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1. INTRODUCTION

“If a tree falls in the forest and no one hears it, does it make a sound?” George
Berkeley

Storage systems comprised of multiple disks are the backbone of modern
computing centers, and when the storage system is down, the entire center
can grind to a halt. Downtime is clearly expensive; for example, in the on-line
business world, millions of dollars per hour are lost when systems are not avail-
able [Keeton and Wilkes 2002; Patterson 2002].
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Storage system availability is formally defined as the mean time between
failure (MTBF) divided by the sum of the MTBF and the mean time to recov-
ery (MTTR): MTBF

MTBF+MTTR [Gray 1987]. Hence, in order to improve availability,
one can either increase the MTBF or decrease the MTTR. Not surprisingly,
researchers have studied both of these components of storage availability.

To increase the time between failures of a large storage array, data redun-
dancy techniques can be applied [Bitton and Gray 1988; Burkhard and Menon
1993; Chen et al. 1994; Gray et al. 1990; Hsiao and DeWitt 1990; Orji and
Solworth 1993; Park and Balasubramanian 1986; Patterson et al. 1988; Savage
and Wilkes 1996; Wilkes et al. 1996]. By keeping multiple copies of blocks, or
through more sophisticated redundancy schemes such as parity-encoding, stor-
age systems can tolerate a (small) fixed number of faults. To decrease the time
to recovery, “hot spares” can be employed [Holland et al. 1993; Menon and
Mattson 1992; Park and Balasubramanian 1986; Reddy and Banerjee 1991];
when a failure occurs, a spare disk is activated and filled with reconstructed
data, returning the system to normal operating mode relatively quickly.

1.1 The Problem: Reduced Availability due to Semantic Ignorance

Although various techniques have been proposed to improve storage availabil-
ity, the narrow interface between file systems and storage [Ganger 2001] has
curtailed opportunities for improving MTBF and MTTR. For example, RAID
redundancy schemes typically export a simple failure model; if D or fewer
disks fail, the RAID continues to operate correctly, but if more than D disks
fail, the RAID is entirely unavailable until the problem is corrected, perhaps
via a time-consuming restore from tape. In most RAID schemes, D is small
(often 1); thus, even when most disks are working, users observe a failed disk
system. This “availability cliff” is a result of the storage system laying out
blocks oblivious of their semantic importance or relationship; most files become
corrupted or inaccessible after just one extra disk failure. Further, because the
storage array has no information on which blocks are live in the file system,
the recovery process must restore all blocks in the disk. This unnecessary work
slows recovery and reduces availability.

An ideal storage array fails gracefully: if 1
N th of the disks of the system are

down, at most 1
N th of the data is unavailable. An ideal array also recovers

intelligently, restoring only live data. In effect, more “important” data is less
likely to disappear under failure, and such data is restored earlier during recov-
ery. This strategy for data availability stems from Berkeley’s observation about
falling trees: if a file isn’t available, and no process tries to access it before it is
recovered, is there truly a failure?

1.2 A Solution: D-GRAID

To explore these concepts and provide a storage array with more graceful
failure semantics, we present the design, implementation, and evaluation of
D-GRAID, a RAID system that Degrades Gracefully (and recovers quickly).
D-GRAID exploits semantic intelligence [Sivathanu et al. 2003] within the
disk array to place file system structures across the disks in a fault-contained
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manner, analogous to the fault containment techniques found in the Hive
operating system [Chapin et al. 1995] and in some distributed file systems
[Ji et al. 2000; Saito et al. 2002]. Thus, when an unexpected “double” failure
occurs [Gray 1987], D-GRAID continues operation, serving those files that can
still be accessed. D-GRAID also utilizes semantic knowledge during recovery;
specifically, only blocks that the file system considers live are restored onto a
hot spare. Both aspects of D-GRAID combine to improve the effective availabil-
ity of the storage array. Note that D-GRAID techniques are complementary
to existing redundancy schemes; thus, if a storage administrator configures
a D-GRAID array to utilize RAID Level 5, any single disk can fail without
data loss, and additional failures lead to a proportional fraction of unavailable
data.

In this article, we present a prototype implementation of D-GRAID, which
we refer to as Alexander. Alexander is an example of a semantically-smart
disk system [Sivathanu et al. 2003]. Built underneath a narrow block-based
SCSI storage interface, such a disk system understands on-disk file system
data structures, including the superblock, allocation bitmaps, inodes, directo-
ries, and other important structures; this knowledge is central to implementing
graceful degradation and quick recovery. Because of their intricate understand-
ing of file system structures and operations, semantically smart arrays are
tailored to particular file systems; Alexander currently functions underneath
unmodified Linux ext2 and VFAT file systems.

We make three important contributions to semantic disk technology. First,
we deepen the understanding of how to build semantically smart disk systems
that operate correctly even with imperfect file system knowledge. Second, we
demonstrate that such technology can be applied underneath widely varying
file systems. Third, we demonstrate that semantic knowledge allows a RAID
system to apply different redundancy techniques based on the type of data,
thereby improving availability.

1.3 Key Techniques

There are two key aspects to the Alexander implementation of graceful degra-
dation. The first is selective meta-data replication, in which Alexander repli-
cates naming and system meta-data structures of the file system to a high
degree while using standard redundancy techniques for data. Thus, with a
small amount of overhead, excess failures do not render the entire array un-
available. Instead, the entire directory hierarchy can still be traversed, and
only some fraction of files will be missing, proportional to the number of miss-
ing disks. The second is a fault-isolated data placement strategy. To ensure
that semantically meaningful data units are available under failure, Alexander
places semantically related blocks (e.g., the blocks of a file) within the storage
array’s unit of fault-containment (e.g., a disk). By observing the natural failure
boundaries found within an array, failures make semantically related groups
of blocks unavailable, leaving the rest of the file system intact.

Unfortunately, fault-isolated data placement improves availability at a cost;
related blocks are no longer striped across the drives, reducing the natural
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benefits of parallelism found within most RAID techniques [Ganger et al. 1993].
To remedy this, Alexander also implements access-driven diffusion to improve
throughput to frequently-accessed files, by spreading a copy of the blocks of
“hot” files across the drives of the system. Alexander monitors access to data
to determine which files to replicate in this fashion, and finds space for those
replicas either in a preconfigured performance reserve or opportunistically in
the unused portions of the storage system.

We evaluate the availability improvements possible with D-GRAID through
trace analysis and simulation, and find that D-GRAID does an excellent job
of masking an arbitrary number of failures from most processes by enabling
continued access to “important” data. We then evaluate our prototype,
Alexander under microbenchmarks and trace-driven workloads. We find that
the construction of D-GRAID is feasible; even with imperfect semantic knowl-
edge, powerful functionality can be implemented within a block-based storage
array. We also find that the run-time overheads of D-GRAID are small, but
that the storage-level CPU costs compared to a standard array are high. We
show that access-driven diffusion is crucial for performance, and that live-block
recovery is effective when disks are under-utilized. The combination of replica-
tion, data placement, and recovery techniques results in a storage system that
improves availability while maintaining a high level of performance.

The rest of this article is structured as follows. In Section 2, we present
extended motivation, and in Section 3, we discuss related work. We present
the design principles of D-GRAID in Section 4. In Section 5, we present trace
analysis and simulations, and discuss semantic knowledge in Section 6. In
Section 7, we present our prototype implementation, and evaluate our prototype
in Section 8. In Section 9, we present custom policies for different levels of
D-GRAID. We discuss the resilience of D-GRAID to incorrect information in
Section 10, and conclude in Section 11.

2. EXTENDED MOTIVATION

In this section, we first discuss the need for graceful degradation during mul-
tiple failures, and then describe why a semantically smart disk system is an
appropriate locale to incorporate support for such graceful degradation.

2.1 The Case for Graceful Degradation

The motivation for graceful degradation arises from the fact that users and
applications often do not require that the entire contents of a volume be present;
rather, what matters to them is whether a particular set of files are available.

One question that arises is whether it is realistic to expect a catastrophic
failure scenario within a RAID system. For example, in a RAID-5 system, given
the high MTBF’s reported by disk manufacturers, one might believe that a
second disk failure is highly unlikely to occur before the first failed disk is
repaired. However, multiple disk failures do occur, for two primary reasons.
First, correlated faults are more common in systems than expected [Gribble
2001]. If the RAID has not been carefully designed in an orthogonal manner,
a single controller fault or other component error can render a fair number of
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disks unavailable [Chen et al. 1994]; such redundant designs are expensive,
and therefore may only be found in higher end storage arrays. Second, Gray
[1987] pointed out that system administration is the main source of failure
in systems. A large percentage of human failures occur during maintenance,
where “the maintenance person typed the wrong command or unplugged the
wrong module, thereby introducing a double failure” [Gray 1987, p. 6].

Other evidence also suggests that multiple failures can occur. For example,
IBM’s ServeRAID array controller product includes directions on how to at-
tempt data recovery when multiple disk failures occur within a RAID-5 storage
array [IBM 2001]. Within our own organization, data is stored on file servers
under RAID-5. In one of our servers, a single disk failed, but the indicator that
should have informed administrators of the problem did not do so. The problem
was only discovered when a second disk in the array failed; full restore from
backup ran for days. In this scenario, graceful degradation would have enabled
access to a large fraction of user data during the long restore.

One might think that the best approach to dealing with multiple failures
would be to employ a higher level of redundancy [Alvarez et al. 1997; Burkhard
and Menon 1993], thus enabling the storage array to tolerate a greater number
of failures without loss of data. However, these techniques are often expensive
(e.g., three-way data mirroring) or bandwidth-intensive (e.g., more than 6 I/Os
per write in a P + Q redundant store). Graceful degradation is complementary
to such techniques. Thus, storage administrators could choose the level of re-
dundancy they believe necessary for common case faults; graceful degradation
is enacted when a “worse than expected” fault occurs, mitigating its ill effect.

