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Abstract
Recent research has demonstrated the potential benefits
of building storage arrays that understand the file systems
above them. Such “semantically-smart” disk systems use
knowledge of file system structures and operations to im-
prove performance, availability, and even security in ways
that are precluded in a traditional storage system archi-
tecture.

In this paper, we study the applicability of semantically
smart disk technology underneath database management
systems. For three case studies, we analyze the differ-
ences when building database-aware storage. We find
that semantically-smart disk systems can be successfully
applied underneath a database, but that new techniques,
such as log snooping and explicit access statistics, are
needed.

1 Introduction
Processing power is increasing in modern storage sys-
tems. For example, the Symmetrix storage array, a high-
end RAID from EMC, contains nearly 100 processors and
up to 256 GB of memory [9]. Unfortunately, the abil-
ity to leverage the computational power within traditional
storage systems has been limited due to its narrow block-
based interface [8, 10]. With protocols such as SCSI, stor-
age arrays receive only the simplest of commands: read or
write a given range of blocks. Hence, the storage system
has no knowledge of how it is being used, e.g., whether
two blocks are a part of the same file, or even whether a
given block is live or dead.

To bridge this information gap, recent research has pro-
posed the idea of a semantically smart disk system [30]
that either learns of or is embedded with knowledge of the
file system using it. This semantic information within the
storage system allows vendors to build more functional,
reliable, higher-performing, and secure storage systems.
For example, by exploiting knowledge of file and direc-
tory structures, a storage system can deliver improved data
availability under failure [29].

Previous research on semantically smart disk sys-
tems [3, 28, 29, 30] has assumed that a commodity file
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system (e.g., Linux ext2, Linux ext3, NetBSD FFS, Win-
dows FAT, or Windows NTFS) is interacting with the disk.
In this paper, we explore techniques for semantically-
smart disk systems to operate beneath database manage-
ment systems (DBMS). Given that database systems form
a significant and important group of clients of storage sys-
tems, we would like to see if the benefits of semantically
smart storage can be applied to this realm.

Whether operating beneath a file system or a database,
a semantically smart disk system performs similar oper-
ations, such as tracking which file or table a particular
block has been allocated to. However, a DBMS tracks
different information and organizes its data on disk dif-
ferently than a file system does. For example, most file
systems record within each file’s metadata certain statis-
tics, such as the most recent access and modified time.
Given that a DBMS is more specialized, it does not track
these general statistics. Second, in file system workloads,
the directory structure tends to be a reasonable approxi-
mation of semantic groupings; that is, users place related
files together in a single directory. However, in a DBMS,
the semantic grouping across different tables and their in-
dexes is dynamic, depending upon the query workload.

Our general finding is that these differences are funda-
mental enough to require changes for semantically smart
storage. To build database-aware storage, we investigate
two techniques that were not required for file systems.
First, we explore log snooping, in which the storage sys-
tem observes the write-ahead log (WAL) records written
by the DBMS; by monitoring this log, the storage sys-
tem can observe every operation performed by the DBMS
before its effect reaches the disk. Second, we explore
the benefits of having the DBMS explicitly gather access
statistics and write these statistics to storage. We find that
it is relatively simple to add these statistics to a DBMS.

To investigate database-aware storage, we implement
and analyze three case studies that have been found to
work well underneath file systems. First, we study how
to improve storage system availability with D-GRAID, a
RAID system that degrades gracefully under failure [29].
Second, we implement a DBMS-specialized version of
FADED, a storage system that guarantees that data is un-
recoverable once the user has deleted it [28]. Finally, we
explore how to improve second-level storage-array cache



hit rates with a technique known as X-RAY [3].
Our experience indicates that semantically-smart disks

can work well underneath database systems. In some
cases, database systems are a better fit than file sys-
tems for semantically-smart storage, such as for secure
delete [28]. In this case, the presence of the transactional
semantics in a DBMS allows the disk to more accurately
track dynamic information. As a result, functionality that
requires absolutely correct inferences can be implemented
without changing the DBMS; in contrast, this same func-
tionality required changes to the file system. However, for
two of the case studies, D-GRAID and X-RAY, we find
that a DBMS does not supply all of the desired access in-
formation to the storage system. As a result, better results
are obtained if we slightly modify the DBMS.

The rest of this paper is organized as follows. In Sec-
tion 2, we review related work in database-aware stor-
age and discuss the advantages and disadvantages of
semantically-smart disks. In Section 3, we describe the
general techniques needed for a semantic disk to extract
information from the DBMS. In Sections 4, 5, and 6, we
present our case studies. Finally, we discuss the range of
useful techniques in Section 7 and conclude in Section 8.

2 Background
Placing more intelligence in disk systems to help data-
base systems has come in and out of favor over the years.
For a summary of work in this area, see Keeton’s disser-
tation [17], page 162. One of the earliest examples is the
idea of “logic per track” devices proposed in 1970 [31];
for example, given a disk with some computational abil-
ity per head, a natural application is to filter data before it
passes through the rest of the system.

Later, the idea of database-specific machines was re-
futed, for example in 1983 by Boral and Dewitt [5]. The
primary reason for the failure of such approaches was that
they often required non-commodity components and were
outperformed as technology moved ahead; worse, data-
base vendors did not wish to rewrite their substantial code
base to take advantage of specific features offered by cer-
tain specialized architectures.

However, as processing power has become faster and
cheaper, the idea of “active disks” has came into focus
once more. Recent work includes that by Acharya et
al. [1] and Riedel et al. [25]; in both efforts, portions of
applications are downloaded to disks, thus tailoring the
disk to the currently running program. Much of this re-
search focuses on exactly how to partition applications
across host and disk CPUs to minimize data transferred.

In contrast to much of this previous work, the
semantically-smart approach does not require specialized
hardware components or sophisticated programming en-
vironments [3, 28, 29, 30]. High-end storage arrays are a
good match for this technology, as they often have multi-

ple processors and vast quantities of memory. However,
building semantic knowledge of higher-level systems into
a storage array has both benefits and drawbacks.

The main benefit of the semantic-disk approach is
that it increases functionality; placing high-level semantic
knowledge within the storage system enables new systems
that require both the low level control available within the
storage array, and high level knowledge about the DBMS;
such systems are precluded in traditional storage archi-
tectures. For example, previous research has shown that
semantic disks can improve performance with better lay-
out and caching [3, 30], can improve reliability [29], and
can provide additional security guarantees [28].

However, the semantically-smart approach also leads to
a few concerns. One concern is that too much processing
will be required within the disk system. However, many
researchers have noted that the trend is of increasing in-
telligence in disk systems [1, 25]. Indeed, modern storage
arrays already exhibit the fruits of Moore’s Law and the
EMC Symmetrix storage server can be configured with
up to 100 processors and 256 GB of RAM [9]. These re-
sources are not idle, but nonetheless hint at the relative
simplicity of adding more intelligence.

