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Abstract
We propose and evaluate the concept of a semantically-smart
disk system (SDS). As opposed to a traditional “smart” disk, an
SDS has detailed knowledge of how the file system above is us-
ing the disk system, including information about the on-disk data
structures of the file system. An SDS exploits this knowledge to
transparently improve performance or enhance functionality be-
neath a standard block read/write interface. To automatically
acquire this knowledge, we introduce a tool (EOF) that can dis-
cover file-system structure for certain types of file systems, and
then show how an SDS can exploit this knowledge on-line to
understand file-system behavior. We quantify the space and time
overheads that are common in an SDS, showing that they are not
excessive. We then study the issues surrounding SDS construc-
tion by designing and implementing a number of prototypes as
case studies; each case study exploits knowledge of some aspect
of the file system to implement powerful functionality beneath
the standard SCSI interface. Overall, we find that a surprising
amount of functionality can be embedded within an SDS, hinting
at a future where disk manufacturers can compete on enhanced
functionality and not simply cost-per-byte and performance.

1 Introduction
“To know that we know what we know, and
that we do not know what we do not know,
that is true knowledge.” Confucius

As microprocessors and memory chips become smaller,
faster, and cheaper, embedding processing and memory
in peripheral devices has become an increasingly attrac-
tive proposition [1, 19, 32, 40]. Placing processing power
and memory capacity within a “smart” disk system allows
functionality to be migrated from the file system into the
disk (or RAID), thus providing a number of potential ad-
vantages over a traditional system. For example, when
computation takes place near data, one can improve per-
formance by reducing traffic between the host processor
and disk [1]. Further, such a disk system has and can ex-
ploit low-level information not typically available at the

file-system level, including exact head position and block-
mapping information [26, 35]. Finally, unmodified file
systems can leverage these optimizations, enabling de-
ployment across a broad range of systems.

Unfortunately, while smart disk systems have great
promise, realizing their full potential has proven difficult.
One causative reason for this shortfall is the narrow inter-
face between file systems and disks [16]; the disk subsys-
tem receives a series of block read and write requests that
have no inherent meaning, and the data structures of the
file system (e.g., bitmaps for tracking free space, inodes,
data blocks, directories, and indirect blocks) are not ex-
posed. Thus, research efforts have been limited to apply-
ing disk-system intelligence in a manner that is oblivious
to the nature and meaning of file system traffic, e.g., im-
proving write performance by writing blocks to the closest
free space on disk [15, 40].

To fulfill their potential and retain their utility, smart
disk systems must become “smarter” while the interface
to storage remains the same. Such a system must acquire
knowledge of how the file system is using it, and exploit
that understanding in order to enhance functionality or in-
crease performance. For example, if the storage system
understands which blocks constitute a particular file, it
can perform intelligent prefetching on a per-file basis; if a
storage system knows which blocks are currently unused
by the file system, it can utilize that space for additional
copies of blocks, for improved performance or reliability.
We name a storage system that has detailed knowledge of
file system structures and policies a Semantically-Smart
Disk System (SDS), since it understands the meaning of
the operations enacted upon it.

An important problem that must be solved by an SDS is
that of “information discovery” – how does the disk learn
about the details of file system on-disk data structures?
The most straight-forward approach is to assume the disk
has exact “white-box” knowledge of the file system struc-
tures (e.g., access to all relevant header files). However, in
some cases such information will be unavailable or cum-
bersome to maintain. Thus, in this paper, we explore a
“gray-box” approach [4], attempting where possible to
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automatically obtain such file-system specific knowledge
within the storage system.

We develop and present a fingerprinting tool, EOF, that
automatically discovers file-system layout through probes
and observations. We show that by using EOF, a smart
disk system can automatically discover the layout of a cer-
tain class of file systems, namely those that are similar to
the Berkeley Fast File System (FFS) [27].

We then show how to exploit layout information to in-
fer higher-level file-system behavior. The processes of
classification, association, and operation inferencing re-
fer to the ability to categorize each disk block (data, in-
ode, bitmaps, or superblock) and detect the precise type
of each data block (file, directory, or indirect pointer), to
associate each data block with its inode or other relevant
information, and to identify higher-level operations such
as file creation and deletion. An SDS can use some or all
of these techniques to implement its desired functionality.

To prototype a smart disk system, we use a software
infrastructure in which an in-kernel driver interposes on
read and write requests between the file system and the
disk. In our prototype environment, we can explore most
of the challenges of adding functionality within an SDS,
while adhering to existing interfaces and running under-
neath a stock file system. In this paper, we focus on the
Linux ext2 and ext3 file systems, as well as NetBSD FFS.

To understand the performance characteristics of an
SDS, we study the overheads involved with fingerprint-
ing, classification, association, and operation inferencing.
Through microbenchmarks, we quantify costs in terms of
both space and time, demonstrating that common over-
heads are not excessive.

Finally, to illustrate the potential of semantically-smart
storage systems, we have implemented a number of
case studies within our SDS framework: aligning files
with track boundaries to increase the performance of
small-file operations [35], using information about file-
system structures to implement more effective second-
level caching schemes with both volatile and non-volatile
memory [43], a secure-deleting disk system that ensures
non-recoverability of deleted files [20], and journaling
within the storage system itself to improve crash recovery
time [21]. Through these case studies, we demonstrate
that a broad range of functionality can be implemented
within a semantically-smart disk system. In some cases,
we also demonstrate how an SDS can tolerate imperfect
information about the file system, which is a key to build-
ing robust semantically-smart disk systems.

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss related work. We then discuss file-
system fingerprinting in Section 3, classification and as-
sociation in Section 4, and operation inferencing in Sec-
tion 5. We evaluate our system in Section 6, and present
case studies in Section 7. We conclude in Section 8.

2 Related Work

The related work on smart disks can be grouped into three
categories. The first group assumes that the interface
between file and storage systems is fixed and cannot be
changed, the category under which an SDS belongs. Re-
search in the second group proposes changes to the stor-
age interface, requiring that file systems be modified to
leverage this new interface. Finally, the third group pro-
poses changes not only to the interface, but to the pro-
gramming model for applications.
Fixed interfaces: The focus of this paper is on the inte-
gration of smart disks into a traditional file system envi-
ronment. In this environment, the file system has a nar-
row, SCSI-like interface to storage, and uses the disk as a
persistent store for its data structures. An early example of
a smart disk controller is Loge [15], which harnessed its
processing capabilities to improve performance by writ-
ing blocks near the current disk-head position. Wang et
al.’s log-based programmable disk [40] extended this ap-
proach in a number of ways, namely quick crash-recovery
and free-space compaction. Neither of these systems as-
sume or require any knowledge of file system structures.

When storage system interfaces are more developed
than that provided in the local setting, there are more op-
portunities for new functionality. The use of a network
packet filter within the Slice virtual file service [3] allows
Slice to interpose on NFS traffic in clients, and thus im-
plement a range of optimizations (e.g., preferential treat-
ment of small files). Interposing on an NFS traffic stream
is simpler than doing so on a SCSI-disk block stream be-
cause the contents of NFS packets are well-defined.