2.2 The Need for Semantically Smart Storage

The basic design principles of D-GRAID apply equally well to various possible
implementation alternatives, each with its own tradeoffs. In this subsection,
we motivate our decision to implement D-GRAID within a semantically smart
disk system. We first discuss the benefits of such an approach, addressing a
few obvious concerns. We then compare the semantic disk approach to other
alternatives of implementing D-GRAID.

2.2.1 Benefits of the Semantic Disk Approach. Implementing new func-
tionality in a semantically smart disk system has the key benefit of enabling
wide-scale deployment underneath an unmodified SCSI interface without any
OS modification, thus working smoothly with existing file systems and software
base. Although there is some desire to evolve the interface between file systems
and storage [Gibson et al. 1998], the reality is that current interfaces will likely
survive much longer than anticipated. As Bill Joy once said, “Systems may come
and go, but protocols live forever”. Similarly to modern processors that innovate
beneath unchanged instruction sets, a semantic disk-level implementation is
nonintrusive on existing infrastructure, thus making a new technology such as
D-GRAID more likely to be adopted.

However, because semantically smart storage systems require more detailed
knowledge of the file system that is using them, a few concerns arise on the
commercial feasibility of such systems. We consider three main concerns.
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The first concern that arises is that placing semantic knowledge within the
disk system ties the disk system too intimately to the file system above. For
example, if the on-disk structure of the file system changes, the storage system
may have to change as well. We believe this issue is not likely to be prob-
lematic. On-disk formats evolve slowly, for reasons of backward compatibility.
For example, the basic structure of FFS-based file systems has not changed
since its introduction in 1984, a period of almost 20 years [McKusick et al.
1984]; the Linux ext2 file system, introduced in roughly 1994, has had the
exact same layout for its lifetime; finally, the ext3 journaling file system [Ts’o
and Tweedie 2002] is backward compatible with ext2 on-disk layout and the
new extensions to the FreeBSD file system [Dowse and Malone 2002] are
backward compatible as well. We also have evidence that storage vendors
are already willing to maintain and support software specific to a file system;
for example, the EMC Symmetrix storage system [EMC Corporation 2002]
comes with software that can understand the format of most common file
systems.

The second concern is that the storage system needs semantic knowledge
for each file system with which it interacts. Fortunately, there are not a large
number of file systems that would need to be supported to cover a large fraction
of the usage population. If such a semantic storage system is used with a file
system that it does not support, the storage system could detect it and turn off
its special functionality (e.g., in the case of D-GRAID, revert to normal RAID
layout). Such detection can be done by simple techniques such as observing the
file system identifier in the partition table.

One final concern that arises is that too much processing will be required
within the disk system. We do not believe this to be a major issue, because of
the general trend of increasing disk system intelligence [Acharya et al. 1998;
Riedel et al. 1998]; as processing power increases, disk systems are likely to
contain substantial computational abilities. Indeed, modern storage arrays
already exhibit the fruits of Moore’s Law; for example, the EMC Symmetrix
storage server can be configured with up to 80 processors and 64 GB of
RAM [EMC Corporation 2002].

2.2.2 Comparison with Alternative Approaches. Although our semantic
disk approach has clear benefits as detailed above, it comes with a cost: re-
discovering semantic knowledge underneath a modern file system entails a
fair amount of complexity.

An alternative approach is to change the interface between file systems
and storage, to convey richer information across both layers. For instance, the
storage system could expose failure boundaries to the file system [Denehy et al.
2002], and then the file system could explicitly allocate blocks in a fault-isolated
manner, placing semantically related blocks together. Alternatively, the file
system could tag each write with a logical fault-container ID, which can then
be used by the storage system to implement fault-isolated data placement.
These techniques, while being conceivably less complex than our approach,
have the drawback of being intrusive on existing infrastructure and software
base, and requiring wide industry agreement before they can be adopted.
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Object-based storage [Gibson et al. 1998] is one such new interface being
considered, which makes the file boundaries more visible at the storage layer.
However, even with an object-based interface, semantically smart technology
will still be relevant to discover semantic relationships across objects, for in-
stance, inferring that a directory object points to a set of file objects which need
to be placed within a single fault boundary.

Finally, an approximate version of fault-isolated layout could be implemented
in a traditional block based storage system with no semantic understanding.
The storage system could simply identify sequences of blocks that are accessed
together, and infer that those blocks could be logically related. The main disad-
vantage with such a black-box approach is that it is quite fragile to concurrent
interleavings of independent streams. Further, such a scheme would not be able
to identify critical data for purposes of aggressive replication, since such “hot”
blocks are most often cached by the file system; thus, frequent reads to them
are not visible within the storage system.

3. RELATED WORK

D-GRAID draws on related work from a number of different areas, including
distributed file systems and traditional RAID systems. We discuss each in turn.

3.1 Distributed File Systems

Designers of distributed file systems have long ago realized the problems that
arise when spreading a directory tree across different machines in a system. For
example, Walker et al. discussed the importance of directory namespace repli-
cation within the Locus distributed system [Popek et al. 1981]. The Coda mobile
file system also takes explicit care with regard to the directory tree [Kistler and
Satyanarayanan 1992]. Specifically, if a file is cached, Coda makes sure to cache
every directory up to the root of the directory tree. By doing so, Coda can guar-
antee that a file remains accessible should a disconnection occur. Perhaps an
interesting extension to our work would be to reconsider host-based in-memory
caching with availability in mind. Also, Slice [Anderson et al. 2002] tries to
route namespace operations for all files in a directory to the same server.

More recently, work in wide-area file systems has also reemphasized the im-
portance of the directory tree. For example, the Pangaea file system aggressively
replicates the entire tree up to the root on a node when a file is accessed [Saito
et al. 2002]. The Island-based file system also points out the need for “fault isola-
tion” but in the context of wide-area storage systems; their “one island principle”
is quite similar to fault-isolated placement in D-GRAID [Ji et al. 2000].

Finally, P2P systems such as PAST that place an entire file on a single
machine have similar load balancing issues [Rowstron and Druschel 2001].
However, the problem is more difficult in the p2p space due to the constraints
of file placement; block migration is much simpler in a centralized storage array.

3.2 Traditional RAID Systems

We also draw on the long history of research in classic RAID systems. From
AutoRAID [Wilkes et al. 1996] we learned both that complex functionality could
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be embedded within a modern storage array, and that background activity could
be utilized successfully in such an environment. From AFRAID [Savage and
Wilkes 1996], we learned that there could be a flexible tradeoff between perfor-
mance and reliability, and the value of delaying updates.

Much of RAID research has focused on different redundancy schemes. While
early work stressed the ability to tolerate single-disk failures [Bitton and
Gray 1988; Park and Balasubramanian 1986; Patterson et al. 1988], later re-
search introduced the notion of tolerating multiple-disk failures within an array
[Alvarez et al. 1997; Burkhard and Menon 1993]. We stress that our work
is complementary to this line of research; traditional techniques can be used
to ensure full file system availability up to a certain number of failures, and
D-GRAID techniques ensure graceful degradation under additional failures. A
related approach is parity striping [Gray et al. 1990], which stripes only the
parity and not data; while parity striping would achieve a primitive form of
fault isolation, the layout is still oblivious of the semantics of the data; blocks
will have the same level of redundancy irrespective of their importance (i.e.,
meta-data vs. data), so multiple failures could still make the entire file system
inaccessible. A number of earlier works have also emphasized the importance of
hot sparing to speed recovery time in RAID arrays [Holland et al. 1993; Menon
and Mattson 1992; Park and Balasubramanian 1986]. Our work on semantic
recovery is also complementary to those approaches.

Finally, note that term graceful degradation is sometimes used to refer to the
performance characteristics of redundant disk systems under failure [Hsiao and
DeWitt 1990; Reddy and Banerjee 1991]. This type of graceful degradation is
different from what we discuss in this article; indeed, none of those systems
continues operation when an unexpected number of failures occurs.

4. DESIGN: D-GRAID EXPECTATIONS

We now discuss the design of D-GRAID. We present background information on
file systems, the data layout strategy required to enable graceful degradation,
the important design issues that arise due to the new layout, and the process
of fast recovery.

4.1 File System Background

Semantic knowledge is system specific; therefore, we discuss D-GRAID de-
sign and implementation for two widely differing file systems: the Linux ext2
[Ts’o and Tweedie 2002] and Microsoft VFAT [Microsoft Corporation 2000] file
systems. Inclusion of VFAT represents a significant contribution compared to
previous research, which operated solely underneath UNIX file systems.

The ext2 file system is an intellectual descendant of the Berkeley Fast File
System (FFS) [McKusick et al. 1984]. The disk is split into a set of block groups,
akin to cylinder groups in FFS, each of which contains bitmaps to track inode
and data block allocation, inode blocks, and data blocks. Most information about
a file, including size and block pointers, are found in the file’s inode.

The VFAT file system descends from the world of PC operating systems. In
this article, we consider the Linux VFAT implementation of FAT-32. VFAT
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operations are centered around the eponymous file allocation table, which
contains an entry for each allocatable block in the file system. These entries
are used to locate the blocks of a file, in a linked-list fashion, for example, if a
file’s first block is at address b, one can look in entry b of the FAT to find the
next block of the file, and so forth. An entry can also hold an end-of-file marker
or a setting that indicates the block is free. Unlike UNIX file systems, where
most information about a file is found in its inode, a VFAT file system spreads
this information across the FAT itself and the directory entries; the FAT is used
to track which blocks belong to the file, whereas the directory entry contains
information like size, permission, and type information.