A second concern is that placing semantic knowledge
within the disk system ties the disk system too intimately
to the file system or DBMS above. For example, if
the DBMS on-disk structure changes, the storage sys-
tem may have to change as well. In file systems, on-
disk formats rarely change; for example, the format of
the ext2 file system has not significantly changed in its
10 years of existence [30], and current modifications take
great pains to preserve full backwards compatibility with
older versions of the file system [33]. In the case of
a DBMS, format changes are more of a concern. To
gain some insight on how often a storage vendor would
have to deliver “firmware” updates in order to keep pace
with DBMS-level changes, we studied the development
of Postgres [24] looking for times in its revision history
when a dump/restore was required to migrate to the new
version. We found that a dump/restore was needed every
9 months on average, more frequent than we expected.
However, in commercial databases that store terabytes of
data, requiring a dump/restore to migrate is less tolera-
ble to users; indeed, more recent versions of Oracle go to
great lengths to avoid on-disk format changes.

A final concern is that the storage system must have
semantic knowledge of each layer, whether a file system
or a DBMS, that could possibly run upon it. Fortunately,
there are only a few file systems and database systems that
would need to be supported to cover a large fraction of the
market. Further, much of the functionality in a semantic
disk is independent of the layer above; thus, only a small
portion of the code needs to handle issues that are spe-
cific to each file system or DBMS. Finally, if a storage



vendor wants to reduce the burden of supporting many
different database platforms, they can target a single im-
portant database (e.g., Oracle) and just provide standard
RAID functionality for other systems. Interestingly, high-
end RAID systems already perform a bare minimum of
semantically-smart behavior. For example, storage sys-
tems from EMC can recognize an Oracle data block and
provide an extra checksum to assure that a block write
(comprised of multiple sector writes) reaches disk atomi-
cally [6]. In summary, storage vendors are already willing
to commit resources to support database technology.

3 Database-Aware Techniques
To implement powerful functionality, a storage system
can leverage higher-level semantic information about the
file system or DBMS that is running on top. In this sec-
tion, we describe the types of information a semantic disk
requires underneath a DBMS, and discuss how such infor-
mation can be acquired. Database-specific semantic infor-
mation can be broadly categorized into two types: static
and dynamic.

Since our experience has primarily been with the Preda-
tor DBMS [27] built upon the SHORE storage man-
ager [19], we illustrate our techniques with specific ex-
amples from Predator; however, we believe the techniques
are general across other database systems.

3.1 Static information
Static information is comprised of facts about the database
that do not change while the database is running. The stor-
age system can obtain static information either by having
such knowledge embedded in its firmware or by having it
explicitly communicated through an out-of-band channel
once during system installation.

In most cases, static information describes the format of
on-disk structures. For example, by knowing the format
of the database log record, the semantic disk can observe
each update operation to disk; by knowing the structure
of B-Tree pages, the disk can determine which are inter-
nal pages versus leaf pages; finally, by understanding the
format of data pages, the semantic disk can perform op-
erations such as scanning the page to find “holes” when
byte ranges are deleted. In other cases, static information
describes the location of on-disk structures. For example,
in Predator, knowing the names and IDs of system cata-
log tables such as the RootIndex and the SINDXS table
is useful.

3.2 Dynamic information
Dynamic information pertains to information about the
DBMS that continually changes during operation. Exam-
ples of dynamic information include the particular set of
disk blocks allocated to a certain table or whether a given
disk block belongs to a table or to an index. Unlike static
information, dynamic information needs to be continually

tracked by the disk. To track dynamic information, a se-
mantic disk utilizes static information about data structure
formats to monitor changes to key data structures; these
changes are then correlated to the higher level operations
that could cause these changes.

Unfortunately, since both file systems and databases
buffer and reorder writes, performing an accurate in-
ference of higher level operations can be quite com-
plex [28, 29]. To solve this problem, we use the technique
of log snooping, in which the storage system observes the
log records written out by the DBMS. With log snoop-
ing, the storage system leverages the fact that the database
uses a write-ahead log (WAL) to track every operation that
changes on-disk contents. Because of the WAL property,
the log of an operation reaches disk before the effect of
the operation; this strong ordering guarantee makes infer-
ences underneath a DBMS accurate and straightforward.

Our implementation of log snooping is as follows. We
assume that each log record contains a Log Sequence
Number (LSN) [20]; the LSN is usually the byte offset
of the start of that record in the log volume. The LSN
allows the semantic disk to accurately infer the exact or-
dering of events that occurred in the database, even in the
presence of group commits that can cause log blocks to
arrive out of order. To order events, the disk maintains an
expected LSN pointer, which is the LSN of the next log
record expected to be seen by the disk; thus, when the
semantic disk receives a write request to a log block, it
knows exactly where in the block to look for the next log
record. The semantic disk then processes that log record
and advances the expected LSN pointer to point to the
next record. Thus, even when log blocks arrive out of
order, the semantic disk utilizes the LSN ordering to pro-
cess the blocks in order; log blocks arriving out of order
are deferred until the expected LSN reaches that block.

We now describe in more detail how our implementa-
tion of database-aware storage uses log snooping to infer
four important pieces of dynamic information: transaction
status, block ownership, block type, and relationships be-
tween blocks. We then describe the importance of a final
piece of dynamic information: access statistics.

3.2.1 Transaction Status
A basic piece of dynamic information is the current state
of each transaction that has been written to disk. Each
transaction can be either pending or committed and a
pending transaction may later be aborted. When perform-
ing work associated with a transaction, a semantic disk
can choose to pessimistically recognize only committed
transactions, or it can optimistically begin work on pend-
ing transactions as well. There are trade-offs to both the
pessimistic and optimistic approaches.

The pessimistic approach is most appropriate when the
semantic disk implements functionality that requires cor-
rectness. For example, when implementing secure delete



(Section 5), the semantic disk cannot shred data belonging
to a pending transaction, given that the transaction may
abort and the DBMS require the data again. However, the
pessimistic approach will often have worse performance
than the optimistic approach, since the pessimistic version
must delay work and may require a significant amount
of buffering. The optimistic approach is most beneficial
when aborts are rare and the DBMS implements group
commits (and may thus delay committing individual trans-
actions for a long period).

Determining the status of each transaction is straight-
forward with log snooping. When the semantic disk ob-
serves that a new log record has been written, it adds it to
a list of “pending” transactions; when the disk observes a
commit record in the log, it determines which transac-
tions have committed and moves them to a “committed”
list.

3.2.2 Block Ownership
It is useful for a semantic disk to understand the logical
grouping of blocks into tables and indices; this involves
associating a block with the corresponding table or index
store that logically owns the block. Performing this asso-
ciation in the semantic disk is relatively straight forward;
since the effect of allocating a block must be recoverable,
the DBMS first logs the operation before performing the
allocation. Therefore, when the semantic disk later ob-
serves traffic to a disk block, it is simple to associate that
block with the owning table or index. As we show later,
in some cases it is sufficient for the semantic disk to map
blocks to the store ID of the owning table, whereas in
other cases, is useful for the semantic disk to further map
the store ID to the actual table (or index) name.

