift in context. Classical inferences are
valid, classically, in the sense that they never step from truth to falsity. They are
not constructively valid. If we use a classical inference step, say the inference
from ∀x(A∨B) to ∃xA∨∀xB, then we have not (we think) moved from truth to
falsity, and we cannot move from truth to falsity. It is impossible for ∀x(A∨B)
to be true and for ∃xA ∨ ∀xB to be false. However, such an inference can take
one from a truth which can be constructed to one which cannot, as we have
seen. So, the inference, despite being classically valid, can be rejected on the
grounds of non-constructivity. Truth is one thing, and what a construction may
construct is another.

3 Everyone ought to be Constructivists
In constructive mathematics the goal is to gain understanding of mathematical
structures, and to prove theorems about them (just as in classical mathemat-
ics). However, the goal is to prove mathematical theorems with constructive,
or computational content. If a statement asserting the existence of some math-
ematical object is proved in a constructive manner (using the rules of intuition-
istic logic) then this proof will contain the means of specifying the object or
structure in question. Wittgenstein illustrates the advantages of constructive
proof over its classical cousin by drawing out its implications for our under-
standing.

A proof convinces you that there is a root of an equation (without
giving you any idea where) — how do you know that you under-
stand the proposition that there is a root? [22, page 146]
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This feature of constructive mathematics is guaranteed by the structure of con-
structive proofs. Any intuitionistically valid proof of a disjunction (from no
premises, of course) will prove a disjunct. Any intuitionistically valid proof of
an existentially quantified statement (from no premises, of course) will prove
an instance of that quantifier. These proofs track mathematical constructions.

It is one thing for a proof to encode mathematical construction. It is another
for this notion of proof to be properly in the domain of logic. Is there any
call to consider constructively invalid arguments as genuinely invalid? Or is
it more appropriate to consider constructive considerations as in the domain
of the theory of computation? To put the matter succinctly: Is intuitionistic
consequence genuinely logical consequence?

Recall my introduction to the notion of validity and logical consequence. I
said that an argument is valid if and only if in any case in which the premises
are true, so is the conclusion. Intuitionistic logic fits this scheme if we take
cases to be constructions. An argument is intuitionistically valid if and only
if any construction for the premises is also a construction for the conclusion.
There is no doubt that intuitionistic logic, as modelled by the Kripke semantics
of Section 2.2, fits the general scheme of logical consequence described here.

Do intuitionistically valid arguments ever step from truth to untruth? Can
one have an intuitionistically valid argument in which the premises are true
and the conclusion is not? If there is such, then intuitionistic logic will be use-
less in providing truth. Thankfully, there is no need to think that this will ever
be the case. We may be assured that intuitionistic reasoning preserves truth
if one construction is so expansive that it constructs all truths. If this is the
case, then this construction will provide a counterexample to all arguments
with true premises and false conclusion. This construction, if you like, is a
God’s eye view of truth. It may not be a construction which is at all feasible
for an earth-bound mathematical reasoner, but its admission does not make in-
tuitionistic reasoning any less constructive.7 On the contrary, admitting more
constructions provides more opportunity for arguments to fail, not less, so its
admission, if adding any restriction on the repertoire of proof, is not in the
direction of allowing non-constructive forms of reasoning.8

So, intuitionistically valid arguments preserve truth-in-constructions. Any
construction in which the premises are true is a construction in which the con-
clusion is true. Intuitionistically valid arguments never step from outright
truth to outright untruth. For any intuitionistically invalid argument, there is a
construction in which the premises are true and in which the conclusion is not
true. This seems to justify the appellation “logic” for intuitionistic logic. People
ought reason constructively if they have any care for what may be constructed
or demonstrated or shown. This is not an idle claim. In the computational rep-
resentation of mathematical reasoning, intuitionistic logic is completely natu-
ral, and is widespread.9

7It does make the reasoning less intuitionistic but, as we have already seen, constructivism is
not to be identified with intuitionism.

