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Motivation

Locality is a powerful tool for proving inexpressibility.

Example
e On-A-Cycle is a property which is not r-local, for r = o(n).

¢ First-Order logic (FO) is constant-local.
e Therefore, On-A-Cycle is not definable in FO.

What do we know about locality?
e FO is constant-local.
e Order-invariant FO is constant-local [Grohe-Schwentick].

e Arb-invariant FO is polylog(n)-local [us].
Technique: reduction to Boolean circuit lower bounds.




Background — Invariant FO

¢:=FzIy((z +z =y) AVz(z < y)).

Assume that:
e < is interpreted as a linear ordering.
This induces a bijection U — {1,2,...,n}.
e + is interpreted in the natural way w.r.t. <:
z,y,2€ U—a,b,ce{l,2,...,n},
(z,y,2) e+ iffa+b=c.
Then ¢ expresses whether the universe size is even.

The veracity of ¢ is independent of the actual interpretation of <.




Background — Invariant FO

Formalizing this intuition:
@ Consider a set of numerical predicates symbols S.
® For each n € N define an interpretation of S over
{1,2,...,n}.
© Selecting an interpretation of < as a linear order with respect
to a universe U induces an interpretation of S over U.

Definition

For a fixed interpretation of S over {1,2,...,n}, a formula ¢(z)
of FO(<,S) is S-invariant if for all graphs G and vertices a, the
truth of ¢(a) on G is independent of the particular interpretation
of the linear order <.

We focus on the case where S is the set of arbitrary numerical
predicates (Arb).




Background — Graphs

Graph G := (V,E).
Distance D(u,v) — length of a shortest path between u, v in G.



Background — Graphs

Graph G := (V,E).

Distance D(u,v) — length of a shortest path between u, v in G.
Ball B,(a) of radius r at a in G.

Neighborhood N (a) of radius r at a in G.



Background — Graphs

Graph G := (V,E).

Distance D(u,v) — length of a shortest path between u, v in G.
Ball B,(a) of radius r at a in G.

Neighborhood N (a) of radius r at a in G.



Background — Gaifman Locality

We say that two neighborhoods are isomorphic
N:(a) 2 N(b),

if there is an isomorphism 7 between the two that maps a to b.

ceeetenns ;



Background — Gaifman Locality

We say that two neighborhoods are isomorphic
N:(a) 2 N(b),

if there is an isomorphism 7 between the two that maps a to b.

.(._._._2_._._.>. ! b



Background — Gaifman Locality

We say that two neighborhoods are isomorphic
N:(a) 2 N(b),

if there is an isomorphism 7 between the two that maps a to b.

Definition
Let f: N — R.,. A formula ¢(z) is Gaifman f-local if for any large
enough graph G with n vertices, and any two vertices a and b:

Nimy(a) Z Npn)(b) = G = ¢(a) iff G = ¢(b).



Main Result

Theorem (Main)

@ For each Arb-invariant FO formula ¢(x) there is a ¢ € N such
that the formula is Gaifman (log n)¢-local.

@ For each ¢ € N there is an Arb-invariant FO formula ¢(x)
that is not Gaifman (log n)¢-local.




Proof Outline

Proof Sketch of Part 1.

@ Suppose otherwise, then there is a formula ¢(z)

that is not f-local for G, @ and b.
@ Derive a formula ¢/(y)
that is not Q(f)-local for G’, a’, and b’ with D(a’, b") = Q(f).

® Using ¢'(y), construct a small constant-depth Boolean circuit
computing parity on Q(f) bits.

@ For some ¢ depending on ¢, allowing f = Q((logn)¢)
contradicts known lower bounds. n




Background — Circuit Complexity

Fact

Let ¢(x) be an Arb-invariant FO formula. There exists d € N and
a Boolean circuit family (Cy,)nen with depth d and size poly(n)
such that for each graph G of size n, and vertex a,

Co(G,a) =1 iff G &= ¢(a).

Lemma (H&stad)

For each d € N and large enough m there is no Boolean circuit
o o d— o 0 g
with depth d and size gkm!/t4=1) computing parity on m bits.



Disjoint Case

Let ¢(z) be an Arb-invariant FO formula where G |= ¢(a) A —¢(b),
N (a) 2 Ny, (b), and D(a,b) > 2m. For d € N depending on ¢ there is
a Boolean circuit of depth d and size poly(n) computing parity on m bits.

Proof Sketch.
Consider w € {0,1}™.
Forie€{0,1,...,m — 1} with w; = 1:
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Lemma

Let ¢(z) be an Arb-invariant FO formula where G |= ¢(a) A —¢p(b),
N (a) =2 Ny, (b), and D(a,b) > 2m. For d € N depending on ¢ there is
a Boolean circuit of depth d and size poly(n) computing parity on m bits.

Lemma (Hastad)
For each d € N and large enough m there is no Boolean circuit with

depth d and size 2™"“"" computing parity on m bits.

Selecting m(n) = f = Q((logn)€) for ¢ > (d — 1) induces a
contradiction.



Extensions

@ unary — k-ary:

Lemma (informal)

Let ¢(x) be a k-ary Arb-invariant FO formula that is not Gaifman
f-local. For some k' < k, there is a k'-ary Arb-invariant FO formula
¢'(y), that is not Gaifman Q(f)-local.

® Graphs — Structures:

Measure distance on the Gaifman graph of the structure.



Theorem (Gaifman Locality)

@ For each Arb-invariant FO formula ¢(x) there is a ¢ € N such that
the formula is Gaifman (log n)°-local.

@ For each ¢ € N there is an Arb-invariant FO formula ¢(x) that is
not Gaifman (log n)¢-local.

Theorem (Hanf Locality)

@ For each Arb-invariant FO formula over strings there is a ¢ € N
such that the formula is Hanf (log n)°-local.

@ For each ¢ € N there is an Arb-invariant FO formula over strings
that is not Hanf (log n)¢-local.