High-end RAID products are the perfect place for se-
mantic smartness, because a typical enterprise storage
system has substantial processing capabilities and mem-
ory capacity. For example, an EMC Symmetrix server
contains up to eighty 333 MHz Motorola microprocessors
and can be configured with up to 64 GB of memory [14].
Some high-end RAID systems currently leverage their
resources to perform a bare minimum of semantically-
smart behavior; for example, storage systems from EMC
can recognize an Oracle data block and provide an ex-
tra checksum to assure that a block write (comprised of
multiple sector writes) reaches disk atomically [7]. In this
paper, we explore the acquisition and exploitation of more
detailed knowledge of file system behavior.
More expressive interfaces: Given that one of the pri-
mary factors that limits the addition of new functional-
ity in a smart disk is the narrow interface between file
systems and storage, it is not surprising that there has
been research that investigates changing this interface. We
briefly highlight these projects. Mime investigates an en-
hanced interface in the context of an intelligent RAID
controller [9]; specifically, Mime adds primitives to allow
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clients to control both when updates to storage become
visible to other traffic streams and the commit order of
operations. Logical disks expand the interface by allow-
ing the file system to express grouping preferences with
lists [11]; thus, file systems are simplified since they do
not need to maintain this information. E×RAID exposes
per-disk information to an informed file system (namely,
I·LFS), providing performance optimizations, more con-
trol over redundancy, and improved manageability of stor-
age [12]. Finally, Ganger suggests that a reevaluation of
this interface is needed [16], and outlines two relevant
case studies: track-aligned extents [35] (which we explore
within this paper), and freeblock scheduling [26].

More recent work in the storage community suggests
that the next evolution in storage will place disks on a
more general-purpose network and not a standard SCSI
bus [17]. Some have suggested that these network disks
export a higher-level, object-like interface [18], thus mov-
ing the responsibilities of low-level storage management
from the file system into the drives themselves. Although
the specific challenges would likely be different in this
context, the fixed object-based interface between file sys-
tems and storage will likely provide an interesting avenue
for further research into the utility of semantic awareness.
New programming environments: In contrast to inte-
gration underneath a traditional file system, other work
has focused on incorporating active storage into entirely
new parallel programming environments. Recent work on
“active disks” includes that by Acharya et al. [1], Riedel
et al. [32], and Amiri et al. [2]. Much of this research fo-
cuses on how to partition applications across host and disk
CPUs to minimize data transferred across system busses.

3 Inferring On-Disk Structures:
Fingerprinting the File System

For a semantically smart disk to implement interesting
functionality, it must be able to interpret the types of
blocks that are being read from and written to disk and
specific characteristics of those blocks. For an SDS to
be practical, this information must be obtained in a ro-
bust manner that does not require human involvement. We
consider three alternatives for obtaining this information.

The first approach directly embeds knowledge of the
file system within the SDS; thus, the onus of understand-
ing the target file system is placed on the developer of the
SDS. The obvious drawbacks are that SDS firmware must
be updated whenever the file system is upgraded and the
SDS is not robust to changes in the target file system.

With the second approach, the target system informs
the SDS of its data structures at run-time; in this case,
the responsibilities are placed on the target file system.
There are numerous disadvantages with this approach as

well. First, and most importantly, the target system must
be changed; either the file system (or some other process
with access to the same information) must directly com-
municate with the SDS. Second, a new communication
channel outside of existing protocols must be added be-
tween the target system and the SDS. Finally, it may be
difficult to ensure that the specification communicated to
the SDS matches the actual file system implementation.

In the third approach, the SDS automatically infers the
file system data structures. The benefits of this approach
are many: no specific knowledge about the target file sys-
tem is required when the SDS is developed; the assump-
tions made by the SDS about the target file system can be
checked when it is deployed; little additional work is re-
quired to configure the SDS when it is installed; the SDS
can be deployed in new environments with little or no dif-
ficulty. We believe that this approach has the most po-
tential for a semantically-smart storage system; thus, we
explore how an SDS can automatically acquire layout in-
formation with fingerprinting software.

Automatically inferring file system structures bears
similarity to several other research efforts in reverse-
engineering. For example, researchers have shown that
both bit-level machine instruction encodings [22] and the
semantic meaning of assembly instructions [10] can be
deduced. Others have also developed techniques to iden-
tify parameters of the TCP protocol [30], to extract low-
level characteristics of disks [34, 38], to determine OS
buffer-cache policies [8], and to understand the behavior
of a real-time CPU scheduler [31].

3.1 Assumptions
Automatically inferring layout information for an arbi-
trary file system is a challenging problem. As an im-
portant first step, we have developed a utility, called EOF
(“Extraction Of Filesystems”), that can extract layout in-
formation for FFS-like file systems, either with or without
journaling capabilities. We have verified that EOF can
identify the data structures employed by Linux ext2 and
ext3 as well as NetBSD FFS. Furthermore, EOF should
be able to understand a future FFS-like file system that
adheres to the following assumptions about the layout of
data structures on disk:
General: Disk blocks are statically and exclusively as-
signed to one of five categories: data, inodes, bitmaps for
free/allocated data blocks and/or inodes, summary infor-
mation (e.g., superblock and group descriptors), and log
data. EOF identifies the block addresses on disk allocated
to each category.
Data blocks: A data block may dynamically contain ei-
ther file data, directory listings, or pointers to other data
blocks (i.e., an indirect block). Data blocks are not shared
across files. EOF identifies the structure of directory data
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as well; EOF assumes that each record in a directory data
block contains at least the length of the record, the entry
name, the length of the entry name, and the inode number
for the entry. Each field in a directory entry is assumed to
be a multiple of 8 bits. EOF assumes that indirect blocks
contain 32-bit pointers.
Inode blocks: An inode block contains N inodes where
each inode consumes exactly 1/N -th of the block. EOF
assumes that the definition of each inode field is static over
time. EOF identifies the location (or absence) of the fol-
lowing fields within an inode: size, blocks (the number
of data blocks allocated to this inode), ctime (the time
at which the inode was last changed), mtime (the time
at which the corresponding data was last changed), dtime
(the deletion time), links (the number of links to this in-
ode), generation number, data pointers (any number and
combination of direct pointers and single, double, and
triple indirect pointers) and dir bits (bits that change be-
tween file and directory inodes). With the exception of
dir bits, all of the fields that we identify are by default
assumed to be a multiple of 32 bits; however, if multi-
ple fields are identified within the same 32 bits (e.g., the
blocks and links fields), then the size of each field is as-
sumed to be the largest multiple of 8 bits that does not
lead to overlapping fields.
Bitmap blocks: Bitmaps for data and inodes may either
share a single block or be placed in separate blocks. Bits
in the (data /inode) bitmap blocks have a one-to-one linear
mapping to the data blocks/inodes. The last bitmap block
does not have to be entirely valid.
Log data: The log data used by a journaling file system
is managed as a circular, contiguous buffer. We make no
assumptions about the contents of the log, although we
may look into doing so in the future.

The feasibility of inferring on-disk data structures de-
pends upon the assumption that production file systems
change slowly over time (if at all). This assumption
is likely to hold, given that file system developers have
strong motivation to keep on-disk structures the same, so
that legacy file systems can continue to operate. Exam-
ining file systems of the past and present further corrobo-
rates this belief. For example, the on-disk structure of the
FFS file system has not changed in nearly 20 years [27];
the Linux ext2 file system has had the same layout since
conception; the ext3 journaling file system is backward
compatible with ext2 [39]; extensions to FreeBSD FFS
are designed so as to avoid on-disk changes [13].

3.2 Algorithm Overview
The EOF software is used as follows. When a new file
system is made on an SDS partition, EOF is run on the
partition so that the SDS understands the context in which
it is being deployed. The basic structure of EOF is that

a user-level probe process performs operations on the file
system, generating controlled traffic streams to disk. The
SDS knows each of the high-level operations performed
and the disk traffic that should result. By observing which
file blocks are written and which bytes within blocks
change, the SDS infers which blocks contain each type of
file system data structures and which offsets within each
block contain each type of field. The SDS can then use
this knowledge to configure itself, simultaneously verify-
ing that the target file system behaves as expected.