For example, when allocating a block, SHORE writes
out a create ext log record with the block number and
the ID of the owning store. When the semantic disk ob-
serves this log entry, it records the block number and store
ID in an internal block to store hash table.

To further map the store ID to the actual table or index
name, the disk uses static knowledge of the system cata-
log tables. In Predator, this mapping is maintained in a B-
Tree called the RootIndex, whose logical store ID is stati-
cally known. Thus, when the disk observes btree add
records in the log with the RootIndex ID, the semantic disk
is able to identify newly created mappings and add them
to a store to name hash table.

3.2.3 Block Type
Another piece of useful information for a semantic disk
is the type of a store (or a block); for example, whether
a block is a data page or an index page. To track this
information, the semantic disk again watches updates to
the system catalog tables, the names of which are part of
the static information known to the disk.

For example, in Predator, the SINDXS table contains
all indexes in the database; each tuple in SINDXS con-
tains the name of the index, the name of the table, and the
attribute on which the index is built. The semantic disk
detects inserts to this table by looking for the appropriate
page insert records in the log. The semantic disk is
then able to determine whether a given block is part of
a table or of an index by looking up its owning store in
information derived from the SINDXS table.

3.2.4 Block Relationships
A third type of useful information consists of the relation-
ships across different blocks. One of the most useful re-
lationships for a semantic disk to know is that between a
table and the set of indices built on the table.

As stated above, in Predator, the association between
indices and tables is kept the SINDXS catalog table.
Thus, a semantic disk can consult information derived
from the SINDXS table to associate a given table with
its indices, or vice versa.

3.2.5 Access Patterns
In addition to the previous dynamic information, it is also
useful for a semantic disk to know how tables and in-
dexes are being accessed in the current workload. Al-
though transaction status, block ownership, block type,
and block relationships can be inferred relatively easily
with log snooping, these access patterns are more difficult
to infer.

Inferring access patterns was found to be relatively easy
underneath a general-purpose file system [3, 30]. For ex-
ample, the fact that a certain set of files lies within a direc-
tory implicitly conveys information to the storage system
that those files are likely to be accessed together. Simi-
larly, most file systems track the last time each file was
accessed and periodically write this information to disk.

Although some modern database systems do track ac-
cess statistics for performance diagnosis, the statistics are
gathered at relatively coarse granularity; for example, the
Automatic Workload Repository in Oracle 10g maintains
access statistics [21].

Our experience has revealed that it would be useful
for the DBMS to track three different types of statistics.
Because this information is only used to optimize behav-
ior, the DBMS can write the statistics periodically to disk
(perhaps in additional catalog tables) without being trans-
actional and thus can avoid the logging overhead.

The most basic statistic for the DBMS to communicate
with the semantic disk is the access time of a particular
block or table. This particular statistic is useful both in its
own right and because it can be used to derive other statis-
tics. A second useful statistic summarizes the access cor-
relation between entities such as tables and indexes; for
example, the DBMS could record for each query, the set
of tables and indexes accessed. These correlation statistics



capture the semantic groupings between different tables
and is useful for collocating related tables. Finally, a third
useful statistic tracks access counts, such as the number
of queries that accessed a given table over a certain dura-
tion. This piece of information conveys the importance of
various tables and indexes.

3.3 Case Studies
The actual static or dynamic information required within
a database-aware disk depends upon the functionality
that the disk is implementing. Therefore, we investi-
gate a number of case studies that were previously imple-
mented underneath of file systems. First, we investigate
D-GRAID, a RAID system that degrades gracefully un-
der failure [29]. Second, we implement a FADED, which
guarantees that data is unrecoverable once the user deletes
it [28]. Finally, we explore X-RAY, which implements a
second-level storage-array cache [3].

4 Partial Availability with
D-GRAID

Our first case study is to implement D-GRAID [29] under-
neath a DBMS. D-GRAID is a semantically-smart storage
system that lays out blocks in a way that ensures graceful
degradation of availability under unexpected multiple fail-
ures. Thus, D-GRAID enables continued operation of the
system instead of complete unavailability under multiple
failures. Previous work has shown that this approach sig-
nificantly improves the availability of file systems [29].

In this section, we begin by reviewing the motivation
for partial availability and D-GRAID. Next, we summa-
rize our past experience when implementing D-GRAID
underneath file systems. We then describe our techniques
for implementing D-GRAID underneath a DBMS. Fi-
nally, we evaluate our version of D-GRAID and discuss
its lessons.

4.1 Motivation
The importance of data availability cannot be over empha-
sized, especially in settings where downtime can cost mil-
lions of dollars per hour [18, 23]. To cope with failures,
file systems and database systems store data in RAID ar-
rays [22], which employ redundancy to automatically re-
cover from a small number of disk failures.

Existing RAID schemes do not effectively handle catas-
trophic failures, that is, when the number of failures ex-
ceeds the tolerance threshold of the array (usually 1).
Multiple failures occur due to two primary reasons. First,
faults are often correlated [12]; a single controller fault
or other component error can render a number of disks
unavailable [7]. Second, system administration is the
main source of failure in systems [11]. A large percent-
age of human failures occur during maintenance, where
“the maintenance person typed the wrong command or

unplugged the wrong module, thereby introducing a dou-
ble failure” (page 6) [11].

Under such extra failures, existing RAID schemes lead
to complete unavailability of data until the contents of the
array are restored from backup. This effect is especially
severe in large arrays; for example, even if 30 out of 32
disks (roughly 94%) in a RAID-5 array are fully opera-
tional, the disk system (and consequently, the database) is
completely unavailable.

This “availability cliff” arises because traditional stor-
age systems employ simplistic layout techniques such as
striping, that are oblivious of the semantic importance
of blocks or relationships across blocks; when excess
failures occur, the odds of semantically-meaningful data
(e.g., a table) remaining available are low. Furthermore,
because modern storage arrays export abstract logical vol-
umes which appear like a single disk [9, 34], the file sys-
tem or DBMS has no control over data placement and can-
not ensure that semantically-meaningful data remains af-
ter a single disk failure.

4.2 Filesystem-Aware D-GRAID
The basic goal of D-GRAID [29] is to make semantically
meaningful fragments of data available under failures, so
that workloads that access only those fragments can still
run to completion, oblivious of data loss in other parts of
the file system. By working on top of any redundancy
technique (e.g., RAID-1), D-GRAID provides graceful
degradation when the number of failures exceed the tol-
erance threshold of the particular redundancy technique.
When we implemented D-GRAID under a file system, we
found three layout techniques to be important.

First, fault-isolated data placement is needed to ensure
that semantic fragments remain available in their entirety.
Under fault isolated placement, an entire semantic frag-
ment is collocated within a single disk. We found that,
for file system workloads, a reasonable semantic fragment
consists of either a single file in its entirety (i.e., its data
blocks, its inode block, and potentially its indirect blocks)
or all of the files in a single directory.

Second, selective replication is needed to ensure that
essential meta-data and data that is always required is very
likely to be available. In the file system context, this es-
sential meta-data was found to consist of all directories
(i.e., data and inode blocks) and the structures of the file
system (i.e., superblock and bitmap blocks); the essential
data was found to be the system binaries kept in known
directories (e.g., in /usr/bin, /bin, and /lib).

