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ABSTRACT
Recently, several studies have looked into the problem
of replicated server placement on the Internet. Some of
those studies have demonstrated that there exists a replica
placement algorithm that can perform within a factor of
1.1{1.5 of the optimal solution. However, this particu-
lar greedy algorithm requires detailed knowledge about
network topology, and knowledge about expected client
locations on the topology. One of these previous studies
has also looked at topology-informed replica placement.
They consider placing replicas at highly connected nodes
in the Autonomous System level graph. In this paper
we extend their work by investigating the performance
of topology-informed placement on Internet router-level
topology. In our evaluation, we consider approximated
policy-based paths, and examine the sensitivity of our re-
sults to di�erent client placements. We �nd that topology-
informed replica placement methods can achieve average
client latencies which are within a factor of 1.1{1.2 of the
greedy algorithm, but only if the placement method is de-
signed carefully.

Keywords
Content Distribution Network, replica placement algorithms,
router fanout

1. INTRODUCTION
Content Distribution Networks (CDNs) [2, 10, 6] replicate
Web content in an e�ort to reduce client access latency.
This kind of replication can also reduce network overhead.
However, the e�cacy of content distribution can crucially
depend on the placement of these replicas, and on the
relative location of the client population.
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In the past, there have been several studies that have ad-
dressed the problem of replica placement on the network
and its impact on network performance [12, 18, 11, 13]. A
number of replica placement methods have been proposed
and studied. Two of the studies [18, 11] have considered
a greedy placement strategy 1 which, compared to the
computationally expensive optimal solution, performs re-
markably well in practice (within a factor of 1.1{1.5), and
is relatively insensitive to imperfect input data. Unfor-
tunately, this greedy placement requires knowledge about
the client locations in the network, and all pairwise inter-
node distances, which information in many cases may not
be available.

One of the previous studies [11] considers also topology-
informed replica placement, where nodes are selected as
replicas in decreasing order of their node degree 2. Their
results suggest that this method can perform almost as
good as the greedy placement. However, due to lack of
more detailed network topology, this particular study uses
only Autonomous Systems (AS) topologies (real-world and
generated) where each node represents a single AS, and a
node link corresponds to AS-level BGP peering.

In this paper we extend their evaluation of fanout-based
replica placement in several ways. First, instead of using
a coarse-grained AS topology derived from BGP AS paths
information [16], we have in our possession an approximate
router-level Internet topology [8] which we use to obtain
more detailed and accurate results. Second, instead of
shortest-path routing, we generate router-level paths us-
ing approximate models of inter-AS routing policy [20].
With their technique, each router from the router-level
topology is mapped to the AS it belongs to (based on that
router IP address), and then AS-level shortest-path rout-
ing is combined with router-level shortest-path towards
the next-hop AS. Finally, we look into results sensitivity
by considering various client placement models, and some
other topologies.

1The particular greedy placement is also very similar to
the one in [12].
2For the rest of the paper we will use interchangeably the
terms node degree and node fanout to represent the num-
ber of links connecting a node with its neighbors. Also, we
will use the term well-connected node to indicate a node
that has a large fanout.



Our main �ndings are:

� In most cases the router-level fanout placement is
almost as good as the greedy placement (within a
factor of 1.1{1.2).

� A fanout-based replica placement method needs to
be carefully designed to be e�cient. For example, if
we select �rst a well-connected AS and then we select
a router within that AS, we must be very careful
which particular router is selected.

Our conclusions do not depend on client locations. Only
if the number of clients is very small, then there is a sig-
ni�cant performance di�erence between the fanout-based
replica placement and the greedy placement. The results
are true also for random graphs, generated and real-world
AS topologies, but do not apply for overlay topologies such
as Mbone [14]. At the end of the paper we present a pos-
sible explanation when and why those results may hold.

The rest of the paper is organized as follows. In Section 2
we discuss some of the previous work. In Section 3 we de-
scribe the particular replica and client placement models
we consider in this paper. Section 4 contains the perfor-
mance evaluation results. Conclusions and future work
are in Section 5.

