
Evolving RPC for Active Storage

Muthian Sivathanu, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau
Department of Computer Sciences, University of Wisconsin–Madison

{muthian, dusseau, remzi}@cs.wisc.edu

ABSTRACT
We introduce Scriptable RPC (SRPC), an RPC-based framework
that enables distributed system services to take advantage of ac-
tive components. Technology trends point to a world where each
component in a system (whether disk, network interface, or mem-
ory) has substantial computational capabilities; however, tradi-
tional methods of building distributed services are not designed to
take advantage of these new architectures, mandating wholesale
change of the software base to exploit more powerful hardware.
In contrast, SRPC provides a direct and simple migration path for
traditional services into the active environment.

We demonstrate the power and flexibility of the SRPC framework
through a series of case studies, with a focus on active storage
servers. Specifically, we find three advantages to our approach.
First, SRPC improves the performance of distributed file servers,
reducing latency by combining the execution of operations at the
file server. Second, SRPC enables the ready addition of new func-
tionality; for example, more powerful cache consistency models
can be realized on top of a server that exports a simple NFS-like in-
terface. Third, SRPC simplifies the construction of distributed ser-
vices; operations that are difficult to coordinate across client and
server can now be co-executed at the server, thus avoiding costly
agreement and crash-recovery protocols.

1. INTRODUCTION
Remote Procedure Call (RPC) has long been the standard for im-

plementing distributed services [6]. RPC is simple to use, as it ex-
tends the well-known paradigm of procedure call to a client/server
setting, and yet powerful enough to serve as the substrate for many
distributed services (e.g., Sun’s NFS). However, since the devel-
opment of RPC, little has changed in the functionality it offers;
modernized versions of RPC (such as Java RMI [33]) do not signif-
icantly alter the basic RPC paradigm, but simply provide the same
features within a different language or run-time context.

While RPC is stagnating, the architecture of distributed systems
is changing rapidly. In particular, technology trends point to a
world where “active” components are commonplace. Intelligence
in the form of additional processing capabilities is or will soon be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASPLOS ’02 San Jose, California
Copyright 2002 ACM 1-58113-574-2 ...$5.00.

found in active disks [1, 18, 37], smart network interfaces [7, 16],
and even intelligent memories [29, 36].

Of particular importance is active storage, which has the poten-
tial to greatly improve distributed storage services, in terms of per-
formance, functionality, and even simplicity of design. Although
early research on active storage has thoroughly demonstrated its
potential performance benefits [1, 2, 18, 37], previous systems re-
quire entirely new programming environments, and some target
only a limited class of applications (e.g., parallel applications and
database primitives). Existing distributed file services have no clear
migration path into the coming active world.

In this paper, we present the design, implementation, and evalu-
ation of Scriptable RPC (SRPC), an extensible framework for de-
veloping active distributed services. The key difference between
SRPC and traditional RPC is that clients can send scripts to the
server to implement new server-side functionality. SRPC is de-
signed to assist developers in evolving traditional RPC-based ser-
vices into first-class active services; therefore, SRPC shares many
features with RPC, and automates as much of the service devel-
opment process as possible to increase ease-of-use. For example,
SRPC automatically embeds the script interpreter within the server,
providing a safe execution environment for client-generated scripts.

We demonstrate three primary benefits of SRPC through a num-
ber of case studies within a distributed file system called ScFS.
First, ScFS improves performance by combining various opera-
tions at the server, thus avoiding the costs of extra round-trip laten-
cies. Second, ScFS allows the ready addition of new functionality,
evolving a base file system protocol into an enhanced virtual proto-
col. Specifically, scripts are applied to implement AFS and Sprite
cache consistency on top of a base protocol that provides only sim-
ple NFS-like consistency. Finally, ScFS provides a simple way to
implement functionality that would be complex to execute reliably
across both client and server. In ScFS, directory update operations
are performed in a script directly at the server, and thus obviate the
need for multi-client coordination.

When introducing scripting into a file server, a number of issues
arise. One concern is safety [5]; client kernels, though partially
trusted, should not be able to induce the server to crash (whether
accidentally or with malicious intent) or monopolize its resources.
Performance is also an issue, as script interpretation overhead could
negate many of the advantages of SRPC. Finally, ease-of-use is an
important criterion, as the language should enable the development
of short but powerful scripts.

In our prototype implementation of SRPC, we use Tcl for our
base scripting language [35] – many similar languages exist, but
we feel that Tcl is an interesting choice for three reasons. First,
Tcl addresses safety concerns by providing a limited execution en-
vironment, with fine-grained control over which operations a script

can execute (e.g., even while loops can be disabled). Second,
although previous studies indicate that the Tcl interpreter is many
thousand times slower than C [38, 40], more recent versions of
the Tcl interpreter are quite sophisticated, and use efficient inter-
nal representations to boost performance. Thus, the time is ripe
for reexamining the strengths and weaknesses of Tcl performance.
Third, Tcl is a fairly high-level language; ease-of-use should be one
of its main advantages.

Overall, we find that SRPC is an effective framework for extend-
ing the ScFS distributed file service. Performance and functionality
enhancements can readily be designed and deployed into the file
system framework. In some of our case studies, we find that us-
ing scripts can reduce latency by a factor of two and strengthen the
consistency semantics of the file system. However, although server
functionality is readily embellished within the SRPC framework,
we find that a similar extension methodology for client-side ker-
nels would also be useful. In our evaluation of Tcl as the language
for extensibility, we find that it is indeed powerful while remaining
easy to use – even the most complex extension requires only a few
tens of lines of code. We also find that the performance of Tcl has
improved enough to warrant consideration as a language used for
extension, especially given its numerous safety features. However,
some of our more sophisticated extensions cannot afford even the
slightest of overheads, and therefore, a specialized domain-specific
language for active storage may be worth investigating.

The rest of this paper is structured as follows. We present an
overview of our SRPC system in Section 2, and describe our exper-
imental environment, including details on ScFS and our empirical
methodology, in Section 3. In Section 4, Section 5, and Section 6,
we illustrate the manner in which SRPC can be used to improve the
performance, functionality, and simplicity of active file services,
respectively. In Section 7, we perform an in-depth analysis of our
extension scripts and Tcl. We then cover related work in Section 8
and conclude in Section 9.

2. OVERVIEW OF SRPC
SRPC is a new framework for building active, extensible dis-

tributed services. SRPC extends the widely used and well un-
derstood paradigm of RPC with a flexible scripting capability that
clients can harness to execute customized extensions at the server.

SRPC is designed to meet three goals that are important for
this environment. The first goal is to provide a smooth migration
path for existing distributed services from a traditional RPC-based
server to an active server. This goal is accomplished by making the
process of developing an SRPC-based service similar to that of de-
veloping a service within the traditional RPC paradigm, automating
as many of the steps as possible. The second goal is to ensure script
execution overhead is not severe as compared to a traditional RPC
call. To improve performance, SRPC caches scripts, supports con-
currency, and provides efficient implementations of “performance-
sensitive” commands in the SRPC standard library. The third goal
is to provide a safe environment for script execution; our choice of
Tcl as a scripting language enables us to meet this goal.

2.1 Migration Path
The first goal of SRPC is to enable developers to easily move

distributed services using traditional RPC-based servers to more
powerful, active servers. Thus, SRPC is engineered to be back-
wardly compatible with RPC, allowing unmodified clients (that do
not send scripts to the server) to co-exist with clients that have been
altered to use this new functionality. Further, SRPC automatically
generates the necessary code to interface between the RPC server
and the scripting language interpreter.

In traditional RPC, the developer of a distributed service defines
the interface that the server exports and specifies this interface in
an Interface Definition Language (IDL). This interface definition is
parsed by an IDL compiler to generate source code for the client
and server stubs that call into the RPC library. The developer only
needs to implement the procedures specified in the interface, which
can then be compiled together with the automatically generated
stubs to produce the distributed service.

Developing an active distributed service in SRPC involves a sim-
ilar set of steps. The basic interface exported by the server is still
specified with an IDL, but the functionality of the IDL compiler
is augmented in three ways. First, a new RPC procedure is added
to the interface called ScriptExec, which takes as parameters a
script and a data buffer and returns a data buffer as a result; the im-
plementation of ScriptExec is generated automatically as well.
Second, the IDL compiler automatically generates Tcl wrappers for
the interface procedures, so that client scripts can directly call these
routines; to further simplify SRPC programming, the interpreter at
the server provides commands to extract specific parameters from
the character buffer used to pass arguments. Third, the compiler
generates code to initialize a set of Tcl interpreters and registers
the interface procedures with each interpreter, increasing ease-of-
use and reducing the burden on programmers.

