Locality of Queries Definable in Invariant First-Order Logic with Arbitrary Built-In Predicates

Matthew Anderson

University of Wisconsin - Madison

Dieter van Melkebeek
University of Wisconsin - Madison

Nicole Schweikardt

Luc Segoufin
INRIA and ENS-Cachan, LSV

July 7th, 2011

Outline

- Motivation
- 2 Background
 - Invariant FO
 - Locality
- Main Result
 - Statement
 - Proof Sketch
 - Extensions to the general case
- 4 Summary

Motivation

Locality is a powerful tool for proving inexpressibility.

Example

• On-A-Cycle is a property which is not r-local, for r = o(n).

- First-Order logic (FO) is constant-local.
- Therefore, On-A-Cycle is not definable in FO.

What do we know about locality?

- FO is constant-local.
- Order-invariant FO is constant-local [Grohe-Schwentick].
- Arb-invariant FO is polylog(n)-local [us].
 Technique: reduction to Boolean circuit lower bounds.

Background - Invariant FO

Example

$$\phi := \exists x \exists y ((x + x = y) \land \forall z (z \le y)).$$

Assume that:

ullet \leq is interpreted as a linear ordering.

This induces a bijection $U \to \{1, 2, \dots, n\}$.

ullet + is interpreted in the natural way w.r.t. \leq :

$$x, y, z \in U \rightarrow a, b, c \in \{1, 2, \dots, n\},$$

 $(x, y, z) \in + \text{ iff } a + b = c.$

Then ϕ expresses whether the universe size is even.

The veracity of ϕ is independent of the actual interpretation of \leq .

Background – Invariant FO

Formalizing this intuition:

- **1** Consider a set of numerical predicates symbols S.
- **2** For each $n \in \mathbb{N}$ define an interpretation of \mathcal{S} over $\{1,2,\ldots,n\}$.
- 3 Selecting an interpretation of \leq as a linear order with respect to a universe U induces an interpretation of S over U.

Definition

For a fixed interpretation of $\mathcal S$ over $\{1,2,\ldots,n\}$, a formula $\phi(x)$ of $\mathsf{FO}(\leq,\mathcal S)$ is $\mathcal S$ -invariant if for all graphs G and vertices a, the truth of $\phi(a)$ on G is independent of the particular interpretation of the linear order \leq .

We focus on the case where ${\cal S}$ is the set of arbitrary numerical predicates (Arb).

Background – Graphs

Graph G := (V, E).

Distance D(u, v) – length of a shortest path between u, v in G.

Background - Graphs

Graph G := (V, E).

Distance D(u, v) – length of a shortest path between u, v in G.

Ball $B_r(a)$ of radius r at a in G.

Neighborhood $\mathcal{N}_r(a)$ of radius r at a in G.

Background - Graphs

Graph G := (V, E).

Distance D(u, v) – length of a shortest path between u, v in G.

Ball $B_r(a)$ of radius r at a in G.

Neighborhood $\mathcal{N}_r(a)$ of radius r at a in G.

Background - Gaifman Locality

We say that two neighborhoods are isomorphic

$$\mathcal{N}_r(a) \cong \mathcal{N}_r(b),$$

if there is an isomorphism π between the two that maps a to b.

Background - Gaifman Locality

We say that two neighborhoods are isomorphic

$$\mathcal{N}_r(a) \cong \mathcal{N}_r(b),$$

if there is an isomorphism π between the two that maps a to b.

Background - Gaifman Locality

We say that two neighborhoods are isomorphic

$$\mathcal{N}_r(a) \cong \mathcal{N}_r(b),$$

if there is an isomorphism π between the two that maps a to b.

Definition

Let $f: \mathbb{N} \to \mathbb{R}_{\geq 0}$. A formula $\phi(x)$ is Gaifman f-local if for any large enough graph G with n vertices, and any two vertices a and b:

$$\mathcal{N}_{f(n)}(a) \cong \mathcal{N}_{f(n)}(b) \implies G \models \phi(a) \text{ iff } G \models \phi(b).$$

Main Result

Theorem (Main)

- **1** For each Arb-invariant FO formula $\phi(x)$ there is a $c \in \mathbb{N}$ such that the formula is Gaifman $(\log n)^c$ -local.
- 2 For each $c \in \mathbb{N}$ there is an Arb-invariant FO formula $\phi(x)$ that is not Gaifman $(\log n)^c$ -local.