2. RELATED WORK
A number of papers have addressed the problem of Web
server replica or cache placement impact on performance.
Note that some of the recently published papers are in-
dependent studies, but have notable similarity in problem
formulation and �nal results. The replica or cache place-
ment problem can be modeled after the center placement
problem, a well-known problem in graph theory, and in
particular two of its variations: the facility location prob-
lem, or the minimum K-median problem [5]. A number of
approximate solutions have been proposed in the past [23],
but they are either very computationally expensive, or are
di�cult to apply in practice.

Krishnan et al. [12] study the problem of placing transpar-
ent en-route network caches (TERCs), and in particular
how various placement methods can be used to reduce the
network tra�c or the average access latency. Unlike our
work where we assume the replicas can be placed any-
where in the network, their work allows the caches to be
only on the path between a client and the server.

Qiu et al. [18] consider the problem of placement strategies
for Web server replicas within the context of CDNs that
o�er Web server hosting services. They propose several
placement algorithms, including a simple greedy place-
ment which we use in this paper, and which is very sim-
ilar to the greedy algorithm in [12]. They �nd that this
greedy algorithm performs very well in practice (typically
within a factor of 1.1{1.5 of the optimal solution). Fur-
ther, its performance is relatively insensitive to imperfect
input data such as client locations and network topology

information. However, this study does not consider node-
fanout based placement.

The study by Jamin et al. [11] is similar to [18]. Their
work examines the impact of the number of replicas on
the performance of various replica placement methods.
Their main �nding is that, regardless of the placement
method, increasing the number of replicas is e�ective in
reducing client download time only for a very small num-
ber of replicas. They also discuss an AS-level fanout-based
placement, in which replicas are placed within ASs in de-
creasing order of node degree on the AS topology. The
results suggest that the AS-level fanout-based placement
can perform almost as well as the greedy placement. Our
study is centered around this �nding, and we try to verify
it through more detailed simulations by using router-level
Internet topology, instead of only AS-level topology, and
by exploring in more details the impact of various replica
and client placement methods.

3. REPLICA AND CLIENT PLACEMENT
MODELS

In this section we describe the replica placement models
we are interested at, and are evaluated later in Section 4.
We use each of those models to place a number of replicas
on the topology, so we could eventually reduce the client
access latency and the overall network overhead (com-
pared to a single-server solution). We also describe the
client placement models that we use to select a number of
nodes as clients. Those models are used in Section 4.3.2
to perform the client-impact sensitivity evaluation. Be-
fore presenting the replica and client placement models,
we describe the client-replica assignment we assume.

3.1 Client-Replica Assignment
In this paper we assume that each client selects the closest
(in number of hops) replica. Indeed, it is possible to con-
sider a more sophisticated scheme where a client selects in
real-time the replica that o�ers the lowest latency, but for
simplicity we ignore such schemes. The second assumption
we make is that we do not limit the number of a clients
that can be assigned to a replica. Both assumptions are
similar to those in some of the previous work ([18, 12, 11]).
One of the arguments to support the latter assumption is
that typically it is much easier to increase the capacity
of a particular replica (e.g., by creating a cluster of repli-
cas at the same location), than deploying a new replica at
di�erent location for the sake of reducing other replicas'
load. The latter assumption does not impact our conclu-
sions even in the presence of 
ash crowds, because, as we
demonstrate later in the paper, our results are robust to
variations in client locations and client population size.

3.2 Replica Placement Models
In this paper we consider the following replica placement
methods. The �rst method has been proposed in some of
the previous work (see Section 2). In our study we use it
as a base for comparison.

� Greedy placement. The greedy placement we choose



is same as the greedy algorithm described in [18] and
[11]. The basic idea is to choose the replicas one-by-
one, a subject to a greedy selection: at each step
we evaluate all nodes in the topology and choose the
one that, if we place a replica there, the resulting
network overhead will be minimized. The process
is repeated until all replicas have been chosen. The
input to this method is all pairwise inter-node dis-
tances, and the client placement locations.

� Max-router fanout placement. Given a network topol-
ogy and the fanout of each node, we choose the repli-
cas one-by-one in decreasing order of their node de-
gree until all replicas have been chosen. The intu-
ition behind this method is that the nodes with large
fanout are eventually the closest (on average) to all
other nodes, and therefore they are a better choice
for replica location.