To further assist programmers in the development of scripts, there
are two additional pieces of functionality that are supported within
the SRPC infrastructure. First, in some scripts, it is useful to main-
tain state that can be later accessed from other scripts and by other
clients; thus one script can store state under a given name and an-
other script can access this state by specifying the name. State vari-
ables must be uniquely named such that different scripts do not
inadvertently conflict on the same name. In the current SRPC im-
plementation, the responsibility of namespace management rests
with the clients, who follow certain pre-defined conventions so that
other clients can easily find and access state variables. The second
piece of useful functionality is the ability for the server to invoke
functionality on the client, i.e., to perform a callback. SRPC sup-
ports this by allowing the client to run an RPC server as well.

2.2 High Performance
In order for SRPC to be an appealing platform for distributed

systems, its performance must be comparable to that of a traditional
RPC service. However, script interpretation imposes an overhead
every time a script is executed, potentially negating some of the
benefits of executing operations at the server. SRPC uses three
simple techniques to improve performance: caching, concurrency,
and a standard library of primitives.

The performance of initial versions of Tcl has been shown to
have significant overhead [38]; however, much of this overhead oc-
curred because every line of a script was re-interpreted upon execu-
tion. For efficient repeated execution of the same code, more recent
versions of Tcl translate interpreted code into a more efficient in-
ternal form. To leverage this behavior, SRPC identifies scripts that
have been executed previously and reuses the cached procedures for
subsequent invocations (though perhaps with different arguments).
Thus, instead of sending a script with each invocation, clients reg-
ister scripts with the server, and get back a script ID; the ID can be
passed to the server along with script arguments upon subsequent
invocations. This caching mechanism has the further advantage of
reducing the size of messages between the client and server, thus
improving observed network latency and reducing the amount of
network traffic. Our case studies in the next section quantify the
performance benefits of SRPC script caching.

To further improve performance, the SRPC framework executes

multiple Tcl interpreters concurrently. With multiple interpreters,
scripts execute in parallel at the server, greatly improving system
throughput. However, concurrent execution complicates the devel-
opment of scripts, as we discuss when describing safety issues.

The third performance optimization within SRPC is to imple-
ment “performance-sensitive” operations inside the SRPC standard
library, instead of directly within each script. Given that Tcl sup-
ports the calling of functions written in the C language, providing
this functionality is straightforward. The issue is to identify those
operations that should be included in the standard library, which
in general are those operations that are both popular across scripts
and costly to implement in Tcl. The current implementation of
SRPC includes a standard library with routines to manipulate data
buffers, search through buffers for a string, send messages, create
and manage lists, access shared script state, and acquire and release
locks. Of particular importance are routines that enable scripts to
avoid touching data inside of Tcl; by ensuring that data buffers
are solely manipulated within the C substructure [46], we avoid
a primary source of additional overhead. Given that implementing
server routines directly in C instead of Tcl bypasses many of the
security issues of the scripting language, we anticipate that only
trusted administrators will be able to add new primitive routines.

2.3 Safety
The third goal of the SRPC design is to ensure that scripts sent to

the server do not easily corrupt server state or consume undue re-
sources. The same problem arises in extensible operating systems
research [5, 15, 39]; however, in SRPC, we do not allow arbitrary
user applications to insert code into the server; instead, only ker-
nel clients can do so, and thus, the trust boundary is more relaxed.
Given this boundary, we still believe that it is advantageous to en-
force a limited execution context for scripts.

Fortunately, Tcl provides the needed functionality required to
limit script actions. With the SafeTcl extensions, the server can
control which functions a script can call. Because control con-
structs are implemented as Tcl procedures, we can prevent the exe-
cution of while and for loops, and thus ensure that scripts termi-
nate in a finite amount of time. For scripts that require iteration, we
provide a simple yet safe callback interface, which allows a proce-
dure to be executed some finite number of times.

One complication to the safety model is that scripts manipulate
buffer pointers directly. To ensure that no invalid memory refer-
ences are generated, SRPC implements various run-time checks in-
side all wrapper and standard-library routines, wherever pointers
are passed as arguments. Run-time type checking within the auto-
matically generated wrappers ensures that argument addresses cor-
respond to the correct type, thereby preventing illegal dereferenc-
ing of arbitrary memory addresses. This additional level of safety
comes at a cost, but it is one we believe to be worthwhile.

Another complication arises due to concurrency. Concurrent
execution mandates the use of locks, to allow scripts that access
shared state to execute correctly. However, locking introduces new
problems within the realm of safe extensibility. For example, a
client could misbehave and never release a lock, thus negatively
impacting other well-behaved clients [39]. To prevent this problem
from occurring, SRPC automatically releases any locks that were
acquired and not released by an executing script upon script com-
pletion. Although this safeguard restricts the scope of locks, we
have not found it to be a burdensome limitation.1

1Access control to locks would also be useful, prohibiting misbe-
having clients from acquiring locks to which they are not privy.
However, we have not yet implemented such functionality.

proc SpriteCB {ARG RES ip state name lock} {
global variable ’c’
global c

load the ’cacheable’ flag
set cache [srpc_load_state $state]

if {$cache} {
add client to callback list
set list [srpc_load_state $name]
if {$list == -1} {

set list [srpc_makelist]
srpc_install_state $list $name

}
srpc_add_to_list $list $ip

}
get args/invoke read
set rdarg [scfs_make_rdarg $ARG $c(rdOff)]
set rdres [scfs_read $rdarg]

extract components of result
set cnt [scfs_rdres_getlen $rdres]
set data [scfs_rdres_getdata $rdres]

pack state/results into result
srpc_putInt $RES $c(cacheOff) $cache
srpc_putInt $RES $c(cntOff) $cnt
srpc_memcpy $RES $c(dataOff) $data $cnt

return [expr $cnt+$c(cacheSz)+$c(cntSize)]
}

Figure 1: Example SRPC Script. This script performs a read of a
file in the presence of write-sharing, and is one of three scripts used
to enforce “Spritely” cache consistency. As one can see, augment-
ing a stateless protocol with stateful functionality involves only a
handful of Tcl commands.

2.4 Example
In Figure 1, we present an example of an SRPC script. This script

is part of the Sprite consistency implementation, and is executed by
a client when it reads a file marked uncacheable – the example is
explored in more detail as a case study in Section 5.2.

Given that the RPC interface at the server exports a read proce-
dure, the IDL compiler automatically generates the corresponding
Tcl wrapper scfs read. Commands to extract individual fields
(e.g., scfs rdres getdata) and to make arguments of a given
type from a character buffer (e.g., scfs make rdarg) are also
automatically generated, and type checking is performed within
to ensure that the script cannot access invalid memory addresses.
Examples of standard library routines include srpc loadstate
and srpc putInt.

The script begins by loading the cacheable flag corresponding
to the object of interest (i.e., a file). If set, the IP address of the
client is added to the object’s callback list. The script then creates a
valid read argument from the data passed into the script (accessed
through the ARG variable) and invokes read with the argument.
The results of the read, together with the cacheable flag, form the
result of this script, which is packed into the result variable RES
and returned to the caller.

3. EVALUATION ENVIRONMENT
We evaluate the SRPC framework in the context of a distributed

file system known as ScFS. In this section, we begin by present-
ing a general overview of ScFS. We then describe the details of
our experimental platform. Finally, we describe a mechanism to
systematically increase network delay in order to understand the
performance of SRPC in different environments.

3.1 The Scripted File System (ScFS)
Distributed file systems built over network-attached disks have

the potential of delivering high bandwidth without the additional
cost of servers [17, 18]. Thus, to evaluate the benefits of SRPC,
we introduce ScFS, a scripted distributed file system for network-
attached storage. The base version of ScFS supports multiple clients
and a single disk, which acts as a repository for all file system
data. ScFS exports a hierarchical namespace to applications, per-
forms basic caching, allows multiple outstanding requests to toler-
ate latency, and implements an NFS-like weak cache consistency
scheme. Throughout this paper, we demonstrate how the script-
ing capability provided by SRPC can enhance the performance and
functionality of ScFS.

In our prototype, a network-attached disk can be configured to
export one of two interfaces to clients. The first and most com-
monly used is an object-based interface similar to that proposed
by Gibson et al. [19]. The exported object namespace is non-
hierarchical and does not distinguish between directories and nor-
mal files. Read and write requests are arbitrarily fine-grained, spec-
ifying an object identifier, offset, and length. The second is a block-
based interface, which allows us to explore the capabilities of SRPC
within a more restricted legacy environment. In this mode, disk
reads and writes are all 4 KB in size.

Clients communicate with the disk through a protocol that is sim-
ilar to NFS, with the disk server not maintaining any state on behalf
of clients. A slight difference is that NFS calls for directory opera-
tions do not exist, since the clients perform these operations them-
selves. Each client also runs an in-kernel RPC server to receive
messages sent by scripts executing at the disk.