Proof Outline

Proof Sketch of Part 1.

- 1 Suppose otherwise, then there is a formula $\phi(x)$ that is not f-local for G, a and b.
- 2 Derive a formula $\phi'(y)$ that is not $\Omega(f)$ -local for G', a', and b' with $D(a',b')=\Omega(f)$.
- 3 Using $\phi'(y)$, construct a small constant-depth Boolean circuit computing parity on $\Omega(f)$ bits.
- 4 For some c depending on ϕ , allowing $f = \Omega((\log n)^c)$ contradicts known lower bounds.

Background – Circuit Complexity

Fact

Let $\phi(x)$ be an Arb-invariant FO formula. There exists $d \in \mathbb{N}$ and a Boolean circuit family $(C_n)_{n \in \mathbb{N}}$ with depth d and size poly(n) such that for each graph G of size n, and vertex a,

$$C_n(G, a) = 1$$
 iff $G \models \phi(a)$.

Lemma (Håstad)

For each $d \in \mathbb{N}$ and large enough m there is no Boolean circuit with depth d and size $2^{km^{1/(d-1)}}$ computing parity on m bits.

Lemma

Let $\phi(x)$ be an Arb-invariant FO formula where $G \models \phi(a) \land \neg \phi(b)$, $\mathcal{N}_m(a) \cong \mathcal{N}_m(b)$, and D(a,b) > 2m. For $d \in \mathbb{N}$ depending on ϕ there is a Boolean circuit of depth d and size poly(n) computing parity on m bits.

Proof Sketch.

Consider $w \in \{0,1\}^m$.

For $i \in \{0, 1, \dots, m-1\}$ with $w_i = 1$:

Lemma

Let $\phi(x)$ be an Arb-invariant FO formula where $G \models \phi(a) \land \neg \phi(b)$, $\mathcal{N}_m(a) \cong \mathcal{N}_m(b)$, and D(a,b) > 2m. For $d \in \mathbb{N}$ depending on ϕ there is a Boolean circuit of depth d and size poly(n) computing parity on m bits.

Proof Sketch.

Consider $w \in \{0,1\}^m$.

For $i \in \{0, 1, ..., m-1\}$ with $w_i = 1$:

Swap the endpoints of the edges leaving $B_i(a)$ with the corresponding endpoints of the edges leaving $B_i(b)$.

Lemma

Let $\phi(x)$ be an Arb-invariant FO formula where $G \models \phi(a) \land \neg \phi(b)$, $\mathcal{N}_m(a) \cong \mathcal{N}_m(b)$, and D(a,b) > 2m. For $d \in \mathbb{N}$ depending on ϕ there is a Boolean circuit of depth d and size poly(n) computing parity on m bits.

Proof Sketch.

Consider $w \in \{0,1\}^m$.

For $i \in \{0, 1, ..., m-1\}$ with $w_i = 1$:

Swap the endpoints of the edges leaving $B_i(a)$ with the corresponding endpoints of the edges leaving $B_i(b)$.

Lemma

Let $\phi(x)$ be an Arb-invariant FO formula where $G \models \phi(a) \land \neg \phi(b)$, $\mathcal{N}_m(a) \cong \mathcal{N}_m(b)$, and D(a,b) > 2m. For $d \in \mathbb{N}$ depending on ϕ there is a Boolean circuit of depth d and size poly(n) computing parity on m bits.

Proof Sketch.

Consider $w \in \{0,1\}^m$.

For $i \in \{0, 1, ..., m-1\}$ with $w_i = 1$:

Swap the endpoints of the edges leaving $B_i(a)$ with the corresponding endpoints of the edges leaving $B_i(b)$.

Lemma

Let $\phi(x)$ be an Arb-invariant FO formula where $G \models \phi(a) \land \neg \phi(b)$, $\mathcal{N}_m(a) \cong \mathcal{N}_m(b)$, and D(a,b) > 2m. For $d \in \mathbb{N}$ depending on ϕ there is a Boolean circuit of depth d and size poly(n) computing parity on m bits.