4.2 Graceful Degradation

To ensure partial availability of data under multiple failures in a RAID
array, D-GRAID employs two main techniques. The first is a fault-isolated data
placement strategy, in which D-GRAID places each “semantically related set of
blocks” within a “unit of fault containment” found within the storage array. For
simplicity of discussion, we assume that a file is a semantically related set of
blocks, and that a single disk is the unit of fault containment. We will generalize
the former below, and the latter is easily generalized if there are other failure
boundaries that should be observed (e.g., SCSI chains). We refer to the physical
disk to which a file belongs as the home site for the file. When a particular disk
fails, fault-isolated data placement ensures that only files that have that disk
as their home site become unavailable, while other files remain accessible as
whole files.

The second technique is selective meta-data replication, in which D-GRAID
replicates naming and system meta-data structures of the file system to a high
degree, for example, directory inodes and directory data in a UNIX file system.
D-GRAID thus ensures that all live data is reachable and not orphaned due to
multiple failures. The entire directory hierarchy remains traversable, and the
fraction of missing user data is proportional to the number of failed disks.

Thus, D-GRAID lays out logical file system blocks in such a way that the
availability of a single file depends on as few disks as possible. In a traditional
RAID array, this dependence set is normally the entire set of disks in the group,
thereby leading to entire file system unavailability under an unexpected fail-
ure. A UNIX-centric example of typical layout, fault-isolated data placement,
and selective meta-data replication is depicted in Figure 1. Note that for the
techniques in D-GRAID to work, a meaningful subset of the file system must be
laid out within a single D-GRAID array. For example, if the file system is striped
across multiple D-GRAID arrays, no single array will have a meaningful view
of the file system. In such a scenario, D-GRAID can be run at the logical volume
manager level, viewing each of the arrays as a single disk; the same techniques
remain relevant.

Because D-GRAID treats each file system block type differently, the tra-
ditional RAID taxonomy is no longer adequate in describing how D-GRAID
behaves. Instead, a more fine-grained notion of a RAID level is required, as
D-GRAID may employ different redundancy techniques for different types of
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Fig. 1. A comparison of layout schemes. These different parts of this figure depict different layouts
of a file “/foo/bar” in a UNIX file system starting at the root inode and following down the directory
tree to the file data. Each vertical column represents a disk. For simplicity, the example assumes
no data redundancy for user file data. On the top is a typical file system layout on a non-D-GRAID
disk system; because blocks (and therefore pointers) are spread throughout the file system, any
single fault will render the blocks of the file “bar” inaccessible. The left figure in the bottom is a
fault-isolated data placement of files and directories. In this scenario, if one can access the inode
of a file, one can access its data (indirect pointer blocks would also be constrained within the same
disk). Finally, in the bottom right is an example of selective meta-data replication. By replicating
directory inodes and directory blocks, D-GRAID can guarantee that users can get to all files that are
available. Some of the requisite pointers have been removed from the rightmost figure for simplicity.
Color codes are white for user data, light shaded for inodes, and dark shaded for directory data.

data. For example, D-GRAID commonly employs n-way mirroring for naming
and system meta-data, whereas it uses standard redundancy techniques, such
as mirroring or parity encoding (e.g., RAID-5), for user data. Note that n, a
value under administrative control, determines the number of failures under
which D-GRAID will degrade gracefully. In Section 5, we will explore how data
availability degrades under varying levels of namespace replication.

4.3 Design Considerations

The layout and replication techniques required to enable graceful degradation
introduce a number of design issues. We highlight the major challenges that
arise.

4.3.1 Semantically Related Blocks. With fault-isolated data placement,
D-GRAID places a logical unit of file system data (e.g., a file) within a fault-
isolated container (e.g., a disk). Which blocks D-GRAID considers “related” thus
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determines which data remains available under failure. The most basic ap-
proach is file-based grouping, in which a single file (including its data blocks,
inode, and indirect pointers) is treated as the logical unit of data; however,
with this technique a user may find that some files in a directory are unavail-
able while others are not, which may cause frustration and confusion. Other
groupings preserve more meaningful portions of the file system volume under
failure. With directory-based grouping, D-GRAID ensures that the files of a di-
rectory are all placed within the same unit of fault containment. Less automated
options are also possible, allowing users to specify arbitrary semantic groupings
which D-GRAID then treats as a unit.

4.3.2 Load Balance. With fault-isolated placement, instead of placing
blocks of a file across many disks, the blocks are isolated within a single home
site. Isolated placement improves availability but introduces the problem of
load balancing, which has both space and time components.

In terms of space, the total utilized space in each disk should be maintained
at roughly the same level, so that, when a fraction of disks fail, roughly the
same fraction of data becomes unavailable. Such balancing can be addressed
in the foreground (i.e., when data is first allocated), the background (i.e., with
migration), or both. Files (or directories) larger than the amount of free space in
a single disk can be handled either with a potentially expensive reorganization
or by reserving large extents of free space on a subset of drives. Files that are
larger than a single disk must be split across disks.

More pressing are the performance problems introduced by fault-isolated
data placement. Previous work has indicated that striping of data across disks
is better for performance even compared to sophisticated file placement algo-
rithms [Ganger et al. 1993; Wolf 1989]. Thus, D-GRAID makes additional copies
of user data that are spread across the drives of the system, a process which
we call access-driven diffusion. Whereas standard D-GRAID data placement
is optimized for availability, access-driven diffusion increases performance for
those files that are frequently accessed. Not surprisingly, access-driven diffu-
sion introduces policy decisions into D-GRAID, including where to place replicas
that are made for performance, which files to replicate, and when to create the
replicas.

4.3.3 Meta-Data Replication Level. The degree of meta-data replication
within D-GRAID determines how resilient it is to excessive failures. Thus,
a high degree of replication is desirable. Unfortunately, meta-data replica-
tion comes with costs, both in terms of space and time. For space overheads,
the tradeoffs are obvious: more replicas imply more resiliency. One difference
between traditional RAID and D-GRAID is that the amount of space needed
for replication of naming and system meta-data is dependent on usage, that is,
a volume with more directories induces a greater amount of overhead. For time
overheads, a higher degree of replication implies lowered write performance
for naming and system meta-data operations. However, others have observed
that there is a lack of update activity at higher levels in the directory tree
[Popek et al. 1981], and lazy update propagation can be employed to reduce
costs [Savage and Wilkes 1996].
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4.4 Fast Recovery

Because the main design goal of D-GRAID is to ensure higher availability, fast
recovery from failure is also critical. The most straightforward optimization
available with D-GRAID is to recover only “live” file system data. Assume
we are restoring data from a live mirror onto a hot spare; in the straightforward
approach, D-GRAID simply scans the source disk for live blocks, examining
appropriate file system structures to determine which blocks to restore.
This process is readily generalized to more complex redundancy encodings.
D-GRAID can potentially prioritize recovery in a number of ways, for example,
by restoring certain “important” files first, where importance could be domain
specific (e.g., files in /etc) or indicated by users in a manner similar to the
hoarding database in Coda [Kistler and Satyanarayanan 1992].

5. EXPLORING GRACEFUL DEGRADATION

In this section, we use simulation and trace analysis to evaluate the potential
effectiveness of graceful degradation and the impact of different semantic
grouping techniques. We first quantify the space overheads of D-GRAID.
Then we demonstrate the ability of D-GRAID to provide continued access to
a proportional fraction of meaningful data after arbitrary number of failures.
More importantly, we then demonstrate how D-GRAID can hide failures from
users by replicating “important” data. The simulations use file system traces
collected from HP Labs [Riedel et al. 2002], and cover 10 days of activity; there
are 250 GB of data spread across 18 logical volumes.

5.1 Space Overheads

We first examine the space overheads due to selective meta-data replication
that are typical with D-GRAID-style redundancy. We calculate the cost of se-
lective meta-data replication as a percentage overhead, measured across all
volumes of the HP trace data when laid out in either the ext2 or the VFAT
file system. When running underneath ext2, selective meta-data replication is
applied to the superblock, inode and data block bitmaps, and the inode and
data blocks of directory files. The blocks replicated in the case of VFAT are
those that comprise the FAT and the directory entries. We calculate the high-
est possible percentage of selective meta-data replication overhead by assuming
no replication of user data; if user data is mirrored, the overheads are cut in
half.

Table I shows that selective meta-data replication induces only a mild space
overhead even under high levels of meta-data redundancy for both the Linux
ext2 and VFAT file systems. Even with 16-way redundancy of meta-data,
only a space overhead of 8% is incurred in the worst case (VFAT with 1-kB
blocks). With increasing block size, while ext2 uses more space (due to internal
fragmentation with larger directory blocks), the overheads actually decrease
with VFAT. This phenomenon is due to the structure of VFAT; for a fixed-sized
file system, as block size grows, the file allocation table itself shrinks, although
the blocks that contain directory data grow.
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Table I. Space Overhead of Selective Meta-Data Replication (The table shows
the space overheads of selective meta-data replication as a percentage of total
user data, as the level of naming and system meta-data replication increases.
In the leftmost column, the percentage space overhead without any meta-data

replication is shown. The next two columns depict the costs of modest
(four-way) and paranoid (16-way) schemes. Each row shows the overhead for a
particular file system, either ext2 or VFAT, with block size set to 1 kB or 4 kB)

Level of Replication

1-way 4-way 16-way
ext21K B 0.15% 0.60% 2.41%
ext24K B 0.43% 1.71% 6.84%
VFAT1K B 0.52% 2.07% 8.29%
VFAT4K B 0.50% 2.01% 8.03%

Fig. 2. Static data availability. The percent of entire directories available is shown under increas-
ing disk failures. The simulated system consists of 32 disks, and is loaded with the 250 GB from the
HP trace. Two different strategies for semantic grouping are shown: file-based and directory-based.
Each line varies the level of replication of namespace meta-data. Each point shows average and
deviation across 30 trials, where each trial randomly varies which disks fail.