� Max-AS/max-router fanout placement. This method
assumes that each node/router has been assigned to
some AS, and that all ASs have been connected into
an AS-level topology. If R is the number of repli-
cas to select, �rst we select the R ASs that have
the largest fanout (on the AS-level topology). Then,
within each selected AS, we choose the router that
has the largest router-level fanout. Similar to the
max-router fanout placement, the intuition is that
the selected nodes will be closer to the rest of the
nodes.

� Max-AS/min-router fanout placement. This method
is similar to the max-AS/max-router fanout place-
ment, except that instead of selecting the router with
largest fanout within each of the chosen ASs, we se-
lect the router with the smallest fanout. This place-
ment may not make sense for practical purposes, but
we need to consider it to evaluate the sensitivity of
network performance to replica placement within an
AS. Note that for the rest of the paper, when we
use the term fanout-based placement, we do not in-
clude the max-AS/min-router fanout placement, un-
less stated otherwise.

� Random placement. In this method the replicas are
chosen at random with uniform probability among
all nodes in the topology. We consider it as an
\upper-bound" placement method in a sense that
an e�cient replica placement method should always
be better than the random placement.

Unlike the previous work described in Section 2, we do
not consider some of the existing optimal solutions that
have been proven to be always within a small factor of the
most optimal solution. As we mentioned earlier in Sec-
tion 2, the greedy placement has been shown to perform
very well in practice, within a factor of 1.1{1.5 of the com-
putationally intensive optimal solutions. Therefore it is a
reasonable choice for our needs and we can use it as a base
of comparison.

3.3 Client Placement Models
To investigate the sensitivity of replica placement perfor-
mance to client locations, we look into several client place-
ment models. Our goal is not to explore all possible client
placements, but to consider the extreme cases, along with
the random case, because the extreme cases can give us
the boundary of expected performance.

The �rst model we look into is the random client place-
ment, where the client nodes are selected at random with
uniform probability.

We also look into the extreme client placement as de�ned
in [17], namely extreme a�nity and extreme disa�nity.
The extreme a�nity model places the clients as close as
possible to each other; the extreme disa�nity model places
the clients as far as possible from each other. The par-
ticular algorithm we use to place a number of clients on
a graph according to the a�nity/disa�nity model is de-
scribed in [24]. Below is a brief summary of that algo-
rithm. The �rst client is selected at random among all
nodes. Then, we assign to each node ni that is not se-
lected yet the probability pi =

�

w
�
i

, where wi is the closest

distance between node ni and a node that is already se-
lected as a client, � is calculated such that

P
ni
pi = 1,

and � is the parameter that de�nes the degree of a�nity
or disa�nity. After a node is chosen to be a client, the
probabilities of the remaining nodes are recomputed and
the process is repeated until the desired number of clients
is selected. Similar to [24], in our experiments we use
� = 15 and � = �15 for extreme a�nity and disa�nity
respectively.

To verify our results with real-world data, we use Web
server access logs to create the population of clients. In
particular, we collect the unique IP addresses of all clients
that have accessed the same Web server within some pe-
riod of time. Then, we run a traceroute to each of the
client addresses. Finally, we intersect each of the tracer-
oute paths with the Internet map to �nd the last-hop
router toward a Web client that is on that map. The
set of all last-hop routers is our web clients set that can
be used to represent the population of the real-world Web
clients.

4. PERFORMANCE EVALUATION
In this section we present the main results from our evalu-
ation. In particular, we use numerical simulations to com-
pute the relative network performance. As part of our
evaluation we look into the impact of various factors on
performance: replica and client placement, client number,
network topology. First we describe the metric space, and
then we present the results when we vary each of the input
factors we consider.

4.1 Metric Space
The two particular metrics we are interested at are aver-
age client latency and overall network overhead. For sim-
plicity, we assume that the latency between two nodes is
proportional to the number of link-hops between them. A
similar assumption has been used in a previous work [18].