3.2 Experimental Platform
Our system currently runs on a testbed of Intel-based machines,

each running the Linux 2.2.19 operating system. The ScFS client-
side code is developed in the kernel within the standard Linux vn-
ode interface. Each PC contains a 550 MHz Pentium III, 1 GB of
memory, and a 9.1 GB IBM Ultrastar 9LZX disk. The machines are
connected together via 100 Mbit/s Ethernet and Gigabit Ethernet,
but our experiments primarily use 100 Mbit/s Ethernet.

In our environment, a network-attached disk is emulated by a
PC. Though the exact capabilities of a PC may not match that of
a network-attached disk (e.g., the processor in a network-attached
disk may be engineered for low power consumption and not abso-
lute performance), we believe this is a reasonable approximation of
a network-attached storage unit. Further, some believe that disks
will soon have high-end processing capabilities, rivaling the CPU
power available in a commodity PC [21].

3.3 Network Emulation Methodology
The potential performance benefits of active disk servers may

depend on the exact characteristics of the environment. If perceived
network latency is quite low, there is a smaller performance benefit
to combining operations in a script. In contrast, in a high-latency
scenario, whether across the wide-area or over a dial-up link from
home, the performance benefits will be much larger [31].

To study the impact of the network on the performance of ScFS

we have implemented a framework for increasing network latency
by a controlled amount. Our approach is similar to that introduced
by Martin et al. in their study of the effects of latency, overhead,
and bandwidth on parallel applications [30]. Specifically, to delay
a packet, the server queues the packet internally and records the
time at which the packet was received. A thread within the server
removes messages from the queue when the designated delay has
passed and services them. Experiments (not shown here) validate
that our delay mechanism behaves as desired.

4. PERFORMANCE ENHANCEMENTS
Often, to achieve a single logical task in a network file system,

a series of dependent interactions between the client and server
are required. These dependencies impose synchrony on the client-
server interactions, since one operation cannot be initiated before
the previous one has returned. Thus, clients incur multiple network
round-trips to accomplish a single logical task, which can result in
significant performance loss, especially in high-latency networks
or under severe server load.

ScFS uses the SRPC framework to group dependent operations
into a script that is then executed at the disk in a single network
round-trip. We illustrate the efficacy of our scripting infrastruc-
ture with three case studies. In the first study, we combine a client
lookup operation of dependent getattr and read calls into a
single script. In the second, we merge an NFS-like consistency
check with the possible read of a modified page, similar to an HTTP
get-if-modified-since request [4]. In the third, we avoid a read-
modify-write cycle by sending a “partial write” script to the server.

4.1 Motivation
Before we discuss our three case studies, we first examine the

effects of server load on perceived client latency. Network latency
is a concern in the wide-area and over dial-up connections, where
round-trip times of 10s of milliseconds are not uncommon [31];
however, even in a tightly-coupled cluster with a high-performance
communication subsystem [44, 45], latency can still be a consider-
able factor due to server load. To illustrate the effects of server load
on perceived round-trip time, we perform a simple experiment.

In the experiment, we measure the round-trip times observed by
a single client communicating with a server using small (128 byte)
messages. We vary the number of competing clients, each of which
continually sends a stream of large requests (60 KB) to the server.
With no competing processes, the perceived average round-trip time
is quite reasonable, roughly 150 µs over our Gigabit Ethernet net-
work. However, as traffic-inducing competitors are added, the per-
ceived round-trip time for the client increases dramatically, to over
5 ms with four competing processes. Note that this effect is strictly
due to queuing at the network interface; the server does not touch
the data and its CPU is under-utilized.

The problem illustrated here, although somewhat obvious upon
inspection, is often overlooked in the design of distributed systems
for clusters. 2 The fact that messages can be transmitted quickly
in an idle system does not avoid a convoy effect, where small mes-
sages queue behind large ones at the network interface, and thus do
not promptly reach their destination. If response time is one’s per-
formance metric (and not throughput), server load can easily trans-
form a low-latency network into something that is perceived much
2For example, in [22], the authors discuss assumptions made in
their implementation of distributed cluster-based service: “[A clus-
ter’s] low-latency SAN (10-100 µs latency instead of 10-100 ms
for the wide-area Internet) means that two-phase commits are not
prohibitively expensive.” Others have made similar assumptions in
the design of cluster-based systems (e.g., [10], page 5, Section 3).

0

5

10

15

0 2 4 6 8 10

A
ve

ra
ge

 C
os

t P
er

 R
ea

dD
ir

an
d

G
et

A
ttr

 (m
s)

Additional Network Delay (ms)

Performance Of Combined Read-GetAttr

Separate
Combined: Tcl (Uncached)

Combined: Tcl (Cached)
Combined: C

Figure 2: Combining Operations: read and getattr. The
figure shows the performance of combining read and getattr
operations into a single script. The figure plots the average cost of
performing a directory read with a subsequent attribute request,
and we increase the perceived round-trip latency of the request
along the x-axis, from 0 ms to 10 ms. The “Separate” line shows
performance when two network round-trips are required, and the
other three lines in the graph show the performance of combin-
ing those operations at the server. The “Combined: Tcl (Un-
cached)” line shows Tcl performance when the procedure is in-
stalled upon every request, and the “Combined: Tcl (Cached)”
line shows performance when the script has been pre-installed. Fi-
nally, the “Combined: C” line gives a baseline for performance
for a C implementation of the script. Each data point represents
the average of 30 trials, and the variance (not shown) is low.

differently by clients during operation under load. Thus, in the ex-
periments in this section, we evaluate the performance of ScFS as
a function of network latency.

4.2 Read-GetAttr Optimization
In our first case study, we illustrate the performance benefits of

combining a directory read with getting the attributes of a partic-
ular file within that directory. Given the disk object model used
as the basis of ScFS, a file lookup at the client involves reading
each directory in the path followed by a search for the given path
component. In the worst case, when no path components are in
the local cache, two round-trip network operations are required for
each component of the path: the first to read the directory page of
the parent and the next to get the attributes of the child object to
initialize the VFS inode.

In ScFS, the SRPC infrastructure at the disk enables the client to
send a script that reads the directory page, searches for the specified
filename to get the object ID, and then performs a getattr on the
object. The script then returns the results of both the read and the
getattr calls. Thus, the client now completes the lookup opera-
tion for each path component in one network round-trip instead of
two. Although a client file system could be designed that performs
the lookups for all components of the pathname in a single script
(and thus avoids more network round-trips), this approach does not
integrate easily into the Linux in-kernel framework.

To evaluate the trade-offs of using scripts for a read-getattr
operation as a function of network latency, we compare the per-
ceived latency of four different implementations in Figure 2. The

first implementation, labeled “Separate” in the figure, is the stan-
dard implementation that synchronously issues two separate re-
quests using RPC. The second, labeled “Combined: Tcl (Uncached)”,
uses a Tcl script to combine the two operations, but the script is
installed in the interpreter at every invocation. The third, labeled
“Combined: Tcl (Cached)”, considers the case of a pre-installed
script. The fourth implementation, labeled “Combined: C”, com-
bines the two operations but uses the C language; this version serves
as a baseline for ideal combined performance and can be utilized to
understand the overhead of scripting.

From the figure, we draw three conclusions. First, with a “fast”
interpreted language (i.e., one that approaches C speeds), combin-
ing read and getattr operations into a single script leads to
lower overhead than the base implementation, regardless of the
amount of network latency. Second, caching of Tcl procedures
greatly reduces the cost per operation, removing almost half a mil-
lisecond of overhead per operation. Finally, at higher latencies,
combining operations, even within a “slow” interpreter (i.e., un-
cached Tcl procedures), is strictly better than the standard imple-
mentation. Note that these latencies, while on the higher end in a
tightly-coupled cluster environment, are still low when considering
a dial-up link [31], where latencies in the 10s of milliseconds would
not be uncommon.

To demonstrate the utility of the read-getattr optimization
within an more realistic benchmark, we utilize the PostMark bench-
mark [25]. PostMark is a file system benchmark constructed to
mimic the workload of a typical mail server. It consists of a create
phase followed by a transaction phase, in which files are randomly
created, deleted, read and appended. To generate a more realis-
tic workload, we make two changes to the PostMark benchmark.
First, we separate the create phase from the transaction phase and
present the results only for the transaction phase. Left unmodified,
the creation phase warms the cache and thus artificially speeds up
the transaction phase. The second change we make results in a
more realistic layout of directories, instead of the default behavior
of PostMark which creates all directories at the same level in the
directory hierarchy.

Measurements reveal that the read-getattr optimization re-
moves 456 round-trip messages by combining read and getattr
pairs into combined read-getattr script calls. During the course
of the benchmark, 5736 total messages are sent; thus, this simple
optimization reduces the number of round-trip latencies incurred
by the client by 8%.

