
ges
ior
by
at
n be
ent
bi-

to
the

nt
ck
es
till

ro-
m.
for
rt

s-
il-

ry
be

yp-
cle
ry)
uffer
trib-
the

ash

nt

do
me

Fast-Start: Quick Fault Recovery in Oracle

Tirthankar Lahiri
Oracle Corporation

tirthankar.lahiri@oracle.com

Amit Ganesh
Oracle Corporation

amit.ganesh@oracle.com

Ron Weiss
Oracle Corporation

ron.weiss@oracle.com

Ashok Joshi1

NuGenesis Technologies
Corporation

AJoshi@NuGenesis.com
ABSTRACT
Availability requirements for database systems are more stringent
than ever before with the widespread use of databases as the foun-
dation for ebusiness. This paper highlightsFast-StartTM Fault
Recovery, an important availability feature in Oracle, designed to
expedite recovery from unplanned outages. Fast-Start allows the
administrator to configure a running system to impose predictable
bounds on the time required for crash recovery. For instance, fast-
start allows fine-grained control over the duration of the roll-for-
ward phase of crash recovery by adaptively varying the rate of
checkpointing with minimal impact on online performance. Persis-
tent transaction locking in Oracle allows normal online processing
to be resumed while the rollback phase of recovery is still in
progress, and fast-start allows quick and transparent rollback of
changes made by uncommitted transactions prior to a crash.

1. INTRODUCTION
The importance of availability continues to grow as more and more
enterprises require continuous access to business-critical data.
Availability requirements span all levels of a system, including the
hardware and network, Operating System, Database System, Mid-
dleware and Application. The DBMS is a vital part of the availabil-
ity stack since it protects business data from failures at all levels
below the application and middleware. It is important that the fre-
quency of failures in a DBMS be low, and that the time to recover
from any failures that do occur be low so that unplanned downtime
is minimized. This paper focuses on theFast-Startfeature of Ora-
cle. Fast-Start is an architecture designed to provide quick recov-
ery from the most common of unplanned outages: a system crash,
without requiring any maintenance downtime during normal oper-
ation.

DBMSs typically employ a no force-on-commit policy [3] for per-
formance reasons, i.e., buffers modified by transactions are not
forced to disk when a transaction commits. Therefore, the database
requires recovery following a system crash. The goal of crash
recovery is to restore the physical contents of the database to a

transactionally consistent state. Recovery must apply all chan
made by committed transactions that were not written to disk pr
to the crash (roll-forward), and erase all on-disk changes made
uncommitted transactions prior to the crash (rollback). Given th
database buffer caches on modern enterprise-class servers ca
many gigabytes in size and can have thousands of concurr
transactions, the time to recover following a crash can be prohi
tive since millions of random disk accesses may be involved.

Fast-Start roll-forward mechanisms allow the administrator
adjust a running Oracle server to impose predictable bounds on
time required to roll-forward following a crash so that the amou
of unplanned downtime can be minimized. Fast-Start rollba
mechanisms also allow quick rollback of uncommitted chang
while allowing online access to the database while rollback is s
in progress.

The remainder of this paper is organized as follows: Section 2, p
vides a brief overview of the Oracle crash recovery subsyste
Section 3 describes the Fast-Start checkpointing mechanism
limiting recovery roll-forward times. Section 4 describes Fast-Sta
Rollback mechanisms for efficient rollback of uncommitted tran
actions. Section 5 provides a broad overview of Oracle’s availab
ity mechanisms. Finally, Section 6 concludes.