5.2 Static Availability

We next examine how D-GRAID availability degrades under failure with two
different semantic grouping strategies. The first strategy is file-based group-
ing, which keeps the information associated with a single file within a failure
boundary (i.e., a disk); the second is directory-based grouping, which allocates
files of a directory together. For this analysis, we place the entire 250 GB of
files and directories from the HP trace onto a simulated 32-disk system, re-
move simulated disks, and measure the percentage of whole directories that
are available. We assume no user data redundancy (i.e., D-GRAID Level 0).

Figure 2 shows the percent of directories available, where a directory is
available if all of its files are accessible (although subdirectories and their files
may not be). From the figure, we observe that graceful degradation works quite
well, with the amount of available data proportional to the number of working
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Fig. 3. Dynamic data availability. The figure plots the percent of processes that run unaffected
under disk failure from one busy hour from the HP trace. The degree of namespace replication is
set aggressively to 32. Each line varies the amount of replication for “popular” directories; one-
way implies that those directories are not replicated, whereas eight-way and 32-way show what
happens with a modest and extreme amount of replication. Means and deviations of 30 trials are
shown.

disks, in contrast to a traditional RAID where a few disk crashes would lead to
complete data unavailability. In fact, availability sometimes degrades slightly
less than expected from a strict linear fall-off; this is due to a slight imbalance
in data placement across disks and within directories. Further, even a modest
level of namespace replication (e.g., four-way) leads to very good data availabil-
ity under failure. We also conclude that with file-based grouping, some files in a
directory are likely to “disappear” under failure, leading to user dissatisfaction.

5.3 Dynamic Availability

Finally, by simulating dynamic availability, we examine how often users or
applications will be oblivious that D-GRAID is operating in degraded mode.
Specifically, we run a portion of the HP trace through a simulator with some
number of failed disks, and record what percent of processes observed no I/O
failure during the run. Through this experiment, we find that namespace
replication is not enough; certain files, which are needed by most processes,
must be replicated as well.

In this experiment, we set the degree of namespace replication to 32 (full
replication), and vary the level of replication of the contents of popular di-
rectories, that is, /usr/bin, /bin, /lib, and a few others. Figure 3 shows
that, without replicating the contents of those directories, the percentage of
processes that run without ill-effect is lower than expected from our results in
Figure 2. However, when those few directories are replicated, the percentage
of processes that run to completion under disk failure is much better than ex-
pected. The reason for this is clear: a substantial number of processes (e.g., who,
ps, etc.) only require that their executable and a few other libraries be available
to run correctly. With popular directory replication, excellent availability under
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failure is possible. Fortunately, almost all of the popular files are in “read-only”
directories; thus, wide-scale replication will not raise write performance or con-
sistency issues. Also, the space overhead due to popular directory replication
is minimal for a reasonably sized file system; for this trace, such directories
account for about 143 MB, less than 0.1% of the total file system size.

6. SEMANTIC KNOWLEDGE

We now move toward the construction of a D-GRAID prototype underneath a
block-based SCSI-like interface. The enabling technology underlying D-GRAID
is semantic knowledge [Sivathanu et al. 2003]. Understanding how the file
system above utilizes the disk enables D-GRAID to implement both graceful
degradation under failure and quick recovery. The exact details of acquiring
semantic knowledge within a disk or RAID system have been described else-
where [Sivathanu et al. 2003]; here we just assume that a basic understanding
of file system layout and structures is available within the storage system.
Specifically, we assume that D-GRAID has static knowledge of file system
layout, including which regions on disk are used for which block types and
the contents of specific block types, for example, the fields of an inode. As
we describe below, D-GRAID builds upon this basic knowledge to infer more
detailed dynamic information about the file system.

6.1 File System Behaviors

In this article, we extend understanding of semantically smart disks by
presenting techniques to handle more general file system behaviors. Previous
work required the file system to be mounted synchronously when implement-
ing complex functionality within the disk; we relax that requirement. We now
describe the set of typical file system properties that are important from the
viewpoint of a semantically smart disk. We believe that many, if not all, modern
file systems adhere to these behaviors.

First, blocks in a file system can be dynamically typed, that is, the file system
can locate different types of blocks at the same physical location on disk over the
lifetime of the file system. For example, in a UNIX file system, a block in the data
region can be a user-data block, an indirect-pointer block, or a directory-data
block. Second, a file system can delay updates to disk; delayed writes at the file
system facilitate batching of small writes in memory and suppressing of writes
to files that are subsequently deleted. Third, as a consequence of delayed writes,
the order in which the file system actually writes data to disk can be arbitrary.
Although certain file systems order writes carefully [Ganger et al. 2000], to
remain general, we do not make any such assumptions on the ordering. Note
that these properties are identified for practical reasons: the Linux ext2 file
system exhibits all the aforementioned behaviors.

6.2 Accuracy of Information

Our assumptions about general file system behavior imply that the storage
system cannot accurately classify the type of each block. Block classification is
straightforward when the type of the block depends upon its location on disk.
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For example, in the Berkeley Fast File System (FFS) [McKusick et al. 1984],
the regions of disk that store inodes are fixed at file system creation; thus, any
traffic to those regions is known to contain inodes.

However, type information is sometimes spread across multiple blocks. For
example, a block filled with indirect pointers can only be identified as such by
observing the corresponding inode, specifically that the inode’s indirect pointer
field contains the address of the given indirect block. More formally, to identify
an indirect block B, the semantic disk must look for the inode that has block B
in its indirect pointer field. Thus, when the relevant inode block IB is written
to disk, the disk infers that B is an indirect block, and when it later observes
block B written, it uses this information to classify and treat the block as an
indirect block. However, due to the delayed write and reordering behavior of
the file system, it is possible that in the time between the disk writes of IB and
B, block B was freed from the original inode and was reallocated to another
inode with a different type, that is, as a normal data block. The disk does not
know this since the operations took place in memory and were not reflected to
disk. Thus, the inference made by the semantic disk on the block type could be
wrong due to the inherent staleness of the information tracked. Implementing a
correct system despite potentially inaccurate inferences is one of the challenges
we address in this article.

7. IMPLEMENTATION: MAKING D-GRAID

We now discuss the prototype implementation of D-GRAID known as
Alexander. Alexander uses fault-isolated data placement and selective meta-
data replication to provide graceful degradation under failure, and employs
access-driven diffusion to correct the performance problems introduced by
availability-oriented layout. Currently, Alexander replicates namespace and
system meta-data to an administrator-controlled value (for example, 4 or 8),
and stores user data in either a RAID-0 or RAID-1 manner; we refer to those
systems as D-GRAID Levels 0 and 1, respectively. We are currently pursuing
a D-GRAID Level 5 implementation, which uses log-structuring [Rosenblum
and Ousterhout 1992] to avoid the small-write problem that is exacerbated by
fault-isolated data placement.

In this section, we present the implementation of graceful degradation and
live-block recovery, with most of the complexity (and hence discussion) centered
around graceful degradation. For simplicity of exposition, we focus on the con-
struction of Alexander underneath the Linux ext2 file system. At the end of the
section, we discuss differences in our implementation underneath VFAT.

7.1 Graceful Degradation

We now present an overview of the basic operation of graceful degradation
within Alexander. We first describe the simple cases before proceeding to the
more intricate aspects of the implementation.

7.1.1 The Indirection Map. Similarly to any other SCSI-based RAID sys-
tem, Alexander presents host systems with a linear logical block address space.
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Internally, Alexander must place blocks so as to facilitate graceful degradation.
Thus, to control placement, Alexander introduces a transparent level of indirec-
tion between the logical array used by the file system and physical placement
onto the disks via the indirection map (imap); similar structures have been used
by others [English and Stepanov 1992; Wang et al. 1999; Wilkes et al. 1996].
Unlike most of these other systems, this imap only maps every live logical file
system block to its replica list, that is, all its physical locations. All unmapped
blocks are considered free and are candidates for use by D-GRAID.

7.1.2 Reads. Handling block read requests at the D-GRAID level is
straightforward. Given the logical address of the block, Alexander looks in the
imap to find the replica list and issues the read request to one of its replicas.
The choice of which replica to read from can be based on various criteria [Wilkes
et al. 1996]; currently Alexander uses a randomized selection. However, in the
presence of access-driven diffusion, the diffused copy is always given preference
over the fault-isolated copy.

7.1.3 Writes. In contrast to reads, write requests are more complex to
handle. Exactly how Alexander handles the write request depends on the type
of the block that is written. Figure 4 depicts some common cases.

If the block is a static meta-data block (e.g., an inode or a bitmap block) that
is as yet unmapped, Alexander allocates a physical block in each of the disks
where a replica should reside, and writes to all of the copies. Note that Alexander
can easily detect static block types such as inode and bitmap blocks underneath
many UNIX file systems simply by observing the logical block address.

When an inode block is written, D-GRAID scans the block for newly added
inodes; to understand which inodes are new, D-GRAID compares the newly
written block with its old copy, a process referred to as block differencing. For
every new inode, D-GRAID selects a home site to lay out blocks belonging to
the inode, and records it in the inode-to-home-site hashtable. This selection of
home site is done to balance space allocation across physical disks. Currently,
D-GRAID uses a greedy approach; it selects the home site with the most free
space.

If the write is to an unmapped block in the data region (i.e., a data block,
an indirect block, or a directory block), the allocation cannot be done until
D-GRAID knows which file the block belongs to, and thus, its actual home site.
In such a case, D-GRAID places the block in a deferred block list and does not
write it to disk until it learns which file the block is associated with. Since
a crash before the inode write would make the block inaccessible by the file
system anyway, the in-memory deferred block list is not a reliability concern.