4.3 Read-If-Modified-Since Optimization
In this next case study, we illustrate how the scripting interface

can make NFS-style consistency checks more efficient. NFS pro-
vides a primitive form of consistency by periodically validating the
cached copy on the client with the file server. If the time since
the last validation is above a threshold, the cached copy is consid-
ered suspect; on a read request to a suspect copy, the client sends
a getattr request to the server to check if the file has changed
since it was cached. If the file has changed, the client invalidates its
cached copy and fetches the pages from the server. These two op-
erations are dependent since the client should not issue the read
before knowing that the cached copy is stale, since it wastes net-
work bandwidth to re-fetch valid pages.

In the SRPC framework, these two operations are merged in
a single script that does a getattr, checks if the modification
time of the file is higher than the specified modification time of
the cached copy, and if so, sends the desired page of the file along
with the attributes; we refer to this combined functionality as the
“read-if-modified-since” operation. Again, with SRPC support, the

0

0.5

1

1.5

2

2.5

3

0% 20% 40% 60% 80% 100%

A
ve

ra
ge

 T
im

e
P

er
 4

K
B

 F
ile

 R
ea

d
(m

s)

Percentage Of Modified Data

Read-if-modified-since (Delay: 0 ms)

Separate
Combined: Tcl (Cached)

Combined: C

0

2

4

6

8

10

12

14

0% 20% 40% 60% 80% 100%

A
ve

ra
ge

 T
im

e
P

er
 4

K
B

 F
ile

 R
ea

d
(m

s)

Percentage Of Modified Data

Read-if-modified-since (Delay: 5 ms)

Separate
Combined: Tcl (Cached)

Combined: C

Figure 3: NFS Read-If-Modified-Since. The graphs plot the per-
formance of getattr followed by a conditional read of the data,
if the data has changed since the last check. In the graph on top,
we consider no additional network latency; in the graph on the bot-
tom, we add a fixed network latency of 5 ms. Across the x-axis we
increase the percentage of files that have been changed since the
last check. Each data point is the average of 30 trials.

file system performs the same logical task but incurs fewer syn-
chronous network round-trip delays.

Figure 3 shows the performance of read-if-modified-since com-
pared to the standard getattr followed by a conditional read.
Along the x-axis of the graphs, we vary the percentage of data that
has been modified since the last read and thus must be re-fetched
from the server. In the graph on top, we plot performance assum-
ing no additional network delay; in the graph on the bottom, we
assume an additional network delay of 5 ms. We compare the per-
formance of the standard implementation, a cached Tcl script, and
the combined functionality implemented in C.

From the figure, we draw two conclusions. First, in the low-
latency environment illustrated in the graph on top, the benefits
of a combination script are small and only realized with a high-
performance interpreter – the cached Tcl implementation adds too
much overhead. Second, even in the higher-latency environment
illustrated in the graph on the bottom, a relatively large fraction of
files need to have changed for the Tcl implementation to perform
better than the standard implementation (greater than 10% of the

0

5

10

15

20

25

0 2 4 6 8 10

A
ve

ra
ge

 C
os

t P
er

 P
ar

tia
l W

rit
e

(m
s)

Additional Network Delay (ms)

Performance of Partial Writes

Read-Modify-Write
Partial Write: Tcl (Cached)

Partial Write: C

Figure 4: Partial Writes. The figure shows the performance of
performing a synchronous partial write in a script, instead of read-
ing the data from the server, modifying it, and then writing the data
out to the server. The figure plots the average cost of performing a
synchronous 100-byte write, increasing the perceived latency of the
request along the x-axis, from 0 ms to 10 ms. The “Read-Modify-
Write” line shows performance in the standard read-modify-write
case, and the other two lines show the performance of the scripted
approach. The “Partial Write: Tcl (Cached)” line shows Tcl per-
formance when the script has been pre-installed, and the “Partial
Write: C” line gives a baseline for performance for a C implemen-
tation of the script. Each point is the average of 30 trials.

files). Thus, for optimizations that are only able to combine opera-
tions in limited circumstances, the overhead of interpretation is the
dominant factor. Unless a higher performance interpreter is avail-
able, it is probably not worth implementing these kinds of features.

4.4 Partial-Write Optimization
Writes that are less than the size of a page can be problematic

in traditional systems, as each “partial-page write” translates into a
read-modify-write cycle – a read of the relevant page into the cache,
a modification to the affected portion of the page, and a write to
complete the update. The read-modify-write cycle occurs in block-
based systems, which export read and write operations on a page
granularity.

Within the SRPC framework, we can avoid the read-modify-
write cycle and instead send the data to be written and a script
that performs the partial write on the server itself, thus removing
the synchronous page-sized read from the critical path [2]. Fig-
ure 4 displays the performance of the server-side execution of the
partial-write as compared to the standard read-modify-write cycle.

As one can see from the figure, avoiding the synchronous page
read has great benefit, even without any additional network de-
lay. Avoiding the excessive data movement of the read-modify-
write cycle pays immediate dividends, and by performing a single
round-trip instead of two, a factor of two in reduced latency is eas-
ily achieved.

We also evaluate the utility of the partial-write optimization in
a more realistic benchmark setting. In addition to the PostMark
benchmark, we also investigate the traffic savings on a debit-credit
benchmark [28], a “TPC-B like” benchmark that is intended to
model the workload on a database server that manages bank trans-
actions [43].

Measurements reveal that the partial-write script reduces band-
width considerably for both the PostMark and debit-credit bench-
marks. For PostMark, total message traffic (in bytes) is reduced
by roughly 54%. For the debit-credit benchmark, the savings are
more dramatic, as a full 96% of the traffic is removed. The reason
for these substantial reductions in network bandwidth is straight-
forward; both of these benchmarks perform many small writes, and
by avoiding the page-level data transmissions required in a read-
modify-write cycle, network load is considerably reduced.

4.5 Discussion
As we have seen in these case studies, the power to combine

arbitrary operations at the server helps to overcome limitations in
the exported RPC interface. As well as enabling clients to build
customized performance optimizations, an important benefit of this
approach arises on the server-side. With SRPC, the designer of a
distributed service can focus on the simpler task of providing a few
highly-tuned primitives, allowing clients to compose the primitives
into the full scope of required functionality.

It should also be noted that SRPC can optimize the performance
of network file systems in many ways other than the three case
studies presented above. Specifically, whenever a client performs
a predictable series of dependent operations on the server, and thus
incurs multiple network round-trips, those operations can be com-
bined into a single script. As an additional example, consider the
case where a file system must ensure that a set of writes reach disk
in a certain fixed order (e.g., for crash recovery). In a traditional file
system, the only way the client can ensure this ordering is to per-
form every write synchronously. We label this type of synchronous
operation “false synchrony”, because the client uses synchronous
operations only to enforce order and not to ensure the operation
has reached stable storage. Within the SRPC framework, false
synchrony can be avoided, because the client could perform these
writes asynchronously and still be guaranteed that the writes reach
disk in the desired order.

5. FUNCTIONALITY ENHANCEMENTS
Traditional file servers implement a single, fixed protocol – a

“one size fits all” solution that limits the functionality that clients
can expect of the server. This inflexible approach wrongly assumes
that a single protocol meets the requirements of all clients with re-
spect to all files. For example, the consistency semantics that a
client file system can implement are strongly constrained by the
protocol interface exported by the server: a server that exports an
NFS-like interface restricts all clients to a weak level of consis-
tency, whereas a server that provides a stronger consistency model
forces all clients to incur the consequent overhead.

SRPC allows clients to enhance the physical protocol provided
by the server and thus implement enhanced virtual protocols. For
example, SRPC can enable clients to implement more sophisticated
consistency semantics on top of an NFS-like physical protocol; in
our case studies, we implement both AFS and Sprite consistency
semantics. In both cases, the ScFS interface remains the same
and existing clients that use NFS-like semantics continue to op-
erate smoothly. A key new feature of these examples is the demon-
stration that in our framework, state can be easily added to pre-
viously stateless protocols, such as NFS. Earlier work on Spritely
NFS demonstrated some of the same capabilities, but did so by
rewriting the server and client extensively [41]. Note that new
consistency semantics are not the only possible functionality en-
hancement – for example, scripts could be utilized to implement an
object-based disk interface on top of a block-based server, as hinted
at in Section 4.4.

0

1

2

3

4

5

0 1 2 3 4

A
ve

ra
ge

 T
im

e
P

er
 C

lo
se

 (m
s)

Client Callbacks Broken

AFS Close Script Overhead

Tcl-Loop Broadcast (Serial)
Std Lib Broadcast (Serial)

Std Lib Broadcast (Parallel)

Figure 5: AFS Close Script Overhead. The average cost of executing
the AFS CLOSE DIRTY script is shown, as the number of callbacks that are
broken increases.