2. OVERVIEW OF ORACLE CRASH
RECOVERY
This section contains a brief overview of the Oracle crash recove
subsystem. Further details on the architecture of Oracle can

found in [9]. Oracle supports a shared-disk architecture, and a t
ical database configuration consists of one or more Ora
Instances(a collection of user and system processes and memo
accessing a shared set of datafiles. Each instance has its own b
cache and the different caches are kept consistent through a dis
uted lock management protocol. This architecture is known as
Oracle Parallel Server(OPS) [1, 5, 6] configuration. The follow-
ing additional concepts are relevant to the understanding of cr
recovery:

• Redo thread: Each Oracle instance has its own independe
set of log files referred to as athreadof redo. Changes made
by transactions to buffers in the cache are recorded in the re
log for the instance. For the purposes of this paper we assu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ACM SIGMOD 2001 May 21-24, Santa Barbara, California, USA
Copyright 2001 ACM 1-58113-332-4/01/05 ...$5.00

1 This work was performed while the author was employed by
Oracle corporation.
593

ac-
as
r-

ws
r a

l-

ff-

int
o-
the
d,
r
e

s

ci-

o

te

k-

ty
ly
that the redo log is logically an ever-increasing sequence of
bytes, indexed by RBA (Redo Byte Address). The log posi-
tion at which redo application must begin is known as the
Thread CheckpointRBA and the RBA of the last entry in the
log is known as theTail of the log.

• Rollback Segment: Each transaction is assigned to aRoll-
back Segment, which is a special database object. Undo for
changes made by a transaction is stored in the rollback seg-
ment for that transaction. When a change is made to a block
in the cache, both the redo for the change as well as the redo
for the change to the undo block in the rollback segment are
written to the redo log atomically. This atomic logging of the
redo and undo preserves atomicity of changes.

• Consistent-Read: Oracle uses a version-based concurrency

control system known asConsistent-Read[2, 6]. Every trans-
action is associated with a snapshot time, and when a transac-
tion wishes to read a buffer, it reconstructs the version of the
buffer (known as a clone) that is consistent as of the transac-
tion’s snapshot time. It does so by applying any necessary
undo stored in the rollback segments to the buffer. This mech-
anism implies that readers never need to acquire any locks.
Therefore, readers do not block writers, and vice-versa.

• Persistent Write-Locks: In Oracle, only writers need to
acquire locks. Before a transaction can modify rows within a
block, it needs to acquire row-level locks for those rows.
These locks are stored within the datablocks themselves and
are persistent since they can be recovered by redo-application
following a crash.

When an instance in an OPS cluster detects the failure of another
instance, it first suspends accesses to the database. It then applies
the changes recorded in the failed instance’s thread, beginning
from the thread checkpoint, up to the tail of the log. Note that only
the logs belonging to the failed instance need to be applied. (See
[7] for an excellent discussion of issues and techniques in recovery
for shared-disk database systems.)

This redo-log replay is known asroll-forward. Following roll-for-
ward, the database is opened for normal online processing. In the
meantime the System Monitor process (SMON) processes the roll-

back segments and applies undo to any blocks modified by trans
tions that had not committed prior to the crash. This is known
therollbackphase, and it occurs in the background along with no
mal user activity. ([8] describes a restart architecture that allo
the database to be reopened before roll-forward begins, afte
prior analysis scan through the log.)

3. FAST-START CHECKPOINTING
The time required to perform roll-forward is determined by the fo
lowing two factors:

• Redo log IOs: The number of redo blocks to be processed
during recovery, determined by the number of blocks in the
log between the thread checkpoint and the tail of the log.

• Datafile IOs: The number of distinct data blocks that need
recovery. This is basically determined by the number of bu
ers that were modified without being written prior to the
crash.

Both of these can be controlled through periodic checkpo
writes. Oracle employs one or more Database Writer (DBW) pr
cesses to write dirty buffers in the cache. (See [2] for details on
Oracle Buffer Manager). When a buffer in the cache is first-dirtie
it is linked into a Buffer Checkpoint Queue [4] in ascending orde
of the RBA of the first change to the buffer (we refer to this as th
low RBA of the buffer). The position of the thread checkpoint i
given by the low RBA of the tail buffer in the BCQ. Writing buff-
ers in low RBA order advances the thread checkpoint. This prin
ple is illustrated in Figure 1 below.

If buffer b1 is written first, the thread checkpoint will advance t

position c1. Next, if buffer b2 is written, the checkpoint will

advance to positionc2. If buffer b3 is written next, the checkpoint

will advance toc3. This mechanism implies that each buffer write

is “optimal” with regard to checkpointing: Each successive wri
advances the thread checkpoint [4].