D-GRAID also looks for newly added block pointers when an inode (or indi-
rect) block is written. If the newly added block pointer refers to an unmapped
block, D-GRAID adds a new entry in the imap, mapping the logical block to
a physical block in the home site assigned to the corresponding inode. If any
newly added pointer refers to a block in the deferred list, D-GRAID removes
the block from the deferred list and issues the write to the appropriate physical
block(s). Thus, writes are deferred only for blocks that are written before the
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Fig. 4. Anatomy of a write. The parts of this figure depicts the control flow during a sequence of
write operations in Alexander. In the first figure, an inode block is written; Alexander observes
the contents of the inode block and identifies the newly added inode. It then selects a home site for
the inode and creates physical mappings for the blocks of the inode, in that home site. Also, the
inode block is aggressively replicated. In the next part, Alexander observes a write to a data block
from the same inode; since it is already mapped, the write goes directly to the physical block. In
the third part Alexander gets a write to an unmapped data block; it therefore defers writing the
block, and when Alexander finally observes the corresponding inode (in the fourth part), it creates
the relevant mappings, observes that one of its blocks is deferred, and therefore issues the deferred
write to the relevant home site.

corresponding owner inode blocks. If the inode is written first, subsequent data
writes will be already mapped and sent to disk directly.

Another block type of interest that D-GRAID looks for is the data bitmap
block. Whenever a data bitmap block is written, D-GRAID scans through it
looking for newly freed data blocks. For every such freed block, D-GRAID
removes the logical-to-physical mapping if one exists and frees the corre-
sponding physical blocks. Further, if a block that is currently in the deferred
list is freed, the block is removed from the deferred list and the write is
suppressed; thus, data blocks that are written by the file system but deleted
before their corresponding inode is written to disk do not generate extra disk
traffic, similarly to optimizations found in many file systems [Rosenblum and
Ousterhout 1992]. Removing such blocks from the deferred list is important
because, in the case of freed blocks, Alexander may never observe an owning
inode. Thus, every deferred block stays in the deferred list for a bounded
amount of time, until either an inode owning the block is written, or a bitmap
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block indicating deletion of the block is written. The exact duration depends
on the delayed write interval of the file system.

7.1.4 Block Reuse. We now discuss a few of the more intricate issues in-
volved with implementing graceful degradation. The first such issue is block
reuse. As existing files are deleted or truncated and new files are created, blocks
that were once part of one file may be reallocated to some other file. Since
D-GRAID needs to place blocks onto the correct home site, this reuse of blocks
needs to be detected and acted upon. D-GRAID handles block reuse in the follow-
ing manner: whenever an inode block or an indirect block is written, D-GRAID
examines each valid block pointer to see if its physical block mapping matches
the home site allocated for the corresponding inode. If not, D-GRAID changes
the mapping for the block to the correct home site. However, it is possible that
a write to this block (which was made in the context of the new file) went to
the old home site, and hence needs to be copied from its old physical location to
the new location. Blocks that must be copied are added to a pending copies list;
a background thread copies the blocks to their new homesite and frees the old
physical locations when the copy completes.

7.1.5 Dealing with Imperfection. Another difficulty that arises in seman-
tically smart disks underneath typical file systems is that exact knowledge of
the type of a dynamically typed block is impossible to obtain, as discussed in
Section 6. Thus, Alexander must handle incorrect type classification for data
blocks (i.e., file data, directory, and indirect blocks).

For example, D-GRAID must understand the contents of indirect blocks,
because it uses the pointers therein to place a file’s blocks onto its home site.
However, due to lack of perfect knowledge, the fault-isolated placement of a
file might be compromised (note that data loss or corruption is not an issue).
Our goal in dealing with imperfection is thus to conservatively avoid it when
possible, and eventually detect and handle it in all other cases.

Specifically, whenever a block construed to be an indirect block is written,
we assume it is a valid indirect block. Thus, for every live pointer in the block,
D-GRAID must take some action. There are two cases to consider. In the first
case, a pointer could refer to an unmapped logical block. As mentioned before,
D-GRAID then creates a new mapping in the home site corresponding to the
inode to which the indirect block belongs. If this indirect block (and pointer) is
valid, this mapping is the correct mapping. If this indirect block is misclassified
(and consequently, the pointer invalid), D-GRAID detects that the block is free
when it observes the data bitmap write, at which point the mapping is removed.
If the block is allocated to a file before the bitmap is written, D-GRAID detects
the reallocation during the inode write corresponding to the new file, creates a
new mapping, and copies the data contents to the new home site (as discussed
above).

In the second case, a potentially corrupt block pointer could point to an
already mapped logical block. As discussed above, this type of block reuse re-
sults in a new mapping and copy of the block contents to the new home site.
If this indirect block (and hence, the pointer) is valid, this new mapping is the
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correct one for the block. If instead the indirect block is a misclassification,
Alexander wrongly copies over the data to the new home site. Note that the
data is still accessible; however, the original file to which the block belongs,
now has one of its blocks in the incorrect home site. Fortunately, this situation
is transient, because once the inode of the file is written, D-GRAID detects this
as a reallocation and creates a new mapping back to the original home site,
thereby restoring its correct mapping. Files which are never accessed again are
properly laid out by an infrequent sweep of inodes that looks for rare cases of
improper layout.

Thus, without any optimizations, D-GRAID will eventually move data to the
correct home site, thus preserving graceful degradation. However, to reduce the
number of times such a misclassification occurs, Alexander makes an assump-
tion about the contents of indirect blocks, specifically that they contain some
number of valid unique pointers, or null pointers. Alexander can leverage this
assumption to greatly reduce the number of misclassifications, by performing
an integrity check on each supposed indirect block. The integrity check, which
is reminiscent of work on conservative garbage collection [Boehm and Weiser
1988], returns true if all the “pointers” (4-byte words in the block) point to valid
data addresses within the volume and all nonnull pointers are unique. Clearly,
the set of blocks that pass this integrity check could still be corrupt if the data
contents happened to exactly evade our conditions. However, a test run across
the data blocks of our local file system indicates that only a small fraction of
data blocks (less than 0.1%) would pass the test; only those blocks that pass
the test and are reallocated from a file data block to an indirect block would be
misclassified.1

7.1.6 Access-Driven Diffusion. Another issue that D-GRAID must address
is performance. Fault-isolated data placement improves availability but at the
cost of performance. Data accesses to blocks of a large file, or, with directory-
based grouping, to files within the same directory, are no longer parallelized.
To improve performance, Alexander performs access-driven diffusion, monitor-
ing block accesses to determine which block ranges are “hot,” and then “dif-
fusing” those blocks via replication across the disks of the system to enhance
parallelism.

Access-driven diffusion can be achieved at both the logical and physical
levels of a disk volume. In the logical approach, access to individual files is moni-
tored, and those considered hot are diffused. However, per-file replication fails to
capture sequentiality across multiple small files, for example, those in a single
directory. Therefore we instead pursue a physical approach, in which Alexander
replicates segments of the logical address space across the disks of the volume.
Since file systems are good at allocating contiguous logical blocks for a single
file, or to files in the same directory, replicating logical segments is likely to
identify and exploit most common access patterns.

1By being sensitive to data contents, semantically smart disks place a new requirement on file
system traces to include user data blocks. However, the privacy concerns that such a campaign
would encounter may be too difficult to overcome.
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To implement access-driven diffusion, Alexander divides the logical ad-
dress space into multiple segments, and, during normal operation, gathers
information on the utilization of each segment. A background thread selects
logical segments that remain “hot” for a certain number of consecutive epochs
and diffuses a copy across the drives of the system. Subsequent reads and
writes first go to these replicas, with background updates sent to the original
blocks. The imap entry for the block indicates which copy is up to date. Clearly,
the policy for deciding which segments to diffuse is quite simplistic in our
prototype implementation. A more detailed analysis of the policy space for
access-driven diffusion is left for future work.

The amount of disk space to allocate to performance-oriented replicas
presents an important policy decision. The initial policy that Alexander im-
plements is to reserve a certain minimum amount of space (specified by the
system administrator) for these replicas, and then opportunistically use the
free space available in the array for additional replication. This approach is
similar to that used by AutoRAID for mirrored data [Wilkes et al. 1996], except
that AutoRAID cannot identify data that is considered “dead” by the file sys-
tem once written; in contrast, D-GRAID can use semantic knowledge to identify
which blocks are free.

7.2 Live-Block Recovery

To implement live-block recovery, D-GRAID must understand which blocks are
live. This knowledge must be correct in that no block that is live is considered
dead, as that would lead to data loss. Alexander tracks this information by
observing bitmap and data block traffic. Bitmap blocks tell us the liveness state
of the file system that has been reflected to disk. However, due to reordering
and delayed updates, it is not uncommon to observe a write to a data block
whose corresponding bit has not yet been set in the data bitmap. To account for
this, D-GRAID maintains a duplicate copy of all bitmap blocks, and whenever
it sees a write to a block, sets the corresponding bit in the local copy of the
bitmap. The duplicate copy is synchronized with the file system copy when the
data bitmap block is written by the file system. This conservative bitmap table
thus reflects a superset of all live blocks in the file system, and can be used to
perform live-block recovery. Note that we assume the preallocation state of the
bitmap will not be written to disk after a subsequent allocation; the locking in
Linux and other modern systems already ensures this. Though this technique
guarantees that a live block is never classified as dead, it is possible for the
disk to consider a block live far longer than it actually is. This situation would
arise, for example, if the file system writes deleted blocks to disk.

To implement live-block recovery, Alexander simply uses the conservative
bitmap table to build a list of blocks which need to be restored. Alexander then
proceeds through the list and copies all live data onto the hot spare.