The SDS must be able to correlate the traffic it observes
with the file system operations performed by the probe
process. This correlation requires two pieces of function-
ality. First, the probe process must ensure that all blocks
from an operation have been flushed out of the file system
cache and written to the SDS. To ensure this, the probe
process unmounts the file system; however, unmounting
(and re-mounting) is used sparingly since it increases the
running time of EOF. Second, the probe process must oc-
casionally inform the SDS that a specific operation has
ended. The probe process communicates to the SDS by
writing a distinct pattern to a fencepost file; the SDS looks
for this known pattern in the resulting traffic to find the
message from the probe process.

Two general techniques are used within EOF to identify
blocks and inode fields. First, to identify data blocks, the
SDS always looks for a known pattern that the probe pro-
cess writes in test files. Second, to classify all other blocks
and fields, the SDS attempts to isolate a unique, unclassi-
fied block that is written by one operation, across a set of
operations, or by some operations but not by others.

3.3 Algorithm Phases
EOF is composed of five phases. First, EOF isolates the
summary blocks and the log file. Next, EOF identifies
data blocks and data bitmaps. Then, EOF looks for inodes
and inode bitmaps. After all blocks have been classified,
EOF isolates the inode fields. Finally, EOF identifies the
fields within directory entries.

3.3.1 Bootstrapping (Phase 0)

The goal of bootstrapping is to isolate the blocks that are
frequently written in later phases so that they can be fil-
tered from the blocks of interest. Thus, phase 0 isolates
summary blocks, the log file, and inode and data blocks
for the fencepost file, the test directory, and a few test files.

First, the probe process creates the fencepost file and a
number of test files within a test directory; the SDS identi-
fies the data blocks associated with each file by searching
for the known patterns. Second, EOF identifies the blocks
belonging to the log file, if it exists. In this step, the probe
process synchronously appends data with a known pattern
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to one of the test files. The SDS observes many blocks
of meta-data; those blocks that are written to in a circu-
lar pattern belong to the log (if no block traffic matches
this pattern, then EOF infers that the file system does not
perform journaling). Third, EOF identifies the summary
blocks; the probe process unmounts the file system and
the written blocks that have not been classified as log data
are identified as summary blocks.

To isolate the inode blocks that are repeatedly writ-
ten, the probe process performs a chmod on the fence-
post file, the test directory, and the test files; in each case,
only the inode of each is written, allowing it to be classi-
fied. The data blocks belonging to the test directory are
identified by changing the name of each test file; these
blocks are the only previously unidentified blocks writ-
ten. Finally, to determine if separate bitmap blocks are
used for data and inode blocks (i.e., as in Linux ext2 and
ext3) or if a single bitmap block is shared between both
(i.e., as in NetBSD FFS), EOF creates a new file; whether
the SDS observes one or two unclassified blocks allows
it to determine whether bitmap blocks are shared or kept
separate for data and inodes. To simplify our presenta-
tion, in the remainder of our discussion we consider only
the case where data and inode bitmaps are in separate
blocks; however, EOF correctly handles the shared case,
in which case, EOF also isolates the specific bits in the
shared bitmap block devoted to inode or data block state.

3.3.2 Data and Data-bitmap blocks (Phase 1)

EOF continues by identifying all the blocks on disk con-
taining either data or data bitmaps. To isolate these
blocks, the probe process appends a few blocks of data
with a known pattern to each of the test files. All blocks
that do not match the known pattern and are not yet clas-
sified are assumed to be either data-bitmap blocks or
indirect-pointer blocks. EOF differentiates between the
two by inferring that blocks written by two different files
must be data-bitmap blocks. Care is taken to create small
enough files such that no single file fills a bitmap block;
the last bitmap block is a special case since a smaller than
expected file can completely fill it. To cleanup from this
phase, the test files are deleted.

3.3.3 Inodes and Inode-bitmap blocks (Phase 2)

Identifying the inodes and their bitmaps requires creating
many new files. Two distinct steps are required. First,
the probe process creates many new files, which causes
both the inodes and inode bitmaps to be modified. Second,
the probe process performs a chmod on the files, which
causes the inodes but not the inode bitmaps to be written.
Thus, the inodes and inode bitmaps can be distinguished
from each other. This phase also calculates the size of

each inode; this is performed by recording the number of
times each block is identified as an inode and dividing the
block size by the observed number of inodes in a block.

3.3.4 Inode Fields (Phase 3)

At this point, EOF has classified all blocks on disk as be-
longing to one of the five categories of data structures.
The next phase identifies fields within inodes by observ-
ing those fields that do or do not change across opera-
tions. For brevity, we do not describe how EOF infers the
blocks, links, and generation number fields.

The first inode fields that EOF identifies are the file size
and times; this requires five steps. First, the probe pro-
cess creates a file; the SDS stores the inode data to com-
pare it to the inode data written in the next steps. Second,
the probe process overwrites the file data; the only inode
fields that change are those related to time. Third, the
probe process appends a small amount of data to the file
such that a new data pointer is not added; at this point, the
size field can be identified as the only data that changed in
step 3 but not step 2. Fourth, the probe process performs
an operation to change the inode without changing the file
data (e.g., adding a link or changing the permissions); this
allows the SDS to isolate mtime (which is not changed in
this step) from ctime (which is changed). Finally, the file
is deleted so that the deletion-time field is observed.

EOF next identifies the location and the level of the data
pointers in the inode. The probe process repeatedly ap-
pends to a file while the SDS observes which bytes in the
inode change (other than those that changed in the previ-
ous step). EOF infers the location of indirect pointers (and
so forth) by observing when an additional “data” block is
written and no additional pointer is updated in the inode.
To improve performance, rather than write every block,
the probe process seeks a progressively larger amount: the
seek distance starts at one block and increases by the size
handled by the currently detected indirection level.

Finally, EOF isolates the inode bit fields that designate
directories. The probe process alternately creates files
and directories. The SDS keeps two histograms: one for
file and one for directory inodes; in the histogram, EOF
records the count of times each bit in the inode type was
zero. To determine the directory fields, EOF isolates all
bits that were always 0 for files and always 1 for directo-
ries (and vice versa). These bits and their corresponding
values are then considered to identify files versus directo-
ries. Soft link bits are identified in a similar manner.

3.3.5 Directory Entries (Phase 4)

In its final phase, EOF identifies the structure of entries
within a directory. First, EOF infers the offsets of the en-
try name and the name length. To do this, the probe pro-
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cess creates a file with a known name; the SDS searches
for this name in the directory data block as well as the
field designating the length of this name. For validation,
this file is deleted and the step is repeated numerous times
for filenames of different lengths. Second, EOF finds the
location of the record length, using the assumption that
the length of the last record contains the remaining space
for the directory data block and that this length is reduced
when a new record is added. Thus, the probe process cre-
ates additional files and the SDS simply records the off-
sets that change in the previous entries. Finally, the offset
of the inode number is found using the assumption that
each directory contains an entry for itself (i.e., “.”). In this
step, the probe process creates two empty directories; the
SDS isolates the inode offset by recording the differences
across the data blocks of those two directories.

3.4 Assertion of Assumptions
The major challenge with automatic inferencing is to en-
sure that the SDS has correctly identified the behavior of
the target file system. To be robust to a new file system not
meeting these assumptions, EOF has mechanisms to de-
tect when an assumption fails; in this case, the file system
is identified as non-supported and the SDS operates cor-
rectly, but without using semantic knowledge. For exam-
ple, if more blocks than expected are written in a specific
step, or if specific blocks are not observed, EOF detects
this as a violation. We have verified that violations are
identified appropriately when EOF is run upon non-FFS
file systems (e.g., msdos, vfat, and reiserfs).”

An additional benefit of using EOF to configure an
SDS is that file system bugs may be identified. For ex-
ample, running EOF on ext3 in Linux 2.4 isolated two
bugs. First, the SDS observed incomplete traffic in key
steps; this problem was tracked back to an ext3 bug in
which data written within 30 seconds prior to an unmount
is not always flushed to disk [28]. Second, the probe
process noted an error when all of the inodes were allo-
cated; in this case, ext3 incorrectly marks the file system
as dirty [25]. Thus, EOF enables checks of the file system
that are not easily obtained with other methods.