Periodic writes by DBW for the advancement of the thread-chec
point is referred to asFast-Start Checkpointing. While a conven-
tional checkpoint is exhaustive, since it has to write every dir
buffer to disk, fast-start checkpointing is incremental, writing on
redo log

tail of log

b1 Dashed arrow indicates
buffer’s low RBABCQ

b2 b3 b4

c1 c2 c3
(thread checkpoint)

c0

Figure 1: Buffers ordered by low RBA on Buffer Checkpoint Queue

594

e
s

ific
to
to

the

Q
s.
pi-
st
g

e

s
ss

s
n

w
in
al-
ch
ts

be

for

nt
e

tra
A

tart
as many buffers as is needed to advance the thread checkpoint to
the necessary position in the log. Fast-Start checkpointing there-
fore eliminates bulk writes and the resultant I/O spikes and drop in
performance that occur with conventional checkpointing.

3.1 Controlling Fast-Start Checkpointing
Instead of requiring administrators to specify a frequency for issu-
ing (conventional) checkpoints, the fast-start mechanism provides
the following dynamic configuration parameters for adaptively
adjusting the rate of checkpointing to impose predictable bounds
on roll-forward time:

• FAST_START_IO_TARGET : This parameter specifies a bound
on the number of blocks that would need recovery at any
given time on a running system. These blocks require random
read and write IOs and dominate the roll-forward time. If an
administrator believes that the I/O subsystem can perform
approximately 1000 random IOs per second, she should set
“FAST_START_IO_TARGET = 50000” to limit roll-forward time
to approximately 50 seconds.

• LOG_CHECKPOINT _TIMEOUT : This parameter specifies a
bound on the time elapsed since the tail of the log was at the
position presently indicated by the thread checkpoint posi-
tion. For example, setting “LOG_CHECKPOINT_TIMEOUT =
100” implies that the thread checkpoint should lag the tail of
the log by no more than the amount of redo generated in the
last 100 seconds. Since the time it takes to generate a certain
amount of redo is approximately the same as the time it takes
to apply that redo,LOG_CHECKPOINT_TIMEOUT may be inter-
preted as an upper bound on recovery time. It is an upper
bound since workloads typically contain a query component
that does not generate any redo.

• LOG_CHECKPOINT _INTERVAL : This parameter bounds the
number of redo blocks between the thread checkpoint and the
tail of the log. This parameter therefore imposes an upper
bound on the number of redo blocks that need to be processed
during roll-forward.

These parameters are dynamically adjustable while an instance is
running. For instance, an administrator may set
“FAST_START_IO_TARGET = 50000” in the initial configuration file
when the Oracle instance is started, but later decide that 50000 IOs

is too many and issue the command “ALTER SYSTEM SET

FAST_START_IO_TARGET = 5000” to limit recovery IOs to 5000.

Oracle provides the system viewV$INSTANCE_RECOVERYto track
the status of fast-start checkpointing activity and to allow th
administrator to determine the number of log-file and data-file IO
that would be required if the instance were to crash at that spec
instant. This feedback can be utilized by the administrator
dynamically adjust the fast-start checkpointing parameters
increase or decrease the rate of checkpointing activity.

3.2 Fast-Start Checkpointing Implementation
The three fast-start checkpointing parameters are used by
DBW process to periodically compute atarget RBAin the BCQ to
write buffers up to. Once DBW encounters a buffer in the BC
with a low RBA greater than the target, it can stop writing buffer
Calculations based on each of the fast-start parameters will ty
cally contribute a different RBA, and DBW must use the mo
recent RBA as its target. Each time, DBW computes the followin
RBAs:

• RBA X: Smallest RBA X such that number of buffers in the
BCQ with RBAs less than X is equal to or less than the valu
of FAST_START_IO_TARGET.

• RBA Y: Smallest RBA Y such that the number of second
elapsed since the tail of the log was at Y is equal to or le
thanLOG_CHECKPOINT_TIMEOUT seconds.