Third, access-driven diffusion in which popular data
is striped across disks, is needed to improve throughput
when a large file is placed on a single disk. We found
that popular data could be dynamically identified by track-
ing logical segments without semantic knowledge; thus,
access-driven diffusion can be implemented in the same
manner whether beneath a file system or a DBMS.



4.3 Database-Aware D-GRAID
We now describe our techniques for implementing D-
GRAID underneath a DBMS. First, we explore two tech-
niques for fault-isolated data placement that target widely
different database usage patterns: moderately-sized tables
which can use coarse-grained fragmentation and large ta-
bles which must use fine-grained fragmentation. Second,
we explore the structures that need to be selectively repli-
cated. Third, we describe our implementation of access-
driven diffusion. Finally, we describe infallible writes, a
new technique that was not required for file systems.

When identifying semantic fragments, there are two
fundamental differences under a DBMS versus a file sys-
tem. First, in a DBMS, one is more likely to find
extremely large tables that will not fit within a single
disk. Therefore, we describe our techniques separately
for moderately-sized tables, which can use coarse-grained
fragmentation and fit an entire table within a disk, and
for very large tables, which must use fine-grained frag-
mentation and stripe tables and indexes across multiple
disks. Second, in a DBMS, the queries being performed
directly impact which tables and indexes are accessed to-
gether. Therefore, we describe how semantic groupings
are affected by three popular types of queries: scans, in-
dex lookups, and joins.

4.3.1 Fault-Isolated Placement: Coarse-Grained
The simplest case occurs when the database contains a
large number of moderately-sized tables; in this situation,
a semantic fragment can be defined in terms of an en-
tire table. We now present layout strategies for improved
availability for each query type given this scenario.
A. Scans: Many queries, such as selection queries that
filter on a non-indexed attribute or aggregate queries on a
single table, involve a sequential scan of one entire table.
Since a scan requires the entire table to be available in or-
der to succeed, a simple choice of a semantic fragment is
the set of all blocks belonging to a table; thus, an entire
table is placed within a single disk, so that when failures
occur, a subset of tables are still available in their entirety,
and therefore scans just involving those tables will con-
tinue to operate oblivious of failure.
B. Index lookups: Index lookups form another common
class of queries. When a selection condition is applied
based on an indexed attribute, the DBMS looks up the
corresponding index to find the appropriate tuple record
IDs, and then reads the relevant data pages to retrieve the
tuples. Since traversing the index requires access to mul-
tiple pages in the index, collocation of a whole index im-
proves availability. However, if the index and table are
viewed independently for placement, an index query fails
if either the index or the table is unavailable, decreasing
availability. Thus, a better strategy to improve availability
is to collocate a table with its indexes. We call the latter
strategy dependent index placement.

C. Joins: Many queries involve joins of multiple tables.
Such queries typically require all the joined tables to be
available, in order to succeed. To improve availability of
join queries, D-GRAID collocates tables that are likely to
be joined together into a single semantic fragment, which
is then laid out on a single disk. Identification of such
“join groups” requires extra access statistics to be tracked
by the DBMS.

For our implementation, we modified the Predator
DBMS to record the set of stores (tables and indexes) ac-
cessed for each query and to construct a matrix that indi-
cates the access correlation between each pair of stores.
This information is written to disk periodically (once ev-
ery 5 seconds). These modifications to Predator are rel-
atively straight-forward, involving less than 200 lines of
code. D-GRAID then uses this information to collocate
tables that are likely to be accessed together.

4.3.2 Fault-Isolated Placement: Fine-Grained
While collocation of entire tables and indexes within a
single disk provides enhanced availability, a single ta-
ble or index may be too large to fit within a single disk,
even though disk capacities are roughly doubling every
year [13]. In such a scenario, we require a fine-grained
approach to semantic fragmentation. In this approach, D-
GRAID stripes tables and indexes across multiple disks
(similar to a traditional RAID array), but adopts new tech-
niques to enable graceful degradation, as detailed below.
A. Scans: Scans fundamentally require the entire ta-
ble to be available, and thus any striping strategy will
impact availability of scan queries. To help availability,
a hierarchical approach is possible: a large table can be
split across the minimal number of disks that can hold
it, and the disk group can be treated as a logical fault-
boundary; D-GRAID can be applied over such logical
fault-boundaries. Alternatively, if the database supports
approximate queries [15], it can provide partial availabil-
ity for scan queries even with missing data.
B. Index lookups: With large tables, index-based queries
are likely to be more common. For example, an OLTP
workload such as TPC-C normally involves index lookups
on a small number of large tables. These queries do not
require the entire index or table to be available. D-GRAID
uses two simple techniques to improve availability for
such queries. First, the internal pages of the B-tree index
are aggressively replicated, so that a failure does not take
away, for instance, the root of the B-tree. Second, an in-
dex page is collocated with the data pages corresponding
to the tuples pointed to by the index page. For this col-
location, D-GRAID uses a probabilistic strategy; when a
leaf index page is written, D-GRAID examines the set of
RIDs contained in the page, and for each RID, determines
which disk the corresponding tuple is placed in. It then
places the index page on the disk which has the greatest
number of matching tuples. Note that we assume the table



is clustered on the index attribute; page-level collocation
may not be effective in the case of non-clustered indexes.
C. Joins: Similar to indexes, page-level collocation can
also be applied across tables of a join group. For such col-
location to be feasible, all tables in the join group should
be clustered on their join attribute. Alternatively, if some
tables in the join group are “small”, they can be replicated
across disks where the larger tables are striped.

4.3.3 Selective Replication
There are some data structures within a DBMS that must
be available for any query in the system to be able to run.
For example, system catalogs (that contain information
about each table and index) are frequently consulted; if
such structures are unavailable under partial failure, the
fact that most data remains accessible is of no practical
use. Therefore, D-GRAID aggressively replicates the sys-
tem catalogs and the extent map in the database that tracks
allocation of blocks to stores. In our experiments, we em-
ploy 8-way replication of important meta-data; we believe
that 8-way replication is quite feasible given the “read-
mostly” nature of such meta-data and the minimal space
overhead (less than 1%) this entails.

The database log plays a salient role in the recoverabil-
ity of the database, and its ability to make use of partial
availability. It is therefore important for the log to be
available under multiple failures. We believe that provid-
ing high availability for the log is indeed possible. Given
that the size of the “active portion” of the log is deter-
mined by the length of the longest transaction factored
by the concurrency in the workload, the portion of the
log that needs to be kept highly available is quite reason-
able. Modern storage arrays have large amounts of per-
sistent RAM, which are obvious locations to place the log
for high availability, perhaps replicating it across multiple
NVRAM stores. This, in addition to normal on-disk stor-
age of the log, can ensure that the log remains accessible
in the face of multiple disk failures.