Proof Sketch.

Consider $w \in \{0, 1\}^m$.

For $i \in \{0, 1, ..., m-1\}$ with $w_i = 1$:

Swap the endpoints of the edges leaving $B_i(a)$ with the corresponding endpoints of the edges leaving $B_i(b)$.

The resulting graph $G_w \cong G$.

Lemma

Let $\phi(x)$ be an Arb-invariant FO formula where $G \models \phi(a) \land \neg \phi(b)$, $\mathcal{N}_m(a) \cong \mathcal{N}_m(b)$, and D(a,b) > 2m. For $d \in \mathbb{N}$ depending on ϕ there is a Boolean circuit of depth d and size poly(n) computing parity on m bits.

Proof Sketch.

Consider $w \in \{0,1\}^m$.

For $i \in \{0, 1, ..., m-1\}$ with $w_i = 1$:

Swap the endpoints of the edges leaving $B_i(a)$ with the corresponding endpoints of the edges leaving $B_i(b)$.

The resulting graph $G_w \cong G$.

$$(G_w, a) \cong \begin{cases} (G, a), & \bigoplus w = 0\\ (G, b), & \bigoplus w = 1 \end{cases}$$

 $\phi(x)$ distinguishes these cases.

A small circuit computes $\phi(x)$.

A small circuit computes $\bigoplus w$.

Lemma

Let $\phi(x)$ be an Arb-invariant FO formula where $G \models \phi(a) \land \neg \phi(b)$, $\mathcal{N}_m(a) \cong \mathcal{N}_m(b)$, and D(a,b) > 2m. For $d \in \mathbb{N}$ depending on ϕ there is a Boolean circuit of depth d and size poly(n) computing parity on m bits.

Proof Sketch.

Consider $w \in \{0, 1\}^m$.

For $i \in \{0, 1, ..., m-1\}$ with $w_i = 1$:

Swap the endpoints of the edges leaving $B_i(a)$ with the corresponding endpoints of the edges leaving $B_i(b)$.

The resulting graph $G_w \cong G$.

$$(G_w, a) \cong \begin{cases} (G, a), & \bigoplus w = 0\\ (G, b), & \bigoplus w = 1 \end{cases}$$

 $\phi(x)$ distinguishes these cases.

A small circuit computes $\phi(x)$.

A small circuit computes $\bigoplus w$.

Lemma

Let $\phi(x)$ be an Arb-invariant FO formula where $G \models \phi(a) \land \neg \phi(b)$, $\mathcal{N}_m(a) \cong \mathcal{N}_m(b)$, and D(a,b) > 2m. For $d \in \mathbb{N}$ depending on ϕ there is a Boolean circuit of depth d and size poly(n) computing parity on m bits.

Lemma (Håstad)

For each $d \in \mathbb{N}$ and large enough m there is no Boolean circuit with depth d and size $2^{km^{1/(d-1)}}$ computing parity on m bits.

Selecting $m(n) = f = \Omega((\log n)^c)$ for c > (d-1) induces a contradiction.

Extensions

1 unary $\rightarrow k$ -ary:

Lemma (informal)

Let $\phi(x)$ be a k-ary Arb-invariant FO formula that is not Gaifman f-local. For some k' < k, there is a k'-ary Arb-invariant FO formula $\phi'(y)$, that is not Gaifman $\Omega(f)$ -local.

② Graphs → Structures:

Measure distance on the Gaifman graph of the structure.

Summary

Theorem (Gaifman Locality)

- **1** For each Arb-invariant FO formula $\phi(x)$ there is a $c \in \mathbb{N}$ such that the formula is Gaifman $(\log n)^c$ -local.
- 2 For each $c \in \mathbb{N}$ there is an Arb-invariant FO formula $\phi(x)$ that is not Gaifman $(\log n)^c$ -local.

Theorem (Hanf Locality)

- **1** For each Arb-invariant FO formula over strings there is a $c \in \mathbb{N}$ such that the formula is $Hanf(\log n)^c$ -local.
- 2 For each $c \in \mathbb{N}$ there is an Arb-invariant FO formula over strings that is not Hanf $(\log n)^c$ -local.