• RBA Z: Smallest RBA Z such that the number of redo block
between Z and the tail of the log is equal to or less tha
LOG_CHECKPOINT_INTERVAL.

DBW will pick T =max(X, Y, Z) as its target RBA and write buff-
ers on the BCQ in RBA order till it encounters a buffer whose lo
RBA is greater than T. This calculation is illustrated in Figure 2,
which the most aggressive target RBA is shown to be Y. This c
culation is repeated by DBW each time it wakes up to write a bat
of buffers, so that over time, all three fast-start roll-forward targe
are met.

The I/O overhead imposed by fast-start checkpointing can
inferred from two system statistics:

• Physical Writes: This statistic counts all the physical writes
that have occurred, both for checkpoint advancement and
aging writes for cold dirty buffers.

• Physical Writes Non-Checkpoint: This statistic is the theoreti-
cal number of writes that would have occurred up to this poi
in the absence of any checkpointing, i.e., if aging were th
only reason for performing writes.

The difference between these two values is the number of ex
writes that had to be performed to advance the checkpoint. A DB
can use this information to decide whether to make the fast-s
target settings more or less aggressive.

RBA “X”

b1 b2 b3 bn

Tail of log
#redo blocks = log_checkpoint_interval

RBA “Y”

RBA “Z”

Target T

BCQ

#seconds = log_checkpoint_timeoout

Figure 2: Target RBA calculation for fast-start checkpointing

#buffers = fast_start_io_target
595

ra-

so

n
es

oll-

d
ll-
ple
es
ll-

if-
llel
-
ess
ML
ge
s-
by
its
ses
ch
to

e
on
on
le,
re
ow

e-

ted

it-

e

3.3 Experimental Results with Fast-Start
Checkpointing

Experiments have shown that running with aggressive values for
the fast-start checkpointing parameters imposes minimal over-
heads on a running system while effectively limiting the duration
of recovery roll-forward. This is because fast-start checkpointing
does not add significantly to the physical I/O rate of a system.

Table 1 below summarizes data from an update-intensive OLTP
workload on a single-instance system with 200,000 buffers, each
4KB in size. The workload is run with increasingly aggressive val-
ues for theFAST_START_IO_TARGET parameter. After each run, the
Oracle instance is manually terminated so that crash recovery is
required when the instance is restarted. For each run, we measured
the throughput of the workload as well as the time required to
recover from the crash following the run.

We conclude the following from the above table:

• Fast-Start checkpointing has negligible effect on throughput:
The performance impact of the most aggressive setting of the
parameter (1000) is less than 1% of the baseline performance
(obtained with the fast-start mechanism disabled).

• Fast-Start checkpointing drastically reduces recovery time:
Recovery time is reduced by more than 90% down to the sub-
minute level with the most aggressive parameter value.

4. FAST-START ROLLBACK
Most database systems maintain transaction locks in memory.
When locks are stored in (volatile) memory, information on
whether a resource (for example, a table block or row) is locked is
no longer available immediately after a system failure. These sys-
tems require that active transactions prior to a crash (which are
referred to as dead transactions) must be rolled back completely
before the database can be opened for new transactions.

In Oracle, since row locks are stored persistently in the same block
as rows of a table or an index, the database may be opened to new
transactions before the rollback phase of database recovery com-
pletes. This is known asDeferred Rollback, and provides signifi-

cant availability benefits by allowing rollback activity to occur in
the background along with normal processing.

There are two Fast-Start rollback mechanisms to reduce the du
tion and impact of the rollback phase:

• Parallel rollback: Parallelizes the rollback of uncommitted
transaction across multiple concurrent recovery processes
that rollback time is minimized.

• On-demand rollback:Resources locked by a dead transactio
are made available to new transactions before all chang
made by the dead transaction are rolled back, so that the r
back phase is largely transparent to new transactions.