4.3.4 Access-Driven Diffusion
As stated above, with coarse-grained fragmentation, an
entire table is placed within a single disk. If the table
is large or is accessed frequently, this can have a perfor-
mance impact since the parallelism that can be obtained
across the disks is wasted. To remedy this, D-GRAID
monitors accesses to the logical address space and tracks
logical segments that are likely to benefit from paral-
lelism. D-GRAID then creates an extra copy of those
blocks and spreads them across the disks in the array, like
a normal RAID would do. Thus, for blocks that are “hot”,
D-GRAID regains the lost parallelism due to collocated
layout, while still providing partial availability guaran-
tees. Reads and writes are first sent to the diffused copy,
with background updates being sent to the actual copy.

This technique underneath of a DBMS is essentially iden-
tical to that used underneath a file system.

4.3.5 Infallible Writes
Partial availability of data introduces interesting prob-
lems for the transaction and recovery mechanisms within
a DBMS. For example, a transaction is often declared
“committed” after it is reflected in the log. In a partially
available system, after a crash, a redo for the transaction
can fail if some pages are not available, which may seem
to affect the durability semantics of transactions. How-
ever, this problem has already been considered and solved
in ARIES [20], in the context of handling offline objects
during deferred restart.

To ensure transaction durability, D-GRAID implements
infallible writes, in which it guarantees that a write “al-
ways” succeeds. If a block to be written is destined for a
dead disk, D-GRAID remaps it into a live disk and writes
it (assuming that there is free space remaining on a live
disk). This remapping prevents a new failure when flush-
ing an already committed transaction to disk.

4.4 Evaluation
We evaluate the availability improvements and perfor-
mance of D-GRAID through a prototype implementation;
our D-GRAID prototype functions as a software RAID
driver in the Linux 2.4 kernel, and operates underneath
the Predator/Shore DBMS.

4.4.1 Availability Improvements
To evaluate availability improvements with D-GRAID,
we use a D-GRAID array of 16 disks, and study the frac-
tion of queries that the database serves successfully under
an increasing number of disk failures. Since layout tech-
niques in D-GRAID are complementary to existing RAID
schemes such as parity or mirroring, we show D-GRAID
Level 0 (i.e., no redundancy for data) in our measure-
ments, for simplicity. We mainly use microbenchmarks to
analyze the availability provided by various layout tech-
niques in D-GRAID.
A. Coarse-grained fragmentation
We first evaluate the availability improvements due to the
coarse-grained fragmentation techniques in D-GRAID.
Figure 1 presents the availability of scan, index lookup,
and join queries for synthetic workloads under multiple
disk failures. The percentage of such queries that com-
plete successfully is reported.

The leftmost graph in Figure 1 shows the availability
for scan queries. The database had 200 tables, each with
10,000 tuples. The workload is as follows: each query
chooses a table at random and computes an average over
a non-indexed attribute, thus requiring a scan of the entire
table. As the graph shows, collocation of whole tables
enables the database to be partially available, serving a
proportional fraction of queries. In comparison, just one
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Figure 1: Coarse-grained fragmentation. The graphs show the availability degradation for scans, index lookups and joins under varying
number of disk failures. A 16-disk D-GRAID array was used. The steeper fall in availability for higher number of failures is due to the limited

(8-way) replication of metadata. The straight diagonal line depicts “ideal” linear degradation.
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Figure 2: Index Lookups under fine-grained fragmentation. The graphs show the availability degradation for index lookup queries. The left

graph considers a uniformly random workload, while the right graph considers a workload where a small set of tupes are very popular

failure in a traditional RAID-0 system results in complete
unavailability. Note that if redundancy is maintained (i.e.,
parity or mirroring), both D-GRAID and traditional RAID
will tolerate up to one failure without any availability loss.

The middle graph in Figure 1 shows the availability
for index lookup queries under a similar workload. We
consider two different layouts; in both layouts, an entire
“store” (i.e., an index or a table) is collocated within one
disk. In independent index placement, D-GRAID treats
the index and table as independent stores and hence pos-
sibly allocates different disks for them, while with depen-
dent index placement, D-GRAID carefully allocates the
index on the same disk as the corresponding table. As can
be seen, dependent placement leads to much better avail-
ability under failure.

Finally, to evaluate the benefits of join-group colloca-
tion, we use the following micro-benchmark: the database
contains 100 pairs of tables, with joins always involving
tables in the same pair. We then have join queries ran-
domly select a pair and join the corresponding two tables.
The rightmost graph in Figure 1 shows that by collocating
joined tables, D-GRAID achieves higher availability.

B. Fine-grained fragmentation

We now evaluate the effectiveness of fine-grained frag-
mentation. We focus on the availability of index lookup

queries since they are the most interesting in this cate-
gory. The workload we use for this study consists of index
lookup queries on randomly chosen values of a primary
key attribute in a single large table. We plot the fraction
of queries that succeed under varying number of disk fail-
ures. The left graph in Figure 2 shows the results.

There are three layouts examined in this graph. The
lowermost line shows availability under simple striping
with just replication of system catalogs. As can be seen,
the availability falls drastically under multiple failures due
to loss of internal B-tree nodes. The middle line depicts
the case where internal B-tree nodes are replicated aggres-
sively; as can be expected, this achieves better availability.
Finally, the third line shows the availability when data and
index pages are collocated, in addition to internal B-tree
replication. Together, these two techniques ensure near
linear degradation of availability.

The right graph in Figure 2 considers a similar work-
load, but a small subset of tuples are much “hotter” com-
pared to the others. Specifically, 5% of the tuples are ac-
cessed in 90% of the queries. Even under such a work-
load, simple replication and collocation provide near lin-
ear degradation in availability since hot pages are spread
nearly uniformly across the disks. However, under such
a hot-cold workload, D-GRAID can improve availabil-
ity further by replicating data and index pages containing



D-GRAID RAID-0 Slowdown
Table Scan 7.97 s 6.74 s 18.1%
Index Lookup 51 ms 49.7 ms 2.7%
Bulk Load 186.61 s 176.14 s 5.9%
Table Insert 11.4 ms 11 ms 3.6%

Table 1: Time Overheads of D-GRAID. The table compares the per-
formance of D-GRAID under fine-grained fragmentation, with default

RAID-0 under various microbenchmarks. An array of 4 disks is used.

such hot tuples. The other two lines depict availability
when such hot pages are replicated by factors of 2 and 8.
Thus, when a small fraction of (read mostly) data is hot,
D-GRAID utilizes that information to enhance availabil-
ity through selective replication.

4.4.2 Performance overheads
We now evaluate the performance implications of fault-
isolated layout in D-GRAID. For all experiments in this
section, we use a 4-disk D-GRAID array comprised of
9.1 GB IBM UltraStar 9LZX disks with peak through-
put of 20 MB/s. The database used has a single table of
500,000 records, each sized 110 bytes, with an index on
the primary key.