5.1 AFS Consistency
AFS [24] provides a write-on-close consistency model, in which

clients see a consistent image of each file between an open and
close operation. On a file open, the client installs a callback on
the server and reads the entire file into its local disk cache. Sub-
sequent reads and writes are performed on this local copy. When
the file is closed, the client writes back the file, if modified, to the
server. If another client stores a modified version of the file back to
the server, all callbacks are broken and the clients invalidate their
cached copies, forcing them to fetch the file from the server the
next time they open the file. Since the server is actively involved in
ensuring AFS consistency, a server that exports only the fixed NFS
protocol cannot support AFS semantics.

With the SRPC infrastructure at the disk, implementing AFS
consistency semantics is feasible, but servers must now be able
to track state variables that live beyond the invocation of a single
script. In AFS, the relevant state for each disk object is the call-
back list (i.e., the list of client machines that currently have this file
cached). Two new scripts are also required: AFS OPEN and AFS
CLOSE DIRTY. On a file open, the client sends the AFS OPEN
script which installs the client’s IP address in the per-object call-
back list. The client then reads the object through the standard read
interface and caches the file in its local disk. When a modified
file is closed at the client, the client sends the AFS CLOSE DIRTY
script to the server; this script loads the callback list associated with
the object and invokes the send rpc to list library routine to
send a callback break to the listed clients.

Though the performance of a consistency model is difficult to
measure, we present the time it takes to execute the AFS CLOSE
DIRTY script, as the number of callbacks that must be broken is
increased. Figure 5 plots the performance of three different imple-
mentations of the script. In the first, labeled “Tcl-Loop Broadcast
(Serial)”, the script itself sends a message synchronously to each of
the clients on the callback list. In the second case, labeled “Std Lib
Broadcast (Serial)”, the Tcl script makes a single call to the C stan-
dard library routine, which then synchronously issues the RPC call-
backs to all of the clients. Performance improves with this version
due to the fewer number of crossings between the Tcl/C bound-
ary. Finally, in the last case, labeled “Std Lib Broadcast (Parallel)”,
multiple threads are used within the standard library to issue call-

Experiment Avg. Read Cost (ms) Overhead
Direct Read 0.94 —-

C 1.11 18.1%
Tcl (Cached) 1.43 52.1%

Table 1: Read During Write-Sharing Overhead. The average cost
of executing the SPRITE READ CALLBACK script is shown. The first row
of the table, labeled “Direct Read”, shows the cost of reading a 4 KB page
synchronously, which serves as a lower bound on execution time. The sec-
ond and third rows of the table show the cost of executing the C and Tcl
implementations of the script, thus establishing the overhead that reads will
experience during write-sharing. In each experiment, the read cost is cal-
culated as the average of reads that occur during a large file copy.

back requests asynchronously; issuing the RPC callbacks in par-
allel improves performance slightly more. Thus, this experiment
demonstrates the performance benefits of including the appropriate
primitives in the standard library.

5.2 Sprite Consistency
Sprite [32] provides a stronger consistency model than AFS;

these semantics, sometimes referred to as “perfect” consistency, are
a close approximation of UNIX local file system semantics. In the
Sprite model, clients can cache files as long as there is no write
sharing of the file; write sharing occurs when more than one client
has the file open and at least one of them has opened the file in write
mode. When write-sharing occurs, Sprite turns off caching for the
file and clients must send all reads directly to the server. Finding
out if a file is currently write-shared requires the server to track
the state of each file, which is not possible within an unmodified
NFS-based system.

A major design concern when implementing Sprite semantics in
ScFS is to ensure that reads and writes are not slowed down in the
common case in which no write sharing occurs [26]. Since execut-
ing scripts has a negative performance impact, a script should not
be sent as part of every read or write operation. To meet this goal,
we developed a design in which each object has three associated
state variables: a read callback list, which is a list of clients that
have the file open (and cached) for reading; a writers list, which
tracks the clients that currently have the file open for writing; and a
flag designating whether or not this file is cacheable (i.e., whether
there is on-going write-sharing or not).

When a client does not know the state of a file or believes the file
is non-cacheable, for each read request, the client sends a SPRITE
READ CALLBACK script. The SPRITE READ CALLBACK script
checks the cacheable flag; if the flag is set, the script adds the IP
address of the client to the corresponding read callback list. The
value of this flag is also returned to the client, so that the client
can mark the state of the file in its local inode; if cacheable, then
subsequent reads to the file are not scripted, but instead are issued
as normal RPC read requests. Thus, when there is no write sharing,
little overhead is paid for scripting.

When a client opens a file in write mode, the client sends a
SPRITE WRITE OPEN script; this script sends an invalidate RPC to
all members in the read callback list, marks the file non-cacheable,
and adds its own IP address to the writers list for this object. If there
is no other registered writer, the client marks the file as cacheable
in its local inode and uses the in-memory cache to satisfy its read
requests. When this client closes the file, it sends a SPRITE WRITE
CLOSE script to the disk, which removes this client from the writers
list, and marks the file as cacheable if the writers list is now empty.
Once there are no registered writers, subsequent scripted-reads by

Experiment Avg. Update Cost (ms) Overhead
Base 0.94 —-

C 1.04 10.6%
Tcl (Cached) 1.35 43.6%

Table 2: Directory Update Script Overhead. The average cost of
executing the directory update script is shown, in both C and Tcl implemen-
tations, and compared to a version without concurrency control. In each
experiment, a new object ID is created, and then inserted into the directory.
In both the C and Tcl implementations, only the new directory information
is sent to the server; in contrast, the “Base” entry shows the performance
of updating the directory directly, without any concurrency protocol. In that
case, a 4 KB directory page is written to the server per update.

other clients notice the cacheable status and cache the file.
The overhead of using scripts for reading is shown in Table 1.

The “Direct Read” entry shows the average cost per read during
a file copy, assuming no write-sharing. Thus, in the best case for
this experiment, each read takes roughly 940 µs. The second entry
shows the cost of executing the C version of the SPRITE READ
CALLBACK script, which adds roughly an 18% overhead. Finally,
the Tcl version of the same script runs approximately 52% more
slowly than the non-scripted read. From this experiment, we see
the importance of calling the SPRITE READ CALLBACK script only
when necessary.

5.3 Discussion
In general, the ability to extend the interface on the server through

scripts expands the types of functionality that client file systems
can implement. However, as our case studies have shown, new
functionality often requires that state can be associated with each
object on the server. We briefly discuss two further examples where
stateful scripts could be used to implement new ScFS functionality.

First, a client file system can implement fine-grained copy-on-
write. In this system, state is required to track whether or not byte
ranges within each object have yet been copied, and a new script is
required for client reads and writes. A WRITE script transparently
redirects the write to the copied version of the object, whereas a
READ script directs the read to the appropriate version of the object.
We imagine that optimizations similar to those used in the Sprite
case study can be used to avoid invoking scripts on every read and
write operation.

Second, clients could associate arbitrary type of meta-data with
each file (virtual meta-data). One interesting piece of extensi-
ble meta-data would be a general access control list (ACL), which
would provide more flexible sharing than the permission bits cur-
rently provided by our server. In such a system, on each read and
write operation, the client would send a script to check the creden-
tials of the user. However, to fully ensure that clients could not
bypass this protection check by simply calling the existing RPC-
based read and write calls, the permission bits would have to be
disabled. This potential security hole illustrates a general princi-
ple: our scripts often assume the cooperation of a set of mutually-
trusting clients. For example, if one client does not call the neces-
sary scripts to enforce Sprite consistency semantics, other clients
will not see the desired behavior.

6. SIMPLICITY ENHANCEMENTS
Since SRPC allows arbitrary operations to be grouped together

and executed at the server, it greatly simplifies the implementation
of atomic sets of operations that need to be isolated with respect to

Read & Get If Partial AFS Sprite Directory
Operation Get Attr Modified Write Open Close Read Callback Write Open Write Close Update

(Sec. 4.2) (Sec. 4.3) (Sec. 4.4) (Sec. 5.1) (Sec. 5.2) (Sec. 6.1)
Arithmetic ops 1-2 0-1 1 1 4-6
Control 1 1 1 1 2 3 2-3 1
List ops 1-2 4 0-2 4-6 2-5
State mgmt 2 1 1-3 3-5 2-3
Type checking 3-5 3-6 4 2 1 3 1 4
Library 3-6 3-4 3 1 3 1 1 7-8
Locks 2 2 2 2
Communication 1 1
Native calls 1-2 1-2 2 1 1 2
Total lines 17 18 10 10 10 19 26 19 19

Table 3: Tcl Functional Breakdown. The table categorizes static operation counts per script. For each script, the minimum and maximal
path costs are shown. The left-most column presents the categories: arithmetic operations, control (if statements), list operations (create,
add, iterate), state management (for stateful protocols), type checking, library (searches, copies, and other utility functions), locks (lock and
unlock), communication (extra RPCs, beyond the mandated RPC reply), and native calls (calls to raw RPC-exported functions). The total
at the bottom of each column lists the total number of lines in each script – note that this number may be lower or higher than the sum
of the previous operations, as in some cases, statements are not accounted for separately (e.g., an end brace or some simple assignment
statements), and in other cases, a line may consist of multiple statements (e.g., arguments which are actually math expressions). Each script
is identified in the column header by its name as well as the section number in which it was described.

concurrent operations from other clients. We demonstrate through
a case study how SRPC can simplify the implementation of a seem-
ingly complex distributed concurrency problem.