4 Exploiting Structural Knowledge:
Classification and Association

The key advantage of an SDS is its ability to identify
and utilize important properties of each block on the disk.
These properties can be determined through direct and in-
direct classification as well as through association. With
direct classification, blocks are easily identified by their
location on disk. With indirect classification, blocks are
identified only with additional information; for example,

to identify directory data or indirect blocks, the corre-
sponding inode must also be examined. Finally, with as-
sociation, a data block and its inode are connected.

In many cases, an SDS also requires functionality to
identify when a change has occurred within a block. This
functionality is implemented via block differencing. For
example, to infer that a data block has been allocated, a
single-bit change in the data bitmap must be observed.
Change detection is potentially one of the most costly op-
erations within an SDS for two reasons. First, to compare
the current block with the last version of the block, the
SDS may need to fetch the old version of the block from
disk; however, to avoid this overhead, a cache of blocks
can be employed. Second, the comparison itself may be
expensive: to find the location of a difference, each byte in
the new block must be compared with the corresponding
byte in the old block. We quantify these costs in Section 6.

4.1 Direct Classification

Direct classification is the simplest and most efficient
form of on-line block identification for an SDS. The SDS
determines the type of the block by performing a simple
bounds check to calculate into which set of block ranges
a particular block falls. In an FFS-like file system, the su-
perblock, bitmaps, inodes, and data blocks are identified
using this technique.

4.2 Indirect Classification

Indirect classification is required when the type of a block
can vary dynamically and thus simple direct classification
cannot precisely determine the type of block. For exam-
ple, in FFS-like file systems, indirect classification is used
to determine whether a data block is file data, directory
data, or some form of indirect pointer block (e.g., a sin-
gle, double, or triple indirect block). To illustrate these
concepts we focus on how directory data is differentiated
from file data; the steps for identifying indirect blocks ver-
sus pure data are similar.
Identifying directory data: The basic challenge in iden-
tifying whether a data block belongs to a file or a direc-
tory is to track down the inode that points to this data and
check whether its type is a file or a directory. To per-
form this tracking, the SDS snoops on all inode traffic to
and from the disk: when a directory inode is observed,
the corresponding data block numbers are inserted into a
hash table. The SDS removes data blocks from the hash
table by observing when those blocks are freed (e.g., by
using block differencing on the bitmaps). When the SDS
must later identify a block as a file or directory block, its
presence in this table indicates that it is directory data. We
now discuss two complications with this approach.
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First, the SDS cannot always guarantee that it can cor-
rectly identify blocks as files or directories. Specifically,
when a data block is not present in the hash table, the SDS
infers that the data corresponds to a file; however, in some
cases, the directory inode may not have yet been seen by
the SDS and as a result is not yet in the hash table. Such
a situation may occur when a new directory is created or
when new blocks are allocated to existing directories; if
the file system does not guarantee that inode blocks are
written before data blocks, the SDS may incorrectly clas-
sify newly written data blocks. This problem does not
occur when classifying data blocks that are read. In this
case, the file system must read the corresponding inode
block before the data block (to find the data block num-
ber); thus, the SDS will see the inode first and correctly
identify subsequent data blocks.

Whether or not transient misclassification is a problem
depends upon the functionality provided in the SDS. For
instance, if an SDS simply caches directory blocks for
performance, it can likely tolerate a temporary inaccu-
racy. However, if the SDS requires accurate information
for correctness, there are two ways it can be ensured. The
first option is to guarantee that the file system above writes
inode blocks before data blocks; this is true by default in
FFS (before soft updates [36]) and in Linux ext2 when
mounted in synchronous mode. The second option is to
buffer writes until the time when the classification can be
made; this deferred classification occurs when the corre-
sponding inode is written to disk or when the data block is
freed, as can be inferred by monitoring data bitmap traffic.

Second, the SDS may perform excess work if it oblivi-
ously inserts all data blocks into the hash table whenever
a directory inode is read and written since this inode may
have recently passed through the SDS, already causing
the hash table to be updated. Therefore, to optimize per-
formance, the SDS can infer whether or not a block has
been added (or modified or deleted) since the last time
this directory inode was observed, and thus ensure that
only those blocks are added to (or deleted from) the hash
table. This process of operation inferencing is described
in detail in Section 5.
Identifying indirect blocks: The process for identifying
indirect blocks is almost identical to that for identifying
directory data blocks. In this case, the SDS tracks new
indirect block pointers in all inodes being read and writ-
ten. By maintaining a hash table of all single, double, and
triple indirect block addresses, an SDS can determine if a
data block is an indirect block.

4.3 Association

The most useful association is to connect data blocks with
their inodes; for example, this allows the size or creation
date of a file to be known by the SDS. Association can

be achieved with a simple but space-consuming approach.
Similar to indirect classification, the SDS snoops on all
inode traffic and inserts the data pointers into an address-
to-inode hash table. One concern about such a table is
size; for accurate association, the table grows in propor-
tion to the number of unique data blocks that have been
read or written to the storage system since the system
booted. However, if approximate information is tolerated
by the SDS, the size of this table can be bounded.

5 Detecting High-Level Behavior:
Operation Inferencing

Block classification and association provide the SDS with
an efficient way for identifying special kinds of blocks;
however, operation inferencing is necessary to understand
the semantic meaning of the changes observed in those
blocks. We now outline how an SDS can identify file sys-
tem operations by observing certain key changes.

One challenge with operation inferencing is that the
SDS must distinguish between blocks which have a valid
“old version” and those that do not. For instance, when a
newly allocated directory block is written, it should not be
compared to the old contents of the block since the block
contained arbitrary data. To identify when to use the old
versions, the SDS uses a simple insight: when a meta-
data block is written without being read, the old contents
of the block are not relevant. To detect this situation, the
SDS maintains a hash table of meta-data block addresses
that have been read sometime in the past. Whenever a
meta-data block is read, it is added to this list; whenever
the block is freed (as indicated by a block bitmap reset), it
is removed from the list. For example, when a block allo-
cated to a data file is freed and reallocated to a directory,
the block address will not be present in the hash table, and
hence the SDS will not use the old contents.

For illustrative purposes, in this section we examine
how the SDS can infer file create and delete operations.
The discussion below is specific to ext2, although similar
techniques can be applied to other FFS-like file systems.

5.1 File Creates and Deletes

There are two steps in identifying file creates and deletes.
The first is the actual detection of a create or delete; the
second is determining the inode that has been affected.
We describe three different detection mechanisms and the
corresponding logic for determining the associated inode.

The first detection mechanism involves the inode block
itself. Whenever an inode block is written, the SDS ex-
amines it to determine if an inode has been created or
deleted. A valid inode has a non-zero modification time

7



and a zero deletion time. Therefore, whenever the modifi-
cation time changes from zero to non-zero or the deletion
time changes from non-zero to zero, it means the corre-
sponding inode was newly made valid, i.e., created. Simi-
larly, a reverse change indicates a newly freed inode, i.e., a
deleted file. A second indication is a change in the version
number of a valid inode, which indicates that a delete fol-
lowed by a create occurred. In both cases, the inode num-
ber is calculated using the physical position of the inode
on disk (on-disk inodes do not contain inode numbers).

The second detection mechanism involves the inode
bitmap block. Whenever a new bit is set in the inode
bitmap, it indicates that a new file has been created cor-
responding to the inode number represented by the bit po-
sition. Similarly, a newly reset bit indicates a deleted file.