A. Time and space overheads
We first explore the time and space overheads incurred by
our D-GRAID prototype for tracking information about
the database and laying out blocks to facilitate graceful
degradation. Table 1 compares the performance of D-
GRAID with fine-grained fragmentation to Linux soft-
ware RAID 0 under various basic query workloads. The
workloads examined are a scan of the entire table, an in-
dex lookup of a random key in the table, bulk load of the
entire indexed table, and inserts into the indexed table. D-
GRAID performs within 6% of RAID-0 for all workloads
except scans. The poor performance in scans is due to a
Predator anomaly, where the scan workload completely
saturated the CPU (6.74 s for a 50 MB table across 4
disks). Thus, the extra CPU cycles required by D-GRAID
impacts the scan performance by about 18%. This inter-
ference is because our prototype competes for resources
with the host; in a hardware RAID system, such interfer-
ence would not exist. Overall, we find that the overheads
of D-GRAID are quite reasonable.

We also evaluated the space overheads due to aggres-
sive metadata replication and found them to be minimal;
the overhead scales with the number of tables, and even in
a database with 10,000 tables, the overhead is only about
0.9% for 8-way replication of important data.

B. Access-driven Diffusion
We now evaluate the benefits of diffusing an extra copy of
popular tables. Table 2 shows the time taken for a scan of

Scan Time (s)
RAID-0 6.74
D-GRAID 15.69
D-GRAID + Diffusion 7.35

Table 2: Diffusing Collocated Tables. The table shows the scan per-

formance on a 4-disk array under coarse-grained fragmentation.

the table described above, under coarse-grained fragmen-
tation in D-GRAID. As can be seen, simple collocation
leads to poor scan performance due to the lost parallelism.
With the extra diffusion aimed at performance, D-GRAID
performs much closer to default RAID-0.

4.5 Comparison

In our implementation of D-GRAID underneath a DBMS,
we uncovered some fundamental challenges that were
not present under a file system. First, the notion of
semantically-related groups is more complex in a DBMS
because of the various inter-relationships that exist across
tables and indexes. In the file system case, whole files
or whole directories were reasonable approximations of
semantic groupings. In a DBMS, since the goal of D-
GRAID is to enable serving as many higher level queries
as possible, the notion of semantic grouping is dynamic,
i.e., it depends on the query workload. Second, identi-
fying “popular” data that needs to be aggressively repli-
cated, is easier in file systems; standard system binaries
and libraries were obvious targets, independent of the spe-
cific file system running above. However, in a DBMS,
the set of popular tables varies with the DBMS and is
often dependent on the query workload. Thus, effec-
tively implementing D-GRAID underneath a DBMS re-
quires slightly modifying the DBMS to record additional
information. Finally, to ensure transaction durability, we
implemented infallible writes for the version under the
DBMS.

Comparing how well D-GRAID performs beneath a
DBMS versus a file system we see many similarities.
For example, both versions of D-GRAID successfully en-
able graceful degradation of availability; that is, both ver-
sions enable at least the expected number of processes or
queries to complete successfully, given a fixed number of
disk failures. In fact, both versions enable more than the
expected number to complete when a subset of the data is
especially popular. Similarly, both versions of D-GRAID
do introduce some time overhead; interestingly, the slow-
downs for our database version are generally lower than
those for the file system version. Finally, both versions
require access-driven diffusion to obtain acceptable per-
formance.



5 Secure Delete with FADED
Our second case study is to implement FADED [28] un-
derneath a DBMS. FADED is a semantically smart disk
that detects deletes of records and tables at the DBMS
level and securely overwrites (i.e., shreds) the relevant
data to make it irrecoverable. We extend previous work
that implemented the same functionality for file sys-
tems [28].

5.1 Motivation
Deleting data such that recovery is impossible is impor-
tant for file system security [4, 14]. Government regula-
tions require guarantees on sensitive data being forgotten,
and such requirements could become more important in
databases [2]. Recent legislations on data retention, such
as the Sarbanes-Oxley Act, have accentuated the impor-
tance of secure deletion.

Secure deletion of data in magnetic disks involves over-
writing disk blocks with a sequence of writes with certain
specific patterns to cancel out remnant magnetic effects
due to past layers of data in the block. While early work
indicated that as many as 32 overwrites per block are re-
quired for secure erase [14], recent work shows that two
to three such overwrites suffice for modern disks [16].

Neither a file system nor a DBMS can ensure secure
deletion when it functions on top of modern storage sys-
tems, which transparently perform various optimizations.
For example, the storage system could buffer writes in
NVRAM before writing them out to disk [34]. In the pres-
ence of NVRAM buffering, multiple overwrites done by
the file system or DBMS may be collapsed into a single
write to the physical disk, making the overwrites ineffec-
tive. Also, in the presence of block migration within the
storage system [9], overwrites by the file system or DBMS
will miss past copies.

Thus, secure deletion requires the low level information
and control that the storage system has, and at the same
time, higher level semantic information about the file sys-
tem or DBMS to detect logical deletes. A semantically-
smart disk system is thus an ideal locale to implement se-
cure deletion.

5.2 Filesystem-Aware FADED
When running underneath a file system, FADED infers
that a file is deleted by tracking writes to inodes, indirect
blocks, and bitmap blocks and looking for changes. Due
to the asynchronous nature of file systems, FADED is not
able to guarantee that the current contents of a block be-
long to the deleted file and not to a newly allocated file
(which should not be shredded). To ensure that it does
not shred valid data, FADED uses conservative overwrites
in which it shreds only an old version of a block before
restoring the current contents of the block.

In previous work, we implemented FADED for three
file systems: Linux ext2, Linux ext3, and Windows VFAT.

However, for FADED to work correctly, each file system
had to be changed. For example, Linux ext2 was modified
to ensure that data bitmap blocks are flushed whenever an
indirect block is allocated or freed; Windows VFAT was
changed to track a generation number for each file; finally,
Linux ext3 was modified so that the list of modified data
blocks are included in each transaction.

5.3 Database-Aware FADED
To implement FADED beneath a DBMS, the semantic
disk must be able to identify and handle deletes for both
entire tables as well as for individual records. We discuss
these two cases in turn.

The simplest case for FADED is when a whole ta-
ble is deleted. When a drop table command is is-
sued, FADED must shred all blocks belonging to the ta-
ble. FADED uses log snooping to identify log records
that indicate freeing of extents from stores. In SHORE,
a free ext list log record is written for every extent
freed. Once FADED knows the list of freed blocks, it can
issue secure overwrites to those pages. If the transaction
aborts (thus undoing the deletes), the contents of the freed
pages will be required; therefore, FADED pessimistically
waits until the transaction is committed before performing
any overwrites.

Handling record-level deletes in FADED is more chal-
lenging. When specific tuples are deleted (via the SQL
delete from statement), specific byte ranges in the
pages containing those tuples must be shredded. On a
delete, a DBMS typically marks the relevant page “slot”
free, and increments the free space count in the page.
Since such freeing of slots is logged, FADED can learn of
such record deletes by log snooping. However, FADED
cannot shred the whole page because other records in the
page could still be valid. Rather than read the current page
from disk, we defer the shredding until FADED receives
a write to the page reflecting the relevant delete. On re-
ceiving such a write, FADED shreds the entire page in
the disk, and then writes the new data received. However,
there are two complications with this basic technique.