Indeed, [9] shows that router-level hops correlate well with
observed latency. That work points out that the number
of ASs in the path to a destination has a higher correlation
to latency. However, that study is several years old and
Internet has evolved since then. Further, a more recent
study has measured 50{70% correlation between network
hop and round-trip time [15], and its authors claim that
the router-level number of hops is more meaningful as a
latency metric 3. Finally, due to lack of information, we
assume that the bandwidth capacity of all links is same.
Obviously, those assumptions are not perfect, but without
detailed network measurements this is the best we can do.
Hence, the average client latency across all clients c can
be computed as:

AveClientLatency =

P
clients(c)Dist(c; Replica(c))

NumberOfClients

where Replica(c) is the replica node for client c, and
Dist(c; Replica(c)) is the distance between them in num-
ber of hops.

For similar reasons as above, we also assume that the over-
all network overhead is proportional to the number of link-
hops used to disseminate the data from the replicas to all
clients. At the same time, we ignore the network overhead
to distribute the data from its original location to each of
the replicas, because this overhead may be a small frac-
tion of the network overhead to distribute the data from
the replicas to a large number of clients. Hence, the over-
all network overhead for all clients can be computed using
the following formula:

NetworkOverhead =
X

clients(c)

Dist(c; Replica(c))

In our evaluation, we are not interested in the absolute
client latency or absolute network overhead metrics. In-
stead, we are interested in the relative client latency or rel-
ative network overhead of each replica placement method
versus the greedy placement. Based on our assumptions,
we have AveClientLatency = NetworkOverhead

NumberOfClients
, therefore

it is easy to see that when we perform relative comparison
between two replica placement methods using the same
set of clients, then the relative average client latency will
be the same as the relative network overhead. Therefore,
for the rest of the paper we use a single metric we call e�-
ciency ratio to compute the relative performance between
two replica placement methods. We always use the greedy
placement as a base for comparison, hence the e�ciency
ratio of method Mi can be computed as:

EffRatio(Mi) =
NetworkOverhead(Mi)

NetworkOverhead(Greedy)

3We also show, in Section 4.3.4, that if we consider latency
de�ned in terms of AS-level hops, our �ndings hold even
stronger.

4.2 Simulation Setup
For most of our simulations (except for those described in
Section 4.3.4 where we look at the topology impact fac-
tor), we use a real-world router-level topology. The topol-
ogy information was collected by using a large number of
traceroute requests sent over the Internet [8, 22]. The re-
sulting topology had 102639 nodes and 142303 links. Then
we recursively removed all nodes that have a fanout of one
to obtain a topology we call Internet core. The reason that
we truncate the original topology is to remove the long,
\skinny" branches that do not represent well the network
connectivity at the edges, but are an artifact from the
particular methodology used to obtain the topology infor-
mation.

To obtain more realistic results, instead of using shortest-
path routing, we use AS-level hierarchical routing as de-
scribed in [20]. With their technique, �rst each router
from the router-level topology is mapped to the AS it be-
longs to, based on that router IP address and the AS-level
topology [4] at the time the router-level topology data was
collected. After that, the AS-level shortest-path routing is
computed. Finally, to compute the router-level path be-
tween two nodes, the AS-level path is followed and within
each AS the router-level shortest path is used to reach the
closest node that belongs to the next-hop AS.

Topology Nodes Links Diam. Ave. dist. Ave. fanout

Internet core 27646 67310 26 8.3 4.9

Random graph 19596 40094 16 7.2 4.1

Power-law graph 10091 23253 9 3.2 4.6

AS 4830 9077 11 3.7 3.8

Mbone 4179 8549 26 10.1 4.1

Table 1: Metrics of used topologies

Within each set of simulations we �x the number of clients
and vary the number of replicas, or vice-versa. The num-
ber of replicas varies between 1 and 50; the client popula-
tion size varies as a fraction of the number of all nodes be-
tween 0.005 and 0.2. The replica and the client placement
methods, as described in Section 3, are the other input
to the simulations. In all simulations we use 100 di�er-
ent sets of algorithmically chosen clients (except for the
Web-derived clients when we have 3 sets), and we average
the results among all trials. The results we show are for
the 95% con�dence interval (note that in most cases this
interval is very small and can be seen as a single dot) 4.
To create the set of Web-derived clients, we use the access
logs of a busy Web server for three consecutive days, and
we apply the technique described in Section 3.3 to com-
pute the nodes on the router-level topology that represent
the Web clients. The number of unique client addresses
for each of the three days is 37401, 40833, 43558 respec-
tively. Those clients, after the intersection of the tracer-
oute paths with the router-level topology, are represented
by 4015, 4158 and 4264 unique nodes on the Internet-core
map (approximately 15% of all nodes).