The update of a directory block is a third indication of a
newly created or deleted file. When a directory data block
is written, the SDS examines the block for changes from
the previous version. If a new directory entry (dentry)
has been added, the name and inode number of the new
file can be obtained from the dentry; in the case of a re-
moved dentry, the old contents of the dentry contain
the name and inode number of the deleted file.

Given that any of these three changes indicate a newly
created or deleted file, the choice of the appropriate mech-
anism (or combinations thereof) depends on the function-
ality being implemented in the SDS. For example, if the
SDS must identify the deletion of a file, immediately fol-
lowed by the creation of another file with the same inode
number, the inode bitmap mechanism does not help, since
the SDS may not observe a change in the bitmap if the two
operations are grouped due to a delayed write in the file
system. In such a case, using modification times and ver-
sion numbers is more appropriate. Similarly, if the name
of the newly created or deleted file must be known, the
directory block-based solution is the most efficient.

5.2 Other File System Operations

The general technique of inferring logical operations by
observing changes to blocks from their old versions can
help detect other file system operations as well. We note
that in some cases, for a conclusive inference on a spe-
cific logical operation, the SDS must observe correlated
changes in multiple meta-data blocks. For example, the
semantically-smart disk system can infer that a file has
been renamed when it observes a change to a directory
block entry such that the name changes but the inode num-
ber stays the same; note that the version number within the
inode must stay the same as well. Similarly, to distinguish
between the creation of a hard link and a normal file, both
the directory entry and the file’s inode must be examined.

6 Evaluation
In this section, we answer three important questions about
our SDS framework. First, what is the cost of fingerprint-
ing the file system? Second, what are the time overheads
associated with classification, association, and operation
inferencing? Third, what are the space overheads? Be-
fore proceeding with the evaluation, we first describe our
experimental environment.

6.1 Platform
To prototype an SDS, we employ a software-based in-
frastructure. Our implementation inserts a pseudo-device
driver into the kernel, which is able to interpose on traffic
between the file system and the disk. Similar to a soft-
ware RAID, our prototype appears to file systems above
as a device upon which a file system can be mounted.

The primary advantage of our prototype is that it ob-
serves the same information and traffic stream as an actual
SDS, with no changes to the file system above. However,
our current infrastructure differs in three important ways
from a true SDS. First, and most importantly, our proto-
type does not have direct access to low-level drive inter-
nals; using such information is thus made more difficult.
Second, because the SDS runs on the same system as the
host OS, there may be interference due to competition for
resources; in our initial case studies, we do not believe
this to be of prime importance. Third, the performance
characteristics of the microprocessor and memory system
may be different than an actual SDS; however, high-end
storage arrays already have significant processing power,
and this processing capacity will likely trickle down into
lower-end storage systems.

We have experimented with our prototype SDS in the
Linux 2.2, Linux 2.4, and NetBSD 1.5 operating systems,
underneath of the ext2, ext3, and FFS file systems, re-
spectively. Most experiments in this paper are performed
on a processor that is “slow” by modern standards, a
550 MHz Pentium III processor, with either an 10K-RPM
IBM 9LZX or 10K-RPM Quantum Atlas III disk. In some
experiments, we employ a “fast” system, comprised of a
2.6 GHz Pentium IV and a 15K-RPM Seagate Cheetah
disk, to gauge the effects of technology trends.

6.2 Off-line: Layout Discovery
In this subsection, we show that the time to run the finger-
printing tool, EOF, is reasonable for modern disks. Given
that EOF only needs to run once for each new file system,
the runtime of EOF does not determine the common case
performance of an SDS; however, we do not want the run-
time of EOF to be prohibitive, especially as disks become
larger. One potential solution is parallelism: we believe
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Figure 1: The Costs of Fingerprinting. The figure presents the
time breakdown of the fingerprinting on both the “slow” sys-
tem (IBM disk), and the “fast” system, both running underneath
Linux ext2. Along the x-axis, we vary the size of the partition that
is fingerprinted, and the y-axis shows the time taken per phase.

that the time-consuming components of EOF are paral-
lelizable, which would reduce run-time on disk arrays.

Figure 1 presents a graph of the time to run EOF on
a single-disk partition as the size of the partition is in-
creased. We show performance results for both the “slow”
system with the IBM disk and the “fast” system. The
graph shows that Phase 1, which determines the locations
of data blocks and data bitmaps, and Phase 2, which de-
termines the locations of inode blocks and inode bitmaps,
dominate the total cost of fingerprinting. The time for
these two phases increases linearly with the size of the
partition, requiring approximately 190 seconds per GB on
the slow system, and 81 seconds per GB on the fast sys-
tem. Comparing performance across the two systems, we
conclude that increases in sequential disk performance di-
rectly improve EOF fingerprinting time. The other phases
require a small amount of time regardless of partition size.

6.3 On-line: Time Overheads

Classification, association, and operation inferencing are
potentially costly operations for an SDS. In this subsec-
tion, we employ a series of microbenchmarks to illustrate
the various costs of these actions. The results of our ex-
periments on an SDS underneath of Linux ext2 are pre-
sented in Table 1. For each action and microbenchmark
we consider two cases. In the first case, the file system
is mounted synchronously, ensuring that meta-data opera-
tions reach the SDS in order and thus allowing the SDS to
guarantee correct classification with no additional effort;
synchronous mounting in Linux ext2 is quite similar to
traditional FFS in its handling of meta-data updates. In the
second case, the file system is mounted asynchronously;

in this case, to guarantee correct classification and associ-
ation the SDS must perform operation inferencing. The
microbenchmarks perform basic file system operations,
including file and directory creates and deletes, and we
report the per-file or per-directory overhead of the action
that is under test.

From our experiments, we make a number of obser-
vations. First, most operations tend to cost on the order
of tens of microseconds per file or directory. Although
some of the operations do require nearly 300 µs to com-
plete, most of this cost is due to a per-block cost; for ex-
ample, operation inferencing in synchronous mode with
the Create32 workload takes roughly 280 µs, which cor-
responds to a 34 µs base cost (as seen in the Create0

workload) plus a cost of approximately 30 µs for each
4 KB block. Thus, although the costs rise as file size in-
creases, the SDS incurs only a small per-block overhead
compared to the actual disk writes, each of which may
take some number of milliseconds to complete. Second,
in most cases, the overheads when the ext2 file system
is run in asynchronous mode are much lower than when
run in synchronous mode. In asynchronous mode, numer-
ous updates to meta-data blocks are batched and thus the
costs of block differencing are amortized; in synchronous
mode, each meta-data operation is reflected through to the
disk system, incurring much higher overhead in the SDS.
Third, we observe that in synchronous mode, classifica-
tion is less expensive than association which is less ex-
pensive than inferencing; an SDS should take care to em-
ploy only those actions that are needed to implement the
desired functionality.

6.4 On-line: Space Overheads

An SDS may require additional memory to perform clas-
sification, association, and operation inferencing; specifi-
cally, hash tables are required to track mappings between
data blocks and inodes whereas caches are needed to im-
plement efficient block differencing. We now quantify
these memory overheads under a variety of workloads.

Table 2 presents the number of bytes used by each hash
table to support classification, association, and operation
inferencing. The sizes are the maximum reached during
the run of a particular workload: NetNews [37], Post-
Mark [24], and the modified Andrew benchmark [29]. For
NetNews and PostMark, we vary workload size, as de-
scribed in the caption.

