
SIAM J. COMPUT. c© 2012 Society for Industrial and Applied Mathematics
Vol. 41, No. 6, pp. 1481–1523

LOCALITY FROM CIRCUIT LOWER BOUNDS∗

MATTHEW ANDERSON† , DIETER VAN MELKEBEEK†, NICOLE SCHWEIKARDT‡ , AND

LUC SEGOUFIN§

Abstract. We study the locality of an extension of first-order logic that captures graph queries
computable in AC0, i.e., by families of polynomial-size constant-depth circuits. The extension con-
siders first-order formulas over relational structures which may use arbitrary numerical predicates
in such a way that their truth value is independent of the particular interpretation of the numerical
predicates. We refer to such formulas as Arb-invariant first-order. We consider the two standard
notions of locality, Gaifman and Hanf locality. Our main result gives a Gaifman locality theorem: An
Arb-invariant first-order formula cannot distinguish between two tuples that have the same neigh-
borhood up to distance (log n)c, where n represents the number of elements in the structure and c
is a constant depending on the formula. When restricting attention to string structures, we achieve
the same quantitative strength for Hanf locality. In both cases we show that our bounds are tight.
We also present an application of our results to the study of regular languages. Our proof exploits
the close connection between first-order formulas and the complexity class AC0 and hinges on the
tight lower bounds for parity on constant-depth circuits.

Key words. finite model theory, order-invariance, Arb-invariance, Gaifman locality, Hanf lo-
cality, Boolean circuit complexity, constant-depth circuits, regular languages

AMS subject classifications. 03C07, 03C13, 68Q17, 68Q19

DOI. 10.1137/110856873

1. Introduction. Expressibility of logics over finite structures plays an impor-
tant role in various areas of computer science. In descriptive complexity, logics over
finite structures are used to characterize complexity classes [24]. For example, existen-
tial second-order logic can describe exactly those graph problems that belong to the
complexity class NP. Concerning databases, common query languages have well-known
logical equivalents. In particular, the relational calculus has precisely the power of
first-order logic (FO); extensions of FO by aggregation, grouping, arithmetic opera-
tions, or recursive definitions, capturing large parts of the database query language
SQL, have been identified in the literature (e.g., [26, 36]). In automated verification,
one uses logics as specification languages to describe properties of hardware and soft-
ware systems, and one needs to balance the expressivity of the logics used with the
feasibility of the model checking task (e.g., [10]).

The classical inexpressibility arguments for logics over finite structures (i.e., back-
and-forth systems or Ehrenfeucht–Fräıssé games; e.g., [27]) often involve nontrivial
combinatorics. The notion of locality has been proposed as an alternative that al-
lows one to contain much of the hard work in generic results and keep the specific
applications simple. Roughly speaking, a query is local if one only needs to look at

∗Received by the editors November 28, 2011; accepted for publication (in revised form) August 31,
2012; published electronically November 29, 2012. A preliminary version of this paper appeared in
Proceedings of the International Colloquium on Automata, Languages, and Programming, Lecture
Notes in Comput. Sci. 6756, Springer, Berlin, 2011, pp. 368–379.

http://www.siam.org/journals/sicomp/41-6/85687.html
†Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706 (mwa@

cs.wisc.edu, dieter@cs.wisc.edu). The work of these authors was partially supported by NSF grants
0728809 and 1017597.

‡Institut für Mathematik, Goethe-Universität Frankfurt, D-60325 Frankfurt am Main, Germany
(schweika@cs.uni-frankfurt.de).

§LSV, INRIA, and ENS-Cachan, 84235 Cachan cedex, France (luc.segoufin@inria.fr).

1481

1482 ANDERSON, VAN MELKEBEEK, SCHWEIKARDT, AND SEGOUFIN

a small, localized part of the structure in order to answer the query. If one can show
that every query in a given logic has a certain degree of locality and the query at
hand does not, then one can conclude that the query is not expressible in the logic.
For example, one can show that for every first-order query on graphs, there exists a
constant r such that the result of the query depends only on the neighborhood up to
distance r of the vertices that are part of the query (e.g., [27]). On the other hand, it
is easy to see that the connectivity of two vertices in a graph is not determined solely
by the restriction to those neighborhoods. Therefore, connectivity is not expressible
in FO. Apart from inexpressibility proofs, locality is also used as a tool for obtaining
algorithmic meta theorems, i.e., results stating that if a problem is expressible in a
certain logic on a certain class of structures, then it can be solved algorithmically
within certain resource bounds. (See [16] for a recent overview on this topic.)

In this paper we show how to use circuit lower bounds to establish upper bounds on
the locality radius of certain logics. In particular, we consider a logic that corresponds
to the complexity class AC0 of all languages that can be decided by nonuniform
families of polynomial-size constant-depth circuits. By exploiting the known lower
bounds for parity and related problems on constant-depth circuits [20], we obtain
an upper bound for the locality radius of queries expressible in that logic. We also
present an application of this result to the study of regular languages, and we give
examples showing that our upper bounds are essentially tight.

The logic we consider is the extension of order-invariant FO with arbitrary numer-
ical predicates. The notion of order-invariance was introduced a while ago to capture
the data independence principle in databases [1, 27]: An implementation of a database
query may exploit the order in which the elements are stored on a disk, but only in
such a way that the result of the query does not depend on this order. Order-invariant
first-order queries are exactly those first-order queries that can make use of an order
predicate < but such that the answer is independent of the interpretation of < as a
linear order on the domain of the structure. In our extension, on top of the order
predicate <, we also allow the use of arbitrary numerical predicates that are induced
by the order. We require that the result of a query not depend on the actual choice
of the linear order when all numerical predicates are interpreted consistent with the
linear order. We denote this logic1 as Arb-invariant FO. In terms of graph queries,
Arb-invariant FO expresses precisely those computable in the complexity class AC0.
We refer to section 1.3 for more background.

1.1. Results. In order to state our results, we need to introduce the two stan-
dard notions of locality, known as Gaifman locality and Hanf locality. Both are based
on the distance measure on the elements of a structure when viewed as the vertices
of a graph in which two elements are connected by an edge whenever they appear
together in a tuple of one of the structure’s relations. The latter graph is referred to
as the Gaifman graph of the structure. In a nutshell, Gaifman locality means that
a query cannot distinguish between two tuples having the same neighborhood type
in a given structure, while Hanf locality means that a query cannot distinguish be-
tween two structures having the same (multi-)set of neighborhood types. Here, the
neighborhood type of a tuple refers to the equivalence class under isomorphism of
the substructure induced by the elements up to distance r from the tuple, where r
is a parameter. It is known that Hanf locality implies Gaifman locality, modulo a

1Strictly speaking, Arb-invariant FO is a “logical system” rather than a “logic,” as the syntax is
undecidable (e.g., [27]).

LOCALITY FROM CIRCUIT LOWER BOUNDS 1483

constant factor loss in the distance parameter r. We refer to section 2 for the formal
treatment of these notions.

A well-known result (e.g., [27]) shows that FO exhibits constant locality w.r.t.
both notions, i.e., every FO query is Gaifman and Hanf local with a constant param-
eter r depending on the query. In the presence of an extra linear order that is part of
the structure, all neighborhoods of positive radius degenerate to the entire domain, so
all queries are trivially 1-local. Locality becomes meaningful again in order-invariant
FO, where the formulas can make use of an order, but the structure does not contain
the order and the semantics are independent of the order. It is shown in [17] that
order-invariant FO queries are Gaifman local with a constant parameter r depend-
ing on the query. The status of Hanf locality for order-invariant FO is still open in
general; it is only known for structures like strings and trees [9].

When we allow arbitrary numerical predicates, constant locality no longer holds,
even if we require Arb-invariance. In fact, we show that the level of Gaifman locality
of Arb-invariant FO queries can be polylogarithmic in the number of elements of the
structure, but no worse than that: Arb-invariant FO is Gaifman (logn)O(1)-local in
the following sense.

Theorem 1.1. Every Arb-invariant FO formula is Gaifman (logn)c-local for
some constant c depending on the formula, and for every constant c there exists an
Arb-invariant FO formula that is not Gaifman (logn)c-local.

The upper bound in Theorem 1.1 means that for any query in Arb-invariant FO
and any large enough number n, if a structure has n elements and if two tuples of
that structure have the same neighborhood up to distance (logn)c, then they cannot
be distinguished by the query. The lower bound part of Theorem 1.1 is realized by
variations of the connectivity example mentioned before.

As an easy consequence of the upper bound in Theorem 1.1 one obtains, e.g.,
that the following graph queries are not computable in AC0: Does a node x lie on a
cycle? Are two nodes x and y connected by a path? Do nodes x and y have the same
distance to node z? Does node x belong to a connected component that is acyclic?

Theorem 1.1 provides an essentially complete picture of the Gaifman locality of
Arb-invariant FO. Similar to the case of order-invariant FO, the Hanf locality of
Arb-invariant FO queries is still open in general, but if we restrict our attention to
structures that represent strings, we can establish Hanf locality with the same bounds
as in Theorem 1.1. In the following statement, Arb-invariant FO(Succ) refers to Arb-
invariant queries over string structures.

Theorem 1.2. Every Arb-invariant FO(Succ) formula is Hanf (logn)c-local for
some constant c depending on the formula, and for every constant c there exists an
Arb-invariant FO(Succ) formula that is not Hanf (log n)c-local.

The upper bound in Theorem 1.2 means the following, where we use r to denote
(logn)c: For any Arb-invariant FO query over strings and any large enough number
n, if two strings of length n have the same prefix of length 2r, the same suffix of
length 2r, and the same multiset of substrings of length 2r + 1, then they cannot
be distinguished by the query. We believe that the upper bound in Theorem 1.2
generalizes to structures over trees. (See the discussion in section 7 for more details.)
Since Hanf locality implies Gaifman locality, the lower bound in Theorem 1.2 can be
viewed as a strengthening of the lower bound part of Theorem 1.1.

We also present an application of our locality results to the study of regular
languages. It is known that the class of definable regular languages does not grow
when we move from FO to order-invariant FO [9] but does grow when we proceed
to addition-invariant FO, i.e., Arb-invariant FO where the only numerical predicate

1484 ANDERSON, VAN MELKEBEEK, SCHWEIKARDT, AND SEGOUFIN

used is addition [37]. The larger class coincides with FO(Succ, lm), i.e., the extension
of FO(Succ) with predicates determining the length of a string modulo some constant
[37]. Based on our locality results, we can show that the class does not grow further
when we allow the use of arbitrary numerical predicates, i.e., when we proceed from
addition-invariant FO to Arb-invariant FO.

Theorem 1.3. A regular language is definable in Arb-invariant FO(Succ) iff it
is definable in FO(Succ, lm).

1.2. Techniques. Our proof of the upper bound on Gaifman locality in The-
orem 1.1 exploits the tight connection between Arb-invariant FO formulas and the
complexity class AC0: Given an Arb-invariant FO formula ϕ that distinguishes two
points of the universe whose neighborhoods up to distance r are of the same type, we
construct a circuit on 2m = Θ(r) bits that distinguishes inputs with exactly m ones
from inputs with exactly m + 1 ones. In the special case where the neighborhoods
of the two points are disjoint the circuit actually computes parity. The depth of the
circuit is a constant depending on ϕ, and its size is polynomial in n. The known ex-
ponential circuit lower bounds [20] then imply that r is bounded by a polylogarithmic
function in n. This argument establishes the upper bound in Theorem 1.1 for the
case of formulas with a single free variable. In order to handle an arbitrary number
k of free variables, we show how to reduce any case with k > 1 free variables to one
with fewer variables in a way that is conceptually similar to (but technically different
from) [17]. See section 1.3 for a more detailed discussion of this related work.

As mentioned, we do not know how to extend the upper bound of Theorem 1.1 to
the stronger notion of Hanf locality in general, but we can establish it in Theorem 1.2
for the special case of strings. The latter case is simpler because on strings, being Hanf
local is equivalent to closure under swapping substrings whose endpoints have the same
neighborhood type—a condition that has much of a Gaifman locality flavor. In fact,
to prove that closure under such swaps holds for Arb-invariant FO(Succ) formulas,
we use a reduction to the upper bound for Gaifman locality from Theorem 1.1.

The lower bounds in Theorems 1.1 and 1.2 follow because arithmetic predicates
like addition and multiplication allow one to define a bijection between the elements
of a first-order definable set S of polylogarithmic size and an initial segment of the
natural numbers [11]. Thus, the binary representation of a single element of the
entire domain can be used to represent a list of elements of S. By exploiting this,
Arb-invariant FO can express, e.g., reachability between two nodes in S by a path of
polylogarithmic length.

For the proof of Theorem 1.3 we use a characterization from [37] stating that a
regular language is definable in addition-invariant FO iff it is definable in FO(Succ, lm)
iff it is closed under two operations called “swap” and “transfer.” By applying a
pumping argument we obtain that Hanf locality and regularity imply closure under
swaps. Furthermore, a reduction from circuit lower bounds, similar to the one used
for the upper bound proof of Theorem 1.1, along with a pumping argument shows
that regular languages definable in Arb-invariant FO are closed under transfers.

1.3. Related work. We now give a brief overview of related work.
Invariant logics. The expressiveness of order-invariant FO was considered in var-

ious places [1, 27, 12, 17, 9]. Logics allowing invariant uses of predicates weaker than
the linear order were considered in [33, 31], concentrating on successor-invariant FO
and epsilon-invariant FO, respectively. Logics allowing invariant uses of arbitrary
numerical predicates were formally introduced in [29], pointing out in particular that
the graph properties definable in Arb-invariant FO are precisely the graph properties

LOCALITY FROM CIRCUIT LOWER BOUNDS 1485

computable in AC0. Similarly, [30] showed that the graph properties definable in
Arb-invariant least fixed-point logic coincide with the graph properties computable
in P/poly. By results of [23, 22, 41] it is known that (+,×)-invariant FO (i.e., Arb-
invariant FO where the formulas only use the numerical predicates + and ×) and
order-invariant least fixed-point logic precisely capture the graph properties com-
putable in uniform AC0 and in polynomial time, respectively.

A number of articles in the circuit complexity literature and the finite model
theory literature concentrated on graph properties (or queries) computable in AC0 or
definable in Arb-invariant FO (or variants thereof), without explicitly mentioning the
notion of Arb-invariance. For example, [32, 6, 4] showed an exponential lower bound
on the size of monotone circuits computing the k-clique problem on n-vertex graphs.
Recently, [34, 35] established a strong lower bound on the size of constant-depth
circuits computing the k-clique problem and applied this to show that the bounded
variable hierarchy inside FO is strict on the class of finite ordered graphs and on the
class of finite graphs enriched by arbitrary numerical predicates. Ajtai [3] showed
that the query selecting all pairs (x, y) of nodes in a graph that are connected by a
path of length at most f(n), where n is the size of the graph and f is an unbounded
function, is not definable in Arb-invariant FO. In [2] it was shown that the class of
graphs having an even number of edges is not definable in the Arb-invariant version of
the extension of FO called existential monadic second-order logic (EMSO). In [13, 39]
it was proved that connectivity of graphs is not definable in EMSO with numerical
predicates of moderate degree.

Locality. The notions of Hanf and Gaifman locality were introduced in [13, 21],
going back to results from [19, 15]. Showing that a logic is Hanf or Gaifman local
provides insight into the limitations of its expressiveness and constitutes a high-level
tool for proving that certain properties or queries cannot be expressed by formulas of
this logic. Hanf and Gaifman locality results have been obtained for FO and for various
extensions of FO (e.g., by counting quantifiers). For an overview on locality results
and their applications in complexity theory we refer to [25]. Most locality results
obtained in the literature deal with locality radii of constant size (cf., the example
on FO mentioned at the beginning of the introduction, and the results mentioned in
[21, 25, 17, 27]). In their concluding sections, the articles [21, 17], however, proposed
to also consider notions of locality where the radius of the neighborhoods grows with
the size of the structures—this is what we do in the present paper. As pointed
out in [21, 17], an analogue of our Theorem 1.1 for order-invariant FO with counting
quantifiers would lead to a separation of the complexity classes TC0 and LOGSPACE.