4.1 Fast-Start Parallel Rollback
There are two forms of parallel rollback: inter-transaction an
intra-transaction parallel rollback. Inter-transaction parallel ro
back partitions the transactions to be rolled back between multi
processes. With intra-transaction parallel rollback, the chang
made by a single transaction are partitioned between multiple ro
back processes.

• Inter-Transaction Parallelism: In this mode of transaction
rollback, different dead transactions are rolled back using d
ferent concurrent processes. For example, consider a para
DML operation that was running in parallel using 48 pro
cesses on an SMP machine for 1 hour. Each Oracle proc
would use a separate Oracle transaction to execute the D
operation. If there is a system failure after half an hour a lar
amount of undo may need to be applied. However, the tran
action system has already partitioned the undo generated
the parallel operations into 48 independent units. The 48 un
of undo work are independent because all 48 Oracle proces
ran in complete isolation, i.e., they did not depend on ea
other in any way. This partitioning is used by the database
perform transaction rollback in parallel.

• Intra-Transaction Parallelism: Intra-transaction parallel
rollback is performed on any single large transaction: Th
system automatically partitions work done by the transacti
into units such that all undo operations that are dependent
each other are performed in the correct order. For examp
multiple updates to the same row within a transaction a
undone in the reverse of the order of the changes to the r
made by the transaction.

Oracle provides another dynamic fast-start configuration param
ter, FAST_START_PARALLEL_ROLLBACK, to control the number of
threads that will be used to perform parallel recovery. The accep
values of this parameter are:

• FALSE: Rollback is done by one process (no parallelism), su
able for small-scale systems.

• LOW: The maximum number of parallel processes is twice th
number of CPUs.

Table 1: Performance and recovery Time with Fast-Start
checkpointing

FAST_START_IO_TARGET Throughput
(TPM)

Recovery Time

disabled 805.23 0:04:34

30000 804.06 0:01:10

20000 798.26 0:01:20

10000 798.00 0:00:49

1000 797.42 0:00:21
596

ents
rver
ult
st-
gle
de
:

e

ase
of

-

il-
con-
the
most
ic
ase

cess
for

ata-
lo-

ch,
ta-

d as
ith

e is
nd

-
the

that
the
• HIGH: The maximum number of parallel processes is four
times the number of CPUs.

Depending on the configured maximum number of processes, Ora-
cle automatically allocates the necessary number of parallel recov-
ery slaves for performing inter-transaction parallel rollback. For
each transaction it also decides whether intra-transaction rollback
would be more efficient and if so, it also decides on the number of
parallel slaves to use for that transaction.

4.2 Fast-Start On-Demand Rollback
On-Demand Rollbackimproves system availability by making data
available more quickly. Leaving rollback purely to background
processes may result in reduced throughput for online operations.
For instance, if there is a large number of dead transactions in the
system, consistent read operations will become more expensive
since queries will have to continuously rollback the changes of the
dead transactions to restore the correct versions of data blocks they
access. This extra versioning implies additional work needed to
undo the changes made by dead transactions, affects response
time, and pollutes the buffer cache with clone buffers created for
consistent read operations. Furthermore, transactions would be
unable to modify data locked by dead transactions and would be
required to wait for rollback to be complete before being allowed
to proceed.

Instead, on-demand rollback allows portions of dead transactions
to be recovered on-demand: If a transaction that is modifying data
requires a row locked by a dead transaction, it extracts undo infor-
mation for the given row from the rollback segment and applies it
to the row. The rest of the dead transaction is left to be recovered in
the background by parallel rollback. This mechanism is similar to
the mechanism of performing consistent-read. On-demand roll-
back therefore enables OLTP operations to immediately recover
the resource that they want to acquire, mitigating the effect of
deferred recovery on response time. Another benefit of this
approach is that recovery time is not adversely impacted by large
transactions. On-demand rollback is always enabled and requires
no parameters to be set.

5. THE AVAILABILITY GESTALT
While the Oracle Fast-Start Fault Recovery architecture makes
database recovery rapid and predictable, it addresses just one
aspect of ensuring application and database availability. A more
holistic approach to availability must be provided in any high-
availability solution, since availability is defined by the end user of
the system. From the user’s perspective, availability is the degree
to which an application or service is available with the necessary
level of functionality.