From the table, we see that the dominant memory over-
head occurs in an SDS performing block-inode associa-
tion. Whereas classification and operation inferencing re-
quire table sizes that are proportional to the number of
unique meta-data blocks that pass through the SDS, asso-
ciation requires information on every unique data block
that passes through. In the worst case, an entry is required
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Indirect Block-Inode Operation
Classification Association Inferencing
Sync Async Sync Async Sync Async

Create0 1.7 3.2 1.9 3.3 33.9 3.2
Create32 60.6 3.8 324.4 16.4 279.7 3.8
Delete0 4.3 3.6 6.7 3.9 50.9 3.6
Delete32 37.8 6.9 80.1 28.8 91.0 6.9
Mkdir 56.3 8.6 63.6 11.1 231.9 8.6
Rmdir 49.9 106.2 57.8 108.5 289.4 106.2

Table 1: SDS Time Overheads. The table breaks down the
costs of indirect classification, block-inode association, and op-
eration inferencing. Different microbenchmarks (one per row)
stress various aspects of each action. The Create benchmark
creates 1000 files, of size 0 or 32 KB, and the Delete benchmark
similarly deletes 1000 such files. The Mkdir and Rmdir bench-
marks create or remove 1000 directories, respectively. Each
result presents the average overhead per operation in µs (i.e.,
how much extra time the SDS takes to perform classification, as-
sociation, or inferencing). The experiments were run upon the
“slow” system with the IBM 9LZX disk, with Linux ext2 mounted
synchronously (Sync) or asynchronously (Async).

for every data block on the disk, corresponding to 1 MB
of memory for every 1 GB of disk space. Although the
space costs of tracking association information are high,
we believe they are not prohibitive. Further, if memory
resources are scarce, the SDS can choose to either toler-
ate imperfect information (if possible), or swap portions
of the table to disk.

In addition to the hash tables needed to perform clas-
sification, association, and operation inferencing, a cache
of “old” data blocks is useful to perform block differenc-
ing effectively; recall that differencing is used to observe
whether pointers have been allocated or freed from an in-
ode or indirect block, to check whether time fields within
an inode have changed, to detect bitwise changes in a
bitmap, and to monitor directory data for file creations
and deletions. The performance of the system is sensi-
tive to the size of this cache; if the cache is too small,
each difference calculation must first fetch the old version
of the block from disk. To avoid the extra I/O, the size
of the cache must be roughly proportional to the active
meta-data working set. For example, for the PostMark20

workload, we found that the SDS cache should contain
approximately 650 4 KB blocks to hold the working set.
When the cache is smaller, block differencing operations
often go to disk to retrieve the older copy of the block,
increasing run-time for the benchmark by roughly 20%.

7 Case Studies
In this section, we describe our case studies, each imple-
menting new functionality in an SDS that would not be
possible to implement within a drive or RAID without
semantic knowledge. Some of these case studies could

Indirect Block-Inode Operation
Classification Association Inferencing

NetNews50 68.9 KB 1.19 MB 73.3 KB
NetNews100 84.4 KB 1.59 MB 92.3 KB
NetNews150 93.3 KB 1.91 MB 105.3 KB
PostMark20 3.45 KB 452.6 KB 12.6 KB
PostMark30 3.45 KB 660.7 KB 16.2 KB
PostMark40 3.45 KB 936.4 KB 19.9 KB
Andrew 360 B 3.54 KB 1.34 KB

Table 2: SDS Space Overheads. The table presents the space
overheads of the structures used in performing classification, as-
sociation, and operation inferencing, under three different work-
loads (NetNews, PostMark, and the modified Andrew bench-
mark). Two of the workloads (NetNews and PostMark) were run
with different amounts of input, which correspond roughly to the
number of “transactions” each generates (i.e., NetNews50 im-
plies 50,000 transactions were run). Each number in the table
represents the maximum number of bytes stored in the requi-
site hash table during the benchmark run (each hash entry is 12
bytes in size). The experiment was run on the “slow” system
with Linux ext2 in asynchronous mode on the IBM 9LZX disk.

be built into the file system proper; however, implement-
ing “file-system like” functionality in the storage system
is one the many advantages of semantic intelligence, as
it allows storage-system manufacturers to augment their
products with a much broader range of capabilities.

Due to space limitations, we cannot fully describe each
of the case studies in this paper; instead, we highlight the
functionality each case study implements, present a brief
performance evaluation, and conclude by analyzing the
complexity of implementing said functionality within an
SDS. Each performance evaluation is included to demon-
strate that interesting functionality can be implemented
effectively within an SDS; we leave more detailed per-
formance studies as future work. One theme we explore
within this section is the usage of “approximate” informa-
tion, i.e., scenarios in which an SDS can be wrong in its
understanding of the file system.

7.1 The Case Studies
Track-Aligned Extents: As proposed by Schindler et
al. [35], track-aligned extents (traxtents) can improve disk
access times by placing medium-sized files within tracks
and thus avoiding track-switch costs. Given the detailed
level of knowledge that a traxtents-enabled file system re-
quires of the underlying disk (i.e., the mapping of logical
block numbers to physical tracks), traxtents are a natural
candidate for implementation within an SDS, where this
information is readily obtained.

The fundamental challenge of implementing traxtents
in an SDS instead of the file system is in adapting to
the policies of the file system outside of the file system;
specifically, a Traxtent SDS must influence file system
allocation and prefetching, e.g., mid-sized files must be
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Without With
Prefetching Prefetching

ext2 10.3 MB/s 10.2 MB/s
+Traxtent SDS 12.2 MB/s 14.2 MB/s

Table 3: Track-Aligned Extents. The table shows the band-
width obtained when reading 100 files in a randomized order.
Each file is roughly the size of a track, in this case 328 KB.
We examine both default and track-aligned allocation, varying
whether track-sized prefetching is enabled within the SDS. This
experiment was run upon the “slow” system running Linux 2.2
with the ext2 file system mounted asynchronously upon the
Quantum Atlas III disk.

allocated such that consecutive data blocks do not span
track boundaries and accesses must be in track-sized units.

There are three components of interest within the Trax-
tent SDS implementation. First, when the bitmap blocks
are first read by the file system, the SDS marks the bitmap
corresponding to the last block in each track as allocated,
(a similar technique is used by Schindler et al.). Although
this wastes a small portion of the disk, this “fake” al-
location influences the file system to allocate files such
that they do not span tracks. Second, if the file system
still decides to allocate a file across tracks, the SDS dy-
namically remaps those blocks to a track-aligned locale,
similar to the block remapping of Loge and other smart
disks [15, 40]. One major difference is that the SDS only
remaps blocks that are a part of mid-sized files that bene-
fit from track-alignment, whereas non-semantically aware
disks cannot make such a distinction. Third, the Traxtent
SDS performs additional prefetching to ensure accesses
are not smaller than a track. Linux ext2 (and FFS as well)
prefetches very few blocks when a file is initially read;
therefore, when the Traxtent SDS observes a read to the
first block of a track-aligned file, it requests the remainder
of the track and places the data blocks in its cache.

The Traxtent SDS relies upon one piece of exact in-
formation for correctness: the location of bitmap blocks,
which it marks to “trick” the file system into track-aligned
allocation. However, given that this information is static,
it can be obtained reliably with EOF and with little per-
formance cost at runtime. The indirect classification of
file data as belonging to medium-sized files can be occa-
sionally incorrect, since their remapping is only for per-
formance and not correctness. Table 3 shows that the
Traxtent SDS with prefetching results in roughly a 40%
improvement in bandwidth for medium-sized files.
Structural Caching: We next discuss the use of seman-
tic information in caching within an SDS. Simple LRU
management of a disk cache is likely to duplicate the con-
tents of the file system cache [41, 43], and thereby wastes
memory in the storage system. This waste is particularly
onerous in storage arrays, due to their large amounts of
memory. In contrast, an SDS can use its structural under-

TPC-B20 TPC-B100

FFS 25.04 45.27
+LRU SDS 26.52 48.58
+File-Aware Caching SDS 3.88 20.58

Table 4: File-Aware Caching. The table shows the time in sec-
onds it takes to execute 20,000 and 100,000 TPC-B transactions.
In all experiments, transactions first run to warm up the system;
then a large scan is run, followed by another series of transac-
tions, which are timed. The table compares NetBSD FFS on a
standard disk, on an SDS with a 100 MB LRU-managed cache,
and on an SDS with a 100 MB file-aware cache. All experiments
are run on the “slow” system and the IBM 9LZX disk.

standing of the file system to cache blocks more intelli-
gently, and thus avoid wasteful replication. We explore
the caching of blocks in both volatile memory (DRAM)
and non-volatile memory (NVRAM), as each presents
unique opportunities for optimization.