The notion of locality in logic has a somewhat similar flavor to the notion of
sensitivity in circuit complexity. The sensitivity of a Boolean function f at an input x
is the number of bit positions i in x such that if we flip the ith bit in x, then the value of
f changes. The average sensitivity of every function f in AC0 over all inputs of length
n is known to be polylogarithmically bounded in n [28]. The latter result is closely
related to the exponential lower bounds for parity on constant-depth circuits [20].
Rather than going through sensitivity, our argument for proving Theorems 1.1 and
1.2 directly uses those circuit lower bounds to establish a polylogarithmic upper bound
on the locality of Arb-invariant FO.

Comparison with [17]. Our Theorem 1.1 can be viewed as an analogue of the main
result of [17]. While their result states that order -invariant FO queries are Gaifman
local with a constant locality radius r (depending on the query), our result states that
Arb-invariant FO queries are Gaifman local with a locality radius (logn)c, where c is a
constant (depending on the query) and n is the size of the underlying structure. Our

1486 ANDERSON, VAN MELKEBEEK, SCHWEIKARDT, AND SEGOUFIN

proof of the upper bound in Theorem 1.1 has the same overall structure as the proof
of [17]: It first considers queries of arity k = 1 for the case of disjoint neighborhoods,
then for the case of overlapping neighborhoods, and afterward it gives a reduction from
queries of arbitrary arity k > 1 to queries of arity k−1. Our method for handling
the case of overlapping neighborhoods uses techniques from [17]; however, our overall
argument for treating queries of arity k = 1 gives a reduction to lower bounds in
circuit complexity, while the argument of [17] relies on Ehrenfeucht–Fräıssé games.
Our proof for the arity reduction from k > 1 to k−1 is conceptually similar to the
proof of [17] but involves substantial technical differences. On the one hand, the
notion of Arb-invariance allows us to give a nonuniform reduction (while the order-
invariance of [17] requires uniformity). On the other hand, Arb-invariance requires us
to construct a reduction that does not change the size of the universe of the structures
considered (while the reduction of [17] changes the size of the universe and builds on
the fact that this preserves order-invariance).

1.4. Organization. In section 2 we present general preliminaries concerning
FO, locality, and circuit complexity. In section 3 we formally introduce our notion
of Arb-invariance and describe its connection to AC0. Section 4 contains our results
for Gaifman locality, section 5 our results for Hanf locality on strings, and section 6
our application to regular languages. We end in section 7 with some suggestions for
further research.

2. Preliminaries. In this section we briefly review relevant background material
on structures and queries, FO, Gaifman locality, Hanf locality, circuit complexity, and
how to encode structures and queries as strings.

Structures and queries. A relational schema is a set of relation symbols each with
an associated arity. A structure M over a relational schema τ is a finite set dom(M),
the domain, containing all the elements of M , together with an interpretation RM ⊆
dom(M)k of each relation symbolR ∈ τ of arity k. We call a structure over a relational
schema τ a τ-structure. The size of a structure M is the cardinality of its domain
dom(M).

If U is a set of elements of M , then M|U denotes the induced substructure of M
on U . That is, M|U is the structure whose domain is U and whose relations are the
relations of M restricted to those tuples containing only elements in U .

We say that two τ -structures M and M ′ are isomorphic, M ∼=M ′, if there exists
a bijection π : dom(M) → dom(M ′) such that for each k-ary relation symbol R ∈ τ ,
(a1, a2, . . . , ak) ∈ RM iff (π(a1), π(a2), . . . , π(ak)) ∈ RM

′
. We write π : M ∼= M ′ to

indicate that π is an isomorphism that maps M to M ′. If ā and b̄ are tuples (of
the same length) of elements of dom(M) and dom(M ′), respectively, then we write
(M, ā) ∼= (M ′, b̄) to indicate that there is an isomorphism π : M ∼=M ′ which maps ā
to b̄. All classes of structures considered in this paper are closed under isomorphisms.

A k-ary query on τ-structures is a mapping q that associates with each τ -structure
M a relation q(M) ⊆ dom(M)k and that is closed under isomorphism in the following
sense: If (M, ā) ∼= (M ′, b̄), then ā ∈ q(M) iff b̄ ∈ q(M ′).

First-order logic. We denote by FO(τ) the first-order logic with respect to the
schema τ . This is the set of logical formulas whose atoms are formed based on the
relation symbols in τ , the equality symbol =, and an infinite sequence of variables
(x1, x2, . . .) and that is closed under Boolean connectives (∧,∨, and ¬) and existential
and universal quantifications (∃ and ∀). We use the standard syntax and semantics
for FO (e.g., [27]). If φ is a formula, we write φ(x̄) to denote that x̄ is a list of the
free variables of φ. The alternation depth of a formula is the maximum, over all

LOCALITY FROM CIRCUIT LOWER BOUNDS 1487

paths from the root of a formula to its atoms, of the number of alternating blocks of
quantifiers along the path.

We write M |= φ(ā) or (M, ā) |= φ(x̄) to express that the tuple ā of elements in
dom(M) makes the formula φ(x̄) true in M . A formula φ(x̄) with k free variables
defines the k-ary query that associates with every τ -structure M the set of k-tuples
ā ∈ dom(M)k for which M |= φ(ā). Sometimes, we will say that φ(x̄) is a k-ary
formula. A sentence is a formula that has no free variables.

Neighborhoods. To each structure M we associate an undirected graph G(M),
known as the Gaifman graph of M , whose vertices are the elements of the domain
of M and whose edges relate two elements of M whenever there exists a tuple in
one of the relations of M in which both appear. For example, consider a relational
schema τ consisting of one binary relation symbol E. Each τ -structure M is then a
directed graph in the standard sense, and G(M) coincides with M when ignoring the
orientation. Given two elements u and v of a structure M , we denote as distM (u, v)
the distance between u and v in M , which is defined as their distance in the Gaifman
graph G(M). If ā and b̄ are tuples of elements of M , then distM (ā, b̄) denotes the
minimum distance between any pair of elements (one from ā and one from b̄).

For every r ∈ N and tuple ā ∈ dom(M)k, the r-ball around ā in M is the set

NM
r (ā) := {v ∈ dom(M) : distM (ā, v) ≤ r},

and the r-neighborhood around ā in M is the structure

NM
r (ā) :=

(
M|NM

r (ā) , ā
)
.

That is, NM
r (ā) is the induced substructure of M on NM

r (ā) with k distinguished
elements ā. Two neighborhoods NM

r (ā) and NM ′
r (b̄) are isomorphic if there is an

isomorphism π :M|NM
r (ā)

∼=M ′|NM′
r (b̄)

that maps ā to b̄.

Locality. Let φ(x̄) be a logical formula with k free variables. We consider two
notions of locality of φ(x̄). (The precise definitions are basically taken from [27].) We
first define the notions with respect to fixed structures and then with respect to all
structures.

Definition 2.1 (Gaifman locality). A formula φ(x̄) is Gaifman r-local with
respect to a τ-structure M if for all tuples ā, b̄ ∈ dom(M)k we have

(2.1) NM
r (ā) ∼= NM

r (b̄) =⇒ M |= φ(ā) iff M |= φ(b̄).

For any two τ -structures M,M ′ and any tuples ā ∈ dom(M)k and b̄ ∈ dom(M ′)k

we write (M, ā) ≡r (M ′, b̄) if there is a bijection h : dom(M) → dom(M ′) such that
for every element c in the domain of M , NM

r (cā) ∼= NM ′
r (h(c)b̄). Equivalently, the

various isomorphism types (i.e., distinct local neighborhoods of radius r) occur with
the same cardinality in M and M ′.

Definition 2.2 (Hanf locality). A formula φ(x̄) is Hanf r-local with respect to
a pair of τ-structures (M,M ′) if for all tuples ā ∈ dom(M)k and b̄ ∈ dom(M ′)k

(2.2) (M, ā) ≡r (M ′, b̄) =⇒ M |= φ(ā) iff M ′ |= φ(b̄).

For either notion of locality and every function r : N → R≥0, we call a formula
φ(x̄) r(n)-local if there exists a constant nφ such that φ(x̄) is r(n)-local with respect
to all τ -structures of size n ≥ nφ.

As for the relationship between the two notions of locality, there are two dif-
ferences: (i) Hanf locality considers two structures that can be different, whereas

1488 ANDERSON, VAN MELKEBEEK, SCHWEIKARDT, AND SEGOUFIN

Gaifman locality considers only one structure, and (ii) Hanf locality requires the ex-
istence of a global bijection, whereas Gaifman locality does not. Difference (i) makes
Hanf locality a more powerful notion. In particular, Hanf locality is meaningful for
sentences, whereas Gaifman locality for sentences trivially holds. When considering a
single structure M , difference (ii) seems to make Hanf locality weaker than Gaifman
locality but this is not the case (modulo a small loss in the distance parameter r). In-
tuitively, a global bijection can be constructed from an isomorphism between a pair of
large-radius neighborhoods and the trivial global isomorphism between two identical
structures in such a way that the isomorphism types up to some smaller distance are
preserved. One can formalize this argument to show that if a formula is Hanf r-local
w.r.t. (M,M), then it is Gaifman (3r + 1)-local w.r.t. M [21].

Circuit complexity. Given a string of Boolean variables x := x1x2 · · ·xm, a Bool-
ean circuit over x is a rooted directed acyclic graph whose vertices without outgoing
edges are called input gates and are labeled with either 0, 1, xi, or ¬xi for some i,
whose internal vertices are called gates and are labeled with either ∧ or ∨, and whose
root is called the output gate. A circuit naturally defines a function from {0, 1}m to
{0, 1}. The depth of a circuit is the length of a longest path from the root of the
circuit to one of its inputs. The size of a circuit is the number of gates it contains.

A family of circuits is a sequence (Cm)m∈N such that for all m ∈ N, Cm is a
circuit over m input variables. We say that a language L ⊆ {0, 1}∗ is accepted by
a family of circuits (Cm)m∈N if for all m ∈ N and for all binary strings w of length
m, Cm(w) = 1 iff w ∈ L. A language L is in AC0 if there exists a family of circuits
accepting L that have constant depth and size polynomial in the input length.

Our locality bounds hinge on the well-known exponential-size lower bounds for
constant-depth circuits that compute parity [2, 14, 42, 20]. In fact, we use the following
somewhat stronger promise version. For a binary string w ∈ {0, 1}∗, let |w|1 denote
the number of 1s in w.

Theorem 2.3 (implicit in [20, Theorem 5.1]). For any d ∈ N, there are constants
α > 0 and m0 > 0 such that for all m ≥ m0 there is no circuit of depth d and size

2αm
1/(d−1)

that accepts all inputs w ∈ {0, 1}2m with |w|1 = m and rejects all inputs
with |w|1 = m+ 1.

Representing structures and queries as strings. In order to enable circuits to act
on structures and compute queries, we need to specify how to represent a τ -structure
M and a k-tuple ā ∈ dom(M)k as a bit-string. Our results are robust with respect to
the details of the encoding. For concreteness, we use the following scheme based on
characteristic sequences.

Let < be a linear order on dom(M). Let R1, . . . , Rs be a list of the relation
symbols in τ and let r1, . . . , rs be the arities of these symbols. For each Ri ∈ τ , we
denote by enc<(R

M
i) the bit-string of length |dom(M)|ri whose jth bit is 1 iff the

jth smallest element in dom(M)ri w.r.t. the lexicographic order associated with <
belongs to the relation RMi . Similarly, for each component ai of the k-tuple ā, we
let enc<(ai) be the bit-string of length |dom(M)| whose jth bit is 1 iff ai is the jth
smallest element of dom(M) w.r.t. <. Finally, we let

enc<(M, ā) := enc<(R
M
1) · · · enc<(RMs) enc<(a1) · · · enc<(ak)

be the binary encoding of (M, ā) w.r.t. <.
The above encoding presumes a linear order < on dom(M). For ordered struc-

tures, i.e., structures with an associated order on their domain, the choice of < is

LOCALITY FROM CIRCUIT LOWER BOUNDS 1489

fixed. For unordered structures—the ones we care about—we consider all possible
linear orders and let

Rep(M, ā) := {enc<(M, ā) : < is a linear order on dom(M)}

denote the set of all binary encodings of (M, ā). Note that Rep(M, ā) = Rep(M ′, b̄)
iff (M, ā) ∼= (M ′, b̄).

For a circuit family F = (Cm)m∈N to compute a k-ary query q on τ -structures,
we require that it produces the correct result for all possible representations. In
other words, for all τ -structures M , all k-tuples ā ∈ dom(M)k, and all strings Γ ∈
Rep(M, ā), we have that C|Γ|(Γ) = 1 iff ā ∈ q(M). Note that for every fixed M and
ā, all representations in Rep(M, ā) have the same length, so the same circuit of the
family F acts on all of them.

3. Arb-invariant FO. In this section we introduce our notion of Arb-invariance
and give a precise statement of the strong connection between Arb-invariant FO and
the queries computable in AC0.

Arb-invariance. We fix an infinite schema σarb, containing a binary symbol <
together with a symbol for each numerical predicate. (The “arb” in σarb comes from
allowing arbitrary numerical predicates.) For instance, σarb contains a symbol + for
addition, ∗ for multiplication, and so on. Each numerical predicate is implicitly asso-
ciated, for every n ∈ N, with a specific interpretation as a relation of the appropriate
arity over the domain [n] := {1, 2, . . . , n}. For instance, + is associated with the
classical relation of addition over N restricted to [n]. Conversely, for each such family
of relations, σarb contains an associated predicate symbol.

LetM be a τ -structure and n = |dom(M)|. An Arb-expansion ofM is a structure
M ′ over the schema consisting of the disjoint union of τ and σarb such that dom(M) =
dom(M ′), M and M ′ agree on all relations in τ , and < is interpreted as a linear
order over dom(M). This interpretation induces a bijection between dom(M) and
[n], identifying each element of M ′ with its index relative to <. All the numerical
predicates are then interpreted over dom(M ′) via this bijection and their associated
interpretation over [n]. For instance, + is the ternary relation containing all tuples
(a, b, c) of dom(M ′)3 such that i+j = k, where a, b, and c are respectively the ith, jth,
and kth elements of dom(M ′) relative to <. Note that M ′ is completely determined
by M and the choice of the linear order < on dom(M).

We denote by FO(τ,Arb) the set of first-order formulas using the schema τ ∪σarb.
A k-ary formula φ(x̄) of FO(τ,Arb) is said to be Arb-invariant with respect to a finite
τ-structure M if for any k-tuple ā of elements of M and any two Arb-expansions M ′

and M ′′ of M we have

(3.1) M ′ |= φ(ā) ⇐⇒ M ′′ |= φ(ā).

When φ(x̄) is Arb-invariant with respect to all finite structures M over a schema,
we simply say that φ(x̄) is Arb-invariant. Note that this is a semantic property which
is not decidable (e.g., [27]).

A k-ary Arb-invariant formula defines a k-ary query over τ -structures as follows.
When φ(x̄) is an Arb-invariant formula of FO(τ,Arb) on M , we write M |= φ(ā)
whenever there is an Arb-expansion M ′ of M such that M ′ |= φ(ā). Hence we view
Arb-invariant formulas as formulas over τ -structures, and so we consider the Gaifman
graph of M ′ to contain edges derived only from the relations in τ (i.e., G(M ′) =
G(M)). We denote by Arb-invariant FO(τ) the set of Arb-invariant formulas of

1490 ANDERSON, VAN MELKEBEEK, SCHWEIKARDT, AND SEGOUFIN

FO(τ,Arb), or simply Arb-invariant FO if τ is clear from the context. When the
formula uses only the predicate < of σarb, we have the classical notion of order-
invariant FO (e.g., [17, 27]).