8This strategy will not be available to the dialetheist, for whom some contradictions
� �

� �
are

true. Given dialetheism, the “world” � cannot be a construction (or be modelled by a construction)
for � � �

and � � � �
, which conflicts with the assumption that � w � and the clause for

negation.
9Lloyd Humberstone points out a useful analogy. In saying that people ought to be construc-

tivists, it is like I am commending that people eat vegetables. The analogy is not with vegetarian-
ism. The analogue of vegetarianism is the exclusive endorsement of constructive reasoning, which
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4 Everyone ought to be more than Constructivists
Nothing we have said so far that A ∨ ∼A is not true, or even, not necessarily
true. One can agree with everything we have said so far and still say that every
(truth-apt) claim is either true or false, that all of the theses of classical logic are
true, and that all of the arguments of classical logic preserve truth. The way
is open for the constructivist to agree that classical inferences are ‘valid’ in the
(admittedly more restricted) sense that they never step from truth to falsity. Of
course, they are are not constructively valid. If we use a classical inference step,
say the inference from ∀x(A ∨ B) to ∃xA ∨ ∀xB, then we have not (we think)
moved from truth to falsity, and we cannot move from truth to falsity. It is
impossible for ∀x(A ∨ B) to be true and for ∃xA ∨ ∀xB to be false. However,
such an inference can take one from a truth which can be constructed to one
which cannot, as we have seen. So, the inference, despite being classically
valid, can be rejected on the grounds of non-constructivity. The constructive
reasoner is free to agree that classical logic is an organon for the preservation
of truth. Its failing is not because of any step from truth to falsity tout court. Its
failing is a failing of constructivity.

Can we push the case further and argue that not only ought we reason con-
structively, but that we ought reason classically10 as well? Here the ground is
much weaker. There is a nearly century-old tradition of constructive reasoning,
and there are no universally convincing knock-down arguments to the effect
that more than that is needed. I will provide just two swift reasons why one
might find a constructivist-only policy for inference unacceptable. (It is hope-
fully clear that this paper advocates a pluralism about logical consequence. For
more of this, see my papers with Beall [2, 3].)11

First, a constructivist-only policy, according to which the only deductively
acceptable arguments are intuitionistic, faces problems of expressivity. Typi-
cally, the proponent of such a view will want to express reasons for the failure
of inferences such as the law of the excluded middle or distribution. But there
is no straightforward way of doing this.12 You cannot express your rejection of
A ∨ ∼A (for some A) in a way which is rules out iys truth. For to say some-
thing which rules out the truth of A ∨ ∼A is to be committed to ∼(A ∨ ∼A),
which is, intuitionistically speaking, absurd. You cannot say that for some
instance of A and B, ∀x(A ∨ B) is true and ∃xA ∨ ∀xB is not true, because
∀x(A∨ B) ∧ ∼(∃xA∨ ∀xB) is likewise a contradiction. The intuitionist who re-
jects the use of classical inference such as ∼∼A ` A cannot express that rejection
by saying that the inferences step from truth to untruth, for to say that would
be to be committed to ∼∼A and ∼A, a contradiction.

It follows that intuitionistic demurral from classical inferences cannot be
readily expressed in the positive language provided by intuitionistic logic.13

I reject.
10Or at least, non-constructively. I have said nothing of considerations of paraconsistency or

relevance.
11This section is at most a sketch. To make this case at all convincingly, I must provide an

elaboration of the normativity of “ought” in play here.
12You can indeed say that, for example,

� � � �
is not provable, but an intuitionist wants to say

more than this. The classical logician will agree, for example, that � is not provable, but be happy
to assert � .

13Proponents of non-classical logics may indeed avail themselves of denial or rejection as speech
acts independent of assertion (but no doubt connected to it). A proponent of intuitionistic logic
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This brings us to the second swift argument for the “acceptability” of classi-
cal propositional logic for constructivists. Constructivists themselves are com-
mitted to the conclusion that we never make a mistake while stepping from
premises to conclusions of classically valid arguments, at least if by a “mis-
take” you mean a step in which the premises are true and the conclusion false.
If X ` A is classically propositionally valid, then we have a construction of

∼(
∧
X∧ ∼A).