6.1 Concurrent Directory Updates
Given a disk object model in which directories are considered

equivalent to any objects on disk, directory operations such as file
create and delete translate into reads and writes at the server. There-
fore, to create a file, a client first reads a directory page, inserts the
directory entry pertaining to the file in a vacant slot, and writes the
page back. Without proper concurrency control, simultaneous file
creates within the same directory across different clients can lead
to a lost create. Hence ScFS must ensure that the directory read-
modify-write sequence is performed atomically.

With a traditional file server, a common way to ensure atomicity
is through distributed locks, such that each client first acquires a
lock for the directory object, then performs the read-modify-write,
and finally unlocks the directory. Not only does this approach re-
sult in sub-optimal performance due to the multiple network round-
trip operations required for the three phases, but more importantly,
makes the overall system significantly more complex. Specifically,
the server must now be able to track locks across multiple client
machines and handle distributed failure scenarios such as a client
crashing or momentarily losing network connectivity while it is
holding a lock [42].

The SRPC framework greatly simplifies the implementation of
atomic operations by co-locating on the server those operations that
would otherwise be distributed across machines. In our concur-
rent directory update case study, each client sends a script to the
disk that acquires an in-memory lock at the server, performs the
read-modify-write, and then releases it. Thus, with SRPC, we can
reduce a complex distributed concurrency problem to a much sim-
pler challenge – that of ensuring mutual exclusion between threads
in the server’s address space.

Table 2 shows the performance of both the C and the Tcl imple-
mentation of the directory update, compared with the cost of sim-
ply sending a new directory page to the server (an approach that
does not provide any concurrency control but represents the cost of
simply writing a new page to perform the directory update). From

the table, we can see the overhead of our simple concurrent di-
rectory update is satisfactory, providing new functionality without
the difficulties that would be encountered in implementing a robust
three-phase protocol.

6.2 Discussion
This case study has briefly illustrated that SRPC can simplify

both client and server code. We believe that a centralized script at
the server can help simplify functionality in many cases in which
traditional distributed algorithms are required. For example, multi-
update atomic transactions would be natural to provide within our
scripting framework. Transactional capabilities would mandate ad-
ditional functionality within the SRPC standard library, including
the ability to roll back changes and perform crash recovery. In the
future, we plan to investigate the utility of transactional support
with the SRPC framework.

7. ANALYSIS OF TCL
In this section, we explore the costs of script execution within

the Tcl environment. We provide a detailed accounting of each of
the scripts that we have implemented, including functional and cost
breakdowns. We end with a discussion of our findings.

7.1 Functional Breakdown
Table 3 shows the breakdown of Tcl commands for each of the

scripts in our case studies, grouped into one of nine categories:
arithmetic operations, control statements (such as if statements),
list operations (a number of the scripts use lists as a basic data struc-
ture), state management routines (for saving and restoring long-
lived server state), type checking (to ensure that no illegal mem-
ory dereferences occur), library routines (utility functions such as
copies and string searches), locks, communication (beyond the sin-
gle reply mandated by RPC), and native calls (the RPC-exported
routines).

From the table, we make a number of general observations. From
the last line in each column (the total number of lines per script), we
observe that all of the scripts implement powerful functionality in
a small amount of code. All scripts are in the “10s of lines of code”

regime, ranging from a low of 10 up to a high of 26, with most
in the 20-line range. At the low end are the AFS OPEN and AFS
CLOSE DIRTY scripts, which simply manage the state required to
track which clients have which files open, and the PARTIAL WRITE
script, which performs a server-side read-modify-write in the ex-
pected manner. The most complex script is the SPRITE WRITE
OPEN script, and even it is quite straight-forward – most of its lines
consist of simple state and list management routines.

We also learn from the table how scripts are broken down into
their constituent commands. Most scripts have relatively few control-
flow decisions (the most complex, the SPRITE WRITE OPEN and
SPRITE WRITE CLOSE scripts, each have three if statements),
and thus are largely composed of straight-line code. For those
scripts that require state (i.e., the AFS and Sprite consistency scripts),
much of their Tcl command count consists of retrieving the state,
manipulating it (usually in the form of list operations), and then
perhaps storing the state again. Finally, type checking and library
operations comprise a substantial component of many of the scripts.

7.2 Cost Breakdown
Although a functional breakdown is instructive, without a time-

based analysis, it would be difficult to pinpoint the location of bot-
tlenecks. To garner such insight, we instrumented the scripts from
each of our case studies, thus allowing us to collect detailed infor-
mation as to where time is spent within each of the scripts. Figure 6
presents the results of our investigation.

From the figure, we make a number of observations. First, across
all scripts, the invocation overhead accounts for a substantial por-
tion of the time to execute scripts. This time consists of the C state-
ments to set-up the relevant environment for each script, and then
the call to Tcl Eval to invoke the script. Though the percent-
age varies across scripts, the invocation overhead is fairly constant,
varying between 150 to 200 µs. More detailed instrumentation re-
veals that most of this cost (roughly two-thirds) can be attributed to
the Tcl Eval call.

Second, type checking of buffer pointers and library commands
combine to take a significant amount of time across many of the
scripts. In the current system, each type check requires a call from
Tcl into the C substructure, and all such calls are expensive. In fu-
ture versions, we believe this cost could be reduced through batch-
ing of type checks. As for library commands, the routines that pri-
marily are called are data copy routines, which are used to manipu-
late input parameters and construct return results. These overheads
are difficult to avoid.

Third, additional communication is quite expensive, dwarfing
most other costs. This effect is observed in the AFS CLOSE DIRTY
script, which in this experiment breaks a single callback to a client
who has a cached copy of the relevant file. The cost of communi-
cation within that script dominates all other costs.

Finally, native routines account for a reasonable amount of time
across most of the scripts. Unlike the other components within each
bar, the higher the percentage of the native portion of each bar, the
better, as this portion represents direct calls to the underlying ser-
vice, which is often the only “real” work that a script performs. For
example, the native portion of the read-if-modified-since optimiza-
tion consists of a getattr and a conditional read; all functions
to copy data and perform type checking are pure overhead.

7.3 Discussion
We believe that the small code size demonstrated within these

case studies is one of the best arguments for the scripting approach
to extensibility. Small code segments are easier to write and main-
tain, and fewer lines of code implies fewer bugs, thus leading to

0

20

40

60

80

100

C
os

t B
re

ak
do

w
n

(%
)

Tcl Scripts: Where Does The Time Go?

 Invocation

 Math

 List ops

 State mgmt

 Type check

 Library

 Locks

 Comm

 Native

R
ea

d-
G

et
A

ttr
R

ea
d-

If-
M

od
P

ar
tia

l-W
rit

e
A

FS
 O

pe
n

A
FS

 C
lo

se
S

pr
ite

 R
ea

d
S

pr
ite

 O
pe

n
S

pr
ite

 C
lo

se
D

ir
U

pd
at

e

Figure 6: Tcl Cost Breakdown. The graph depicts the percentage
of time spent in each script in a typical scenario. Each bar rep-
resents a single script (as labeled along the x-axis), and is broken
down into one of nine categories, based on the operational break-
down in Table 3. The only additional item in the breakdown is the
“Invocation” cost, which is the time spent in getting from the C in-
frastructure into the Tcl script. Control statements have very low
cost and therefore are not accounted for in the graph. The abso-
lute execution times for each script are: 540 µs (Read-GetAttr),
304 µs (Read-If-Modified-Since), 590 µs (Partial-Write), 314 µs

(AFS Open), 1299 µs (AFS Close), 377 µs (Sprite Read Call-
back), 393 µs (Sprite Write Open), 336 µs (Sprite Write Close),
and 741 µs (Directory Update). Measurements reflect the average
of 30 runs.

more robust and reliable systems [11].
However, our experience has brought forth some of the down-

sides of scripting as well. For example, “performance conscious”
Tcl programming is much more difficult than the analogous process
in C language environments – costs often arise from unexpected
sources, making it difficult for programmers to optimize their code.
For example, a simple math expression (set x [expr 2+2])
executes in roughly 5 µs on our Pentium-based platforms; a slight
variant (set x [expr 2 + 2]), with a few extra spaces, ex-
ecutes in 30 µs, a factor of six slower! 3 In this specific case, the
parsing of a single argument passed to the expr command is much
faster than passing three separate arguments; in other cases, we
have found that subtle differences in programming style can lead
to non-trivial differences in performance. The more general prob-
lem illustrated herein is the difficulty of programming on top of a
system as high-level as the Tcl interpreter; the more complex the
virtual machine, the more difficult the process of programming for
high-performance becomes.