Arb-invariance and AC0. There is an strong connection between AC0, FO(τ,Arb),
and Arb-invariant FO. For ordered structures, AC0 and FO(τ,Arb) are equivalent,
i.e., they can describe exactly the same sets of bit-strings [23]. This means that for
every circuit family F = (Cm)m∈N of constant depth and polynomial size there is
an FO(τ,Arb)-sentence φF (over a schema τ that uses a unary relation specifying
the positions of the string that carry the letter 1) that is satisfied by exactly those
bit-strings that are accepted by F . And vice versa, for every FO(τ,Arb)-sentence φ
there exists a corresponding AC0 circuit family Fφ.

For unordered τ -structures, a query is computable in AC0 iff it is definable in
Arb-invariant FO(τ,Arb). Recall that by definition a k-ary query q on τ -structures
is computable in AC0 iff there is a circuit family (Cm)m∈N of constant depth and
polynomial size such that for all τ -structures M , all ā ∈ dom(M)k, and all Γ ∈
Rep(M, ā): C|Γ|(Γ) = 1 iff ā ∈ q(M). We only need one direction of this equivalence,
namely, the one that is implied by the following theorem.

Theorem 3.1 (implicit in [23]). For each k-ary FO(τ,Arb) formula φ(x̄) with
alternation depth d, there exists a family of depth-(d + 3) polynomial-size circuits
(Cm)m∈N such that for each τ-structure M , for each linear order < on M and the
Arb-expansion M ′ of M induced by <, for each tuple ā ∈ dom(M)k, and for the string
Γ = enc<(M, ā),

C|Γ|(Γ) = 1 ⇐⇒ M ′ |= φ(ā).

Note that for a circuit family F = (Cm)m∈N to compute the query defined by
the k-ary formula φ over τ -structures, it has to be the case that for all τ -structures
M and all ā ∈ dom(M)k, C|Γ|(Γ) is the same for every Γ ∈ Rep(M, ā). The latter
condition exactly corresponds to the formula φ in Theorem 3.1 being Arb-invariant.

4. Gaifman locality. We now prove the main result of the paper—the upper
bound in Theorem 1.1. Recall that our theorem claims that every Arb-invariant
FO formula is Gaifman (log n)c-local for some constant c which depends only on the
formula. In fact, we prove the following slightly stronger version.

Theorem 4.1. For each FO(τ,Arb) formula φ(x̄) with alternation depth d and
any constant c > d+2, there exists a constant nφ,c such that if φ(x̄) is Arb-invariant
with respect to a τ-structure M with n := |M | ≥ nφ,c, then φ(x̄) is Gaifman (logn)c-
local with respect to M .

We now briefly sketch the overall proof of Theorem 4.1. Suppose we have two tu-
ples, ā and b̄, on a τ -structureM , with domain size n, such that their r-neighborhoods,
NM
r (ā) and NM

r (b̄), are isomorphic (for some big enough r). Further suppose that
there is an FO(τ,Arb) formula φ(x̄) which is able to distinguish between ā and b̄ onM
while being Arb-invariant with respect to M . Using the link between Arb-invariant
FO(τ,Arb) formulas and AC0 circuits from Theorem 3.1, we can view the formula
φ(x̄) as a small constant-depth circuit C.

Using the hypothesis that φ(x̄) is Arb-invariant and distinguishes between ā and
b̄ on M , we can construct from the circuit C and structure M another circuit C̃ that
for a (2m)-length binary string w distinguishes between the cases where w contains
m occurrences of 1 and m + 1 occurrences for some m depending on r. This is the
key step in our argument. If this happens for large enough m, we get a small circuit
computing the promise problem described in Theorem 2.3. We can argue that C̃ has

LOCALITY FROM CIRCUIT LOWER BOUNDS 1491

ab

v2

v1

π(v2)

π(v1)
i − 1
i

m

a b

v2

v1

π(v2)

π(v1)
0

G

a b

v2

v1

π(v2)

π(v1)

=

Fig. 4.1. Diagram for swapping the neighborhoods of a and b of radius i, conditioned on wi = 1.

size polynomial in n and depth a constant d′ depending only on the alternation depth
of φ(x̄). Therefore, if m > b(logn)d

′−1 for a large enough constant b, the circuit C̃
we construct violates Theorem 2.3, and hence φ(x̄) cannot distinguish between tuples
which have isomorphic r-neighborhoods. Our construction is such that m is linearly
related to r and therefore φ(x̄) is Gaifman (logn)c-local for any constant c > d′ − 1
and sufficiently large n.

4.1. Upper bound for unary formulas. In this subsection we consider only
unary FO formulas φ(x). For didactic reasons we first assume that the r-neighborhoods
of the elements a and b are disjoint. We argue that we can perform the key step in
this setting and consider the general unary case afterward.

For clarity we describe the intuition with respect to structures that are graphs.
Let M be a graph G = (V,E) and take two vertices a, b ∈ V such that π : NG

r (a) ∼=
NG
r (b). Suppose, for the sake of contradiction, that there is a unary FO formula φ(x)

which is Arb-invariant with respect to G and such that G |= φ(a) ∧ ¬φ(b). Applying
Theorem 3.1 to φ gives us a circuit C which, for any vertex c ∈ V , outputs the same
value for all strings in Rep(G, c) and distinguishes Rep(G, a) from Rep(G, b).

4.1.1. Disjoint neighborhoods. Let us assume that NG
r (a) ∩ NG

r (b) = ∅. In
this setting it turns out we can pick m = r. The neighborhood isomorphism, π :
NG
r (a) ∼= NG

r (b), implies that the balls of radius i < r around a and b are isomorphic
and disjoint in G. Consider the following procedure, depicted in Figure 4.1. For some
i ∈ [m], cut all the edges linking nodes at distance i − 1 from a or b to nodes at
distance i. Now, swap the positions of the (i− 1)-neighborhoods around a and b and
reconnect the edges in a way that respects the isomorphism π. The resulting graph
is isomorphic to G, but the relative positions of a and b have swapped.

Using this intuition we construct a new graph Gw from G, a, and b that depends
on a string of m Boolean variables w := w1w2 · · ·wm. We construct Gw so that for
each variable wi, we swap the relative positions of the (i − 1)-radius balls around a
and b iff wi is 1. The number of such swaps is |w|1. The m-neighborhood isomorphism
between a and b implies that Gw ∼= G. When |w|1 is even, (Gw , a) ∼= (G, a), and when
|w|1 is odd, (Gw, a) ∼= (G, b).

Using the above construction of Gw we derive a circuit C̃ from C that computes
parity on m bits. The circuit C̃ first computes a representation Γw ∈ Rep(Gw, a) and
then simulates C on input Γw. The above distinguishing property then implies that C̃
accept m-bit strings with even parity. To construct Γw we start with a fixed string in
Rep(G, a) and transform it into an element of Rep(Gw, a) by modifying the edges to
switch between the shells in the manner suggested above. Observe that the presence
of each edge in Gw depends on at most a single bit of w. This property implies that
Γw consists of constants and of variables in w or their negations. This means that C̃
is no larger or deeper than C.

1492 ANDERSON, VAN MELKEBEEK, SCHWEIKARDT, AND SEGOUFIN

We formalize this intuition for general structures and obtain the following lemma.
Lemma 4.2. Let m ∈ N. Let M be a τ-structure. Let a, b ∈ dom(M) such that

distM (a, b) > 2m and NM
m (a) ∼= NM

m (b). Let C be a circuit that accepts all strings in
Rep(M,a) and rejects all strings in Rep(M, b). There is a circuit C̃ with the same
size and depth as C that computes parity on m bits.

Proof. For every r ∈ N and a ∈ dom(M), the r-shell around a in M is the set

SMr (a) := {v ∈ dom(M) : distM (a, v) = r}.

Let π be an isomorphism from NM
m (a) to NM

m (b). Extend π to take NM
m (b) back to

NM
m (a) (that is, extend the domain of the map to the elements of NM

m (b) and act
as π−1 for those elements). This is well-defined because distM (a, b) > 2m and the
m-neighborhoods are disjoint. Note that, in particular, π(a) = b, and for all i ∈ [m],
π
(
SMi (a)

)
= SMi (b). Let Si := SMi (a) ∪ SMi (b) for i ≤ m. Note that S0 = {a, b}.

Let w := w1w2 · · ·wm be a string of m Boolean variables. We design a structure
Mw that has the following property:

If |w|1 is even, then (Mw, a) ∼= (M,a).
If |w|1 is odd, then (Mw, a) ∼= (M, b).

When |w|1 is even, C(Mw, a) accepts because (Mw, a) ∼= (M,a). Similarly, when
|w|1 is odd C(Mw, a) rejects because (Mw, a) ∼= (M, b). Thus, the above property is
sufficient to claim that C(Mw, a) accepts iff the parity of w is even. We show how to
construct Mw.

Consider a tuple v̄ = (v1, . . . , vk) that belongs to a relation RM , for some symbol
R ∈ τ of arity k, that intersects the shells Si−1 and Si for some i ∈ [m]. (Note
that other tuples are wholly contained in single shells, because the pairwise distances
between the elements of v̄ are at most one.) For clarity we reorder the components of
v̄ so that v̄ := (v̄1, v̄2), where v̄1 ⊆ Si−1 and v̄2 ⊆ Si. Each tuple v̄ of this type in RM

induces a set of two potential tuples in RMw : v̄ and (v̄1, π(v̄2)). If wi = 0 we copy
the tuple v̄ from RM into RMw ; if wi = 1 we add the tuple (v̄1, π(v̄2)) to R

Mw .
Observe that by construction, for any i ∈ [m] when wi = 1, each tuple intersect-

ing SMi−1(a) and S
M
i (a) is replaced with a tuple intersecting SMi−1(a) and π(S

M
i (a)) =

SMi (b), and each tuple intersecting SMi−1(b) and SMi (b) is replaced with a tuple in-
tersecting SMi−1(b) and π(SMi (b)) = SMi (a). Note this is general because the m-
neighborhoods around a and b are disjoint (hence, “cross tuples” are not present in
M). Further, for every i where wi = 1, the construction interchanges the roles of the
elements in NM

i−1(a) with their images under π in NM
i−1(b). This implies the relative

positions of the elements a and b themselves are swapped once for each bit of w that
is one. This argument also implies that Mw

∼=M . Therefore, when the parity of w is
odd (Mw, a) ∼= (M, b) because a and b swap positions an odd number of times. When
the parity of w is even (Mw, a) ∼= (M,a) by the same token. This is the property
claimed. We conclude the proof by constructing a Boolean circuit C̃, using Mw and
C, which computes parity.

Fix an arbitrary string Γ ∈ Rep(M,a). We derive a new input string Γw, with
|Γw| = |Γ|, from w and Γ. We want Γw to be a binary representation of the structure
Mw paired with the element a. With this in mind, we copy the encoding of the distin-
guished element a from Γ into Γw. It remains to determine the encoding ofMw in Γw.

For each i ∈ [m], each relation R ∈ τ , and each tuple v̄ ∈ RM crossing between
shells Si−1 and Si, we encode the corresponding tuple in Γw in the following way: Set
the bit of Γw corresponding to the tuple v̄ and relation R to ¬wi and the bit of Γw

LOCALITY FROM CIRCUIT LOWER BOUNDS 1493

(ii) πt(a) = c is far from a

a

b

(i) π(a) = b is far from a

π

r
a

cπ

r

b = π(a)

· · ·

2m

2m

2m

2m

(iii) orbit of a stays close to a

ra

S0

bπ

(Case 1 of Lemma 4.3) (Case 1 of Lemma 4.3)

(Case 2 of Lemma 4.3)

π

π

π

π

π

π
π

Fig. 4.2. Diagram for the general unary case. (r is the radius of the domain of π.)

corresponding to the tuple (v̄1, π(v̄2)) and relation R to wi. That is, we modify the
encoding so that v̄ ∈ RMw when wi = 0 and (v̄1, π(v̄2)) ∈ RMw when wi = 1. For all
other bits in Γ specifying relations, we copy them verbatim from Γ into Γw. Observe
that the bits of Γw are drawn from {0, 1, wi,¬wi}. This completes the construction
of Γw ∈ Rep(Mw, a).

Finally, define the circuit C̃(w) := C(Γw). Observe that C̃ is an m-input circuit
that has size and depth no more than C because each component of Γw is either a
constant or a literal of w.

4.1.2. General neighborhoods. We now develop the transformation corre-
sponding to Lemma 4.2 for the general unary case, where the r-neighborhoods around
a and b may overlap. As before, we describe the intuition in terms of structures that
are graphs.

Consider the iterated application of the isomorphism π to a. We distinguish
between two cases. The first case occurs when this iteration travels far from a. That
is, for some t ∈ N, πt(a) is a point c that is far from a. Suppose r is large enough
that the isomorphism π implies that a large neighborhood around c is isomorphic to
the neighborhood around a. By the triangle inequality, since a is far from c, either
(i) b is far from a or else (ii) c is far from a and b (see Figure 4.2(i), (ii)). We claim
that in each case there is a pair of vertices that are distinguished by C and whose

1494 ANDERSON, VAN MELKEBEEK, SCHWEIKARDT, AND SEGOUFIN

π(a) = baπ−1(a)

v1π−1(v1) π(v1)

v2π−1(v2) π(v2) =

aπ−1(a)π−2(a)

π−1(v1)π−2(v1) v1

v2π−1(v2) π(v2)

S0

G

Si−1

Si

S2m

π(a) = baπ−1(a)

v1π−1(v1) π(v1)

v2π−1(v2) π(v2)

Fig. 4.3. Diagram for rotating the shell of radius i around S0 when wi = 1.

neighborhoods are isomorphic and disjoint. In case (i), a and b are such a pair; in
case (ii), C must distinguish either a and c or b and c, so a and c or b and c form
such a pair. For this pair of vertices, we are in the disjoint case and Lemma 4.2 can
be applied to produce a small circuit that computes parity.

The other case occurs when the iterated application of π to a stays close to a (and
b). Let S0 be the orbit of a under π (i.e., S0 := {πz(a)|z ∈ N}) (see Figure 4.2(iii)),
and let Si be the vertices at distance i from S0 for i ∈ [2m]. Because π(S0) = S0 and
π is a partial isomorphism on G, the shells Si are closed under π.

We now play a game similar to the disjoint case. Consider the following procedure,
depicted in Figure 4.3. For some i ∈ [2m] cut all edges between the shells Si−1 and
Si. “Rotate” the radius i − 1 ball around S0 by π relative to Si, and reconnect the
edges. Because the shells are closed under π, the resulting graph is isomorphic to G.
Further, the positions of a and b have shifted relative to an application of π.

As before, we encode this behavior into a modified graphGw depending on a string
of 2m Boolean variables w := w1w2 · · ·w2m. When wi = 0, we preserve the edges
between the shells Si−1 and Si. When wi = 1 we rotate the edges by π. That is, an
edge (v1, v2) ∈ (Si−1×Si)∩E becomes the edge (v1, π(v2)) in Gw. The neighborhood
isomorphism between a and b implies that G ∼= Gw. We can argue that

(4.1) (Gw, a) ∼= (G, π|w|1(a)).