We first examine a simple optimization that avoids
worst-case LRU behavior. This File-Aware Caching SDS
(FAC SDS) exploits knowledge of file size to selectively
cache blocks from files that are small enough to fit into
the available cache, or that are from files that are not be-
ing accessed sequentially. This strategy avoids caching
blocks from large files that are being scanned and would
otherwise flush the cache of all other blocks.

To implement file-aware caching, the FAC SDS iden-
tifies cacheable blocks using indirect classification and
association; in this case, the hash table holds block ad-
dresses that correspond to those files that meet the caching
criteria. As described previously, this may cause the SDS
to misclassify blocks in those cases when the file inode is
written to disk after the data blocks. The FAC SDS also
keeps a small amount of state per active file in order to
detect sequential access patterns.

Table 4 shows the performance of the FAC SDS un-
der a database workload. In this scenario, we run TPC-B
transactions, and periodically intersperse large file scans
into the system, thus emulating a system running mixed
interactive and batch transactions. Whereas the large scan
flushes the contents of a traditional LRU-managed cache
(and hence degrades performance for subsequent transac-
tions), the file-aware cache does not cache blocks from
large scans, thus keeping the transactional tables in SDS
memory and improving performance.

We next examine how an SDS can use semantic knowl-
edge to store important structures in non-volatile mem-
ory. We explore two different possibilities. In the first,
we exploit semantic knowledge to store the ext3 journal
in NVRAM. To implement the Journal Caching SDS (JC
SDS), the SDS must recognize traffic to the journal and
redirect it to the NVRAM. Doing so is straightforward,
as the EOF tool determines which blocks belong to the
journal. Thus, by classifying and then caching data reads
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Create Create+Sync
ext3 4.64 32.07
+LRU8 SDS 5.91 11.96
+LRU100 SDS 2.39 3.35
+Journal Caching SDS 4.66 6.35

Table 5: Journal Caching. The table shows the time to create
2000 32-KB files, under ext3 without an SDS, with an SDS that
performs LRU NVRAM cache management using either 8 MB
or 100 MB of cache, and with the Journal Caching SDS storing
an 8 MB journal in NVRAM. The Create benchmark performs
a single sync after all of the files have been created, whereas
the Create+Sync benchmark performs a sync after each file
creation, thus inducing a journaling-intensive workload. These
experiments are run on the “slow” system running Linux 2.4 and
utilizing IBM 9LZX disk.

and writes to the journal file, the SDS can implement the
desired functionality.

In the second, we place all of the meta-data (bitmaps,
inodes, indirect blocks, and directories) of NetBSD FFS
in NVRAM. Inodes and bitmaps are identified by their
location on the disk. Pointer blocks and directory data
blocks are identified with indirect classification, which
can occasionally miss blocks. Here again we exploit the
fact that approximate information is adequate; the SDS
writes unclassified blocks to disk and not NVRAM, until
it observes the corresponding inode. To track meta-data
blocks, the Meta-data Caching SDS (MDC SDS) uses an
additional map to record their in-core location.

Tables 5 and 6 show the performance of the JC SDS and
the MDC SDS. In both cases, simple NVRAM caching of
structures such as a journal or file system meta-data are ef-
fective at reducing run times, sometimes dramatically, by
greatly reducing the time taken to write blocks to stable
storage. An LRU-managed cache can also be effective in
this case, but only when the cache is large enough to con-
tain the working set. One of the main benefits of structural
caching in NVRAM is that the size of the cached struc-
tures is known to the SDS and thus guarantees effective
cache utilization. A hybrid may combine the best of both
worlds, by storing important structures such as a journal
or other meta-data in NVRAM, and managing the rest of
available cache space in an LRU fashion.

In the future, we plan to investigate other ways in which
semantic information can be used to improve storage-
system cache management. For example, an SDS can use
certain types of meta-data updates (such as last-accessed-
time updates in an inode) in order to ascertain what files
are likely to be in the file system cache above. Prefetch-
ing within an SDS is also likely to be more intelligent, as
the system has file awareness and thus can make a better
guess as to which block will next be read. Finally, blocks
that have been deleted can be removed from the cache,
thus freeing space for other live blocks.

Create Read Delete PostMark
FFS 73.61 5.14 64.41 230.0
+LRU8 SDS 1.67 211.10 1.32 333.0
+LRU100 SDS 1.67 3.51 4.32 12.0
+MDC SDS 1.76 11.34 0.91 19.0

Table 6: Meta-data Caching. The left three columns of the
table show the time in seconds to complete each phase of the LFS
microbenchmark [33] (in this experiment, the LFS benchmark
creates, reads, and deletes 6500 1-KB files). The right column
shows the total time in seconds for the PostMark benchmark, run
with 5000 files, 5000 transactions, and 71 directories. The rows
compare performance under NetBSD FFS on the “slow” system
and IBM disk without an SDS, with an SDS that performs LRU
NVRAM cache management using either 8 MB or 100 MB of
cache, and with the MDC SDS strategy.

Secure Deletion: With advanced magnetic force scan-
ning tunneling microscopy (STM), a person with physi-
cal access to a drive (and a lot of time) can potentially
extract sensitive data that the user had “deleted” [20]. In
this case study, we explore a “secure-deleting” SDS, that
is, a disk that guarantees that file data from deleted files
is truly unrecoverable. Previous approaches have (incor-
rectly) placed such functionality within the file system by
over-writing deleted file blocks multiple times with var-
ious patterns [6]. However, this does not guarantee that
the data is removed from the disk; other copies of vari-
ous data blocks may exist, due to bad-block remapping or
other storage system optimizations [20, 42]. Further, mul-
tiple consecutive file-system writes may not reach the disk
media due to NVRAM buffering [5]. An SDS is the only
locale where a secure delete can be implemented, since
it can ensure that no stray copies of data exist and that
over-writes are performed on the disk.

Because of the nature of this case study, approximate
or incorrect information about which blocks have been
deleted is not acceptable. The Secure-deleting SDS rec-
ognizes deleted blocks through operation inferencing and
then overwrites those blocks with different data patterns a
specified number of times. Since the file system may real-
locate these blocks to a different file and possibly write the
block with fresh contents in the meantime, the SDS tracks
deleted blocks and queues writes to those blocks until the
overwrite has finished. Also note that we currently must
mount the ext2 file system synchronously for secure dele-
tion to operate correctly; we are investigating techniques
to relax this requirement as a part of future work.

Table 7 shows the overhead incurred by an SDS, as
a function of the number of over-writes; the more over-
writes performed, the less likely the data will be recover-
able. Although a noticeable price is paid for the secure-
delete functionality, this loss may be acceptable to highly-
sensitive applications requiring such security. Perfor-
mance could be further improved by delaying the secure-
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Delete PostMark
ext2 24.0 103.0
+Secure-deleting SDS2 46.9 128.0
+Secure-deleting SDS4 56.9 142.0
+Secure-deleting SDS6 63.6 192.0

Table 7: Secure Deletion. The table shows the time in sec-
onds to complete a Delete microbenchmark and the PostMark
benchmark on the Secure-deleting SDS. The Delete benchmark
deletes 1000 32-KB files, whereas the PostMark benchmark per-
forms 1000 transactions. Each row with the Secure-deleting SDS
shows performance with a different number of over-writes (2, 4,
or 6). This experiment took place on “slow” system running
Linux ext2 mounted synchronously upon the IBM 9LZX disk.

overwrite until the disk is idle, instead of performing it
immediately; freeblock scheduling may further minimize
the performance impact [26].
Journaling: The final case study is the most complex –
the SDS implements journaling underneath of an unsus-
pecting file system. We view the Journaling SDS as an
extreme case which helps us to understand the amount of
information we can obtain at the disk level. Unlike most
of the other case studies, the Journaling SDS requires a
great deal of precise information about the file system.