7.3 Other Aspects of Alexander

There are a number of other aspects of the implementation that are required
for a successful prototype. In this subsection, we briefly describe some of the
key aspects.
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7.3.1 Physical Block Allocation. The logical array of blocks exported by
SCSI has the property that block numbers that are contiguous in the logi-
cal address space are mapped to contiguous physical locations on disk. This
property empowers file systems to place data contiguously on disk simply by
allocating contiguous logical blocks to the data. In traditional RAID, this prop-
erty is straightforward to preserve. Because physical blocks are assigned in a
round-robin fashion across disks, the contiguity guarantees continue to hold;
the physical block to assign for a given logical block is a simple arithmetic
calculation on the logical block number.

However in D-GRAID, deciding on the physical block to allocate for a newly
written logical block is not straightforward; the decision depends on the file to
which the logical block belongs, and its logical offset within the file. Because
of fault-isolated placement, a set of contiguous logical blocks (e.g., those that
belong to a single file) may all map to contiguous physical blocks on the same
disk; thus, if a logical block L within that set is mapped to physical block P ,
block L + k within the same set should be mapped to physical block P + k
in order to preserve contiguity expectations. However, at a larger granular-
ity, since D-GRAID balances space utilization across files, the allocation policy
should be different; for large values of k, block L + k should map to physical
block P + (k/N ) where N is the number of disks in the array. The choice of
which of these policies to use requires estimates of file size which are quite
dynamic.

Our prototype addresses this issue with a simple technique of space reser-
vations. Alexander utilizes its knowledge of inodes and indirect blocks to get
a priori estimates of the exact size of the entire file (or a large segment of the
file, as in the case of indirect block). When it observes a new inode written
that indicates a file of size b blocks, it reserves b contiguous blocks in the home
site assigned for that file, so that when the actual logical blocks are written
subsequently, the reserved space can be used. Note that since blocks are de-
ferred until their inodes (or indirect blocks) are observed, a write to a new
logical block will always have a prior reservation. Since inodes and indirect
blocks are written only periodically (e.g., once every 5 s), the size information
obtained from those writes is quite stable.

7.3.2 Just-in-Time Commit. Space reservations depend on the size infor-
mation extracted from inode and indirect blocks. However, given that indirect
block detection is fundamentally inaccurate, a misclassified indirect block could
result in spurious reservations that hold up physical space. To prevent this,
Alexander employs lazy allocation, where actual physical blocks are commit-
ted only when the corresponding logical block is written. The reservation still
happens a priori, but these reservations are viewed as soft and the space is
reclaimed if required.

7.3.3 Interaction of Deferred Writes with sync. Alexander defers disk
writes of logical blocks for which it has not observed an owning inode. Such
arbitrary deferral could potentially conflict with application-level expectations
after a sync operation is issued; when a sync returns, the application expects
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all data to be on disk. To preserve these semantics, D-GRAID handles inode and
indirect block writes specially. D-GRAID does not return success on a write to
an inode or indirect block until all deferred writes to blocks pointed to by that
inode (or indirect) block have actually reached disk. Since the sync operation
will not complete until the inode block write returns, all deferred writes are
guaranteed to be complete before sync returns. The same argument extends
for fsync, which will not return until all writes pertaining to the particular
file complete. However, one weakness of this approach is that if the application
performs an equivalent of fdatasync (i.e., which flushes only the data blocks to
disk, and not metadata), the above technique would not preserve the expected
semantics.

7.3.4 Inconsistent Fault Behavior of Linux ext2. One interesting issue that
required a change from our design was the behavior of Linux ext2 under partial
disk failure. When a process tries to read a data block that is unavailable,
ext2 issues the read and returns an I/O failure to the process. When the block
becomes available again (e.g., after recovery) and a process issues a read to it,
ext2 will again issue the read, and everything works as expected. However, if a
process tries to open a file whose inode is unavailable, ext2 marks the inode as
“suspicious” and will never again issue an I/O request to the inode block, even
if Alexander has recovered the block. To avoid a change to the file system and
retain the ability to recover failed inodes, Alexander replicates inode blocks as
it does namespace meta-data, instead of collocating them with the data blocks
of a file.

7.3.5 Persistence of Data Structures. There are a number of structures that
Alexander maintains, such as the imap, that must be reliably committed to disk
and preferably, for good performance, buffered in a small amount of nonvolatile
RAM. Note that since the NVRAM only needs to serve as a cache of actively
accessed entries in these data structures, its space requirements can be kept
at an acceptable level. Though our current prototype simply stores these data
structures in memory, a complete implementation would require them to be
backed persistently.

7.3.6 Popular Directory Replication. The most important component that
is missing from the Alexander prototype is the decision on which “popular”
(read-only) directories such as /usr/bin to replicate widely, and when to do so.
Although Alexander contains the proper mechanisms to perform such replica-
tion, the policy space remains unexplored. However, our initial experience indi-
cates that a simple approach based on monitoring frequency of inode access time
updates may likely be effective. An alternative approach allows administrators
to specify directories that should be treated in this manner.

7.4 Alexander the FAT

Overall, we were surprised by the many similarities we found in implementing
D-GRAID underneath ext2 and VFAT. For example, VFAT also overloads data
blocks, using them as either user data blocks or directories; hence Alexander
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must defer classification of those blocks in a manner similar to the ext2
implementation. As can be expected, the implementation of most of the basic
mechanisms in D-GRAID such as physical block allocation, allocation of home
sites to files, and tracking replicas of critical blocks is shared across both
versions of D-GRAID.

However, there were a few instances where the VFAT implementation of
D-GRAID differed in interesting ways from the ext2 version. For example, the
fact that all pointers of a file are located in the file allocation table made a
number of aspects of D-GRAID much simpler to implement; in VFAT, there are
no indirect pointers to worry about. When a new copy of a FAT block is written,
the new version can be directly compared with the previous contents of the block
to get accurate information on the blocks newly allocated or deleted. We also
ran across the occasional odd behavior in the Linux implementation of VFAT.
For example, Linux would write to disk certain blocks that were allocated but
then freed, avoiding an obvious and common file system optimization. Because
of this behavior of VFAT, our estimate of the set of live blocks will be a strict
superset of the blocks that are actually live. Although this was more indicative
of the untuned nature of the Linux implementation, it served as yet another
indicator of how semantic disks must be wary of any assumptions they make
about file system behavior.

8. EVALUATING ALEXANDER

We now present a performance evaluation of Alexander. We focus primarily on
the Linux ext2 variant, but also include some baseline measurements of the
VFAT system. We wish to answer the following questions:

—Does Alexander work correctly?
—What time overheads are introduced?
—How effective is access-driven diffusion?
—How fast is live-block recovery?
—What overall benefits can we expect from D-GRAID?
—How complex is the implementation?

8.1 Platform

The Alexander prototype is constructed as a software RAID driver in the
Linux 2.2 kernel. File systems mount the pseudodevice and use it as if it were
a normal disk. Our environment is excellent for understanding many of the
issues that would be involved in the construction of a “real” hardware D-GRAID
system; however, it is also limited in the following ways. First, and most impor-
tantly, Alexander runs on the same system as the host OS and applications, and
thus there is interference due to competition for CPU and memory resources.
Second, the performance characteristics of the microprocessor and memory sys-
tem may be different than what is found within an actual RAID system. In the
following experiments, we utilize a 550-MHz Pentium III and four 10K-rev/min
IBM disks.
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Fig. 5. Errors in placement. The figure plots the number of blocks wrongly laid out by Alexander
over time, while running a busy hour of the HP Trace. The experiment was run over four disks,
and the total number of blocks accessed in the trace was 418,000.

8.2 Does Alexander Work Correctly?

Alexander is more complex than simple RAID systems. To ensure that
Alexander operates correctly, we have put the system through numerous stress
tests, moving large amounts of data in and out of the system without prob-
lems. We have also extensively tested the corner cases of the system, pushing
it into situations that are difficult to handle and making sure that the sys-
tem degrades gracefully and recovers as expected. For example, we repeatedly
crafted microbenchmarks to stress the mechanisms for detecting block reuse
and for handling imperfect information about dynamically typed blocks. We
have also constructed benchmarks that write user data blocks to disk that con-
tain “worst-case” data, that is, data that appears to be valid directory entries or
indirect pointers. In all cases, Alexander was able to detect which blocks were
indirect blocks and move files and directories into their proper fault-isolated
locations.

To verify that Alexander places blocks on the appropriate disk, we instru-
mented the file system to log block allocations. In addition, Alexander logs
events of interest such as assignment of a home site for an inode, creation of
a new mapping for a logical block, remapping of blocks to a different home
site, and receipt of logical writes from the file system. To evaluate the behavior
of Alexander on a certain workload, we ran the workload on Alexander, and
obtained the time-ordered log of events that occurred at the file system and
Alexander. We then processed this log off-line and looked for the number of
blocks wrongly laid out at any given time.

We ran this test on a few hours of the HP Traces, and found that, in many of
the hours we examined, the number of blocks that were misplaced even tem-
porarily was quite low, often fewer than 10 blocks. We report detailed results for
one such hour of the trace where we observed the greatest number of misplaced
blocks, among the hours we examined. Figure 5 shows the results.
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Fig. 6. Time overheads. The figure plots the time overheads observed on D-GRAID Level 0 versus
RAID Level 0 across a series of microbenchmarks. The tests were run on one and four disk systems.
In each experiment, 3000 operations were enacted (e.g., 3000 file creations), with each operation
on a 64-kB file.

The figure has two parts. The bottom part shows the normal operation
of Alexander, with the capability to react to block reuse by remapping (and
copying over) blocks to the correct homesite. As the figure shows, Alexander
is able to quickly detect wrongly placed blocks and remap them appropri-
ately. Further, the number of such blocks misplaced temporarily is only about
1% of the total number of blocks accessed in the trace. The top part of the
figure shows the number of misplaced blocks for the same experiment, but
assuming that the remapping did not occur. As can be expected, those delin-
quent blocks remain misplaced. The dip toward the end of the trace occurs
because some of the misplaced blocks were later assigned to a file in that
home site itself (after a preceding delete), accidentally correcting the original
misplacement.