The opposite of availability is downtime. The causes of downtime
can be grouped into several broad categories including: system
faults and crashes, data and media failures, datacenter disasters,
human error, and maintenance and continuous operations. The
Oracle mechanisms that address these eventualities are listed in the
following sections (for more details, please refer to [9,10]).

5.1 System Faults and Crashes
System faults and crashes can be caused by a diverse set of ev
including temporary power outages, software crashes, and se
hardware failure. As described in this paper, Fast-Start Fa
Recovery makes recovery time rapid and predictable. While Fa
Start recovers the database quickly, a single system is still a sin
point of failure. Clustering must be used to protect against no
and system failure and thus eliminate this single point of failure

• Cold failover clusterscan be used to detect a system outag
and restart the database on a backup system.

• Hot clusters,where multiple systems access a shared datab
using Oracle Parallel Server, provide the highest level
availability and scalability.

• The Transparent Application Failoverfeature can be used
with clusters to mask failures from client systems or middle
tier systems accessing the database.

5.2 Data and Media Failures
Oracle media recovery is designed to recover from any media fa
ure and restore the database without data loss, to a transaction-
sistent state. Media recovery can be done on a subset of
database and hence the database can be in production during
media recovery scenarios. Of course, it is critical that period
backups of the database be made and included with the datab
server is theRecovery Managersoftware subsystem. Recovery
Manager manages the entire backup, restore, and recovery pro
for the database and includes numerous optimizations
improved availability, recoverability, and performance.

5.3 Datacenter Disasters
Natural disasters are a fact of life that need be addressed by d
base technology. Oracle provides several complimentary techno
gies to handle these eventualities:

• Data Guard,which is based on a standby database approa
can be used within a single datacenter and between da
centers on different continents. The database logs are use
the medium to keep the standby database synchronized w
the production database. The use of the Data Guard featur
completely transparent to the database application a
imposes no performance overhead on the primary site.

• Oracle Advanced Replicationis also used for disaster protec
tion where a distributed database architecture best meets
needs of the enterprise.

• Oracle Advanced Queuingor third-party messaging technol-
ogy can also be used to build message-based applications
can operate in a disconnected mode if a component of
application solution is unavailable.
597

ro-
ck

he
of
rm
ess
ave
w
s

er

-

-

er.
e

ed

n
l

al-
al

on

-

ks

g

-

5.4 Human Error
Human error represents the largest single cause of application
downtime. Some of the Oracle features designed to prevent and
recover from human errors are enumerated below:

• The Database Resource Managerprioritizes database pro-
cessing according to administrator specified resource con-
sumption plans. It therefore prevents users from consuming
inappropriate amounts of service.

• Flashback Queryallows efficient queries against earlier ver-
sions of database objects, i.e., versions consistent as of an ear-
lier user-specified snapshot time. It therefore protects old
versions of data by allowing past versions of data to be que-
ried and reinstatiated if necessary.

• LogMinerprovides access to logged changes made to a data-
base and is used to audit change activity, perform perfor-
mance analysis, and when necessary, to undo SQL issued
against the database.

• Oracle provides a very rich set of security technology includ-
ing theVirtual Private Databaseand extensive role and privi-
leges management services.

• Point in Time Recoveryis also available to recover the whole
database or a subset to a known point in time before a prob-
lem was introduced into the database by an errant application
or a user, e.g., an unintentional deletion of a critical table.

5.5 Maintenance and Continuous Operation
One of the most difficult problems in database technology is to be
able to maintain database service while concurrently performing
maintenance on the system. With Oracle most maintenance opera-
tions can be done online. The consistent read technology ensures
that database writers do not block readers, and vice versa, so data
availability is maximized during periods of bulk updates. Most
parameters that control database operations are dynamic and thus
can be changed without stopping or shutting down the database.
CPU, memory, and storage resources can be added to the database
and are quickly put to use, again without stopping or shutting down
the database. One of the most powerful capabilities in this area is
the ability to add and rebuild indexes, or move and reorganize
tables while users are accessing and updating the objects being
manipulated.

