On Symmetric Circuits and FPC

Matthew Anderson Anuj Dawar
University of Cambridge Computer Laboratory

27 June 2013



Context / Motivation

A circuit is symmetric if every permutation of its inputs induces an
automorphisms of the circuit.

2/49



Context / Motivation

A circuit is symmetric if every permutation of its inputs induces an
automorphisms of the circuit.

[Denenberg-Gurevich-Shelah '86]

Characterises first-order logic FO by uniform constant-depth
poly-size symmetric Boolean circuits.

[Otto '97]

Characterises infinitary logic L, by certain uniform symmetric
classes of infinite Boolean circuits.

3/49



Context / Motivation

A circuit is symmetric if every permutation of its inputs induces an
automorphisms of the circuit.

[Denenberg-Gurevich-Shelah '86]
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Characterises infinitary logic L, by certain uniform symmetric
classes of infinite Boolean circuits.

P-uniform poly-size symmetric threshold circuits = FPC.

4 /49



Structures / Logic

Vocabulary 7

Finite T-structures fin[7]

FPC Inflationary fixed-point logic extended with the ability to
express the size of definable sets.

e Assume standard syntax and semantics.

o Expresses properties invariant to isomorphisms of structures.
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Colored DAGs

A C-Colored Directed Acyclic Graph (CDAG) over a set U:

Gates G

Inputs 1

Directed edges E — form acyclic graph on G & I with leaves
I with a single root gate r.

Coloring £€: GWI = C

Input Tuples A:I — U*

G

6/49



Circuits

A CDAG is an abstraction of a Boolean circuit on 7-structures:

7/49



Circuits

A CDAG is an abstraction of a Boolean circuit on 7-structures:

e Let B={AND,OR,NOT}.
e letC=BWr.

8/49



Circuits

A CDAG is an abstraction of a Boolean circuit on 7-structures:

e Let B={AND,OR,NOT}.
e letC=BWr.

e Color each gate with an element of B
and each input with a relation from 7.

9/49



Circuits

A CDAG is an abstraction of a Boolean circuit on 7-structures:

Let B = {AND, OR,NOT}.
Let C=BuWwr.

Color each gate with an element of B
and each input with a relation from 7.

Let U be the domain of the structure.

10/49



A CDAG is an abstraction of a Boolean circuit on 7-structures:
Let B = {AND,OR,NOT}.
Let C=BuWwr.

Color each gate with an element of B
and each input with a relation from 7.

Let U be the domain of the structure.

11/49



A CDAG is an abstraction of a Boolean circuit on 7-structures:
e Let B={AND,OR,NOT}.
e letC=BWr.

e Color each gate with an element of B
and each input with a relation from 7.

e Let U be the domain of the structure.

Each node in a circuit naturally evaluates to a Boolean value.

12/49



A CDAG is an abstraction of a Boolean circuit on 7-structures:
e Let B={AND,OR,NOT}.
e letC=BWr.

e Color each gate with an element of B
and each input with a relation from 7.

e Let U be the domain of the structure.
T = {Xl} X'A = {IEQ,SC’g}

Each node in a circuit naturally evaluates to a Boolean value.

13/49



A CDAG is an abstraction of a Boolean circuit on 7-structures:
e Let B={AND,OR,NOT}.
e letC=BWr.

e Color each gate with an element of B
and each input with a relation from 7.

X1 i) T3
T ={X'} XA = {29, 23}

Each node in a circuit naturally evaluates to a Boolean value.

e Let U be the domain of the structure.
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A CDAG is an abstraction of a Boolean circuit on 7-structures:
e Let B={AND,OR,NOT}.
e letC=BWr.

e Color each gate with an element of B
and each input with a relation from 7.

ry T2 I3

e Let U be the domain of the structure.
T = {Xl} X'A = {IEQ,J,’g}
Each node in a circuit naturally evaluates to a Boolean value.

e A circuit is invariant if the value computed at the root is
independent of isomorphisms of the structure.

e A family of invariant Boolean circuits on 7-structures for all
sizes of U defines a function fin[r] — {0, 1}.
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Symmetric CDAGs

Let C = (G,I,E,& \) be a CDAG over U.
Let 0 € Sym be a permutation.