8.3 What Time Overheads Are Introduced?

We now explore the time overheads that arise due to semantic inference. This
primarily occurs when new blocks are written to the file system, such as during
file creation. Figure 6 shows the performance of Alexander under a simple mi-
crobenchmark. As can be seen, allocating writes are slower due to the extra
CPU cost involved in tracking fault-isolated placement. Reads and overwrites
perform comparably with RAID-0. The high unlink times of D-GRAID on FAT
is because FAT writes out data pertaining to deleted files, which have to be
processed by D-GRAID as if it were newly allocated data. Given that the im-
plementation is untuned and the infrastructure suffers from CPU and memory
contention with the host, we believe that these are worst-case estimates of the
overheads.

Another cost of D-GRAID that we explored was the overhead of meta-
data replication. For this purpose, we chose Postmark [Katcher 1997], a
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Table II. Performance on Postmark. (The table compares the performance
of D-GRAID Level 0 with RAID-0 on the Postmark benchmark. Each row
marked D-GRAID indicates a specific level of metadata replication. The

first column reports the benchmark run-time and the second column shows
the number of disk writes incurred. The third column shows the number of
disk writes that were to metadata blocks, and the fourth column indicates
the number of unique metadata blocks that are written. The experiment

was run over four disks)

Blocks written

Run-time(s) Total Meta-data Unique
RAID-0 69.25 101,297 — —
D-GRAID1 61.57 93,981 5962 1599
D-GRAID2 66.50 99,416 9954 3198
D-GRAID3 73.50 101,559 16,976 4797
D-GRAID4 78.79 113,222 23,646 6396

meta-data-intensive file system benchmark. We slightly modified Postmark to
perform a sync before the deletion phase, so that all meta-data writes were
accounted for, making it a pessimistic evaluation of the costs. Table II shows
the performance of Alexander under various degrees of meta-data replication.
As can be seen from the table, synchronous replication of meta-data blocks had
a significant effect on performance for meta-data-intensive workloads (the file
sizes in Postmark range from 512 bytes to 10 kB). Note that Alexander per-
formed better than default RAID-0 for lower degrees of replication because of
better physical block allocation; since ext2 looks for a contiguous free chunk of
eight blocks to allocate a new file, its layout is suboptimal for small files, since
it does not pack them together.

The table also shows the number of disk writes incurred during the course
of the benchmark. The percentage of extra disk writes roughly accounts for the
difference in performance between different replication levels, and these extra
writes were mostly to meta-data blocks. However, when we counted the number
of unique physical writes to meta-data blocks, the absolute difference between
different replication levels was small. This suggests that lazy propagation of
updates to meta-data block replicas, perhaps during idle time or using free-
block scheduling, can greatly reduce the performance difference, at the cost of
added complexity. For example, with lazy update propagation (i.e., if the repli-
cas were updated only once), D-GRAID4 would incur only about 4% extra disk
writes.

We also played back a portion of the HP traces for 20 min against a stan-
dard RAID-0 system and D-GRAID over four disks. The playback engine issued
requests at the times specified in the trace, with an optional speedup factor;
a speedup of 2× implies the idle time between requests was reduced by a fac-
tor of 2. With speedup factors of 1× and 2×, D-GRAID delivered the same
per-second operation throughput as RAID-0, utilizing idle time in the trace to
hide its extra CPU overhead. However, with a scaling factor of 3×, the operation
throughput lagged slightly behind, with D-GRAID showing a slowdown of up
to 19.2% during the first one-third of the trace execution, after which it caught
up due to idle time.
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Fig. 7. Access-driven diffusion. The figure presents the performance of D-GRAID Level 0 and
standard RAID-0 under a sequential workload. In each experiment, a number of files of size x
are read sequentially, with the total volume of data fixed at 64 MB. D-GRAID performs better for
smaller files due to better physical block layout.

8.4 How Effective Is Access-Driven Diffusion?

We now show the benefits of access-driven diffusion. In each trial of this ex-
periment, we performed a set of sequential file reads, over files of increasing
size. We compared standard RAID-0 striping to D-GRAID with and without
access-driven diffusion. Figure 7 shows the results of the experiment.

As we can see from the figure, without access-driven diffusion, sequential
access to larger files ran at the rate of a single disk in the system, and thus
did not benefit from the potential parallelism. With access-driven diffusion,
performance was much improved, as reads were directed to the diffused copies
across all of the disks in the system. Note that, in the latter case, we arranged
for the files to be already diffused before the start of the experiment, by reading
them a certain threshold number of times. Investigating more sophisticated
policies for when to initiate access-driven diffusion is left for future work.

8.5 How Fast Is Live-Block Recovery?

We now explore the potential improvement seen with live-block recovery.
Figure 8 presents the recovery time of D-GRAID while varying the amount
of live file system data.

The figure plots two lines: worst-case and best-case live-block recovery. In
the worst case, live data is spread throughout the disk, whereas in the best
case it is compacted into a single portion of the volume. From the graph,
we can see that live-block recovery was successful in reducing recovery time,
particularly when a disk was less than half full. Note also the difference be-
tween worst-case and best-case times; the difference suggests that periodic disk
reorganization [Ruemmler and Wilkes 1991] could be used to speed recovery,
by moving all live data to a localized portion.
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Fig. 8. Live-block recovery. The figure shows the time to recover a failed disk onto a hot spare in a
D-GRAID Level 1 (mirrored) system using live-block recovery. Two lines for D-GRAID are plotted:
in the worst case, live data is spread across the entire 300-MB volume, whereas in the best case
it is compacted into the smallest contiguous space possible. Also plotted is the recovery time of an
idealized RAID Level 1.

Fig. 9. Availability profile. The figure shows the operation of D-GRAID Level 1 and RAID 10 under
failures. The 3-GB array consisted of four data disks and one hot spare. After the first failure, data
was reconstructed onto the hot spare, D-GRAID recovering much faster than RAID 10. When two
more failures occur, RAID 10 loses almost all files, while D-GRAID continued to serve 50% of its
files. The workload consisted of read-modify-writes of 32-kB files randomly picked froma 1.3-GB
working set.

8.6 What Overall Benefits Can We Expect from D-GRAID?

We next demonstrate the improved availability of Alexander under failures.
Figure 9 shows the availability and performance observed by a process
randomly accessing whole 32-kB files, running above D-GRAID and RAID-10.
To ensure a fair comparison, both D-GRAID and RAID-10 limited their
reconstruction rate to 10 MB/s.
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Table III. Code Size for Alexander Implementation (The
number of lines of code needed to implement Alexander is
shown. The first column shows the number of semicolons
and the second column shows the total number of lines,

including white spaces and comments.)

Semicolons Total
D-GRAID generic

Setup + fault-isolated placement 1726 3557
Physical block allocation 322 678
Access driven diffusion 108 238
Mirroring + live block recovery 248 511
Internal memory management 182 406
Hashtable/Avl tree 724 1706

File system specific
SDS Inferencing: ext2 1252 2836
SDS Inferencing: VFAT 630 1132

Total 5192 11604

As the figure shows, reconstruction of the 3-GB volume with 1.3-GB live data
completed much faster (68 s) in D-GRAID compared with RAID-10 (160 s). Also,
when the extra second failure occured, the availability of RAID-10 dropped to
near zero, while D-GRAID continued with about 50 % availability. Surprisingly,
after restore, RAID-10 still failed on certain files; this is because Linux does not
retry inode blocks once they fail. A remount is required before RAID-10 returns
to full availability.

8.7 How Complex Is the Implementation?

We briefly quantify the implementation complexity of Alexander. Table III
shows the number of C statements required to implement the different com-
ponents of Alexander. From the table, we can see that the core file system
inferencing module for ext2 requires only about 1200 lines of code (counted
with number of semicolons), and the core mechanisms of D-GRAID contribute
to about 2000 lines of code. The rest is spent on a hash table, AVL tree, and
wrappers for memory management. Compared to the tens of thousands of lines
of code already comprising modern array firmware, we believe that the added
complexity of D-GRAID is not that significant. Being an academic prototype,
these complexity numbers could be a slight underestimate of what would be
required for a production quality implementation; thus, this analysis is only
intended to be an approximate estimate.

9. D-GRAID LEVELS

Much of the discussion so far has focused on implementing D-GRAID over a
storage system with no redundancy for user data (i.e., RAID-0), or over a mir-
rored storage system (i.e., RAID-10). However, as mentioned before, the layout
mechanisms in D-GRAID are orthogonal to the underlying redundancy scheme.
In this section, we formalize the different levels of D-GRAID, corresponding to
the popular traditional RAID levels. We also present certain custom policies for
each D-GRAID level that are tailored to the underlying redundancy mechanism.
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Note that, in contrast to traditional RAID levels, the levels of D-GRAID differ
only in the type of redundancy for normal user data; system meta-data is always
maintained in RAID-1 with a certain configured replication degree.

9.1 D-GRAID-0: No Redundancy

This is the simplest D-GRAID level where no redundancy mechanism is
employed for normal user data. Thus, even a single disk failure results in data
loss. In contrast to traditional RAID-0 where a single disk failure results in
complete data loss, D-GRAID-0 ensures proportional data availability under
failure. Figure 10(a) shows the D-GRAID-0 configuration.