We define the circuit C̃ to simulate C on an input Γw ∈ Rep(Gw, a). The above
distinguishing property implies that C̃ distinguishes between |w|1 ≡ 0 mod |S0| and
|w|1 ≡ 1 mod |S0|. (Note that this is nontrivial because |S0| ≥ 2 since a and b are
distinct and in S0.) This is not quite the promise problem defined in Theorem 2.3.
For this reason we modify the construction to shift a by m applications of π−1 in
Γw. This means that Γw ∈ Rep(Gw, π

−m(a)) and C̃ can distinguish between |w|1 ≡
m mod |S0| and |w|1 ≡ m+1 mod |S0|. This is ruled out by Theorem 2.3, completing
the argument.

For general structures, the idea is formalized in the following lemma, where we
achieve r = 10m.

Lemma 4.3. Let m ∈ N. Let M be a τ-structure. Let a, b ∈ dom(M) such that
NM

10m(a) ∼= NM
10m(b). Let C be a circuit that accepts all strings in Rep(M,a) and

rejects all strings in Rep(M, b), and for each c ∈ dom(M) C has the same output for
each string in Rep(M, c). There is a circuit C̃ with the same size and depth as C that
distinguishes |w|1 = m and |w|1 = m+ 1 for w ∈ {0, 1}2m.

Proof. Let π be an isomorphism between NM
10m(a) and NM

10m(b). There are two
cases.

LOCALITY FROM CIRCUIT LOWER BOUNDS 1495

Case 1. The iterated isomorphism takes a far from a.
More specifically, there exists t ∈ N such that

(4.2) distM (a, πt(a)) > 8m.

Let t be the minimal value such that (4.2) holds. Let c := πt(a). Hence distM (a, c) >
8m. Since t is minimal, distM (a, πj(a)) ≤ 8m for all j < t. Because the iso-
morphism π preserves neighborhoods contained in NM

10m(a), it follows that for all
j < t, NM

2m(π
j(a)) ⊆ NM

8m+2m(a), and π induces an isomorphism from NM
2m(πj(a)) to

NM
2m(πj+1(a)). This implies that NM

2m(a) ∼= NM
2m(b) ∼= NM

2m(c).

As distM (a, c) > 8m, the triangle inequality implies that either distM (a, b) > 4m
or distM (b, c) > 4m. In the former case, we complete by applying Lemma 4.2 and
observing that parity on 2m bits distinguishes between inputs with m ones and inputs
with m+ 1 ones. In the latter case, depending on whether C accepts Rep(M, c), we
can proceed with either the pair b and c or the pair a and c. In either case, from the
above we see that this pair of points has isomorphic 2m-neighborhoods and are more
than 4m apart. Therefore Lemma 4.2 again suffices to reach the required conclusion.

Case 2. The iterated isomorphism keeps a close to a.
More specifically, for all t ∈ N, distM (a, πt(a)) ≤ 8m.
Let S0 ⊆ dom(M) be the orbit of a under π. Note that π(S0) = S0 and b ∈ S0.

We define Si as the set of elements of M at distance i from S0. Because π is an
isomorphism from NM

10m(a) to NM
10m(b), each Si is also closed under π for i ≤ 2m.

Let w := w1w2 · · ·w2m be a string of 2m Boolean variables. We proceed similarly
to the proof of Lemma 4.2 when constructing a structure Mw and representation Γw.
We constructMw and a distinguished element a′ so that the following property holds:

If |w|1 ≡ m mod |S0|, then (Mw, a
′) ∼= (M,a).

If |w|1 ≡ m+ 1 mod |S0|, then (Mw, a
′) ∼= (M, b).

When |w|1 = m, C(Mw, a
′) accepts because (Mw, a

′) ∼= (M,a). Similarly, when
|w|1 = m+1, C(Mw, a

′) rejects because (Mw, a
′) ∼= (M, b). This property is sufficient

to claim that C(Mw, a
′) distinguishes between |w|1 = m and |w|1 = m + 1 because

|S0| > 1 since a and b are distinct and in S0. We now show how to construct Mw and
a′.

Let the structureMi be the result of performing the construction from Lemma 4.2
only for the tuples intersecting shells Sj and Sj+1 for all j < i. Note M0 = M
and (M0, v) = (M, v) for all v ∈ S0. When wi = 0, we have Mi−1 = Mi, hence
(Mi−1, v) = (Mi, v) for any v ∈ S0, because the construction makes no modifications
to the structure between shell Si−1 and Si in this case. When wi = 1, we are rotating
the neighborhood below shell Si by π−1 relative to Si. Since the shells are closed
under the action of π, we can conclude that Mi

∼= Mi−1 for i ∈ [2m]. This also
implies that when wi = 1, (Mi, v) ∼= (Mi−1, π(v)). It follows that for any v ∈ S0

and i ∈ [2m]: (Mi, v) ∼= (Mi−1, πwi(v)). By applying this fact 2m times we reach the
conclusion that for all v ∈ S0,

(Mw, v) := (M2m, v) ∼= (M0, π
|w|1(v)) = (M,π|w|1(v)).

The length of the orbit of a with respect to π is |S0|. Define a′ := π−m(a).
Since a′ ∈ S0, it follows that when |w|1 ≡ 0 mod |S0|, (Mw, a

′) ∼= (M,a′) and when
|w|1 ≡ 1 mod |S0|, (Mw, a

′) ∼= (M,π(a′)). Observe that this implies that when |w|1 ≡
m mod |S0|, (Mw, a

′) ∼= (M,πm(π−m(a))) = (M,a) and when |w|1 ≡ m+1 mod |S0|,

1496 ANDERSON, VAN MELKEBEEK, SCHWEIKARDT, AND SEGOUFIN

(Mw, a
′) ∼= (M,πm+1(π−m(a))) = (M, b). This is the property claimed. It remains to

construct the circuit C̃.
We construct the string Γw in the same way as in the proof of Lemma 4.2 with

respect to M , w, π, and the shells {Si}i≤2m defined above. Note that in the case
where the construction would assign both wi and ¬wi to a bit of Γw corresponding to
some tuple in a relation of Mw we instead set the corresponding bit of Γw to 1. The
string Γw represents the pairing of the structure Mw with the element a. Form Γ′w
from Γw by replacing the encoding of distinguished element a with an encoding of a′.
Note that Γ′w ∈ Rep(Mw, a

′). Setting C̃(w) := C(Γ′w) completes the proof.
Notice that the idea behind the proof of this lemma is quite similar to the disjoint

case. When the neighborhoods are disjoint, the above construction gives S0 = {a, b}.
In this case the “rotation” by π becomes a swap. Further, since |S0| = 2, the promise
problem we solve is distinguishing between |w|1 ≡ m mod 2 and |w|1 ≡ m+1 mod 2—
this is exactly parity! Thus, in the case of disjoint neighborhoods, the construction
in the proof of Lemma 4.3 reduces to the one from Lemma 4.2.

With Lemma 4.3 in hand, we are ready to finish the proof of Theorem 4.1 in the
unary case.

Proof of Theorem 4.1 for the case k = 1. Assume that φ(x) is a unary formula
of FO(τ,Arb) with alternation depth d that is Arb-invariant with respect to a τ -
structure M with n := |M |. Since φ(x) is FO(τ,Arb), it is computable by a family
of circuits in AC0 (cf. Theorem 3.1). That is, there are a constant β and a circuit C
with depth d+3 and size nβ such that C computes φ(x) on size n τ -structures. Since
φ(x) is Arb-invariant with respect to M , for each fixed a ∈ dom(M), C has the same
output for all strings in Rep(M,a).

Now, for the sake of contradiction, suppose φ(x) is not Gaifman (logn)c-local
with respect to M for some constant c > d+ 2. This implies that φ(x) distinguishes
between two elements a, b ∈ dom(M) having isomorphic (log n)c-neighborhoods.

Let m := � (logn)c

10 �. Therefore NM
10m(a) ∼= NM

10m(b). The circuit C then satisfies

the assumptions of Lemma 4.3. From the lemma, we obtain a circuit C̃ of depth d+3
and size nβ that distinguishes between |w|1 = m and |w|1 = m+ 1 for w ∈ {0, 1}2m.

From Theorem 2.3 we obtain that nβ > 2αm
1/(d+3−1)

, which is equivalent to
β logn > αm1/(d+2). The latter condition is violated if we set m = (logn)c whenever
c is a constant larger than d + 2 and n is sufficiently large (depending on φ and c).
This yields the required contradiction, completing the proof.

4.2. Reducing the arity. To argue Theorem 4.1 in the case of formulas with
an arbitrary number of free variables, we prove the following reduction. Given a k-
ary FO(Arb) formula φ that is Arb-invariant with respect to the structure M and
distinguishes two k-tuples ā and b̄ that have isomorphic r-neighborhoods, we produce
for some k′ < k a k′-ary FO(Arb) formula φ′ that is Arb-invariant with respect to an
extended structure M ′ and distinguishes between two k′-tuples ā′ and b̄′ that have
isomorphic r′-neighborhoods. Furthermore, r′ is only slightly smaller than r.

Repeated application of this idea transforms a distinguishing k-ary formula into
a distinguishing unary formula with slightly weaker parameters. For large enough
initial radius r this is sufficient to contradict the Gaifman locality of unary formulas.

We first give an intuitive description of the reduction argument. Let φ(x̄) be a
k-ary formula as above, and let π : NM

r (ā) ∼= NM
r (b̄) denote a neighborhood isomor-

phism. The main idea is to transfer some of the information present in the initial
k-tuples ā and b̄ into a new marking relation R such that we can recover ā and b̄ from
k′ < k of their components ā′ and b̄′ as extensions of ā′ and b̄′ that satisfy R. In that

LOCALITY FROM CIRCUIT LOWER BOUNDS 1497

case, the formula

(4.3) φ′(ȳ) = (∃z̄)R ∧ φ(ȳ, z̄)
has arity k′ < k and distinguishes the tuples ā′ and b̄′ over the extension M ′ of M
with R, where R is a relation of arity at most k evaluated over some of the variables
in ȳ and z̄. The formula φ′ is Arb-invariant over M ′ since φ is Arb-invariant over M ,
the domain of M ′ is the same as that of M , and R does not use the Arb relations.
Moreover, provided the marking relation R is invariant under π, π also induces a
neighborhood isomorphism NM ′

r′ (ā′) ∼= NM ′
r′ (b̄′) in the new structure, albeit possibly

for a smaller radius r′, e.g., due to the effect of the introduction of R on the Gaifman
graph.

We start by considering three situations in which it is relatively simple to obtain
a π-invariant marking relation R and then see how to handle the remaining case.
Throughout, we assume without loss of generality that ā is accepted by φ and b̄ is
rejected by φ, and we use the notation ā := (a1, a2, . . . , ak) and b̄ := (b1, b2, . . . , bk).

Case 1. The tuples ā and b̄ have a component in common.
Say ak = bk. Then the fact that φ distinguishes ā and b̄ is independent of the last

component of the tuples. To exploit this redundancy we mark the element ak and
derive a (k − 1)-ary formula φ′(ȳ) as in (4.3), where R checks whether z̄ equals ak.
Since ak = bk and π has to map ak to bk, ak is a fixed point of π, which guarantees
that the marking relation is invariant under π. In this case the original isomorphism
π remains a neighborhood isomorphism with the same radius r′ = r.

Case 2. The elements in the orbit of ā stay well within the isomorphism neigh-
borhood of ā.

The orbit of ā is the set of tuples πt(ā) for all t ∈ N. We now use the relation R
to mark all tuples in the orbit of ā. The relation R is π-invariant because the entire
orbit stays within the domain of the neighborhood isomorphism π.

This marking allows us to reduce the arity as follows. First, note that we can
apply Case 1 whenever there is a pair of marked tuples that is distinguished by φ and
has a component in common. Therefore, we can assume that φ does not distinguish
any marked tuples that share a component.

This observation allows us to recover the tuples ā and b̄ (or equivalent ones) from
their first components only. Let ā′ := (a1) and b̄′ := (b1). Since φ accepts ā and ā
is marked, existentially guessing the remaining components consistent with ā and R
shows that φ′ defined by (4.3) accepts ā′. On the other hand, since φ rejects b̄, φ
rejects all marked tuples that share the first component with b̄. Therefore, no marked
tuples with b1 as first component are accepted by φ, and hence φ′ rejects b̄′. This
establishes the required distinguishing property of φ′.

We already mentioned that the marking relation R is π-invariant. The fact that
the entire orbit of ā stays well within the isomorphism neighborhood guarantees that
the new isomorphism radius r′ is not much smaller than the original radius r.

Case 3. All components of ā are close to each other.
Because of Case 2, we only need to consider the situation where the iterates of π

take some component of ā far from ā. Without loss of generality we can assume that
b̄ has a component that is far from ā. Also, since π preserves distances, we know that
all components of b̄ are close to each other. This allows us to choose a relatively large
r′ ≤ r such that the r′-neighborhoods of ā and b̄ do not intersect. So, the situation is
as sketched in Figure 4.4.

In this case, simply marking the tuples ā and b̄ yields a relation R that is invariant
under π on NM

r′ (ā) for the relatively large radius r′. The π-invariance follows from

1498 ANDERSON, VAN MELKEBEEK, SCHWEIKARDT, AND SEGOUFIN

b1

a1
a2

a3

a4
a5

a6

b2
b3

b4
b5

b6

Fig. 4.4. Diagram for Case 3.

a1

b1

id
π b2

b3 b4

b5
b6

a6

a5

a2

a3
a4

Fig. 4.5. Diagram for the hybrid isomorphism from Case 4 that maps h̄ = (b1, a2, . . . , ak) to
b̄ = (b1, b2, . . . , bk).

the fact that ā and b̄ = π(ā) are far apart, as the range of π on NM
r′ (ā) falls entirely

outside of NM
r′ (ā), so no tuple other than ā needs to be marked in NM

r′ (ā) in order
for the marking to be π-invariant.

With this marking, knowledge of one component of ā and b̄ suffices to recover the
full tuples, so we can reduce the arity to k′ = 1 following (4.3).

Case 4. Hybrid case.
In the remaining case we can assume without loss of generality that some com-

ponent of b̄, say, b1, is far from ā and that a1 is far from some other component of
ā. Due to the isomorphism π, the latter is equivalent to b1 being far from some other
component of b̄.

In this case, we do not know how to apply the π-invariant marking strategy to
the given tuples ā and b̄. However, we can construct a “hybrid” tuple h̄ that has some
components in common with ā and some with b̄ such that Case 1 applies either to ā
and h̄ or to h̄ and b̄.

For simplicity, let us first consider the situation where b1 is far from all other
components of b̄. Recall that b1 is also far from ā. These two facts imply that for a
large radius the neighborhood around b̄ is isomorphic to the neighborhood around the
tuple h̄ := (b1, a2, . . . , ak). To see this, consider the map which acts as the identity
map on the elements near b1 and acts as π on the elements near a2, . . . , ak. Figure 4.5
illustrates the construction. The distance between b1 and both ā and the rest of b̄
ensures that no tuples that are in a relation of M straddle the neighborhood of b1 as
well as the neighborhood of some other component. Therefore, on such a tuple our

LOCALITY FROM CIRCUIT LOWER BOUNDS 1499

a1

b1aIc

aI bIc

bI

Fig. 4.6. Diagram for Case 4 when b1 is close to some component of b̄.

map acts either like the identity on all components or like π on all components. Since
both the identity and π preserve the relations of M , so does our map.

By transitivity, we also have a neighborhood isomorphism between ā and h̄. We
also know that φ distinguishes h̄ from one of ā and b̄ because those tuples are them-
selves distinguished by φ. Thus, there is some pair of tuples which have large isomor-
phic neighborhoods, are distinguished by φ, and share components (since h̄ is a hybrid
of ā and b̄). We conclude by applying Case 1 to reduce the arity of the formula, while
only slightly decreasing the radius of the neighborhood isomorphism.