4We looked also into the min-max interval, and it was
almost unnoticeable for the max-router fanout and max-
AS/max-router placement methods.



1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 5 10 15 20 25 30 35 40 45 50

E
ff

ic
ie

nc
y 

ra
tio

 (
G

re
ed

y 
he

ur
is

tic
 =

 1
.0

)

Number of replicas

Replica number impact (random clients, clients fraction = 0.2)

max-router fanout
max-AS/max-router fanout
max-AS/min-router fanout

random routers

Figure 1: Internet core: replica placement impact
(random clients)
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Figure 2: Internet core: replica placement impact
(extreme a�nity clients)

We tried also some generated topologies, and some other
real-world maps (see Section 4.3.4). Table 1 summarizes
some of the metrics of all topologies.

4.3 Network Efficiency Results
First we present the results for di�erent replica placement
methods, which are of most interest to us. Then we look
at how the client placement may have impact on perfor-
mance. Finally, we look into other factors such as client
number and network topology.

4.3.1 Replica Placement Impact
To evaluate the replica placement impact, we assume a
�xed number of randomly placed clients (20% of all nodes),
and the number of replicas varies between 1 and 50. Then
we compute the relative network e�ciency for di�erent
replica placement methods (as described in Section 3.2),
by using the greedy algorithm results as the base for com-
parison (1.0).

The results from this simulation are on Figure 1. The
�rst observation we can make is that both max-router
fanout and max-AS/max-router fanout placement meth-
ods perform very well, within a factor of 1.1{1.2 of the
greedy placement, regardless of the number of replicas.
This result is our �rst con�rmation that the fanout-based
placement methods perform well even on Internet router-
level topology. On the other hand, the max-AS/min-
router fanout placement performs even worse than random
replica placement. This, to some extent, is a surprising re-
sult, because we expected that the AS fanout is the major
factor that has impact on performance. Clearly, placement
is very sensitive to the actual selection of routers within
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Figure 3: Internet core: replica placement impact
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Figure 4: Internet core: replica placement impact
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ASs{selecting the highest fanout AS alone for placing a
replica is not su�cient.

4.3.2 Client Placement Impact
To evaluate the client placement impact on the results,
�rst we consider the extreme cases of a�nity and disa�n-
ity. The particular model we use was described already in
Section 3.3. Figure 2 and Figure 3 show the results for
extreme a�nity and extreme disa�nity respectively (the
rest of the setup is same as in the case of random client
placement in Section 4.3.1). Here again we can see that the
max-router and max-AS/max-router fanout-based place-
ment methods perform remarkably well within a factor of
1.1{1.2 of the greedy placement.

The results with the web-clients are on Figure 4. Simi-
lar to the extreme a�nity and extreme disa�nity client
placement, with web-clients the fanout-based placement
methods perform equally well.

It is interesting to note that, unlike the greedy placement,
the fanout-based replica placement methods do not take
client locations into account, yet they can perform very
well over a wide range of client placements (including re-
alistic placements).

4.3.3 Client Number Impact
The next question we want to answer is how the client
population size impacts the performance. In this set of
simulations we �x the number of replicas to 50, and then
we vary the fraction of nodes that are clients in the range
0.005{0.2. Figure 5, Figure 6 and Figure 7 show the results
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Figure 6: Internet core: client number impact (ex-
treme a�nity clients)

for various client placement: random, extreme a�nity and
extreme disa�nity respectively.

We observe that when the number of clients is small, the
fanout-based placement methods do not perform very well.
This is especially true for extreme a�nity client place-
ment. For moderate and large client number, the fanout-
based placements perform much better, as expected 5. An-
other observation we can make is that the performance dif-
ference is larger with extreme a�nity of the clients. This
result is not unexpected, because when all clients are clus-
tered together in some part of the network, there is rela-
tively low probability that there will be a node with large
fanout in their proximity that will be selected as a replica
(unless the number of clustered clients is very large and
altogether they cover a notable fraction of the network).