6. CONCLUSIONS
In this paper, we have described the Fast-Start mechanisms within
Oracle for improving crash recovery performance and minimizing
system downtime. Fast-Start checkpointing allows checkpointing
to be done continuously as a background activity so that the time to
roll-forward the changes in the redo log can be bounded to accept-
able limits. Persistent locking in Oracle allows transaction recov-
ery to be deferred till after the database is open, makes the

database available more quickly. Fast-Start parallel rollback p
vides a scalable recovery mechanism that partitions the rollba
activity between concurrent recovery slaves. It quickly purges t
system of dead transactions, improving the overall throughput
the system. On-demand rollback allows transactions to perfo
partial rollback of dead transactions so that they can acc
resources that were locked by dead transactions. Finally, we h
presented a more general overview of availability, describing ho
Fast-Start fits into the broader context of availability as well a
highlighting other important features in Oracle that work togeth
in providing a true high-availability solution.

REFERENCES
[1] R.Bamford, B. Klots, D. Butler, and N. Macnaughton. Archi

tecture of Oracle Parallel Server. InProceedings of the
Twenty-Fourth International Conference on Very Large Data
bases, New York, September 1998.

[2] W. Bridge, A. Joshi, M. Keihl, T. Lahiri, J. Loaiza, and N.
Macnaughton. The Oracle Universal Server Buffer Manag
In Proceedings of the Twenty-Third International Conferenc
on Very Large Databases, Athens, Greece, September 1997.

[3] T. Haerder and A. Reuter. Principles of Transaction-Orient
Database Recovery.ACM Computing Surveys, 15(4) 287-317.

[4] A. Joshi, W. Bridge, J. Loaiza, and T.Lahiri. Checkpointing i
Oracle. In Proceedings of the Twenty-Fourth Internationa
Conference on Very Large Databases, New York, September
1998.

[5] B. Klots, and S. Chatterjee. Cache Coherency In Oracle Par
lel Server, InProceedings of the Twenty-Second Internation
Conference on Very Large Databases, Bombay, India, Sep-
tember 1996.

[6] T. Lahiri, A. Joshi, A. Jasuja, S. Chatterjee. 50,000 Users
an Oracle8 Universal Server Database. InProceedings of the
1998 ACM SIGMOD International Conference on Manage
ment of Data, Seattle, Washington, May 1998.

[7] C. Mohan and I. Narang. Data Base Recovery in Shared Dis
and Client-Server Architectures. InProceedings of the
Twelvth International Conference on Distributed Computin
Systems, Yokohama, June 1992.

[8] C. Mohan. A Cost-Effective Method for Providing Improved
Data Availability During DBMS Restart Recovery After a
Failure. InProceedings of the Nineteenth International Con
ference on Very Large Databases, Dublin, Ireland, August
1993.

[9] Oracle Corporation.Oracle8i Concepts Release 2 (8.1.6). Part
Number A76965-01.

[10] Oracle Corporation.Oracle8i Backup and Recovery Guide
Release 2 (8.1.6),Part Number A76993-01.
598

	Fast-Start: Quick Fault Recovery in Oracle
	ABSTRACT
	1. INTRODUCTION
	2. OVERVIEW OF ORACLE CRASH RECOVERY
	3. FAST-START CHECKPOINTING
	3.1 Controlling Fast-Start Checkpointing
	3.2 Fast-Start Checkpointing Implementation
	3.3 Experimental Results with Fast-Start Checkpointing

	4. FAST-START ROLLBACK
	4.1 Fast-Start Parallel Rollback
	4.2 Fast-Start On-Demand Rollback

	5. THE AVAILABILITY GESTALT
	5.1 System Faults and Crashes
	5.2 Data and Media Failures
	5.3 Datacenter Disasters
	5.4 Human Error
	5.5 Maintenance and Continuous Operation

	6. CONCLUSIONS
	REFERENCES