Finally, consider the case where b1 is close to some components of b̄ and far from
others. We iteratively group the components of b̄ closest to b1 to form the set b̄I , until
all remaining components are far from b̄I . So, by construction the elements of b̄I are
far from the other components of b̄ and far from ā, since b1 is far from ā. Viewing the
component b̄I as a single element allows us to apply the argument from the previous
paragraph to reduce the instance, albeit with some further loss in the isomorphism
radius. This loss is caused by the distortion in distance from grouping elements in
this way. See Figure 4.6 for a diagram of this case.

These ideas are formalized in the proof of the following lemma.
Lemma 4.4. Let k, d, r ∈ N, and τ be a schema. Let M be a τ-structure with

tuples ā, b̄ ∈ dom(M)k. Let φ(x̄) be a k-ary FO(τ,Arb) formula with alternation depth
d > 0 which is Arb-invariant with respect to M . Suppose

1. M |= φ(ā) ∧ ¬φ(b̄) and
2. π : NM

r (ā) ∼= NM
r (b̄).

There is a k′ < k, a schema τ ′ ⊇ τ , a τ ′-structure M ′ with tuples ā′, b̄′ ∈ dom(M ′)k
′
,

and a k′-ary FO(τ ′,Arb) formula φ′(ȳ) with alternation depth d which is Arb-invariant
with respect to M ′ such that

1′. M ′ |= φ′(ā′) ∧ ¬φ′(b̄′) and
2′. π′ : NM ′

r′ (ā′) ∼= NM ′
r′ (b̄′),

where

(4.4) r′ =
r

9k
.

Proof. Since d > 0, we can assume without loss of generality that the first
quantifier of φ is existential; otherwise, we can work with the formula ¬φ instead and
swap the labels of ā and b̄.

1500 ANDERSON, VAN MELKEBEEK, SCHWEIKARDT, AND SEGOUFIN

Let ā := (a1, a2, · · · , ak) and b̄ := (b1, b2, · · · , bk). There are three main cases. In
each of the cases, the resulting formula φ′(ȳ) is of the form

φ′(ȳ) = (∃z̄ ∈ dom(M ′)k−k
′
) R ∧ φ(ȳ, z̄),

where R is a new relation on some subset of the variables ȳ and z̄ added to the
structureM to formM ′ that does not depend on the order or the arbitrary numerical
predicates. It follows that since φ is Arb-invariant with respect to M , φ′ is Arb-
invariant with respect toM ′. The form of φ′ also implies that φ′ has alternation depth
d since φ begins with an existential quantifier. We use two distance parameters, 	 and
s, in addition to r′, which we establish conditions on in the course of the proof. We
optimize their value at the end. It remains to show that properties 1′ and 2′ hold for
radius r′ in all cases.

Case 1. There exists i ∈ [k] such that ai = bi.
Assume without loss of generality that i = k. Expand the structure M to M ′

by adding a new unary predicate R �∈ τ , where R is satisfied only by the element ak.
Construct a new formula:

φ′(y1, y2, . . . , yk−1) := (∃zk) R(zk) ∧ φ(y1, y2, . . . , yk−1, zk).
Let ā′ := (a1, a2, . . . , ak−1) and b̄′ := (b1, b2, . . . , bk−1). Property 1′ holds because
of Property 1. To see that Property 2′ holds, observe that the isomorphism π is
a bijection between ∪j<kNM

r (aj) and ∪j<kNM
r (bj). For all relations in τ , π is an

isomorphism between these two sets. Further, π preserves R on these sets because π
maps ak to itself. From this, it follows that π : NM ′

r′ (ā′) ∼= NM ′
r′ (b̄′) and Property 2′

holds for any radius r′ ≤ r.
In summary, the isomorphism radius of this case satisfies r′ ≤ r, the isomorphism

π is not modified, the structure gains one new relation, and the arity of the formula
is reduced by one.

Case 2. For all t ∈ N and i ∈ [k], distM (ā, πt(ai)) ≤ 2	.
For all t ∈ N, πt(ā) is a tuple in NM

2� (ā). It follows that N
M
r′ (π

t(ā)) ⊆ NM
2�+r′(ā).

If

(4.5) r ≥ 2	+ r′,

these r′-neighborhoods of πt(ā) are contained in the domain of π and we have a chain
of r′-neighborhood isomorphisms resulting in NM

r′ (ā)
∼= NM

r′ (π
t(ā)).

Suppose that there is t ∈ N and i ∈ [k] such that bi = πt(bi) and M |= φ(πt(b̄)).
In this case, we finish via the argument in Case 1 because φ distinguishes the tuples b̄
and πt(b̄), these tuples share a component, and NM

r′ (b̄)
∼= NM

r′ (π
t(b̄)). Thus, assume

otherwise, i.e., for all t ∈ N and i ∈ [k],

(4.6) bi = πt(bi) ⇒M |= ¬φ(πt(b̄)).
We expand the structure M to M ′ by adding a new k-ary relation R �∈ τ contain-

ing the tuples ∪t∈N{πt(b̄)}. Define a new formula:

φ′(y1) := (∃z2, z3, . . . , zk) R(y1, z2, . . . , zk) ∧ φ(y1, z2, . . . , zk).
Let ā′ := (a1) and b̄

′ := (b1). We now establish Property 1′. First, observe that
M ′ |= φ′(ā′) via the witness (a2, a3, . . . , ak). We now argue that M ′ |= ¬φ′(b̄′). Sup-
pose the contrary, that M ′ |= φ′(b̄′); then there exists (c2, c3, . . . , ck) ∈ dom(M)k−1

LOCALITY FROM CIRCUIT LOWER BOUNDS 1501

and t ∈ N such that M |= φ(b1, c2, c3, . . . , ck) and πt(b̄) = (b1, c2, c3, . . . , ck). This
contradicts (4.6). Therefore M ′ |= φ′(ā′) ∧ ¬φ′(b̄′), hence Property 1′ holds.

We now establish Property 2′. Observe that R ⊆ (NM
2� (ā))

k. This implies that

for all t ∈ N, NM ′
r′ (πt(ā′)) ⊆ NM

2�+r′(ā) and further that NM ′
r′ (πt(ā′)) is within the

domain of π. Hence when π acts on NM ′
r′ (πt(ā′)) all relations in τ are preserved. The

mapping π also preserves R on NM ′
r′ (πt(ā′)) because R is exactly the orbit of ā under

π. From this, it follows that for all t ∈ N, NM ′
r′ (ā′) ∼= NM ′

r′ (πt(ā′)). In particular,

NM ′
r′ (ā′) ∼= NM ′

r′ (b̄′) and Property 2′ holds with r′ ≤ r − 2	 (see (4.6)).
In summary, the isomorphism radius is reduced to r′ ≤ r−2	, the structure gains

a new relation, and the arity is reduced to one.
Cases 3 and 4. There exists t ∈ N and i ∈ [k] such that distM (ā, πt(ai)) > 2	.
Select t minimal and assume without loss of generality that i = 1. Let c̄ := πt(ā).

Thus, distM (ā, c1) > 2	. We argue that we can assume without loss of generality that
we have a pair of tuples ā∗ and b̄∗ such that for a large distance s (to be determined
later),

(i) φ |= φ(ā∗) ∧ ¬φ(b̄∗),
(ii) NM

s (ā∗) ∼= NM
s (b̄∗), and

(iii) distM (ā∗, b∗1) > 	.
Suppose distM (b̄, c1) ≤ 	. Since distM (ā, c1) > 2	 it follows that distM (ā, bj) > 	

for some j ∈ [k]. Therefore ā and b̄ satisfy condition (iii) with coordinate j permuted
to 1. Conditions (i) and (ii) with

(4.7) s ≤ r

follow by properties 1 and 2 in the hypothesis of the lemma.
Otherwise, distM (b̄, c1) > 	. Because t is selected minimally, for all j < t,

NM
s (πj(ā)) ⊆ NM

2�+s(ā). If

(4.8) r ≥ 2	+ s,

these s-neighborhoods of πj(ā) are contained in the domain of π and we have a chain
of s-neighborhood isomorphisms resulting in NM

s (ā) ∼= NM
s (c̄). Since φ distinguishes

ā and b̄, φ must be able to distinguish between either ā and c̄ or b̄ and c̄. Therefore,
for some pair, all three conditions (i), (ii), and (iii) are met.

Thus, we have a pair of tuples ā∗ and b̄∗ that satisfy conditions (i), (ii), and (iii)
with s ≤ r− 2	. Let π relabel the isomorphism between the s-neighborhoods for this
new pair. There are two subcases.

Case 3. For all j ∈ [k], distM (b∗1, b
∗
j) ≤ s.

See Figure 4.7 for a diagram of this case. Because of property (ii) and since
isomorphisms preserve distance, for all j ∈ [k], distM (a∗1, a∗j) ≤ s.

Expand the structure M to form M ′ by introducing a new k-ary relation R �∈ τ
containing only the tuples ā∗ and b̄∗. Let ā′ := (a∗1) and b̄′ := (b∗1). Construct a new
formula:

φ′(y1) := (∃z2, z3, . . . , zk) R(y1, z2, . . . , zk) ∧ φ(y1, z2, . . . , zk).
By property (iii), a∗1 and b

∗
1 are distinct. This means that ā′ and b̄′ correspond with the

distinct elements ofR, and, with property (i), we determine thatM ′ |= φ′(ā′)∧¬φ′(b̄′),
and hence property 1′ holds.

To establish property 2′, consider radius r′ with

(4.9) r′ ≤ s.

1502 ANDERSON, VAN MELKEBEEK, SCHWEIKARDT, AND SEGOUFIN

b∗
1

a∗
1

s

�

r′

Fig. 4.7. Diagram for Case 3.

The tuple ā∗ ∈ R is fully contained inNM ′
r′ (ā′), because, due to the addition of R when

going from M to M ′, the distance between any two distinct points in ā∗ is reduced
to 1. Thus, if the sets NM ′

r′ (ā′) and NM ′
r′ (b̄′) are disjoint, there is no intersection

between ā∗ and NM ′
r′ (b̄′) (similarly for the tuple b̄∗ and NM ′

r′ (ā′)). The fact that
R = {ā∗, b̄∗}, property (ii) holds, and (4.9) imply that π preserves R on the domain
NM ′
r′ (ā′). Hence, π : NM ′

r′ (ā′) ∼= NM ′
r′ (b̄′). Thus property 2′ holds for r′. It remains

to establish a sufficient condition for such disjointness.
First, observe that distM (ā∗, b̄∗) > 	−s, because all elements of b̄∗ are within s of

b∗1 and distM (ā∗, b∗1) > 	. This implies that distM
′
(ā∗, b̄∗) > 	− s, because the tuples

in R cannot contribute an edge in a shortest path between ā∗ and b̄∗. Further, since
ā′ and b̄′ are elements in ā∗ and b̄∗, distM

′
(ā′, b̄′) > 	− s. Therefore, if we select

(4.10) r′ ≤ 	− s

2
,

the r′-neighborhoods of ā′ and b̄′ are disjoint in M ′.
In summary, the structure gets one new relation, the isomorphism radius reduces

to r′ ≤ min(�−s2 , s), and the arity reduces to one.

Case 4. There exists j ∈ [k] such that distM (b∗1, b
∗
j) > s.

See Figure 4.8 for a diagram of this case. In this case we can construct a hybrid
tuple h̄ from ā∗ and b̄∗ such that φ distinguishes h̄ from one of ā∗ or b̄∗ and the r′-
neighborhoods of all three tuples are isomorphic, where the term “hybrid” means that
h̄ has components from both ā∗ and b̄∗. As this pair of tuples shares some common
components we can apply Case 1 to conclude.

For an index set I ⊆ [k], let the tuple b̄I consist of only the components of
b̄∗ with indices in I. Start with I := {1}. While there is an i ∈ [k]\I such that
distM (b∗i , b̄I) ≤ 2r′ + 1, add i to I. If

(4.11) (k − 1)(2r′ + 1) ≤ s,

b̄I cannot contain every component of b̄∗ (by the hypothesis of this case). Let Ic be
the complement of I (i.e., Ic := [k]\I) and define h̄ := (b̄I , āIc). We argue that we
can construct an isomorphism

ρ : NM
r′ (b̄

∗) = NM
r′ (b̄I , b̄Ic)

∼= NM
r′ (b̄I , āIc) = NM

r′ (h̄).

LOCALITY FROM CIRCUIT LOWER BOUNDS 1503

a∗
1

b∗
1

�

s
r′aIc

aI bIc

bI

Fig. 4.8. Diagram for Case 4.

This implies that

ρ ◦ π : NM
r′ (ā

∗) ∼= NM
r′ (h̄).

Together this implies that the r′-neighborhoods of ā∗, b̄∗, and h̄ are isomorphic. Since
one of M |= φ(h̄) or M |= ¬φ(h̄) holds we can conclude by applying Case 1 with h̄
and one of ā∗ and b̄∗. This establishes properties 1′ and 2′ for radius r′.

It remains to argue that the isomorphism ρ exists. If NM
r′ (b̄I) is at least distance

two from both NM
r′ (b̄Ic) and N

M
r′ (āIc), it suffices to define ρ to be identity map on the

domain NM
r′ (b̄I) and act as π−1 on the domain NM

r′ (b̄Ic), since no tuple in a relation

can straddle both parts of the domain. By construction distM (b̄I , b̄Ic) > 2r′ + 1.
This implies that distM (NM

r′ (b̄I), N
M
r′ (b̄Ic)) > 1. It remains to argue distM (b̄I , āIc) >

2r′ + 1. Suppose otherwise, distM (b̄I , āIc) ≤ 2r′ + 1. Then distM (b∗1, ā
∗) ≤ (k −

2)(2r′ + 1) + distM (b̄I , āIc) ≤ (k − 1)(2r′ + 1). This contradicts property (iii) as long
as we choose

(4.12) 	 ≥ (k − 1)(2r′ + 1).

Therefore ρ exists and the case is concluded.
In summary, during Case 4 the isomorphism π and the structure are modified

and the isomorphism radius is reduced to r′ satisfying (4.7), (4.8), (4.11), and (4.12).
This completes the case analysis.
Choosing 	 = k(2r′+1) and s = (k−1)(2r′+1) we see that conditions (4.5), (4.7),

(4.8), (4.9), (4.10), (4.11), and (4.12) are satisfied for r ≥ (3k− 1)(2r′ +1). Since the
lemma holds trivially when r′ < 1, selecting r = 9kr′ = (3k)(3r′) ≥ (3k − 1)(2r′ + 1)
suffices. This is (4.4) in the statement of the lemma which completes the proof.

4.3. Upper bound for general formulas. In this section we prove the general
case of Theorem 4.1, which implies the upper bound in Theorem 1.1. The critical cases
are the ones with positive alternation depth. In those cases, the idea is to iteratively
apply Lemma 4.4 to reduce to the unary version of Theorem 4.1.

Suppose that a k-ary formula φ with alternation depth d > 0 is Arb-invariant and
not (log n)c-local with respect to a structure M , where c is some positive constant.
This means that there exists a violation in M to the (log n)c-locality of φ. Iteratively
applying Lemma 4.4 yields a violation of the (γk · (logn)c)-locality of some unary
formula φ′ of alternation depth d on some structure M ′ with |M ′| = |M | = n, where
γk only depends on k. For c′ a constant such that d + 2 < c′ < c, and n sufficiently

1504 ANDERSON, VAN MELKEBEEK, SCHWEIKARDT, AND SEGOUFIN

large such that (γk · (logn)c) ≥ (logn)c
′
, we obtain a contradiction with the unary

version of Theorem 4.1 as long as n ≥ nφ′,c′ . Thus, if we can upper bound the values
nφ′,c′ that can arise in the reduction from φ, we are done.