Consider a bijection 7 on the nodes of (' that

e fixes the root r,

e takes i € I to 7(i) € I with = (u1)(ugus)
B £(i) = &(n(4)), an
m(A(4)) = m(ur, ., up) = (o(w), ..., 0(ug)) = A(w(4)); and

o takes g € G to (g) € G with

 £(g) = &(n(g)), and
if ve GWI has (v,g) € E, then (7(v),n(g)) € E.

If 7 exists, o induces an automorphism of C. (wlog., 7 is unique.)

Call C symmetric if Vo € Symy;, o induces an automorphism of C'.
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Let C' be a symmetric CDAG over U.

A partition S of U supports a node v € C' if every permutation of
U that fixes the parts of S fix v under the induced automorphism.
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Support

Let C' be a symmetric CDAG over U.

A partition S of U supports a node v € C' if every permutation of
U that fixes the parts of S fix v under the induced automorphism.

e If S and S, support v, then so does their transitive closure.
= There is unique coarsest partition Supp(v) supporting v.

{
Supp(C) =1

{{u}}

Supp induces a labelling of C.
e Permutations of U act directly on this labelling.

e Define Supp( (') to be the maximum over all nodes v of the
number of elements in all but the largest part of Supp(v).

35/49



Support Theorem

Supp(C) is tightly constrained by the number of nodes in C.
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Support Theorem

Supp(C) is tightly constrained by the number of nodes in C.

Support Theorem

For any 1 > ¢ > % let C be a symmetric s-node CDAG over U
with log |U| > %6, and s < 201" Then

33 log s
< — .
Supp(C) < — oz | U]

Corollary

Poly-size symmetric CDAGs have constant support.
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Application: symmetric threshold circuits = FPC

The corollary leads to a characterisation of FPC.

P-uniform poly-size symmetric threshold circuits = FPC.
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Application: symmetric threshold circuits = FPC

The corollary leads to a characterisation of FPC.

P-uniform poly-size symmetric threshold circuits = FPC.

Proof Idea
Generate the P-uniform circuit over the number sort, using
the Immerman-Vardi theorem.
Label gates with their support partition.
Transform labels into tuples by duplicating gates.
Determine equality test indicating edges.

Evaluate circuit w.r.t. unordered universe using equality test.
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Bonus Application: Circuit Lower Bounds

Consider arithmetic circuits whose inputs are matrices X € FU*U:
e Constants 0, and 1.
e Basis +, —, and Xx.

o Variables X = {zy y }uvev-
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Bonus Application: Circuit Lower Bounds

Consider arithmetic circuits whose inputs are matrices X € FU*U:
e Constants 0, and 1.
e Basis +, —, and x.
e Variables X = {zy y }u,vev-

The permanent Per(X) is the invariant polynomial:

Per(X) := Z H Tyo(u) = Z (—=1)IASI H qu,v.

oceSymy ueU SCU ucU vesS

One of the most efficient, i.e., size 20UUD) ways of computing
Per(X) known is as a symmetric multilinear formula [Ryser '57].

Theorem

Symmetric multilinear circuits for Per(X) have size 2! v

2 (log? | U|)

Context: size for multilinear formulas [Raz '08].
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Summary

Support Theorem

Forany 1 > ¢ > % let C be a symmetric s-node CDAG over U
with log |U| > 4?8, and s < 210" Then

24 logs
< — .
Supp(C) < e log|U]|
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Summary
Support Theorem

Forany 1 > ¢ > % let C' be a symmetric s-node CDAG over U
with log |U| > 4?8, and s < 2lUI"™ Then

24 logs
<= .
Supp(C) < — Tog| U]

Applications:

P-uniform poly-size symmetric threshold circuits = FPC.

Symmetric multilinear circuits for Per(X) have size 2! v,
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Open Questions

e Can the notion of support be generalised:
e to multi-sorted domains,
e to subgroups of Symg;, or
e to larger ranges of €7

o Are there other applications in logic or circuit complexity?
o Is there a similar circuit characterisation of CPT(Card)?

Thanks!
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