Due to space limitations, we only present a brief sum-
mary of the implementation. The fundamental difficulty
in implementing journaling in an SDS arises from the fact
that at the disk, transaction boundaries are blurred. For
instance, when a file system does a file create, the file
system knows that the inode block, the parent directory
block, and the inode bitmap block are updated as part
of the single logical create operation, and hence these
block writes can be grouped into a single transaction in
a straight-forward fashion. However, the SDS sees only
a stream of meta-data writes, potentially containing inter-
leaved logical file system operations. The challenge lies
in identifying dependencies among those blocks and han-
dling updates as atomic transactions.

As a result, the Journaling SDS maintains transactions
at a coarser granularity than what a journaling file system
might. The basic approach is to buffer meta-data writes in
memory and write them to disk only when the in-memory
state of the meta-data blocks constitute a consistent meta-
data state. This is logically equivalent to performing in-
cremental in-memory fsck’s on the current set of dirty
meta-data blocks and writing them to disk when the check
succeeds. When the current set of dirty meta-data blocks
form a consistent state, they are treated as a single atomic
transaction, thereby ensuring that the on-disk meta-data
contents either remain at the previous (consistent) state
or are fully updated with the next consistent state. One
benefit of these more coarse-grained transactions is that
by batching commits, performance may be improved over
more traditional journaling systems.

Create Read Delete
ext2 (2.2/sync) 63.9 0.32 20.8
ext2 (2.2/async) 0.28 0.32 0.03
ext3 (2.4) 0.47 0.13 0.26
ext2 (2.2/sync)+Journaling SDS 0.95 0.33 0.24

Table 8: Journaling. The table shows the time to complete
each phase of the LFS microbenchmark in seconds with 1000
32-KB files. Four different configurations are compared: ext2
on Linux 2.2 mounted synchronously, the same mounted asyn-
chronously, the journaling ext3 under Linux 2.4, and the Jour-
naling SDS under a synchronously mounted ext2 on Linux 2.2.
This experiment took place on the “slow” system and the IBM
9LZX disk.

To guarantee bounded loss of data after a crash, the
Journaling SDS limits the time that can elapse between
two successive journal transaction commits. A journaling
daemon wakes up periodically after a configurable inter-
val and takes a copy-on-write snapshot of the dirty blocks
in the cache and the dependency information. After this
point, subsequent meta-data operations update a new copy
of the cache, and therefore cannot introduce additional de-
pendencies in the current epoch.

Similar to the Secure-deleting SDS, the current Journal-
ing SDS implementation assumes the file system has been
mounted synchronously. To be robust, the SDS requires
a way to verify that this assumption holds and to turn off
journaling otherwise. Since the meta-data state written
to disk by the Journaling SDS is consistent regardless of
a synchronous or asynchronous mount, the only problem
imposed by an asynchronous mount is that the SDS might
miss some operations that were reversed (e.g., a file cre-
ate followed by a delete); this would lead to dependencies
that are never resolved and indefinite delays in the jour-
nal transaction commit process. To avoid this problem,
the Journaling SDS looks for a suspicious sequence of
changes in meta-data blocks when only a single change is
expected (e.g., multiple inode bitmap bits change as part
of a single write) and turns off journaling in such cases.
As a fall-back, the Journaling SDS monitors elapsed time
since the last commit; if dependencies prolong the com-
mit by more than a certain time threshold, it suspects an
asynchronous mount and aborts.

We evaluate both the correctness and performance of
the Journaling SDS. To check correctness, we crashed the
file system numerous times, and ran fsck to verify that
no inconsistencies were reported. The performance of
the Journaling SDS is summarized in Table 8. Although
this SDS requires the file system to be mounted syn-
chronously, its performance is similar to the asynchronous
versions since the semantically-smart disk system delays
writing meta-data to disk. In the read test the SDS has
similar performance to the base file system (ext2 2.2), and
in the delete test, it has similar performance to the journal-
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EOF Fingerprinting
Probe process 1061
In SDS 2542

SDS Infrastructure Case Studies
Initialization 395 Traxtents 1320
Hash table and cache 2122 File-aware cache 203
Direct classification 195 Journal cache 305
Indirect classification 75 Meta-data cache 235
Association 15 Secure delete 80
Operation inferencing 1105 Journaling 2440

Table 9: Code Complexity. The number of lines of code
required to implement various aspects of an SDS are presented.
For the “In SDS” component of the EOF tool, there are 2542
lines of code; roughly 1800 of those lines are shared among all
file system types; the rest is file-system specific.

ing file system, ext3. It is only during file creation that the
SDS pays a significant cost relative to ext3; the overhead
of block differencing and hash table operations have a no-
ticeable impact. Since the purpose of this case study is
to demonstrate that an SDS can implement complex func-
tionality, this small overhead is certainly acceptable.

7.2 Complexity Analysis

We briefly explore the complexity of implementing soft-
ware for an SDS. Table 9 shows the number of lines of
code for each of the components in our system and the
case studies. From the table, one can see that most of the
complexity is found in the EOF tool, the basic cache and
hash tables, and the operation inferencing code. Most of
the case studies are trivial to implement on top of this base
infrastructure; however, the Traxtent SDS and the Journal-
ing SDS require a few thousand lines of code. Thus, we
conclude that including this type of functionality within
an SDS is quite pragmatic.

8 Conclusions
“Beware of false knowledge; it is more dangerous
than ignorance.” George Bernard Shaw

In a recent article on “Wise Drives”, Dr. Gordon
Hughes, Associate Director of the Center for Magnetic
Recording Research, writes in favor of smarter drives,
stressing their great potential for improving storage sys-
tem performance and functionality [23]. However, he
believes a new interface between file systems and stor-
age is required: “For widespread uses, its [a drive’s] in-
put/output and command requirements need to appear in
the interface specification. In short, there must be an in-
dustry consensus that the task is of general interest and of-
fers market opportunities for multiple computer and drive
companies.” Hughes’ comments illustrate the difficulty of

new interfaces – they require wide-scale industry agree-
ment, which eventually limits creativity to only those in-
ventions that fit into an existing interface framework.

With information about how the file system uses the
disk and low-level knowledge of drive internals, an SDS
sits in an ideal location to implement powerful pieces of
functionality that neither a disk nor a file system can im-
plement on its own, enabling new innovations behind ex-
isting interfaces. Further, storage system manufacturers
can now embed optimizations that previously were rele-
gated to the domain of file systems, enabling vendors to
compete along axes other than cost and performance.

In this paper, we have demonstrated that underneath
of a particular class of FFS-like file systems, file-system
information can be automatically gathered and then ex-
ploited to implement functionality in drives that hereto-
fore had to be implemented in the file system or could not
be implemented at all. We have shown that the costs asso-
ciated with reverse-engineering file system structure and
behavior are reasonable.

Many challenges remain, including understanding the
generality and robustness of semantic inference across a
broader range of file systems. Can more sophisticated file
systems across a wider range of platforms be probed to re-
veal their inner workings? Can approximate information
be further exploited to implement interesting new func-
tionality? Can more techniques and tools be developed
to assure the correct operation of semantic technology?
We believe the answer to these questions is yes, but only
through further research and experimentation will the fi-
nal answer be elicited.
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