The upper bound follows because the number of different formulas φ′ that can
arise from φ is bounded. This is because in each case of the proof of Lemma 4.4,
the resulting formula φ′ consists of (i) an existential quantification over the marking
relation to construct a tuple and (ii) an evaluation of φ on the quantified tuple.
The number of such formulas depends only on how the free variables are situated.
This means that in the end the reduction produces only a bounded number of unary
formulas, depending on φ.

We now formalize this argument.
Proof of Theorem 4.1. We first remark that the case d = 0 in Theorem 4.1 trivially

holds. To see this, consider a k-ary quantifier-free formula φ(x̄) of FO(τ,Arb) that
is Arb-invariant on a τ -structure M . We show that φ(x̄) is 0-local with respect to
M . This implies that φ(x̄) is (logn)c-local with respect to M for any constant c. Let
n := |M |. Assume that M |= φ(ā) and consider a tuple b̄ such that NM

0 (ā) ∼= NM
0 (b̄).

Consider any Arb-expansionM ′ ofM . By Arb-invariance we haveM ′ |= φ(ā). Recall
that the linear order ofM ′ induces a bijection h′ between dom(M) and [n]. Let h′′ be
any bijection between dom(M) and [n] such that h′(ā) = h′′(b̄). This bijection induces
a new linear order on M and a new Arb-expansion M ′′ of M . We claim that M ′′ |=
φ(b̄). By Arb-invariance this impliesM |= φ(b̄) as desired. From NM

0 (ā) ∼= NM
0 (b̄) we

get that each atom of φ involving a relation in τ is true onM (and therefore onM ′ and
M ′′) for ā iff it is true for b̄. From h′(ā) = h′′(b̄) we get that each atom of φ involving a
numerical predicate is true for ā onM ′ iff it is true for b̄ onM ′′. As φ(x̄) is quantifier-
free we conclude thatM ′ |= φ(ā) iffM ′′ |= φ(b̄), which finishes the quantifier-free case.

Consider now the case of alternation depth d > 0. Suppose that φ(x̄) is a k-ary
alternation-depth-d formula of FO(τ,Arb) that is Arb-invariant with respect to a τ -
structure M . Further suppose that φ(x̄) is not (logn)c-Gaifman local with respect to
M , where n := |M | ≥ nφ,c (nφ,c will be determined later). The nonlocality of φ is
witnessed by two tuples ā and b̄ on M . To φ and the witness (M, ā, b̄) we can apply
Lemma 4.4 at most k−1 times to produce a unary formula φ′ with alternation depth d
which is Arb-invariant and nonlocal with respect to a structure M ′. This nonlocality
is witnessed by the elements a′ and b′ distinguished by φ′ and an isomorphism between

the � (logn)c

(9k)k−1 �-neighborhoods of a′ and b′. Let c′ be any constant such that d + 2 <

c′ < c.
If we select nφ,c satisfying � (lognφ,c)

c

(9k)k−1 � ≥ (lognφ,c)
c′ and nφ,c ≥ nφ′,c′ we have

a structure M ′, with |M ′| = n ≥ nφ′,c′ , where φ
′ is Arb-invariant on M ′ but not

(logn)c
′
-local with respect toM ′. This contradicts the unary version of this theorem.

Therefore, it suffices to pick nφ,c to be the maximum of 2(9k)
k−1
c−c′

and nφ′,c′ for each
φ′ that may result from the iterated applications of Lemma 4.4. We now argue that
the number of such formulas φ′ is bounded by a constant.

Claim 4.5. For a given formula φ, the number of different formulas φ′ that can
be produced by Lemma 4.4 for different choices of M , ā, and b̄ is upper bounded by a
function of k only.

Proof. Consider each case of the proof of Lemma 4.4 and the formula produced.
In all cases except Case 1, the formula is of the form

φ′(ȳ) = (∃z̄ ∈ dom(M ′)k−k
′
) R(ȳ, z̄) ∧ φ(ȳ, z̄).

This induces at most k−1 different formulas because the range of k′ is 1 ≤ k′ ≤ k−1.

LOCALITY FROM CIRCUIT LOWER BOUNDS 1505

Note that Case 1 is slightly different in that R is a unary predicate, not a k-ary
relation. So, taken together we have at most k basic formula types. However, we often
(implicitly) relabeled the free variables for convenience of notation. These variations
may induce distinct formulas as well. This relabeling can increase the number of
distinct formulas by a factor of at most k! (one for each ordering of the variables). We
conclude that there are at most k · k! different formulas that the proof may produce.
Note that bound is independent of M , ā, b̄, the Arb relations, and even |M |.

Since the number of possible φ′ is bounded by a constant (depending on φ), nφ,c
can be selected to be such a constant as well. This concludes the proof.

4.4. Lower bound. For c = 1, the lower bound of Theorem 1.1 is implicit in [11,
Corollary 2]. For generalizing the result to arbitrary c ≥ 1, the proof idea is as follows.
We consider graphs represented as τE-structures, where τE is the schema consisting
of a binary relation symbol E. We construct an Arb-invariant formula φc(y) which,
when evaluated in a graph G, expresses that (i) G has less than (logn)c+1 nonisolated
nodes (where n denotes the total number of nodes of G), and (ii) y is reachable from
a node that lies on a triangle. To note that φc is not Gaifman (log n)c-local, consider
for a sufficiently large n the graph G that consists of the disjoint union of

• a triangle, connected to a path of length (logn)c + 1,
• a path of length (logn)c + 1, and
• enough isolated nodes such that the total number of nodes of G is exactly n.

Let b and b′ be the last nodes on the two paths present in G. Obviously, their (logn)c-
neighborhoods are isomorphic. But b is reachable from a node that lies on a triangle,
and b′ is not. Since n is sufficiently large, the total number of nonisolated nodes is less
than (logn)c+1. Thus, G |= φc(b) and G �|= φc(b

′). In summary, φc is not Gaifman
(logn)c-local.

For the construction of the formula φc, we use the following lemma. This lemma
will also be used in section 5 for the proof of the lower bound of Theorem 1.2.

Lemma 4.6. Let τES be the schema consisting of a binary relation symbol E
and a unary relation symbol S. For every integer d ≥ 1 there is an Arb-invariant
FO(τES ,Arb)-formula reachd(x, y) such that the following is true for all finite τES-
structures M , all elements a, b in SM , and n := |dom(M)|:

M |= reachd(a, b) ⇐⇒ |SM | < (log n)d and
there is a path from a to b in the induced subgraph
of G := (dom(M), EM) on SM .

Proof. For the proof, we use the following technical result of [11].
Lemma 4.7 (Corollary 1 in [11]). Let τS be the schema consisting of a unary

relation symbol S. For every integer d ≥ 1 there is an FO(τS ,Arb)-formula bijd(x, y)
such that the following is true for all τS-structures M , all Arb-expansions M ′ of M ,
all elements a, b in dom(M), and n := |dom(M)|:

M ′ |= bijd(a, b) ⇐⇒ |SM | < (logn)d and

a is the ith largest element w.r.t. <M
′
in SM ,

where i is the index of b in dom(M ′) w.r.t. <M
′
.

Note that the formula bijd(x, y) of Lemma 4.7 constitutes a bijection from the set
SM to an initial set of elements of dom(M ′) (initial, with respect to the linear order
present in the structure M ′) and thus to the natural numbers 1, 2, . . . , |SM |. This
enables us to represent elements of SM by natural numbers of size ≤ |SM | < (logn)d.

1506 ANDERSON, VAN MELKEBEEK, SCHWEIKARDT, AND SEGOUFIN

Using its binary representation, we encode each such number by a binary string of
length (exactly) d log logn.

Hence a sequence of elements of SM of size bounded by 	(n) := logn
d log logn can be

represented using logn bits, i.e., a natural number < n or, equivalently, an element
of M . Given an element of M , using the appropriate numerical predicates present in
the Arb-expansion M ′ of M , we can extract from this element any of its blocks of
length d log logn and, using bijd(x, y), retrieve the corresponding element of SM .

We can use this to construct an FO(τES ,Arb)-formula �(x, y) which, when eval-
uated in M ′, expresses that x and y are elements in SM such that there is a path of
length at most 	(n) in SM from x to y: The formula �(x, y) simply guesses the path
by existentially quantifying over the element of M representing its sequence and then
checks that there is indeed an edge between any two consecutive nodes of this path.
From the discussion above, this can be expressed in FO(τES ,Arb).

In summary, �(x, y) is an FO(τES ,Arb) formula such that the following is true
for all finite τES-structures M , all Arb-expansions M ′ of M , all elements a, b in SM ,
and n := |dom(M)|:

M ′ |= �(a, b) ⇐⇒ |SM | < (logn)d and
there is a directed path from a to b of length ≤ 	(n) in the
induced subgraph of G := (dom(M), EM) on SM .

Thus, obviously, �(x, y) is Arb-invariant.
We iterate �(x, y) for a suitable number of times in order to obtain a formula for

reachability reachd(x, y) by paths of length up to (log n)d: Let ψ1(x, y) := �(x, y), and
for i ≥ 2, let ψi(x, y) be the formula obtained from �(x, y) by replacing every atom of
the form E(z, z′) by the formula ψi−1(z, z′). It is straightforward to see that ψi(x, y)
states that there is a path of length at most 	(n)i in SM from x to y.

For i := d + 1, there exists an n0 such that for all n > n0 we have 	(n)i ≥
(logn)d > |SM |. Therefore, we can choose reachd(x, y) to be the formula stating
that either |dom(M)| > n0 and ψi(x, y) holds, or, for some 	 ∈ {1, . . . , n0}, we have
|dom(M)| = 	 and |SM | ≤ (log)d, and x and y are nodes in SM such that y is
reachable from x by a path of length ≤ 	 that uses only nodes in SM . (Note that
for each fixed 	 this can be expressed in FO(τES).) This concludes the proof of
Lemma 4.6.

We are now ready for the proof of the lower bound of Theorem 1.1.
Proof of Theorem 1.1, lower bound. Let τE be the schema consisting of a binary

relation symbol E, let d := c + 1, and let reachd(x, y) be the Arb-invariant formula
provided by Lemma 4.6. Let �(x, y) be the formula obtained from reachd(x, y) by
replacing every atomic formula of the form S(z) by a formula stating that z is a
nonisolated node (i.e., by the formula ∃z′(E(z, z′)∨E(z′, z)

)
). Clearly, when evaluated

in a τE-structure M , the formula �(x, y) states that there are fewer than (logn)d

nonisolated nodes in M , x and y are nonisolated, and there is a path from x to y.
Let φc(y) be the formula

∃x∃x1∃x2
(
E(x, x1) ∧ E(x1, x2) ∧E(x2, x) ∧ �(x, y)

)
.

Obviously, φc is Arb-invariant, since � is Arb-invariant. Furthermore, when evaluated
in a τE -structure M , the formula φc expresses that (i) there are fewer than (logn)d

nonisolated nodes (where n denotes the size of dom(M)), and (ii) y is reachable from
a node that lies on a triangle.

LOCALITY FROM CIRCUIT LOWER BOUNDS 1507

By the reasoning given at the beginning of section 4.4, φc is not Gaifman (logn)c-
local. This completes the proof of the lower bound in Theorem 1.1.

Remark 4.8. We point out that addition + and multiplication × are the only
numerical predicates occurring in the formula bijd(x, y) of Lemma 4.7. Furthermore,
all the constructions in the proof of Lemma 4.6 can be realized with those numerical
predicates only (e.g., [24, 38]). Thus, the formula reachd(x, y) provided by Lemma 4.6
is an Arb-invariant FO formula that uses only the numerical predicates + and ×.
Consequently, the lower bound of Theorem 1.1 already holds for such formulas.

5. Hanf locality for string structures. In section 4 we showed that Arb-
invariant FO formulas are Gaifman (logn)O(1)-local. We are not able to prove that
Arb-invariant FO formulas are also Hanf (logn)O(1)-local in general but we are able
to do so in the special case when the structures represent strings.

Fix a finite alphabet A and consider structures over the schema τs containing one
unary predicate per element of A and one binary predicate E. Let S be the class of
τs-structuresM that interpret E as a successor relation and where each element ofM
belongs to exactly one of the unary predicates in τs. Each structure in S represents
a string in the obvious way and we blur the distinction between a string w and its
actual representation as a structure. We then consider FO(τs∪σarb) formulas that are
Arb-invariant over all structures in S and denote the corresponding set of formulas by
Arb-invariant FO(Succ). We say that a language L ⊆ A∗ is definable in Arb-invariant
FO(Succ) if there is a sentence of Arb-invariant FO(Succ) whose set of models in S
is exactly L.

The goal of this section is to prove Theorem 1.2. The lower bound part will be
proved in section 5.4. For the upper bound part we actually show the following result.

Theorem 5.1. Arb-invariant FO(Succ) formulas with alternation depth d are
Hanf (logn)c-local for any constant c > d+ 2.

The crux of Theorem 5.1 is the case where the formula is a sentence. For that
reason, we only consider sentences in sections 5.1 and 5.2. We return to the general
case in section 5.3.

The proof of Theorem 5.1 for sentences consists of two parts. In section 5.1 we
introduce a closure property of languages allowing us to swap substrings inside a string
without affecting membership in the language as long as the neighborhoods around
the endpoints of the substrings look similar. We then show that a language being
closed under swaps is equivalent to the language being Hanf local, where the size
of the boundary neighborhoods is essentially the isomorphism radius. In section 5.2
we show that languages definable in Arb-invariant FO(Succ) are closed under this
swap operation for boundary neighborhoods of radius (logn)O(1). We conclude in
section 5.3 by combining the two previous results and derive Theorem 5.1.

5.1. Connection with closure under swaps for sentences. In this section
we introduce the key notion of a swap. It is an operation that exchanges two substrings
inside a string as long as the neighborhoods around the endpoints of the substrings
look similar. Our notion of a swap is somewhat related to a similar notion that was
introduced in [40] for regular languages (see also [7, 8]).

Let w ∈ A∗, i, j ∈ N, define w[i, j] to be the substring of w starting at position
i of w and ending at position j. Let n = |w| and r > 0; then the r-suffix of w is
w[n− r+1, n] and the r-prefix of w is w[1, r]. Notice that if i is the last position of u
in the string w = uv, then Nw

r (i) is the concatenation of the (r + 1)-suffix of u with
the r-prefix of v.

1508 ANDERSON, VAN MELKEBEEK, SCHWEIKARDT, AND SEGOUFIN

x v y u z

x u y v z

w′ :

w :
i j i′ j′

︸ ︷︷ ︸
r

︸ ︷︷ ︸
r+1︸ ︷︷ ︸

N w′
r (i)

Fig. 5.1. r-swapping w = xuyvz to w′ = xvyuz.

x u y v z

i1 i1 + 1 i i + 1

j1 j′ j′
1 j

hi

w

wi

x v y u z
wi+1

h′

︷
︸︸

︷

hi+1

Fig. 5.2. Constructing hi+1 from hi and wi.

Let r ∈ N and w ∈ A∗. A string w′ ∈ A∗ is obtained from w by a r-swap
operation if w = xuyvz, Nw

r (i) ∼= Nw
r (i′), and Nw

r (j) ∼= Nw
r (j′), where i, j, i′, and j′

are, respectively, the positions in w immediately before the substrings u, y, v, and z
and w′ = xvyuz. See Figure 5.1 for a diagram.

Let r : N → R≥0. A language L is said to be closed under r(n)-swaps if there
exists a n0 ∈ N such that for all strings w,w′ ∈ A∗ with |w| = n > n0, if w

′ is obtained
from w by a r(n)-swap operation, then we have

w ∈ L iff w′ ∈ L.

Informally, a language is closed under swaps if the language is unable to distinguish
the relative order of substrings whose local neighborhoods look the same.