Because of the absence of redundancy for normal data, the additional stor-
age required for access-driven diffusion in D-GRAID-0 needs to come from a
separate performance reserve, as described in Section 7. This reserve can be
fixed to be a certain percentage (e.g., 10% of the storage volume size) or can
be tunable by the administrator. Tuning this parameter provides the admin-
istrator control over the tradeoff between performance and storage efficiency.
One issue with changing the size of the performance reserve dynamically is
that file systems may not be equipped to deal with a variable volume size. This
limitation can be addressed by a simple technique: the administrator creates
a file in the file system with a certain reserved name (e.g., /.diffuse). The size
of this file implicitly conveys to D-GRAID the size of its performance reserve.
Since the file system will not use the blocks assigned to this reserved file to any
other file, D-GRAID is free to use this storage space. When the file system runs
short of storage, the administrator can prune the size of this special file, thus
dynamically reducing the size of the performance reserve.

9.2 D-GRAID-10: Mirroring

A mirrored D-GRAID system stripes data across multiple mirrored pairs,
similar to RAID-10. Note that D-GRAID is not meaningful in a storage system
comprised of a single mirrored pair (i.e., RAID-1) because such a system
fundamentally has no partial failure mode. The access-driven diffusion policy
in D-GRAID-10 is quite similar to D-GRAID-0 where a dynamic performance
reserve is used to hold diffused copies; Figure 10(b) depicts this configuration.
Note that the diffused copies are not mirrored; thus D-GRAID-10 requires only
half the percentage of space that D-GRAID-0 requires, in order to achieve the
same level of diffusion.

A slight variant of D-GRAID-10 can make access-driven diffusion much more
effective, though at the cost of a slight degradation in reliability. Instead of the
disks in a mirrored pair being physical mirrors as discussed above, we could
employ logical mirroring, where we just impose that each logical disk block has
two copies in two different disks. With such a relaxed definition, D-GRAID could
store one copy of a file in the traditional striped fashion, while the other copy
of the file is stored in fault-isolated fashion. Figure 10(c) depicts this configu-
ration. Each file has a fault-isolated copy laid out in a single disk, and another
copy striped across all the other disks, so that a single disk failure will not
result in any data loss. Such logical mirroring of data achieves the benefits of
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Fig. 10. D-GRAID levels. The figures depict the data layout of D-GRAID under various redundancy
schemes. Each style of shading represents a different file. In the D-GRAID-5 figure, the color
of shading indicates a physical RAID-5 stripe. The diffusion segments and the striped region in
D-GRAID-1(Logical) are indicated as separate regions of the disk for simplicity; in practice, they
will be interleaved with the fault-isolated copies.

ACM Transactions on Storage, Vol. 1, No. 2, May 2005.



Improving Storage System Availability With D-GRAID • 165

fault-isolated placement with almost no impact on performance, because par-
allelism is still available out of the striped copies. Note that in such a scenario
no extra space is required for access-driven diffusion.

Although the above variant of D-GRAID-10 improves performance by more
efficient access-driven diffusion, it reduces reliability compared to a traditional
D-GRAID-10. In a traditional D-GRAID-10 (i.e., physical mirroring), after a
single disk failure, only the failure of its mirror disk will lead to loss of data.
However, in logical mirroring, the second failure always results in loss of data,
though proportionally, irrespective of which disk incurred the failure.

9.3 D-GRAID-5: Parity

D-GRAID-5 is the counterpart of traditional RAID-5; redundancy for user
data is maintained in the form of parity encoding on a small number of disks
(usually 1), resulting in better space efficiency. While it may appear that the fine
grained block-level striping that is fundamental to RAID-5 would be in conflict
with the fault isolated placement in D-GRAID, these techniques are quite or-
thogonal. The fine-grained striping required for RAID-5 occurs at the physical
level, across actual physical disk blocks, while fault-isolated placement is just a
logical assignment of files onto those physical blocks. Thus, D-GRAID-5 would
still maintain the invariant that the kth parity block is the XOR of the kth block
in every disk; the only difference is that the kth block in each disk would con-
tain data pertaining to a different file in D-GRAID, while in RAID, they would
usually be part of the same file. This configuration is shown in Figure 10(d),
where blocks belonging to the same physical RAID-5 stripe are shaded with the
same color.

However, fault-isolated placement with RAID-5 like redundancy leads to a
performance issue. Since blocks within a RAID-5 stripe are no longer part of a
single file (and thus not logically related), full stripe writes become uncommon.
Thus with the block allocation policies described so far, most writes will be to
partial stripes; such small writes have the well known performance problem of
requiring four disk operations for every block written [Patterson et al. 1988].

To address the small write problem in D-GRAID-5, we need a customized
block allocation policy. While the allocation policies described in Section 7
are targeted at preserving the logical contiguity perceived by the file system,
D-GRAID-5 requires a policy that minimizes the impact of small writes. One
example of such a policy is log-structured allocation [Rosenblum and
Ousterhout 1992; Wilkes et al. 1996], where blocks are not written in place,
but allocated from empty segments, invalidating the old locations.

With such log structured allocation, D-GRAID-5 would simply divide each
disk into multiple segments; at any given time, D-GRAID-5 would operate on
a segment stripe, which comprises of the kth segment in each disk. When a
write arrives, the fault isolation module of D-GRAID-5 would decide which
disk the block needs to be laid out in, and then would allocate the tail physical
block of the corresponding segment to that logical block. Considering that in
a typical workload, writes are spread across multiple files, and given that D-
GRAID balances space utilization across disks, it is most likely that writes
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to such multiple files are spread across different segments within the current
segment stripe, thus resulting in full stripe writes. Note however that for this
technique to be effective, the log cleaner should coordinate cleaning across the
entire set of disks, so that the set of freed segments comprise full segment
stripes.

9.4 Summary

In summary, we find that the basic layout techniques in D-GRAID are orthogo-
nal to the underlying redundancy mechanism. By building on top of any physical
redundancy scheme, D-GRAID strictly improves the availability of the storage
array. However, custom policies (e.g., for access-driven diffusion, physical block
allocation, etc.) often make D-GRAID more effective for a given redundancy
mechanism.

10. DISCUSSION: THE IMPACT OF BEING WRONG

As described in Section 7, there is a fair amount of complexity in identifying
the logical file to which a block belongs, in order to place it in the correct home
site for graceful degradation. An interesting question that arises in the light of
such complexity is: what happens if D-GRAID makes a wrong inference? For
example, what happens if D-GRAID permanently associates a block with the
wrong file, and thus places it in the wrong home site? Such incorrect inferences
affect different parts of the D-GRAID design differently.

The graceful degradation component of D-GRAID is quite robust to incorrect
inferences; an incorrect association of a block to the wrong file would only affect
fault isolation, and not impact correctness. Even if D-GRAID miscalculates a
large fraction of its associations, the reliability of the resulting storage layout
will still be strictly better than the corresponding traditional RAID level. This
is because D-GRAID builds on top of existing RAID redundancy. An incorrect
association may lead to a layout that is not completely fault isolated, but such
a layout will still exhibit better fault isolation compared to traditional RAID.
Thus even in the face of incorrect inference, the storage system correctness is
not affected, thus making D-GRAID an ideal candidate to make aggressive use
of such semantic information.

In contrast, the live block recovery component of D-GRAID does depend on
semantic information for correctness. Although it requires only a conservative
estimate of the set of live blocks in the volume, D-GRAID requires this estimate
to be strictly conservative; a live block should never be inferred to be dead, since
that could lead to loss of data. However, as described in Section 7, tracking such
block liveness information conservatively is quite simple, and thus is straight-
forward to realize.

Thus, D-GRAID requires accuracy only for a very simple piece of semantic
information for implementing fast recovery. Much of the design and complexity
of D-GRAID is related to fault isolation for graceful degradation; this component
is much more robust to incorrect inference, and cannot be “wrong” in any bad
way.
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11. CONCLUSIONS

“A robust system is one that continues to operate (nearly) correctly in the
presence of some class of errors.” Robert Hagmann [Hagmann 1987]

D-GRAID turns the simple binary failure model found in most storage systems
into a continuum, increasing the availability of storage by continuing operation
under partial failure and quickly restoring live data after a failure does occur.
In this article, we have shown the potential benefits of D-GRAID, established
the limits of semantic knowledge, and shown how a successful D-GRAID im-
plementation can be achieved despite these limits. Through simulation and the
evaluation of a prototype implementation, we have found that D-GRAID can
be built underneath a standard block-based interface, without any file system
modification, and that it delivers graceful degradation and live-block recovery,
and, through access-driven diffusion, good performance.

We conclude with a discussions of the lessons we have learned in the process
of implementing D-GRAID:

—Limited knowledge within the disk does not imply limited functionality. One
of the main contributions of this article is a demonstration of both the
limits of semantic knowledge, as well as the “proof” via implementation that
despite such limitations, interesting functionality can be built inside of a se-
mantically smart disk system. We believe any semantic disk system must
be careful in its assumptions about file system behavior, and hope that our
work can guide others who pursue a similar course.

—Semantically smart disks would be easier to build with some help from above.
Because of the way file systems reorder, delay, and hide operations from disks,
reverse engineering exactly what they are doing at the SCSI level is difficult.
We believe that small modifications to file systems could substantially lessen
this difficulty. For example, if the file system could inform the disk whenever
it believes the file system structures are in a consistent on-disk state, many
of the challenges in the disk would be lessened. This is one example of many
small alterations that could ease the burden of semantic disk development.

—Semantically smart disks stress file systems in unexpected ways. File systems
were not built to operate on top of disks that behave as D-GRAID does;
specifically, they may not behave particularly well when part of a volume
address space becomes unavailable. Perhaps because of its heritage as an OS
for inexpensive hardware, Linux file systems handle unexpected conditions
fairly well. However, the exact model for dealing with failure is inconsistent:
data blocks could be missing and then reappear, but the same is not true for
inodes. As semantically smart disks push new functionality into storage, file
systems may potentially need to evolve to accommodate them.
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