3Sometimes two plus two makes six (times slower than expected).

8. RELATED WORK

8.1 Active Storage
Active storage has taken many forms in the existing literature,

but almost all previous work has been in the context of new pro-
gramming environments into which existing RPC-based services
do not easily fit. The earliest work is found in the database litera-
ture [13], where researchers sought to exploit processing capability
within each disk arm to increase database performance. More re-
cent efforts in active storage were termed Active Disks and studied
independently by Acharya [1] and Riedel et al. [37]. Acharya pro-
posed a specialized “stream-based” programming model for paral-
lel applications; in their model, applications are re-partitioned into
host and disk portions, where each disk runs a “disklet” (i.e., a
small piece of Java code that filters data on a per-record granular-
ity). Riedel et al. also studied parallel applications, focusing on
scan-intensive codes; again, these applications must be partitioned
across host and disks, where each disk runs some small portion of
the code to filter requests and thus reduce total bandwidth to the
host. Thus, these Active Disk systems are quite effective in sup-
porting a variety of user-level parallel applications, but may not be
appropriate for developing a more general distributed file service.

More recently, Amiri et al. introduced Abacus, an object-oriented
framework for developing active storage systems [2]. Abacus is
most similar to SRPC in that the authors developed a distributed
object storage system on top of Abacus and demonstrated perfor-
mance benefits. However, Abacus differs in that the distributed ob-
ject store is built from scratch within their distributed object envi-
ronment and most code exists only at the user-level; thus, Abacus is
not well-integrated into the kernel (e.g., one can mount an Abacus-
based file system, but system calls are redirected from inside the
kernel into a user-level proxy, which can be inefficient [9]). One of
the main strengths of the Abacus approach is that work is dynami-
cally migrated to the client or the server depending on system and
workload characteristics. A similar adaptive framework could be
utilized by SRPC as well.

8.2 Extensibility
SRPC is also related to a long line of work in extensible sys-

tems, pioneered by systems such as SPIN [5], Exokernel [15], and
VINO [39]. As all of those systems sought to enable extensibil-
ity for operating systems, we seek to enable extensibility for RPC-
based services. Many of the lessons learned in those systems ap-
ply to SRPC; for example, some of the techniques used in VINO
to survive misbehaving kernel extensions are directly applicable to
our framework.

Slice is a virtual file service that extends services on only the
client side via interposition [3]. By introducing client-side packet
filters, Slice can build a virtual file service on top of existing proto-
cols such as NFS, and does so transparently to file system clients.
Thus, Slice’s interposition and SRPC server-side scripting are com-
plimentary approaches, with Slice adding “activity” to the client,
and SRPC adding it to the server.

Others have suggested the utility of scripting languages within
extensible systems. The most direct example of this is found within
the the µChoices operating system [8]. Therein, the authors suggest
the use of a Tcl-like scripting language to specify OS extensions
and argue that the flexibility and safety provided by interpreted lan-
guages outweigh the potential performance loss; this hypothesis is
one of the topics we investigate in this paper. Similarly, the Swarm
scalable storage system sends Tcl scripts to servers in order to read
and write data [23]. However, as the authors state, Swarm makes
little use of this feature other than for debugging.

8.3 RPC
In the realm of RPC, we are not aware of a system that is highly

similar to SRPC. Most recent work in this area concentrates on in-
creasing the performance or flexibility of the RPC substrate, or re-
ducing code size of automatically-generated stubs [14, 20, 34]. An
excellent example is found in the work on Flick, a flexible infras-
tructure for building an optimizing RPC layer [14]. The main goal
of Flick is to separate efficient stub generation from both the spe-
cific interface-definition language (IDL) and underlying communi-
cation layer. Our work on Scriptable RPC could likely be extended
into the Flick framework.

9. CONCLUSIONS
Given current technology trends, we expect that the core build-

ing blocks of future systems will contain significant processing ca-
pabilities. Thus, it is imperative that future distributed services
have the ability to effectively leverage these active components. In
this paper, we have introduced SRPC, a scriptable RPC layer that
enables system developers to migrate existing distributed services
onto active servers.

We have designed SRPC to meet three goals that are essential
in this environment. First, SRPC is designed to provide a smooth
migration path for existing distributed services from a traditional
RPC-based server to an active server. This goal is accomplished by
making the process of developing an SRPC-based service similar
to that of developing a service within the traditional RPC paradigm,
automating as many of the steps as possible with an enhanced IDL
compiler. Second, SRPC is engineered for high performance; SRPC
caches scripts, provides support for concurrent script execution,
and allows key operations to be implemented directly in C for ef-
ficiency. Third, SRPC targets safe extensibility; using Tcl as the
base scripting language is a crucial factor in meeting this goal.

Through a number of case studies, we have demonstrated three
general benefits of ScFS over a traditional RPC-based file system.
First, we have shown that SRPC can improve client performance;
scripting allows the client to merge operations with dependencies
into a single operation between the client and the disk, thereby
reducing the number of network round-trips. Second, we have
demonstrated that SRPC enables new functionality to be easily in-
tegrated into the file system; this is useful not only in those cases
where the original designers did not foresee the benefits of this
functionality, but also for those cases where different clients desire
different functionality for different files. Finally, we have shown
that scripts permit operations to be co-located at the disk instead
of being distributed across multiple clients (e.g., acquiring and re-
leasing locks), thereby avoiding complex code for crash recovery
or distributed failure scenarios.

In our evaluation of Tcl, we find that Tcl enables the develop-
ment of short but powerful scripts – even the most complex of our
case studies required less than thirty lines of Tcl code. We also find
that the performance of Tcl is much better than in the past and that
Tcl is appropriate for many file system extensions. However, in
some scenarios, higher performance is required, and a specialized
domain-specific language for active disks may be worth investi-
gating. One desirable feature of such a language would be a pre-
dictable cost model, allowing programmers to optimize their code
in a direct and obvious manner.

In the future, we believe it would be interesting to examine SRPC
in the context of multiple network-attached disks instead of a single
server. With an active framework, disks can communicate and co-
operate with one another directly, perhaps implementing advanced
features such as snap-shots [27] or lazy redundancy [12]. The key

challenge for such a system is to provide the proper primitives for
distributed coordination among server-side scripts, hence removing
the burden of implementing complex distributed systems protocols.
Perhaps the ideal storage system of the future is as simple as this: a
collection of SRPC-enabled disks and a few base primitives for dis-
tributed computation in the SRPC standard library, with all higher-
level file-system functionality built on top of a flexible and efficient
scripting substrate.

Acknowledgments
We would like to thank Venkateshwaran Venkataramani for his
work on this project in its early stages, and his skepticism which led
to the refinement of many of the ideas herein. We would also like
to thank the members of the WiND research group for their input
on the ideas and presentation of this paper, and the CS-838 class for
their lively feedback. Finally, we thank the anonymous reviewers
for their excellent and thoughtful suggestions, which have greatly
improved the content of this paper. This work is sponsored by NSF
CCR-0092840, CCR-0098274, NGS-0103670, CCR-0133456, ITR-
0086044, and the Wisconsin Alumni Research Foundation.

10. REFERENCES
[1] A. Acharya, M. Uysal, and J. Saltz. Active Disks. In Proceed-

ings of the 8th Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS VIII),
San Jose, CA, October 1998.

[2] K. Amiri, D. Petrou, G. R. Ganger, and G. A. Gibson. Dy-
namic Function Placement for Data-intensive Cluster Com-
puting. In Proceedings of the 2000 USENIX Annual Technical
Conference, pages 307–322, June 2000.

[3] D. Anderson, J. Chase, and A. Vahdat. Interposed Request
Routing for Scalable Network Storage. Transactions on Com-
puter Systems (TOCS), 20(1), February 2002.

[4] T. Berners-Lee, R. T. Fielding, H. F. Nielsen, J. Gettys, and
J. Mogul. Hypertext Transfer Protocol — HTTP/1.1. Tech-
nical Report 2068, Internet Engineering Task Force, January
1997.

[5] B. N. Bershad, S. Savage, E. G. S. Przemyslaw Pardyak, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers. Extensi-
bility, Safety and Performance in the SPIN Operating System.
In Proceedings of the 15th ACM Symposium on Operating
Systems Principles, December 1995.

[6] A. D. Birrell and B. J. Nelson. Implementing remote proce-
dure calls. ACM Transactions on Computer Systems, 2(1):39–
59, February 1984.