From the above results we can see that the client popula-
tion size has impact on performance only when the number
of clients is small. Only then the fanout-based placements
do not perform as well as the greedy placement.

4.3.4 Network Topology Impact
The next factor we consider that may have impact on per-
formance is the type of topology. First, we repeat the same

5The random and max-AS/min-routers placement perfor-
mance for extreme disa�nity of the clients as a function
of the client population size may seem a little bit unusual
because it is not monotonically increasing or decreasing.
This behavior can be explained by the fact that the re-
sults can be in
uenced signi�cantly by various factors if
the number of clients is very small (of the order of the
number of replicas)
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simulations with two di�erent types of generated topolo-
gies. The �rst one is a random graph (see Table 1 for
some of its metrics, as well for the metrics of the other
topologies), generated by the GT-ITM topology genera-
tor [3]. The second one is a power-law graph 6 created
by a generator based on the algorithm described in [1].
A recent study shows that this topology qualitatively re-
sembles both the AS and the router-level topologies [21].
Obviously, we do not have ASs over the generated topolo-
gies, therefore we have to use shortest-path routing; for
the same reason we cannot apply the max-AS/max-router
or the max-AS/min-router replica placement methods.

The results for the random graph with randomly placed
clients (20% of all nodes) when we vary the number of
replicas are on Figure 8. We can see that the di�erence
between the greedy placement and the max-router fanout
placement is even smaller (within a factor of 1.05). On the
other hand, even random replica placement can perform
within a factor of 1.25 which is much lower compared to
the Internet-core results.

The results for the the power-law graph are on Figure 9.
As expected, the fanout-based placement performs very
well, while the random placement performs notably worse.
We tried also a real-world AS-level topology itself [4], and
the results were very similar to the results for the gener-
ated power-law graph.

6One of the characteristics of the power-law graphs is that
the node fanout distribution can be described by a power
law: fd / d� where fd is the frequency of out-degree d,
and � is a constant.
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Figure 9: Power-law graph: replica placement im-
pact (random clients)

For all topologies, the extreme a�nity and extreme dis-
a�nity client placement results were similar to the random
client placement results.

However, we should note that this result is not universal.
When we tried the Mbone [14] overlay topology [22], we
found that the max-router fanout replica placement is not
better than the random placement. In fact, in most cases
it was even worse. We believe the reason is that the con-
nectivity of the Mbone topology is very sparse compared
to the other topologies we have considered (compare the
topology size, topology diameter and average inter-node
distances of all topologies on Table 1). As a result, the
average distance from a well-connected node to the rest of
the nodes is relatively large, therefore such node is not a
good choice to be a replica.

Finally, we should note that when we repeated the Internet-
core simulations with using shortest-path routing instead
of the approximated AS-policy routing, we did not see any
notable di�erence. From this we can conclude that the im-
pact of the routing on relative performance is insigni�cant.

4.4 Results Discussion
In this section we discuss our �ndings, and try to explain
the reasons behind some of them.

Our main �nding is that the fanout-based placement meth-
ods can perform remarkably well. Unlike more sophisti-
cated methods such as the greedy placement that takes
into account the client locations to compute the appro-
priate replica placement, the fanout-based placement does
not require any knowledge about expected client locations.
This is a very signi�cant simpli�cation, because it basi-
cally suggests that we do not need a dynamic and adaptive
replica placement that requires knowledge about expected
client locations. In other words, as long as the replicas are
placed in some \key" locations in the network, then the
expected performance would be reasonably good.

If we abstract from the particular replica placement meth-
ods and ask the question \if we had to select a single node
as a replica, what would be the best node to select", the
answer would be the node that is as close as possible to all
clients. Typically, if a node has a large fanout, it means
that it is a one-hop away from a large number of nodes,
and therefore probabilistically it is close to a large number

of clients as well. The AS and the Internet topologies have
the characteristics of power-law graphs [7, 19]. One of the
characteristics of those topologies is that they have a small
number of nodes with very large fanout which nodes are
apparently just few hops away from all other nodes. In
other words, the high-fanout nodes are the \key-location"
nodes for the power-law graphs that in most cases are very
close to the rest of the nodes.