It is never the case that the premises of a classically valid argument are true
and the conclusion is false. If we make the step from premises to conclusion,
we do not make a mistake. So, the acceptability of classical reasoning, at least
in this mild form, is represented already in intuitionistic logic. The extent to
which it is appealing to avoid stepping from truth to falsity is the extent to
which classical reasoning ought to appeal to someone for whom constructivist
considerations are paramount.

These arguments are certainly not decisive. Intuitionistic reasoners are not
compelled to join a classical bandwagon. However, the case of this paper is cu-
mulative. We have shown how the virtues of constructive reasoning are avail-
able to all. The anti-realist metaphysics of Brouwer or Dummett may help
motivate intuitionistic logic, but it is not the only possible motivation. The
tight connection between intuitionism and anti-realism is at most a historical
connection. Realists too can avail themselves of intuitionistic reasoning and
constructivist distinctions. If the case for anti-realism is partly based on the
case for intuitionistic logic (as it seems to be in the work of Dummett [10] and
Tennant [20]) then this case is undermined. It is one thing to justify intuitionis-
tic logic; it is altogether another to justify an anti-realist metaphysics.

5 Inconsistency?
I must complete this paper by confronting an important issue for anyone who
employs both constructive and classical reasoning. Intuitionistic mathematics
is famous for not only being weaker than classical mathematics, by not taking
certain classical results to be valid: it differs from classical mathematics by
taking certain classical mathematical results to be outright false. This seems to
commit me to an inconsistency. If I as a classical reasoner can proveA and as an
intuitionistic reasoner can prove ∼A, then as a pluralist I seem to be committed
to A∧ ∼A. What can I do?

Here is the general strategy: I must examine closely the intuitionistic proofs
in question. If there is a genuine intuitionistic proof of ∼A, whereA is provable
in classical mathematics, then there must be a premise used which is not true
in classical mathematics. It is certainly not the logic which gives us ∼A, as
intuitionistic logic is weaker than classical logic. So, if we genuinely have a
proof of ∼A, we have used premises which are false in classical mathematics.

Of course, upon examination we may see that we have not really proved ∼A,
but we have proved that we cannot proveA. And this is another way to resolve
the conflict. For the statement that we cannot (constructively) prove A is not
in conflict with the claim that we can (classically) prove A. The situation here

who wishes to provide a formal understanding of the rejection of some instance of
� � � �

is
invited to develop a formal account featuring a notion of rejection. I know of no attempt in this
direction.
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differs no more than that with such trivialities as A∨ ∼A (where A is construc-
tively undecidable). This is classically provable but constructively unprovable.
It does not follow that ∼(A∨ ∼A)!

However, there are intuitionistic theories in radical variance with classical
theories. There are theories in which you can prove the negations of classical
theorems. We must understand what to say about these if our position is to be
consistent.

The first line of defence then is a deference to an important tradition in
constructive mathematics. The constructivism of Errett Bishop [5, 6], Douglas
Bridges [7], Fred Richman [15, 16] and others can best be described as mathe-
matics pursued in the context of intuitionistic logic.14 This brand of constructive
mathematics is explicitly consistent with classical mathematics. Bishop-style
constructivists reject any inference in conflict with classical reasoning [16]. This
is the approach we must take also.

However, to see what this means in practice, we must examine cases of
conflict in some detail. There are two major ways intuitionistic theories conflict
with classical theories. These conflicts arise from notions of choice sequences and
realisability. We will consider each in turn.

The remainder of this section is quite technical. It may be ommitted without
cost if you believe that we can develop constructive theories as consistent sub-
theories of classical theories.

5.1 The First Route to Inconsistency: Choice Sequences
First choice sequences.15 A choice sequence is α(0), α(1), α(2), . . . of natural
numbers. We let ‘α(k)’ stand for the sequence 〈α(0), α(1), . . . , α(k−1)〉, the ini-
tial segment of length k of α. These sequences are taken to encode the choices
of a creating mathematical subject. A choice sequence may be completely freely
constructed (by the analogue of tossing a coin at each stage) or it may be com-
pletely determined by law (such as the law defining the decimal expansion of
π) or it may be somewhat constrained but somewhat free (each step may be
free within certain constraints, such as taking α(k) to be the k-th digit in the
expansion of π if the toss is heads, and 9minus that digit if the toss is tails).

