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Context / Motivation

A circuit is symmetric if every permutation of its inputs induces an
automorphisms of the circuit.

[Denenberg-Gurevich-Shelah ’86]
Characterises first-order logic FO by uniform constant-depth
poly-size symmetric Boolean circuits.

[Otto ’97]
Characterises infinitary logic L∞ by certain uniform symmetric
classes of infinite Boolean circuits.

Theorem

P-uniform poly-size symmetric threshold circuits = FPC.
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Structures / Logic

Vocabulary τ

Finite τ -structures fin[τ ]

FPC Inflationary fixed-point logic extended with the ability to
express the size of definable sets.

• Assume standard syntax and semantics.

• Expresses properties invariant to isomorphisms of structures.
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Colored DAGs

A C-Colored Directed Acyclic Graph (CDAG) over a set U :

• Gates G
• Inputs I
• Directed edges E – form acyclic graph on G ] I with leaves
I with a single root gate r .

• Coloring ξ : G ] I → C
• Input Tuples λ : I → U k

︸ ︷︷ ︸
I

u1 u2 u3

G

{ r
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Circuits

A CDAG is an abstraction of a Boolean circuit on τ -structures:

• Let B = {AND,OR,NOT}.
• Let C = B ] τ .

• Color each gate with an element of B
and each input with a relation from τ .

• Let U be the domain of the structure.

u1 u2 u3

Each node in a circuit naturally evaluates to a Boolean value.

• A circuit is invariant if the value computed at the root is
independent of isomorphisms of the structure.

• A family of invariant Boolean circuits on τ -structures for all
sizes of U defines a function fin[τ ]→ {0, 1}.
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Symmetric CDAGs

Let C = (G , I ,E , ξ, λ) be a CDAG over U .

Let σ ∈ SymU be a permutation.

Consider a bijection π on the nodes of C that

• fixes the root r ,

• takes i ∈ I to π(i) ∈ I with

1 ξ(i) = ξ(π(i)), and
2 π(λ(i)) = π(u1, . . . , uk ) := (σ(u1), . . . , σ(uk )) = λ(π(i)); and

• takes g ∈ G to π(g) ∈ G with

1 ξ(g) = ξ(π(g)), and
2 if v ∈ G ] I has (v , g) ∈ E , then (π(v), π(g)) ∈ E .

If π exists, σ induces an automorphism of C . (wlog., π is unique.)

Call C symmetric if ∀σ ∈ SymU , σ induces an automorphism of C .

u1 u2 u3
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Support

Let C be a symmetric CDAG over U .

A partition S of U supports a node v ∈ C if every permutation of
U that fixes the parts of S fix v under the induced automorphism.

• If S1 and S2 support v , then so does their transitive closure.
⇒ There is unique coarsest partition Supp(v) supporting v .

Supp induces a labelling of C .

• Permutations of U act directly on this labelling.

• Define Supp(C ) to be the maximum over all nodes v of the
number of elements in all but the largest part of Supp(v).
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Support Theorem

Supp(C ) is tightly constrained by the number of nodes in C .

Support Theorem

For any 1 > ε ≥ 2
3 , let C be a symmetric s-node CDAG over U

with log |U | ≥ 56
ε2

, and s ≤ 2|U |
1−ε

. Then

Supp(C ) ≤ 33

ε

log s

log |U | .

Corollary

Poly-size symmetric CDAGs have constant support.
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Application: symmetric threshold circuits = FPC

The corollary leads to a characterisation of FPC.

Theorem

P-uniform poly-size symmetric threshold circuits = FPC.

Proof Idea

1 Generate the P-uniform circuit over the number sort, using
the Immerman-Vardi theorem.

2 Label gates with their support partition.

3 Transform labels into tuples by duplicating gates.

4 Determine equality test indicating edges.

5 Evaluate circuit w.r.t. unordered universe using equality test.
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Bonus Application: Circuit Lower Bounds

Consider arithmetic circuits whose inputs are matrices X ∈ FU×U :

• Constants 0, and 1.

• Basis +,−, and ×.

• Variables X = {xu,v}u,v∈U .

The permanent Per(X ) is the invariant polynomial:

Per(X ) :=
∑

σ∈SymU

∏

u∈U
xu,σ(u)

=
∑

S⊆U
(−1)|U\S |

∏

u∈U

∑

v∈S
xu,v .

One of the most efficient, i.e., size 2O(|U |), ways of computing
Per(X ) known is as a symmetric multilinear formula [Ryser ’57].

Theorem

Symmetric multilinear circuits for Per(X ) have size 2|U |
Ω(1)

.

Context: 2Ω(log2 |U |) size for multilinear formulas [Raz ’08].
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Per(X ) :=
∑

σ∈SymU

∏

u∈U
xu,σ(u) =

∑

S⊆U
(−1)|U\S |

∏

u∈U

∑

v∈S
xu,v .

One of the most efficient, i.e., size 2O(|U |), ways of computing
Per(X ) known is as a symmetric multilinear formula [Ryser ’57].

Theorem

Symmetric multilinear circuits for Per(X ) have size 2|U |
Ω(1)

.

Context: 2Ω(log2 |U |) size for multilinear formulas [Raz ’08].
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Summary

Support Theorem

For any 1 > ε ≥ 2
3 , let C be a symmetric s-node CDAG over U

with log |U | ≥ 48
ε , and s ≤ 2|U |

1−ε
. Then

Supp(C ) ≤ 24

ε

log s

log |U | .

Applications:

Theorem

P-uniform poly-size symmetric threshold circuits = FPC.

Theorem

Symmetric multilinear circuits for Per(X ) have size 2|U |
Ω(1)

.
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Open Questions

• Can the notion of support be generalised:
• to multi-sorted domains,
• to subgroups of SymU , or
• to larger ranges of ε?

• Are there other applications in logic or circuit complexity?

• Is there a similar circuit characterisation of C̃PT(Card)?

Thanks!
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