There are tight connections between closure under swaps and Hanf locality. The
first one is that an r-swap operation does not change the ≡r-class of a string. This
follows from the observation that an r-swap preserves r-neighborhoods. The second
one concerns the opposite direction: If two strings are in a same ≡r-class, then there
is a sequence of (r − 1)-swap operations transforming one into the other. Intuitively
this is shown as follows. Assuming that w ≡r w′, we transform w′ into w using (r−1)-
swaps to embed larger and larger prefixes of w within the transformed string. Here an
embedding is a partial function on string positions preserving r-neighborhoods and the
string order (i.e., the relative ordering of the positions in the prefix of w is preserved
by the embedding). Eventually, the entirety of w embeds into the transformed string,
and because |w| = |w′| this implies that the transformed string coincides with w.
Thus, we have transformed w′ into w via a sequence of (r − 1)-swaps.

We now sketch the transformation procedure. See Figure 5.2 for a diagram of this
construction. In the ith step of the procedure, we consider the i-prefix of w that we
assume embeds into the string wi ≡r w via the embedding hi. Our goal is to extend
the embedding to the (i+1)-prefix of w while preserving the ≡r-class. Let j := hi(i).
Because w ≡r wi, there is a position j′ in wi, outside the image of hi, that has the same

LOCALITY FROM CIRCUIT LOWER BOUNDS 1509

r-neighborhood as i+1. If j′ > j, mapping i+1 to j′ preserves the ordering of w and
extends the embedding hi to the (i + 1)-prefix of w. Otherwise, we have j′ < j. Let
i1 be the maximal position in the i-prefix of w such that hi(i1) < j′. By maximality
of i1, we have the following relative positions within wi: hi(i1) < j′ < hi(i1 + 1) ≤ j.
The key observation is that because i and j = hi(i) have the same r-neighborhood,
then j′ − 1 and j have the same (r − 1)-neighborhood. As the same consequence can
be derived for hi(i1)+ 1 and hi(i1 +1), we can (r− 1)-swap the substrings of wi with
these endpoints (i.e., substrings u and v in Figure 5.2). We then observe that the
(i+1)-prefix of w embeds into the resulting string wi+1 and that wi+1 ≡r wi, so wi+1

remains in the same ≡r-class as w. Initializing w1 = w′ and h1 : w ≡r w′ establishes
the conditions required to start the procedure.

Lemma 5.2. Let r ∈ N and w,w′ ∈ A∗.
1. If w′ is obtained from w by a r-swap operation, then w ≡r w′.
2. If w ≡r w′, then there is a finite sequence of (r − 1)-swap operations trans-

forming w into w′.
Proof. Fix r ∈ N.
Part 1. Assume w = xuyvz, w′ = xvyuz, and for i, j, i′, and j′, which are,

respectively, the positions immediately before u, y, v, and z in w, we have Nw
r (i) ∼=

Nw
r (i′) and Nw

r (j) ∼= Nw
r (j′). Let h be a bijection from w to w′ that sends each block

x, u, y, v, z to its corresponding block in w′. In other words, h sends the first letter of
x in w to the first letter of x in w′ and so on; h acts on the other substrings u, y, v,
and z in a similar fashion. We show that h preserves r-neighborhoods. It is enough to
show this for the harder cases, i.e., the boundary cases. By symmetry we only need
to consider the boundaries of y.

Recall that j is the position immediately before y, i.e., the last position of u. Let
k := h(j) be the last position of u in w′. We want to show Nw′

r (k) ∼= Nw
r (j). First

consider the right part of the respective neighborhoods. In w this is the r-prefix of
yvz, while in w′ it is the r-prefix of z. By hypothesis, Nw

r (j) ∼= Nw
r (j′), and the

r-prefix of z is the same as the r-prefix of yvz, so we are done.
Now consider the left part of the respective neighborhoods. In w it is xu, while

in w′ it is xvyu. We need to show that they have the same (r + 1)-suffix. From
Nw
r (i) ∼= Nw

r (i′) we know that x and xuy have the same (r+1)-suffix; this implies that
xv and xuyv have the same (r+1)-suffix. FromNw

r (j) ∼= Nw
r (j′) we get that xuyv and

xu have the same (r+1)-suffix. By combining these two facts we see that xu and xv
have the same (r+1)-suffix. Therefore xuy and xvy have the same (r+1)-suffix. Hence
x and xvy have the same (r + 1)-suffix, and thus xu and xvyu do as well, as desired.

The other boundary of y, position i′, is treated similarly.
Part 2. Let w and w′ be two strings of A∗ such that w ≡r w′ and |w| = n. Let h

be a bijection witnessing w ≡r w′.
We construct by induction a sequence of strings w1, . . . , wn such that (i) w1 = w′,

(ii) for i ≤ n, w ≡r wi via a bijection hi verifying for all j < j′ ≤ i, hi(j) < hi(j
′),

and (iii) wi+1 is either wi or is obtained from wi via a (r − 1)-swap operation. Note
that (ii) implies that hn is the identity and therefore wn = w. Properties (i) and (iii)
imply that w = wn is obtained from w′ = w1 by a finite sequence of (r − 1)-swap
operations, proving the result.

The base case is immediate by setting w1 := w′ and h1 := h.
Suppose we have constructed wi and hi satisfying the inductive properties (i),

(ii), and (iii) up to i. Let j := hi(i) and j′ := hi(i + 1). If j′ > j, (ii) is already
satisfied and we are done. Assume now that j′ < j. Let i1 < i be the position in w
such that hi(i1) < j′ < hi(i1 + 1), and let j1 := hi(i1) and j

′
1 := hi(i1 + 1). Note an

1510 ANDERSON, VAN MELKEBEEK, SCHWEIKARDT, AND SEGOUFIN

index i1 such that hi(i1) < j′ exists because hi preserves r-neighborhood-types and
therefore must map the element of w with index 1 to the element of wi with index 1
(i.e., 1 = hi(1) < j′). See Figure 5.2 for a diagram of the construction.

Now, notice that because hi preserves r-neighborhood-types and j1, j
′
1 are the

images of consecutive positions in w, Nwi

(r−1)(j1)
∼= Nwi

(r−1)(j
′
1 − 1). For the same

reason, Nwi

(r−1)(j
′ − 1) ∼= Nwi

(r−1)(j).
Hence our string wi can be decomposed as xuyvz, where (in the case where

j′ = j1 + 1, u is the empty string)

x := wi[1, j1],

u := wi[j1 + 1, j′ − 1],

y := wi[j
′, j′1 − 1],

v := wi[j
′
1, j],

z := wi[j + 1, n]

and the conditions for a (r−1)-swap hold. Note that this swap induces a permutation
h′ on the positions of wi.

We set wi+1 := xvyuz and condition (iii) holds. We now set hi+1 := h′ ◦ hi, the
composition of hi and h

′. We have the following claim.
Claim 5.3. hi+1 : w ≡r wi+1.
Proof. We show that h′ : wi ≡r wi+1. The claim then follows because hi : w ≡r

wi. We argue that the r-neighborhoods of the substrings x, u, y, v, and z are identical
in both wi and wi+1, hence wi ≡r wi+1.

We start by deriving a few identities from our hypothesis. For a string s, we
use the notation P (s) to denote the r-prefix of s and S(s) to denote the r-suffix
of s. Consider S(x). Because Nw

r (i1) ∼= Nwi
r (j1), S(x) = S(w[1, i1]). Moreover, as

Nw
r (i1+1) ∼= Nwi

r (j′1), we have S(w[1, i1]) = S(xuy). Hence S(x) = S(xuy). Similarly
the known neighborhood isomorphisms give us the following facts, where the text in
the square brackets indicates which neighborhoods the identities address, e.g., “left
nbh of v” means that the identity shows that the strings of length r preceding v in w
and w′ are the same.

S(x) = S(xuy) [left nbh of v],(5.1)

S(xu) = S(xuyv),(5.2)

P (z) = P (yvz) [right nbh of u],(5.3)

P (vz) = P (uyvz).(5.4)

We can derive a number of implications using (5.1)–(5.4):

(5.1) ∧ (5.2) ⇒ S(xv) = S(xuyv) = S(xu) [left nbh of y],
(5.5)

⇒ S(xuy) = S(xvy) ⇒(5.1) S(x) = S(xvy) [left nbh of u],(5.6)

⇒ S(xu) = S(xvyu) ⇒(5.2) S(xuyv) = S(xvyu) [left nbh of z],

(5.3) ∧ (5.4) ⇒ P (uz) = P (uyvz) = P (vz) [right nbh of y],
(5.7)

⇒ P (yvz) = P (yuz) ⇒(5.3) P (z) = P (yuz) [right nbh of v],

⇒ P (vz) = P (vyuz) ⇒(5.4) P (uyvz) = P (vyuz) [right nbh of x].(5.8)

LOCALITY FROM CIRCUIT LOWER BOUNDS 1511

With these facts in hand we can argue that the r-neighborhoods of each substring
x, u, y, v, z are identical in wi and wi+1. As before we only prove it for the boundary
cases.

Consider first x and its last position j1. Notice that h
′(j1) = j1. In order to show

that Nwi
r (j1) ∼= Nwi+1

r (j1) it remains to show that the r-prefix of uyvz is the same as
the r-prefix of vyuz. This is (5.8).

Now consider u. If u is empty, h′ trivially preserves the r-neighborhoods of the
elements in u. Otherwise, assume that u is not empty and consider its first position
j1 +1 and let k := h′(j1 +1). In order to show that Nwi

r (j1 +1) ∼= Nwi+1
r (k) we need

to show that S(x) = S(xvy) and that the (r + 1)-prefix of uyvz is the same as the
(r + 1)-prefix of uz. The former is (5.6) and the latter is immediate from (5.3) as u
is not empty. Consider now the last position j′ − 1 of u and let k′ := h′(j′ − 1). In
order to show that Nwi

r (j′ − 1) ∼= Nwi+1
r (k′) we need to show that the (r + 1)-suffix

of xu is the same as the (r + 1)-suffix of xvyu and that P (yvz) = P (z). The latter
is (5.3), while the former is immediate from (5.6) as u is not empty.

Finally consider the first position j′ of y. Let k := h′(j′). In order to show that
Nwi
r (j′) ∼= Nwi+1

r (k) we need to show that S(xu) = S(xv) and that the (r+1)-prefix
of yvz is the same as the (r+1)-prefix of yuz. The former is (5.5), while the latter is
immediate from (5.7) as y is not empty.

The other cases are treated similarly by symmetry. This completes the proof of
Claim 5.3.

Observe that for all k ≤ i1, hi(k) maps into x, and for all k ∈ [i1 + 1, i], hi(k)
maps into v. Since hi(k) is monotone for k ≤ i and hi+1(i+1) maps onto j′, hi+1(k)
is monotone for k ≤ i + 1. Combining this fact with the claim implies that we have
extended property (ii) to i + 1. With all properties satisfied the induction step is
complete.

5.2. Closure under swaps. We now show that a language definable by a sen-
tence of Arb-invariant FO(Succ) is closed under (log n)c-swaps for some constant c.

Lemma 5.4. If L is a language definable by an Arb-invariant FO(Succ) sentence
with alternation depth d, then L is closed under (logn)c-swaps for any constant c >
d+ 2.

To prove this lemma we observe that it suffices to consider swaps where the
various neighborhoods are disjoint. This is because (i) when the isomorphic neighbor-
hoods involved have substantial overlap, the swap operation has no effect and trivially
preserves membership to L, and (ii) when the isomorphic neighborhoods have small
overlap, restricting their radius slightly yields isomorphic neighborhoods that are dis-
joint. In section 5.2.1 we show that Arb-invariant FO(Succ) is closed under disjoint
swaps, and in section 5.2.2 we formalize (i) and (ii) by showing that closure under
disjoint swaps implies closure under general swaps modulo a small constant factor
increase in the isomorphism radius. We combine these two steps to prove Lemma 5.4.

5.2.1. Disjoint swaps. We weaken the condition for closure under r-swaps
slightly by considering only neighborhoods Nw

r (i), Nw
r (i′), Nw

r (j), and Nw
r (j′) which

are pairwise disjoint. We call this closure under disjoint r-swaps. We argue that lan-
guages definable in Arb-invariant FO(Succ) are closed under disjoint (log n)c-swaps,
for some constant c depending on the alternation depth of the language. One way to
prove this fact is by mimicking our proof of Gaifman locality for the special case of
string structures. Alternatively, we can use our Gaifman locality result as a blackbox.
We follow the latter approach. The idea is that given a pair of strings w and w′

of length n which witness the violation of the closure-under-(logn)c-swaps property

1512 ANDERSON, VAN MELKEBEEK, SCHWEIKARDT, AND SEGOUFIN

x u y v z

i j i′ j′

M :
E1
E2
E3

x u y v zw :
i + 1 j + 1 i′ + 1 j′ + 1

E

Fig. 5.3. Constructing the structure M from the string w.

for a sentence φ, we can derive (i) a τ -structure M of size n with two tuples that
have isomorphic neighborhoods up to distance Ω((log n)c), and (ii) an FO(τ,Arb)
formula ψ distinguishing these tuples that is Arb-invariant with respect to M . We in-
stantly conclude by applying our Gaifman locality theorem (Theorem 4.1) to produce
a contradiction.

Proposition 5.5. If L is a language definable by an Arb-invariant FO(Succ)
sentence with alternation depth d, then L is closed under disjoint (logn)c-swaps for
any constant c > d+ 2.

Proof. Let φ be an Arb-invariant FO(Succ) sentence with alternation depth d
defining L. Suppose that L is not closed under disjoint r-swaps, where r := (logn)c

and c is a large enough constant depending only on φ that will become apparent
during the proof. Then there exists an infinite class of equal-length string pairs W ,
such that for every pair 〈w,w′〉 ∈ W , the conditions for disjoint r-swaps are satisfied
for the pair, but w ∈ L and w′ �∈ L.

Consider one such pair 〈w,w′〉 ∈ W and let n := |w| = |w′|. Let u, v, x, y, z be as
in the definition of r-swaps with w = xuyvz and w′ = xvyuz. Let i, i′, j, j′ denote the
positions in w supplied by the definition of r-swaps. Using the assumed disjointness
property, the neighborhoods Nw

r (i), Nw
r (i′), Nw

r (j), and Nw
r (j′) are all disjoint, and

i, i′, j, and j′ are distinct positions in w.
Recall that w and w′ can be seen as labeled graphs where the edge relation is

called E. Consider the schema containing three extra binary relations E1, E2, and E3.
We construct a structure M from w over this extended schema by slightly modifying
E. This construction is diagrammed in Figure 5.3. The purpose of the relations E1,
E2, and E3 is to mark the boundary vertices of u and v so that the boundaries can
easily be recovered and at the same time ensure that the neighborhoods around u
and v in M appear identical. Note that the E-edges leaving i, j, i′, and j′ in w are
eliminated in M , and all other E-edges of w are unchanged. M has the following
property.

Claim 5.6. NM
r−1(i, j, i

′, j′) ∼= NM
r−1(i

′, j′, i, j).
Proof. To show this, we describe a witnessing isomorphism π. Let π act as the

identity on (r− 1)-prefixes of u, y, v, and z. Let π take the r-suffix of x to the r-suffix
of y and vice versa. Let π take the r-suffix of u to the r-suffix of v and vice versa.
This mapping is well-defined because the r-neighborhoods around i, j, i′, and j′ are
all disjoint. It is now routine to verify that π is an isomorphism as claimed using
the facts that Nw

r (i) ∼= Nw
r (i′), Nw

r (j) ∼= Nw
r (j′) and that these neighborhoods are

disjoint.
We can use the Arb-invariant FO(Succ) sentence φ to construct a formula ψ

with four free variables x1, y1, x2, y2 that does the following: When evaluated in M ,

LOCALITY FROM CIRCUIT LOWER BOUNDS 1513

ψ(i, j, i′, j′) simulates φ on w, while ψ(i′, j′, i, j) simulates φ on w′, and for all other
tuples ψ rejects. The formula ψ is constructed from φ as follows. In φ, replace all
atoms E(x, y) with

θ(x, y, x1, y1, x2, y2) := E(x, y) ∨ ((x = x1 ∨ x = y1) ∧ E1(x, y))

∨ ((x = x2 ∨ x = y2) ∧ E2(x, y)).