A typical intuitionistic thesis about choice sequences is this: If F is a function
on choice sequences, then given that choice sequences may be free creations, F
must depend on some initial segment of the choice sequences accepted as in-
puts. There is no way to assume more about the choice sequence, as at any
stage of reasoning not all of the sequence has been constructed. So, there is an-
other function f on segments such that ∀α∃k

(
F(α) = f(α(k))

)
. A consequence

of this is Brouwer’s continuity principle for functions:

∀α∃k∀β
(
α(k) = β(k) ⊃ F(α) = F(β)

)
(2)

Given the continuity principle we have conflict with classical analysis. We
must reject one classical principle, the limited principle of omniscience.

∀α
(
∃x(α(x) = 0) ∨ ∀x(α(x) 6= 0)

)
(3)

14Tait provides more explicitly philosophical account which draws very similar distinctions to the
work of constructive mathematicians [18, 19].

15My presentation closely follows van Dalen and Troelstra’s helpful short expositions [8, 21].
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It is instructive to see why we cannot constructively prove (3). It is not a prob-
lem with the law of the excluded middle. Identity for natural numbers is de-
cidable — when given two natural numbers, I have a simple routine for deter-
mining if they are identical. So, we can prove

∀α
(
∀x(α(x) = 0∨ α(x) 6= 0)

)

as for any value the choice sequence presents to us, we can determine if it is a
zero or not. The crucial move not allowed in intuitionistic logic is the following
inference of distribution referred to before (1).

∀x(A∨ B) ` ∃xA∨ ∀xB

As we have seen, distribution is constructively undesirable because a routine
showing that every x is either A or B does not necessarily provide a routine to
find an A or to show that all objects in the domain are B. For this we need to
survey the domain. So, our routine for verifying ∃xA ∨ ∀xB outstrips routines
for verifying ∀x(A∨ B).

Now, if (3) were true (as I take it to be, as a pluralist) we would have a
function F such that

F(α) =

{
0 if ∃x(α(x) = 0)
1 if ∀x(α(x) 6= 0)

Applying the continuity condition, Fmust be determined by an initial segment
of its input. In particular, since F applied to the constant 1 choice sequence
(β where β(x) = 1 for each x) gives 1, continuity tells us that there is some
sequence 〈1, 1, . . . , 1〉 such that every continuation γ yields 1: that is F(γ) = 1.
However, there are many continuations of the series 〈1, 1, . . . , 1〉which contain
zeros.

It follows that such a function F cannot exist. But the existence of F is a
consequence of the classical tautology:

∀α
(
∃x(α(x) = 0) ∨ ∀x(α(x) 6= 0)

)

What do we do? The intuitionistic response is to assert the negation of the
thesis:

∼∀α
(
∃x(α(x) = 0) ∨ ∀x(α(x) 6= 0)

)

A pluralist response cannot follow the orthodoxy of intuitionism. We must
look elsewhere if we are to maintain consistency. Is there any well motivated
option open to us?

One option is this: Reject the continuity principle. Once we reject intuition-
ism we have no reason to agree that functions on choice sequences must be
determined by initial segments of those sequences. The function F is a case in
point. For a pluralist, (3) is true without being constructively provable. Functions
such as Fmay exist without being constructed. Constructive considerations give
us no reason to endorse (2).

So, one route to inconsistency fails. Choice sequences are unacceptable to
the pluralist, for they make illegitimate assumptions. They rule out of existence
functions like Fwhich are classically demonstrable. If we have reason to allow
the existence of such functions (as I think we have) then we have reason to
reject choice sequences.
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This means that we reject certain branches of constructive mathematics, not
the whole study. The constructive mathematics of Bishop, Bridges and Rich-
man [5, 6, 7, 15, 16] makes no use of choice sequences, and it makes no counter-
classical claims.