Here someone may ask the question why did we get sim-
ilar results for the random graph which is not a power-
law graph? The answer to that question may be in the
fact that the majority of the nodes in the random graph
have similar fanout, while overall random graphs have very
high topology expansion (de�ned as the growth of neigh-
borhood size as a function of distance) [19]. The combina-
tion of these two factors eventually means that all nodes
are just few hops away from each other, and then choos-
ing any node to be a replica will be a good solution. This
observation also explains why the random replica selec-
tion performs much better for random graph compared to
power-law graph (see Figure 8 and 9).

Another observation is that a two-level fanout-based place-
ment such as the max-AS/max-router placement method
can perform very well. One possible speculation here may
be that the AS fanout is the factor that matter, i.e., that
choosing any node within an AS with a large fanout will
be a good solution. However, the results for the max-
AS/min-router replica placement show that router selec-
tion based on the AS-level fanout only is not su�cient: the
router-level fanout must be considered as well. One possi-
ble explanation to this is as follows. Typically, an AS with
large fanout has inside a large number of nodes, and some
of those nodes may not be very well connected 7. There-
fore, choosing such not well connected node as a replica
may not be bene�cial at all to reduce client latency or
network overhead.

Finally, we should note that in most cases themax-AS/min-
router fanout replica placement performs slightly better
compared to the max-router fanout placement. The rea-
son for this, we believe, is that the max-AS/min-router
fanout placement spreads the replicas among a number of
ASs, by placing no more than one replica inside each AS.
On the other hand, the max-router fanout placement does
not have this property, therefore it may place a number of
replicas very close to each other without adding signi�cant
bene�t to the clients.

5. CONCLUSIONS AND FUTURE WORK
In this paper we consider the problem of replica placement
for Content Distribution Networks. In particular, given a
number of replicas and a network topology, where should
we place them such that the average client latency and the
overall network overhead are minimized. Previous studies

7Indeed, when we compared the number of nodes assigned
to each AS versus the AS fanout, on average the relation
can be approximated with a straight line on the log-log
scale, which means that each of the few ASs with the
largest fanout contains a large number of nodes inside.



have proposed a simple greedy placement algorithm that
performs very well (within a factor of 1.1{1.5) compared
to the optimal solution. Unfortunately, this algorithm re-
quires knowledge about expected client locations, and all
pairwise inter-node distances.

We look into few other replica placement methods and
compare them with the greedy placement. Interestingly,
fanout-based placement methods that choose the nodes
with the maximum fanout perform very well (within a
factor of 1.1{1.2) compared to the greedy placement. Un-
like the greedy placement, the fanout-based placements do
not require knowledge about client locations, and do not
need detailed network topology information. The only
information needed is the set of nodes with the largest
fanout (including eventually, in case of Internet, the AS-
level fanout as well). Further, unlike the greedy placement
solution, a fanout-based solution does not tend to change
signi�cantly even on a long-range time scale.

The implication of those �nding is not that we want to
add various replicas to the high-fanout routers to achieve
good performance. Typically, those routers are very busy,
and it may be technically impossible to add any services
to them. One possible solution would be to build a cluster
of replicas that are connected to the network in a point
that is as close as possible to a high-fanout router. An
interesting problem then would be to investigate how the
addition of such clusters of replicas would change the traf-
�c volume at the high-fanout routers and at the rest of the
network, and how the change in tra�c may have impact
on performance.

Someone may argue that CDN providers may possess de-
tailed topology information, and may have reasonable es-
timation about expected client location, therefore to com-
pute the replica locations a greedy algorithm would be
preferred. While it may be true, it is not di�cult to imag-
ine that in many situations that information may not be
available, or may be inaccurate (e.g.,, right after major
topology or routing recon�guration). In that case, the
fanout-based heuristic can be a quick and easy solution,
and that solution could be re�ned later with the help of
more sophisticated algorithms.

The fanout-based placement methods are not universal.
They do seem to perform very well on power-law and ran-
dom graphs, but may not be a good solution if most of the
nodes have similar, relatively low fanout. Investigating in
more details the particular network topology character-
istics that may have impact on the fanout-based replica
placement performance is part of our future work.
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