[7] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L.
Seitz, J. N. Seizovic, and W.-K. Su. Myrinet—A Gigabit-
per-Second Local-Area Network. IEEE Micro, 15(1):29–38,
February 1995.

[8] R. H. Campbell and S. M. Tan. µChoices: An Object-
Oriented Multimedia Operating System. In In Fifth Workshop
on Hot Topics in Operating Systems (HotOS-V), Orcas Island,
WA, May 1995.

[9] J. B. Chen and B. Bershad. The Impact of Operating System
Structure on Memory System Performance. In Proceedings of
the 14th ACM Symposium on Operating Systems Principles
(SOSP ’93), pages 120–133, Asheville, NC, December 1993.

[10] M. Dahlin, R. Wang, T. Anderson, and D. Patterson. Coop-
erative Caching: Using Remote Client Memory to Improve
File System Performance. In Proceedings of the 1st USENIX
Symposium on Operating Systems Design and Implementa-
tion, pages 267–280, November 14–17 1994.

[11] A. Davis. 201 Principles of Software Development. McGraw-
Hill, 1995.

[12] T. E. Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Bridging the Information Gap in Storage Protocol
Stacks. In The Proceedings of the USENIX Annual Technical
Conference (USENIX ’02), pages 177–190, Monterey, CA,
June 2002.

[13] D. J. DeWitt and P. B. Hawthorn. A Performance Evaluation
of Data Base Machine Architectures. In Proceedings of the
Seventh Annual Conference Very Large Data Bases (VLDB
’81), pages 199–214, 1981.

[14] E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom. Flick:
A Flexible, Optimizing IDL Compiler. In PLDI ’97, Las Ve-
gas, NV, June 1997.

[15] D. R. Engler, M. F. Kaashoek, and J. W. O’Toole. Exokernel:
An Operating System Architecture for Application-Level Re-
source Management. In Proceedings of the 15th ACM Sympo-
sium on Operating Systems Principles, December 1995.

[16] M. Fiuczynski, R. Martin, B. Bershad, and D. Culler. SPINE:
An operating system for intelligent network adapters. Techni-
cal Report TR-98-08-01, University of Washington, Depart-
ment of Computer Science and Engineering, August 1998.

[17] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang,
H. Gobioff, C. Hardin, E. Riedel, D. Rochberg, and J. Ze-
lenka. A Cost-Effective, High-Bandwidth Storage Architec-
ture. In Proceedings of the 8th Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS VIII), October 1998.

[18] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang, E. M. Fein-
berg, H. Gobioff, C. Lee, B. Ozceri, E. Riedel, D. Rochberg,
and J. Zelenka. File Server Scaling with Network-Attached
Secure Disks. In Proceedings of the 1997 ACM SIGMETRICS
International Conference on Measurement and Modeling of
Computer Systems, pages 272–284, Seattle, WA, June 1997.

[19] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang, H. Gob-
ioff, E. Riedel, D. Rochberg, and J. Zelenka. Filesystems for
Network-Attached Secure Disks. Technical Report CMU-CS-
97-118, Carnegie-Mellon University, 1997.

[20] A. Gokhale and D. C. Schmidt. Measuring the Performance of
the CORBA Internet Inter-ORB Protocol over ATM. Techni-
cal Report WUCS-97-09, Washington University at St. Louis,
1997.

[21] J. Gray. Storage Bricks Have Arrived. Invited Talk at the
First USENIX Conference on File And Storage Technologies
(FAST ’02), 2002.

[22] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler.
Scalable, Distributed Data Structures for Internet Service
Construction. In Proceedings of the Fourth Symposium on
Operating Systems Design and Implementation (OSDI ’00),
San Diego, CA, October 2000.

[23] J. H. Hartman, I. Murdock, and T. Spalink. The Swarm Scal-
able Storage System. In Proceedings of the 19th IEEE In-
ternational Conference on Distributed Computing Systems
(ICDCS ’99), Austin, Texas, June 1999.

[24] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satya-
narayanan, R. Sidebotham, and M. West. Scale and Perfor-
mance in a Distributed File System. ACM Transactions on
Computer Systems (TOCS), 6(1), February 1988.

[25] J. Katcher. PostMark: A New File System Benchmark. Tech-
nical Report TR-3022, Network Appliance Inc., October
1997.

[26] J. Kistler and M. Satyanarayanan. Disconnected Operation in

the Coda File System. ACM Transactions on Computer Sys-
tems (TOCS), 10(1), February 1992.

[27] E. K. Lee and C. A. Thekkath. Petal: Distributed Virtual
Disks. In Proceedings of the Seventh Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS VII), pages 84–92, Cambridge, MA, Octo-
ber 1996.

[28] D. E. Lowell and P. M. Chen. Free Transactions With Rio
Vista. In Proceedings of the 16th ACM Symposium on Oper-
ating Systems Principles (SOSP ’97), pages 92–101, Saint-
Malo, France, October 1997.

[29] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and
M. Horowitz. Smart Memories: A Modular Reconfigurable
Architecture. In Proceedings of the 27th Annual International
Symposium on Computer Architecture, pages 161–171, June
2000.

[30] R. P. Martin, A. M. Vahdat, D. E. Culler, and T. E. Anderson.
Effects of communication latency, overhead, and bandwidth
in a cluster architecture. In Proceedings of the 24rd Annual In-
ternational Symposium on Computer Architecture, pages 85–
97, Denver, Colorado, June 2–4, 1997. ACM SIGARCH and
IEEE Computer Society TCCA.

[31] A. Muthitacharoen, B. Chen, and D. Mazières. A Low-
Bandwidth Network File System. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles (SOSP-
01), pages 174–187, Banff, Canada, October 2001.

[32] M. Nelson, B. Welch, and J. Ousterhout. Caching in the Sprite
Network File System. ACM Transactions on Computer Sys-
tems, 6(1):134–154, February 1988.

[33] C. Nester, M. Philippsen, and B. Haumacher. A More Effi-
cient RMI for Java. In Proceedings of the ACM 1999 Java
Grande Conference, San Francisco, California, June 1999.

[34] S. O’Malley, T. Proebsting, and A. B. Montz. USC: A Univer-
sal Stub Compiler. In Proceedings of the Conference on Com-
munications Architectures, Protocols and Applications (SIG-
COMM ’94), London, UK, August 1994.

[35] J. K. Ousterhout. Tcl: An Embedable Command Language.
In Proceedings of the 1990 USENIX Association Winter Con-
ference, 1990.

[36] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Kee-
ton, C. Kozyrakis, R. Thomas, and K. Yelick. Intelligent
RAM (IRAM): Chips That Remember And Compute. In
1997 IEEE International Solid-State Circuits Conference, San
Francisco, CA, February 1997.

[37] E. Riedel, G. A. Gibson, and C. Faloutsos. Active Storage
For Large-Scale Data Mining and Multimedia. In Proc. of
the 24th International Conference on Very large Databases
(VLDB ’98), August 1998.

[38] T. H. Romer, D. Lee, G. M. Voelker, A. Wolman, W. A. Wong,
J.-L. Baer, B. N. Bershad, and H. M. Levy. The structure
and performance of interpreters. In Proceedings of the Sev-
enth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 150–
159, Cambridge, Massachusetts, October 1–5, 1996. ACM
SIGARCH, SIGOPS, and SIGPLAN.

[39] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing
With Disaster: Surviving Misbehaved Kernel Extensions. In
Proceedings of the 2nd USENIX Symposium on Operating
Systems Design and Implementation, October 1996.

[40] C. Small and M. Seltzer. A Comparison of OS Extension
Technologies. In Proceedings of the 1996 USENIX Annual
Technical Conference, January 1996.

[41] V. Srinivasan and J. C. Mogul. Spritely NFS: Experiments
with cache-consistency protocols. In Proceedings of the
Twelfth ACM Symposium on Operating Systems Principles,
pages 45–57. ACM, December 1989. Order no. 534890.

[42] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A
Scalable Distributed File System. In Proceedings of the 16th
ACM Symposium on Operating Systems Principles (SOSP
’97), pages 224–237, Saint-Malo, France, October 1997.

[43] Transaction Processing Council. TPC Benchmark B Standard
Specification, Revision 3.2. Technical Report, 1990.

[44] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-net: A
user-level network interface for parallel and distributed com-
puting. In Proceedings of the Fifteenth ACM Symposium on
Operating Systems Principles, pages 40–53, Copper Moun-
tain Resort, CO, USA, 1995.

[45] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser. Active Messages: a Mechanism for Integrated
Communication and Computation. In Proceedings of the 19th
Annual Symposium on Computer Architecture, Gold Coast,
Australia, May 1992.

[46] M. Welsh and D. Culler. Achieving Robust, Scalable Clus-
ter I/O in Java. In LCR2000: Fifth Workshop on Languages,
Compilers, and Run-time Systems for Scalable Computers,
Rochester, NY, May 2000.