5.2 The Second Route to Inconsistency: Realisability
Take an enumeration of all partial recursive functions, with {n} the function
with index n, so {m}(n) is the function with index m applied to the natural
number m. (Details of how we deal with partiality and undefined results I
leave to elsewhere [4].) Similarly, we encode pairing, so that (n)0 and (n)1 are
the first and second item in the pair n. so (〈n,m〉)0 = n and (〈n,m〉)1 = m,
and 〈(n)0, (n)1〉 = n. With this technology we define a relation between (codes
of) functions and sentences of the language of arithmetic in the following way:

Realisability Fact Condition
n r A, if A is atomic A is true.

n r A∧ B (n)0 r A and (n)1 r B.
n r A∨ B If (n)0 = 0 then (n)1 r A

and if n1 6= 0 then (n)1 r B.
n r A ⊃ B For allm, ifm r A then {n}m r B.
n r ∃xA(x) (n)1 r A((n)0).
n r ∀xA(x) For allm, {n}(m) r A(m).

The justifications for these clauses are straightforward:

• Atomic sentences are self-justifying. We take everything to be a realisation
of an atomic sentence.

• A realisation for a conjunction is a pair of realisations for each conjunct.

• A realisation for a disjunction is a realisation for a disjunct, combined
with an indication of which disjunct has been realised.

• A realisation for a conditional is a function transforming realisations for
the antecedent to realisations for the consequent.

• A realisation for an existential quantifier is an object together with the
realisation that that object satisfies the formula under the quantifier.

• A realisation for a universal quantifier is a function sending objects to
realisations that the object satisfies the formula under quantifier.

A nice result is that every thesis of Heyting Arithmetic (Peano Arithmetic using
intuitionistic predicate logic: we write this as ‘HA’) is realisable. That is, if HA `
A then for some n, n r A. However, more is realised than simply the theses of
HA. Consider what counts as a realisation of a ∀∃ formula. If n r ∀x∃yA(x, y)
then for each m, {n}(m) r ∃yA(m,y), and given the definition of a realiser for
an existentially quantified formula, we have that for eachm,

({n}(m))1 r A
(
m, ({n}(m))0

)

But this has consequences of its own. Abstracting out them, we have a realiser
l such that

l r ∀xA
(
x, ({n}(x))0

)
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where l is the code of the recursive function sending m to ({n}(m))1. As a
result, we have

〈n, l〉 r ∃e∀xA
(
x, {e}(x)

)

Now, the function which sends n (the realiser of ∀x∃yA(x, y)) to 〈n, l〉 is itself
recursive, so the code of this function is a realiser for the following claim:

∀x∃yA(x, y) ⊃ ∃e∀xA
(
x, {e}(x)

)
(4)

This has become known as Church’s Thesis.16 This thesis states that given any
true ∀∃ formula, there is a recursive choice function choosing the appropriate
instance of the existential quantifier for each input into the universal quantifier.

This thesis is false. Given that there is one non-recursive function, f then we
have ∀x∃y

(
f(x) = y

)
, but we do not have ∃e∀x

(
f(x) = {e}(x)

)
, as this states that

f is recursive (as it is identical in extension to the recursive function {e}).
If Church’s thesis is false, then why is it realisable? Look back to the verifi-

cation that (4) is realisable. We argued that if n was a realiser for ∀x∃yA(x, y)
then there is a realiser (recursively constructible from n) for ∃e∀xA

(
x, {e}(x)

)
.