The first complication is to identify the correct ver-
sion of the page containing the deleted record. Assume
that FADED observes a record delete d in page P , and
waits for a subsequent write of P . When P is writ-
ten, FADED needs to detect if the version written re-
flects d. The version could be stale if the DBMS wrote
the page sometime before the delete, but the block was
reordered by the disk scheduler and arrives later at the
disk. This issue is similar to that of the file-system version
of FADED; however, rather than use conservative over-
writes, the database-aware version uses the WAL prop-
erty of the DBMS to ensure correct operation. Specifi-
cally, database-aware FADED uses the PageLSN field in
the page [20] to identify whether P reflects the delete.
The PageLSN of a page tracks the sequence number of the



Run time (s)
Workload I Workload II

Default 52.0 66.0
FADED2 78.3 128.5
FADED4 91.0 160.0
FADED6 104.5 190.2

Table 3: Overheads of secure deletion. This table shows the

performance of FADED with 2,4 and 6 overwrites, under two work-

loads. Workload I deletes contiguous records, while Workload II deletes
records randomly across the table.

latest log record describing a change in the page. Thus,
FADED simply needs to compare the PageLSN to the LSN
of the delete d.

The second complication is that the DBMS may not
zero out bytes that belonged to deleted records; as a result,
old data still remains in the page. Thus, when FADED
observes the page write, it scans the page looking for free
space and explicitly zeroes out the deleted byte ranges.
Since the page could remain in the DBMS cache, all sub-
sequent writes to the page must also be scanned and ze-
roed out appropriately.

5.4 Evaluation
We now briefly evaluate the cost of secure deletion in
FADED through a prototype implementation. The pro-
totype is implemented as a device driver in the Linux 2.4
kernel, and works underneath Predator [27].

We consider two workloads operating on a table with
500,000 110-byte records. In the first workload, we per-
form a delete from in such a way that all rows in the
second half of the table are deleted (i.e., the deleted pages
are contiguous). In the second workload, the tuples to be
deleted are selected in random.

Table 3 compares the default case without FADED to
FADED using two, four, and six overwrite passes. As ex-
pected, secure deletion comes at a performance cost due
to the extra disk I/O for the multiple passes of overwrites.
Given that modern disks can effectively shred data with
only two overwrites [16], we focus on FADED2; in this
case, performance is 50% to 95% slower. However, since
such overhead is incurred only on deletes, and only sen-
sitive data needs to be deleted in this manner, we believe
the costs are reasonable in situations where the additional
security is required.

5.5 Comparison
The primary difference between the two versions of
FADED is that the database-aware version is able to lever-
age the transactional properties of the DBMS to defini-
tively track whether a particular block should be shred-
ded. As a result, while the file system version of FADED

required changes to the file system (with the exception of
data journaled ext3), our implementation of FADED does
not require any DBMS changes. However, our version
does require detailed information about the on-disk page
layout of the DBMS. Furthermore, the record-level gran-
ularity of deletes in a DBMS makes secure deletion more
complex than in its file system counterpart.

Both versions of FADED incur some overhead, de-
pending upon the workload and the number of overwrites.
On our two delete-intensive database workloads, FADED
was 50% or 95% slower with two overwrites. Similarly,
for the two file system workloads, FADED was 51% to
280% slower with two overwrites (from Table 11 of [28]).
In summary, the slowdown incurred by FADED depends
more on the workload and the number of overwrites than
on whether it is used by a DBMS or a file system.

6 Exclusive Caching with X-RAY
Our final case study is to implement X-RAY [3] under-
neath a DBMS. X-RAY is an exclusive caching mecha-
nism for storage arrays that attempts to cache disk blocks
which are not present in the higher-level buffer cache, thus
providing the illusion of a single large LRU cache. Pre-
vious work has demonstrated that this approach performs
very well when the buffer cache is maintained by a file
system [3].

6.1 Motivation
Modern storage arrays possess large amounts of RAM for
caching disk blocks. For instance, a high-end EMC stor-
age array has up to 256 GB of main memory for caching.
Typically, this cache is a second-level cache and the file
system or a database system maintains its own buffer
cache in the host main memory. Current caching mech-
anisms in storage arrays do not account for this; a block is
placed in the array cache on a read, duplicating the same
blocks cached above. Cache space is thus wasted due to
inclusion. A better strategy would be for the contents of
the buffer cache and the disk array cache to be exclusive.

Wong et al. [35] proposed to avoid cache inclusion by
modifying the file system and the disk interface to support
a SCSI “demote” command, which enables treating the
disk array cache as a victim cache. For a database system,
their approach would require the DBMS to inform the disk
about evictions from its buffer pool. However, requiring
an explicit change to the SCSI storage interface makes
this scheme hard to deploy, since industry consensus is
required for adopting such a change.

6.2 Filesystem-Aware X-RAY
X-RAY predicts the contents of the file system buffer pool
and then chooses to cache only the most recent victims in
its own cache; X-RAY requires no changes to the storage
interface. X-RAY uses access time statistics (i.e., which
block was accessed and when) to perform its predictions;
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Figure 3: X-RAY Performance. The figure presents an evaluation of X-RAY under the TPC-C benchmark. The DBMS buffer cache was set
to 6000 blocks for these studies. (a) The hit rate of X-RAY is compared to other caching mechanisms. The segment size is 4 blocks, and access

information is written every 1 second. (b) The corresponding execution times are compared. The times are based on a buffer cache hit time of 20

µs, a disk array cache hit time of 0.2 ms, a disk read time of 3 ms to 10 ms. (c) Hit-rate of X-RAY is measured for different segment sizes; the write
period is kept at 1 second. (d) The write period is varied and the X-RAY hit rate is measured. The segment size is kept at 4 blocks.

for file systems such as Linux ext2, access statistics are re-
corded at the granularity of a file and are directly available
in file inodes.

X-RAY uses these access statistics to maintain an or-
dered list of block numbers, from the LRU block to the
MRU block. This is complicated by the fact that access
statistics are tracked only a per-file basis. The ordered list
is updated when X-RAY obtains new information, such
as when the file system reads from disk (making the read
block the most recently accessed) and when the file sys-
tem writes an access time to disk. When a disk read ar-
rives to a block A, X-RAY infers that A was evicted from
the buffer cache some time in the past; it can also infer
that any block B with an earlier access time was evicted
as well (assuming an LRU policy). If the access time of
block A is updated, but X-RAY did not observe a disk read
for A, then X-RAY infers that block A, and all blocks with
a later access time than A, are present in the buffer cache.

If the higher-level cache policy is LRU (which is the
usual case), blocks close to the MRU end of the list are
predicted to be in the file system buffer cache. The blocks
near the LRU part of the list are considered the exclusive
set; X-RAY caches the most recent blocks in the exclu-
sive set, using extra internal array bandwidth or idle time
between disk requests to read these blocks into the cache.

