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FP C FPC C CPT(Card) C P
e P C FP? No, parity ¢ FP.
o P C FPC? No, [Cai-Fiirer-Immerman '92].
o P C CPT(Card)?
Choiceless computation is powerful:

e CIRCUITVALUEPROBLEM € FP.

* BrpARTITEPM € FPC [Blass-Gurevich-Shelah '02] and
conjectured PM ¢ CPT(Card).

We show:
e MAXIMUMMATCHING € FPC.
e LINEARPROGRAMMING € FPC.
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Structures, Numbers, and Matrices

Vocabulary 7
Finite T-structures fin[7]

Vocabularies for encoding numerical data in structures:

70 Encodes the binary expansion of a rational number ¢ € Q in a
domain of ordered bits B.

Tvee Encodes a vector v € Q! as a set of rational numbers indexed
by a separate domain 1.

Tmat Encodes a matrix M € Q%7 as a set of rational numbers
indexed by a pair of separate domains I and J.
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FPC and Interpretations

FPC Inflationary fixed-point logic extended with the ability to
express the size of definable sets.
e Assume standard syntax and semantics.

o FPC[7] defines relations over dom(.A) & [|[dom(.A)| + 1]
invariant to automorphisms of A € fin[r].

Immerman-Vardi Theorem

Every polynomial-time decidable property of ordered structures is
definable in FPC (indeed, in FP).

An FPC interpretation of 7 in ¢ is a function fin[o] — fin[7]
defined by a sequence of FPC[o] formulas.

FPC interpretations can express many standard linear algebraic
operations, e.g., multiplication, inverse, and rank [Holm '10].
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Consider the Euclidean space Q" indexed by a set V.
Constraint

e ForacQV,beQ {zcQV |a’z <b}.

o Size (a,b) := (b) + >, ey (aw).
Polytope

o For Ac Q9 b€ QY Puy:={zecQV| Az < b}.

y
o el
Eg A= 8 , b= 20.
/

\



Convex Optimisation — Geometry

Consider the Euclidean space Q" indexed by a set V.
Constraint
e ForacQV,beQ {zcQV |a’z <b}.
e Size (a,b) := (b) + >, cp (@)
Polytope
e For Ac QY b e QY Puy:i={ze€QV | Az <
e Size (P4p) := max,cc(4r, by). y

b).
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Convex Optimisation — Linear Optimisation

Linear Optimisation Problem

Given: A polytope P C Q" and
Determine:

objective vector k € Q.

€ P with k"2 =max{kTy |y € P},

B P=0or

P is unbounded in the direction of k.
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Convex Optimisation — Separation

Separation Problem

Given: A polytope P C Q" and point z € Q.
Determine:

z € P, or

c€QV with ¢"z > max{c'y |y € P}.

For polytopes in ordered spaces, the separation and optimisation
problem are polynomial-time equivalent (via the ellipsoid method

[Khachiyan '79]).
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Separation Problem

Given: A polytope P C Q" and point z € Q.
Determine:

z € P, or
c€QV with ¢"z > max{c'y |y € P}.

Typical algorithm for solving separation on explicit polytope P4 .

SEP(A € Q%Y bc Q% 2zecQ"):

If Az <b, return "z € P". If Az < b, return“z € P".
¢ Do(rec | Avasb,} Ar-
If c=0" return 1V.
Return A,. Return c.

Pick r € C with A,z > b,. :}{
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Representation

A representation (7,v) of a class P of polytopes is
e a vocabulary 7, and

e an onto function v : fin[r] — P which is isomorphism
invariant, i.e., A= B = v(A) = v(B), VA, B € fin[r].

Explicit representation takes fin[Tmat W Tyvec] to the class of all
polytopes via v : (A4, b) — Pyy.

A representation (7, v) is well described if for all A € fin[7],
(v(A)) = poly(|A]).
e The explicit representation is trivially well described.

e There are well-described representations with an exponential
number of constraints.
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Convex Optimisation — Representation, contd.

Expressing Linear Optimisation

Let P, be a class of polytopes given by a representation (7,v).

The linear optimisation problem for P, , is expressible in FPC if
there is an FPC interpretation

fin[7 W Tyec] — fin[1g W Tyec]
which takes

(A € fin[r], vector k) — (rational flag f, point x)
such that

f=0=zcv(A) withk"z =max{k"y |y € v(A)},
Bf=1=v(A) =0 or

[ =2=v(A) is unbounded in the direction of k.

An analogous definition can be made for the separation problem.
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Theorem (c.f., e.g., [GLS88, Theorem 6.4.9])

Let P be a class of well-described polytopes. Then,

linear optimisation on P SI} separation on P

We prove an FPC analog.

Theorem

Let P;, be a class of well-describe polytopes given by T-structures
and the function v. Then,

linear optimisation on P, <ppc separation on Pr,

Corollary (Linear Programming € FPC)

There is an FPC interpretation expressing the linear optimisation
problem w.r.t. the explicit representation.
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Given: A graph G = (V, E) by an incidence matrix {0,1}V*%.
Determine: M C E such that
foralle#e € M, |ene| =0, and

| M| is maximum.

There is no canonical maximum matching!

Theorem

There is an FPC interpretation fin[Tma] — fin[rg| which takes a
Tmat-Structure coding a graph G to an integer m indicating the
size of a maximum matching in G.

This answers an open question of [Blass-Gurevich-Shelah '99].
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Suppose we have a bijection o : V — [| V]].
e o induces an isometry Q¥ — QIV1.
e 0 + SEP on P 4+ Immerman-Vardi Thm = OPT on P.
Difficulty: We don't (or can't) know o.
e Elements of V are initially indistinguishable.
Observation: Solving the separation problem may differentiate V.
o Let SEP(P,0") = c.
e Suppose for some u, v € V, ¢, # ¢y.

e Learn a relative ordering of v and v because ¢,, ¢, € Q.

We can use such ¢ to construct an approximate o.
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Proof Sketch — Optimisation to Separation, contd.

Suppose we have o : V — [n], for n < |V].

We say ¢ € QY agrees with o, if o(u) = 0(v) = ¢y = ¢y.

Fold P C QV into P? C Q™. w

e P7 is a polytope.

* (P7) = poly((P)).

e An optimum of P? gives an
optimum of P.

e SEP(P?,z) reduces to
SEP(P,z77) = ¢, but...
only if ¢ agrees with o.

u g = ({u7 U}v{w})
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Proof Sketch — Optimisation to Separation, contd.

Key Idea Attempt to optimise on P.
o If ¢ = SEP(P,z~7) always agrees, return eventual optimum.

e Else, refine disagreement of ¢ and o into ¢’ and try again.
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Prove FPC analog of P-reduction from optimisation to separation.

Theorem (Main)

Let P, , be a class of well-describe polytopes given by T-structures
and the function v. Then,

linear optimisation on P, <ppc separation on Pr,




Prove FPC analog of P-reduction from optimisation to separation.

Theorem (Main)

Let P, , be a class of well-describe polytopes given by T-structures
and the function v. Then,

linear optimisation on P, <ppc separation on Pr,

And use it to prove several optimisation problems are in FPC.

Theorem

The follow problems are expressible in FPC:
e LINPROG,
e MaxFrow / MINCuUT,
e MiNODpDCUT, and
e MAXMATCH.



Open Questions

e Extend our main reduction to:

e quadratic programs,
o semidefinite programs, or
e convex programs.

e What other problems can be put in FPC?

e Is linear programming complete for FPC under FO
interpretations?

e Do our results provide a route to proving integrality gaps for
hierarchies of linear programming relaxations using
inexpressibility in FPC?

Thanks!
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