Does it follow that if ∀x∃yA(x, y) is true, so is ∃e∀xA
(
x, {e}(x)

)
? We can safely

deny this. After all, there may be a sentence of the form ∀x∃yA(x, y) which is
true without having a realiser. It is true that all theorems of HA have realisers,
but it may not be the case that all arithmetic truths have realisers. If truth in
arithmetic outstrips truth in HA (with Church’s thesis) then we have no reason
to think that simply because the realisability of ∀x∃yA(x, y) transforms into the
realisability of ∃e∀xA

(
x, {e}(x)

)
that in addition, the truth of the former gives

us the truth of the latter.
Realisability semantics have only recursive realisations are in play. It is little

surprise that in this ‘universe’ all functions are recursive. If we wish to rea-
son constructively about the mathematical universe studied by classical math-
ematicians, this realisability semantics will not do. We will need more con-
structions than those provided by recursive functions. There is no force in
the argument that realisability semantics motivates a departure from classical
arithmetic. We can reason constructively without fear of contradiction with
classical theories.17

References
[1] MARK BALAGUER. Platonism and Anti-Platonism in Mathematics. Oxford

University Press, 1998.

[2] JC BEALL AND GREG RESTALL. “Logical Pluralism”. Under consideration, Year
2000 special issue on Logic of the Australasian Journal of Philosophy, 2000.

[3] JC BEALL AND GREG RESTALL. “Defending Logical Pluralism”. In B. BROWN
AND J. WOODS, editors, Logical Consequences. Kluwer Academic Publishers, to
appear.

[4] MICHAEL BEESON. Foundations of Constructive Mathematics: Metamathematical
Studies. Springer Verlag, Berlin, 1985.

[5] ERRETT BISHOP. Foundations of Constructive Analysis. McGraw-Hill, 1967. Out of
print. A revised and extended version of this volume has appeared [6].

16Beware: This is not the Church–Turing thesis to the effect that every computable function is
recursive. This Church’s thesis is much stronger, to the effect that every function is recursive.

17Thanks to JC Beall, and an audience at Monash University, especially Lloyd Humberstone and
Dirk Baltzy, for helpful comments on this paper.

17



[6] ERRETT BISHOP AND DOUGLAS BRIDGES. Constructive Analysis. Springer-Verlag,
1985.

[7] DOUGLAS S. BRIDGES. Constructive Functional Analysis, volume 28 of Research
Notes in Mathematics. Pitman, 1979.

[8] DIRK VAN DALEN. “The Intuitionistic Conception of Logic”. In The Nature of
Logic, volume 5 of The European Review of Philosophy. CSLI Publications, 1999.

[9] MICHAEL DUMMETT. Elements of Intuitionism. Oxford University Press, Oxford,
1977.

[10] MICHAEL DUMMETT. The Logical Basis of Metaphysics. Harvard University Press,
1991.

[11] HARTRY FIELD. Science without numbers : a defence of nominalism. Blackwell, 1980.

[12] HARTRY FIELD. Realism, Mathematics and Modality. Blackwell, 1991.

[13] AREND HEYTING. Intuitionism: An Introduction. North Holland, Amsterdam,
1956.

[14] AREND HEYTING. Brouwer Collected Works I. North Holland, Amsterdam, 1975.

[15] RAY MINES, FRED RICHMAN, AND WIM RUITENBURG. A Course in Constructive
Algebra. Springer-Verlag, 1988.

[16] FRED RICHMAN. “Interview with a constructive mathematician”. Modern Logic,
6:247–271, 1996.

[17] STEWART SHAPIRO. Philosophy of Mathematics: Structure and Ontology. Oxford
University Press, 1997.

[18] W. W. TAIT. “Against Intuitionism: Constructive Mathematics is Part of Classical
Mathematics”. Journal of Philosophical Logic, 12:173–195, 1983.

[19] W. W. TAIT. “Truth and Proof: The Platonism of Mathematics”. Synthese,
69:314–370, 1986.

[20] NEIL TENNANT. The Taming of the True. Clarendon Press, Oxford, 1997.

[21] A. S. TROELSTRA. “Concepts and Axioms”. Technical Report ML-1998-02,
University of Amsterdam, 1998.

[22] LUDWIG WITTGENSTEIN. Remarks on the Foundations of Mathematics. MIT Press,
1967. Edited by G. H. von Wright, R. Rees and G. E. M. Anscome.

Greg Restall � Department of Philosophy, Macquarie University, Sydney, NSW 2109, AUSTRALIA.
Greg.Restall@mq.edu.au � http://www.phil.mq.edu.au/staff/grestall/

18