6.3 Database-Aware X-RAY
The database-aware version of X-RAY is very similar to
the file system-aware version. The primary difference
in creating a database-aware X-RAY occurs because a
DBMS does not typically track access statistics. Although
some database systems do maintain access statistics for
administrative purposes (e.g., AWR [21] for Oracle), these
statistics are coarse in granularity and are written out only
after long intervals.

Therefore, to implement database-aware X-RAY we
must modify the database buffer manager to write out ac-
cess statistics periodically. Specifically, each table or in-

dex is divided into fixed-sized segments, and the buffer
manager periodically writes to disk the access time for
segments accessed during the last period of time. X-RAY
assumes that all blocks in the segment have been accessed
when it sees that the access time statistic is updated. Thus,
the accuracy with which X-RAY can predict the contents
of the database cache is sensitive to both the size of each
segment and the update interval. One advantage of ex-
plicitly adding this information is that we can tune the
implementation by changing the size of the segment or
the update interval. An alternative to adding this access
information would be to modify the DBMS to directly re-
port when it has evicted a block from its own cache, as in
DEMOTE [35]. We believe that adding just access statis-
tics is a better approach because the statistics are more
general and can be used by semantic disks implementing
other functionality (e.g., D-GRAID [29]).

6.4 Evaluation
We evaluate the performance of our database-aware ver-
sion of X-RAY with a simulation of both the database
buffer cache and the disk array cache; the evaluation of
the filesystem-aware X-RAY was performed using a sim-
ulation as well. The database buffer cache is maintained
in LRU fashion; the DBMS periodically writes out access
information at the granularity of one segment. The array
cache is managed by X-RAY. We assume that X-RAY has
sufficient internal bandwidth for its block reads.

We instrumented the buffer cache manager of the Post-
gres DBMS [24] to generate traces of page requests at
the buffer cache level. We use Postgres because Preda-
tor does not have a programming API in Linux, which is
required to implement TPC-C. We use an approximate im-
plementation of the TPC-C benchmark for our evaluation
(it adheres to the TPC-C specification [32] in its access
pattern). A total of 5200 transactions are performed.

We evaluate the performance of X-RAY in terms of ar-
ray cache hit rate and execution time. We compare X-
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D-GRAID
basic × × × × ×

+fine-grained frags × × × × × ×

+join-collocation × × × × × ×

FADED
basic × × × × ×

+record-level delete × × × × × ×

X-RAY
basic × × × ×

Table 4: DBMS Information required for case studies. The table
lists the static information that must be embedded into the semantic disk

and the dynamic state that is automatically tracked by the disk.

RAY to plain LRU and the Multi-Queue mechanism [36]
designed for second level caches. We also explore sensi-
tivity to segment size and access time update periodicity.

Figure 3a compares the hit rate of X-RAY with that
of the other schemes and Figure 3b compares the corre-
sponding execution times. The segment size is set to four
blocks and access information is written out every second
for this study. We see that X-RAY has much better hit rate
than both LRU and Multi-Queue. This hit rate advantage
extends to execution time despite the overhead of writing
out the access information; X-RAY performs up to 75%
better than LRU and up to 65% better than Multi-Queue.

Figure 3c evaluates the sensitivity of the X-RAY cache
hit rate to segment size. As expected, the hit rate drops
slightly with an increase in segment size. Figure 3d
shows sensitivity to the access information update inter-
val. We see that X-RAY can tolerate a reasonable delay
(e.g., about 5 seconds) when obtaining access updates.

6.5 Comparison
The file system and database versions of X-RAY are quite
similar. To implement X-RAY, the semantic disk requires
access statistics; that is, it must know which blocks are be-
ing accessed by the layer above. Although most file sys-
tems track and periodically write such statistics, a DBMS
does not. Therefore, to use X-RAY, the DBMS must
be modified to explicitly track access times for segments
within each table. One advantage of explicitly adding this
information is that one can tune the statistics more appro-
priately (i.e., the size of segment and the update interval).
Whether running beneath a file system or a database, X-
RAY was found to substantially improve the array cache
hit rate, relative to both LRU and Multi-Queue.

7 Information for Case Studies
In this section, we review the static and dynamic informa-
tion required within a database-aware disk, given that this
needed information depends upon the functionality that it
is being implemented. The exact information required for
variants of our three case studies is listed in Table 4.

Probably the biggest concern for database vendors is
the static information that must be exported; for example,
if a storage system understands the format of a particu-
lar catalog table, then the database vendor may be loathe
to change its format. The amount of static information
varies quite a bit across the case studies. While all of our
case studies must know the format of catalog tables and
log records, only D-GRAID with support for fine-grained
fragmentation and FADED with record-level deletes need
more detailed knowledge, such as the B-tree page format
and the data page format, respectively.

The useful dynamic information also varies across case
studies. The most fundamental piece of dynamic infor-
mation is block ownership, as shown by the fact that
it is required by every case study; block type is also a
generally useful property, needed by both D-GRAID and
FADED. The other pieces of dynamic information are not
widespread. For example, only FADED needs to know
precisely when a transaction has committed, since to be
correct, it must be pessimistic in determining when to
overwrite data; only D-GRAID needs to be able to as-
sociate blocks from a table with the blocks from the cor-
responding index, and vice versa. Finally, access corre-
lation and access count statistics are needed by one of
the D-GRAID variants to collocate related tables and to
aggressively replicate “hot” data; the simple access time
statistic is needed by X-RAY to predict the contents of the
higher-level buffer cache.

8 Conclusions
“Today we [the database community] have this sort
of simple-minded model that a disk is one arm on
one platter and [it holds the whole database]. And in
fact [what’s holding the database] is RAID arrays, it’s
storage area networks, it’s all kinds of different ar-
chitectures underneath that hood, and it’s all masked
over by a logical volume manager written by operat-
ing system people who may or may not know any-
thing about databases. Some of that transparency is
really good because it makes us more productive and
they just take care of the details. ... But on the other
hand, optimizing the entire stack would be even bet-
ter. So, we [in the two fields] need to talk, but on the
other hand we want to accept some of the things that
they’re willing to do for us.” [26].
-Pat Selinger

Semantic knowledge in the storage system enables
powerful new functionality to be constructed. For ex-
ample, the storage system can improve performance with



better caching [3], can improve reliability [29], and can
provide additional security guarantees [28]. In this paper,
we have shown that semantic storage technology can be
deployed not only beneath commodity file systems, but
beneath database management systems as well.

We have found that some different techniques are re-
quired to handle database systems. First, we investi-
gated the impact of transactional semantics within the
DBMS. In most cases, transactions simplify the work of
a semantic disk. For example, log snooping enables the
storage system to observe the operations performed by
the DBMS and to definitively infer dynamic information
without changing the DBMS. However, the storage sys-
tem must also ensure that it does not interfere with the
transactional semantics. For example, we found that infal-
lible writes are useful to ensure transaction durability after
some disks have failed. Second, we explored how the lack
of access statistics within a DBMS complicates its inter-
actions with a semantic disk. In this case, we found that
it was helpful to slightly modify the database system to
gather and relay simple statistics.
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