In order to ensure that on M ψ rejects when the tuple is not (i, j, i′, j′) or
(i′, j′, i, j), we explicitly test for these inputs using the E3-edge and reject if not
found:

ψ(x1, y1, x2, y2) := E3(x1, y1) ∧ E3(x2, y2) ∧ x1 �= x2

∧ φE(x,y)←θ(x,y,x1,y1,x2,y2)(x1, y1, x2, y2).

Here the notation indicates that we are replacing all occurrences of the relation E(x, y)
in φ by the relation θ(x, y, x1, y1, x2, y2). ψ is Arb-invariant with respect to M . To
see this, observe that when the input tuple is not (i, j, i′, j′) or (i′, j′, i, j), the formula
always rejects. In the other case φ is effectively evaluated on either w or w′, which
are strings, and hence the action of φ is Arb-invariant by hypothesis.

Observe that ψ is a 4-ary formula that is defined only with respect to φ and has
the same alternation depth as φ. Applying Theorem 4.1 to ψ we see that for any
constant c′ > d + 2 and for n ≥ nψ,c′ , ψ is Gaifman (logn)c

′
-local for structures for

which it is Arb-invariant. Now, the infinite class of r-swap closure violations W with
respect to φ induces an infinite class of structures M with Gaifman (r − 1)-locality
violations with respect to the formula ψ, where each violation is of the form 〈M, ā :=
(i, j, i′, j′), b̄ := (i′, j′, i, j)〉 and ψ is Arb-invariant with respect to the structures in
M. If we pick c′ < c, this infinite class of violations allows us to select an input length
n which is at least nψ,c′ and large enough to make r − 1 = (logn)c − 1 ≥ (log n)c

′
.

This violates Theorem 4.1 and completes the proof.

5.2.2. From disjoint swaps to general swaps. We now argue that languages
which are closed under disjoint swaps are also closed under swaps. Consider a language
L which is closed under disjoint r′(n)-swaps and a pair of sufficiently long strings
w = xuyvz and w′ = xvyuz which satisfy the isomorphism conditions of an r(n)-
swap. It suffices to argue that L does not distinguish w and w′.

We observe that when the neighborhoods of the substrings overlap a large amount
the neighborhood isomorphisms induce periodic behavior within the r(n)-neighbor-
hoods, so much so that the substrings uyv and vyu become identical. This implies that
w = w′, and hence w ∈ L iff w′ ∈ L. This takes care of the case of large neighborhood
overlap. We then focus on the case where the r(n)-neighborhoods of the substrings
only overlap a small amount and show that there is freedom to select slightly smaller
neighborhoods (of radius r′(n)) that are pairwise disjoint though still induce the same
effective swapping. This allows us to apply the closure of L under disjoint r′(n)-swaps
to conclude that L does not distinguish w and w′. We now formalize this approach.

Proposition 5.7. Let L be a language and r be a function N → R≥0. If L is

closed under disjoint r(n)
14 -swaps, then L is closed under r(n)-swaps.

Proof. Suppose that L is closed under disjoint r′(n)-swaps, where r′(n) = r(n)/c
for some constant c to be determined later. Let n0 be the associated constant. Fix a
length n ≥ n0 and a pair of length n strings w := xuyvz and w′ := xvyuz whose sub-
strings satisfy the isomorphism conditions for a r(n)-swap. To prove the lemma it suf-
fices to argue that w ∈ L iff w′ ∈ L. We drop the parameter to r′ and r in what follows.

1514 ANDERSON, VAN MELKEBEEK, SCHWEIKARDT, AND SEGOUFIN

x u y v z
︷ ︸︸ ︷si sj si′ sj′

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

x u y v z
︷ ︸︸ ︷si sj si′ sj′

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

x u y v z
︷ ︸︸ ︷si sj si′ sj′

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
y

︷︸︸︷

Case 1:

Case 2:

Case 3:

x u y v z
︸ ︷︷ ︸

u

︷ ︸︸ ︷
yu

Case 0:

Fig. 5.4. The cases in the proof of Lemma 5.4.

The isomorphism conditions of r-swaps imply it suffices to consider |x| ≥ r.
Otherwise, to satisfy the conditions it must be that |u| = |y| = |v| = 0, and hence
w = xz = w′, and we trivially conclude w ∈ L iff w′ ∈ L. Analogously, |z| ≥ r.

We proceed by case analysis on the sizes of u, y, and v relative to r′. If the lengths
of u, y, and v are all short relative to r′, then their respective neighborhoods overlap
and u, y, and v are present in each neighborhood. The neighborhood isomorphisms
drag these three substrings around implying that uyv = vyu and hence that w = w′.
This is Case 0.

In the three remaining cases we use the closure of L under disjoint r′-swaps to
conclude that L does not distinguish w and w′. In each of these cases, we determine a
set of disjoint substrings si, sj , si′ , sj′ occurring in this order in w, each of length 2r′.
We show that si = si′ and sj = sj′ . Let i, j, i

′, j′ be the respective middle positions of
these substrings; then the r′-neighborhoods of i and i′ and of j and j′ are isomorphic.
We argue that the result of swapping the substrings w[i + 1, j] and w[i′ + 1, j′] in w
yields w′, and thus w and w′ are separated by a disjoint r′-swap. Since L is closed
under disjoint r′-swaps and n ≥ n0, w ∈ L iff w′ ∈ L, concluding the proof in each
case. See Figure 5.4 for a diagram of the four cases.

Case 0. |u|, |y|, |v| < 4r′.
Let i, i′, j, and j′ be the positions in w preceding the substrings u, y, v, and z,

respectively. We claim that if r ≥ 12r′, then uyv = vyu. This implies that w = w′

and hence w ∈ L iff w′ ∈ L. To see the claim, notice first that because r ≥ 4r′ and
|u| < 4r′, the right part of the r-neighborhood around i starts with u. Therefore, as
Nw
r (i) ∼= Nw

r (i′), u is a prefix of vz. A similar reasoning around j and j′, using the
fact that r ≥ 8r′, shows that z and yvz have the same prefix of length 8r′. As u is
a prefix of vz and |yu| < 8r′, this implies that yu is a prefix of z. Therefore vyu is a
prefix of vz. Now, because r ≥ 12r′ and Nw

r (i) ∼= Nw
r (i′), uyvz and vz have the same

prefix of length 12r′. Because |vyu| < 12r′, this implies that vyu is a prefix of uyvz
and therefore vyu = uyv.

We now consider the cases with less overlap between neighborhoods.
Case 1. |y| ≥ 4r′.
Let si be the 2r′-suffix of x and si′ be the 2r′-suffix of y. Let sj be the 2r′-prefix

of y and sj′ be the 2r′-prefix of z. Since 2r′ ≤ |y|, sj and si′ do not overlap. Since
|x|, |z| ≥ r > 2r′, si and sj′ are fully realized. The given neighborhood isomorphisms
imply that si = si′ and sj = sj′ . Inspection shows that swapping w[i + 1, j] with
w[i′ + 1, j′] produces w′, completing the case.

LOCALITY FROM CIRCUIT LOWER BOUNDS 1515

Case 2. |u|, |v| ≥ 4r′.
Let si be the 2r′-prefix of u and si′ be the 2r′-prefix of v. Let sj be the 2r′-suffix

of u and sj′ be the 2r′-suffix of v. Since |u|, |v| ≥ 4r′ these substrings si, si′ , sj , sj′

are pairwise disjoint. Further, using the known neighborhood isomorphisms, si = si′

and sj = sj′ . Inspection shows that swapping w[i + 1, j] with w[i′ + 1, j′] produces
w′, completing the case.

Case 3. |v|, |y| < 4r′, |u| ≥ 4r′ (analogously, |u|, |y| < 4r′, |v| ≥ 4r′).
Let si be the 2r′-suffix of x and si′ be the 2r′-suffix of uy. Using the given

neighborhood isomorphisms and the fact |u| ≥ 4r′, si and si′ are disjoint and equal.
Let sj be the 2r′-prefix of u. Since |u| ≥ 4r′, sj and si′ are disjoint. Let sj′ :=
z[|y|, |y|+ 2r′]. Since |z| ≥ r and |y| < 4r′, sj′ is fully realized if 6r′ < r. We need to
argue that sj = sj′ .

Observe that the last element of u and the first element of z are within 8r′ of each
other. Without loss of generality |yv| > 0, because otherwise w = xuz = w′. The
fact that r-neighborhoods around the point at the end of u and the point immediately
before z are isomorphic implies that the neighborhood following v contains a sequence
of many repetitions of the string yv. This string yv repeats up to distance at least
r−8r′ into z. Therefore, if 14r′ ≤ r, the string sj′ starts with v followed by repetitions
of yv for the entire length of sj′ and is the same as 2r′-prefix of vz. Hence the
neighborhood isomorphism between the last point of x and the point preceding v
implies that sj = sj′ .

Write z = yz′; then w = xuyvyz′. Swapping the substring vy with the empty
string between x and u produces xvyuyz′ = xvyuz = w′. This completes the case.

Choosing c = 14 suffices to satisfy the assumptions made in each case and com-
pletes the proof.

Combining Propositions 5.5 and 5.7 yields a proof of Lemma 5.4.
Proof of Lemma 5.4. Let L be a language definable by an Arb-invariant FO(Succ)

sentence with alternation depth d. For any constant c′ > d + 2 we have, by Propo-
sition 5.5, that L is closed under disjoint (log n)c

′
-swaps. By Proposition 5.7, L is

closed under 14(logn)c
′
-swaps. If we pick c′ < c, then 14(logn)c

′
< (logn)c for n

sufficiently large. It follows that L is closed under (log n)c-swaps.

5.3. Upper bound. We are now ready to prove Theorem 5.1. It is essentially
a combination of Lemmas 5.4 and 5.2 with a reduction from general formulas to
sentences.

Proof of Theorem 5.1. We first prove the case of sentences. Let L be a language
definable by an Arb-invariant FO(Succ) sentence with alternation depth d. Let c >
c′ > d + 2. By Lemma 5.4 L is closed under (logn)c

′
-swaps. Consider now a pair

of strings w,w′ such that |w| = |w′| = n for a sufficiently large n. Assume that
w ≡(logn)c w

′. By Lemma 5.2 there is a sequence of ((log n)c − 1)-swaps that turns

w into w′. For large enough n, (logn)c − 1 ≥ (logn)c
′
, and therefore L is closed

under such swaps. For this sufficiently large input length none of these swaps affects
membership in L, hence w ∈ L iff w′ ∈ L and the theorem is proved for the case of
sentences.

For the general case, we can mark the free variables by new unary predicates,
one per free variable. To the initial formula we can associate a sentence quantifying
existentially over these elements and then evaluating the initial formula. For any r,
the initial query is Hanf r-local if its associated sentence is also Hanf r-local. Also, if
the initial query is Arb-invariant, then so is its associated sentence. We may assume
that the quantifier depth of the initial formula is at least one; otherwise, the formula is

1516 ANDERSON, VAN MELKEBEEK, SCHWEIKARDT, AND SEGOUFIN

trivially 0-local (see the proof of Theorem 4.1). Observe that a formula is Hanf r-local
and Arb-invariant iff the negation of the formula has the same property. This allows
us to further assume without loss of generality that the initial formula begins with
an existential quantifier (otherwise, we take the negation), and hence the resulting
sentence has the same alternation depth as the initial formula. Theorem 5.1 follows
from case of sentences we have just proved.

We believe that the techniques developed in this section extend to trees and that
Hanf (log n)O(1)-locality holds for Arb-invariant FO sentences over trees. See section 7
for more details.

5.4. Lower bound. We use a similar idea as in the proof of the lower bound
of Theorem 1.1 to show the Hanf locality lower bound for Arb-invariant FO(Succ)
claimed in Theorem 1.2.

Proof of Theorem 1.2, lower bound. Fix a constant c > 0 and consider the alphabet
A := {a, b, e, f}. We will construct an Arb-invariant sentence φc that is satisfied by
exactly those strings w of the form (a|b|e)∗f∗, where (i) the total number of a’s, b’s,
and e’s in w is less than (logn)c+1 (where n denotes the length of w), and (ii) the
first occurrence of a in w is somewhere to the left of the first occurrence of a b in w.

To note that φc is not Hanf (logn)c-local, consider, for a sufficiently large n,
the string w of length n that for m := 2(logn)c + 1 is of the form emaembemf∗.
Furthermore, let w′ be the string obtained from w by swapping the letters a and b.
Note that the strings w and w′ are chosen in such a way that

w ≡(logn)c w
′.

Furthermore, w and w′ are both of the form (a|b|e)∗f∗ and satisfy the following: Since
n is sufficiently large, the total number of a’s, b’s, and e’s in w as well as in w′ is less
than (logn)c+1. In w, the first occurrence of the letter a is somewhere to the left of
the first occurrence of the letter b; however, in w′ this is not the case. In summary,
we thus obtain that w |= φc and w′ �|= φc. Hence, the strings w and w′ witness that
φc is not Hanf (logn)

c-local.
To conclude the proof it remains to show how to construct the formula φc. For

this, we use the Arb-invariant formula reachd(x, y) from Lemma 4.6 for d := c + 1.
Let �(x, y) be the formula obtained from reachd(x, y) by replacing every occurrence
of an atomic formula of the form S(z) by a formula stating that position z carries
one of the letters a, b, or e. Choosing φc to be the sentence stating that there exist
positions x and y that carry the letters a and b, respectively, such that �(x, y) is
satisfied, we obtain an Arb-invariant sentence that when evaluated in a string w of
the form (a|b|e)∗f∗ states that (i) the total number of a’s, b’s, and e’s in w is less
than (logn)c+1 (where n denotes the length of w), and (ii) the first occurrence of a
in w is somewhere to the left of the first occurrence of a b in w. This concludes the
proof for the lower bound part of Theorem 1.2.

Remark 5.8. By Remark 4.8 the formula φc constructed in the above proof only
uses the numerical predicates of addition + and multiplication ×. Thus, the lower
bound of Theorem 1.2 already holds for such formulas.

We point out an alternate route for proving the lower bound in Theorem 1.2,
namely, by establishing the lower bound in Theorem 1.1 for strings. The former
follows from the latter because if a formula is Hanf r-local w.r.t. (M,M), then it is
Gaifman (3r + 1)-local w.r.t. M (recall Definitions 2.1 and 2.2) [21]. This alternate
route yields an Arb-invariant formula, rather than sentence, that is not Hanf (logn)c-
local for a given constant c, but the formula can be transformed into a sentence using

LOCALITY FROM CIRCUIT LOWER BOUNDS 1517

the translation given in the proof of Theorem 5.1. We did not follow this route because
establishing the lower bound in Theorem 1.1 for strings would require the schema to
have both a unary and a binary predicate, whereas our proof of the lower bound in
Theorem 1.1 only needs the minimal requirement of a binary predicate.

6. Implications for regular languages. In this section we show that the lo-
cality results we proved in the previous sections have nice consequences for regular
languages. It is shown in [9] that each order-invariant sentence of FO(Succ) has an
equivalent FO(τs) formula over strings. In other words, over strings, a linear order
used in an order-invariant way does not bring any new expressive power. This is no
longer the case when arithmetic is allowed. For instance, in the presence of addition
the logic can express parity of the length of a string. To see this, consider the following
Arb-invariant sentence which expresses that the string has even length:

∃x, y y = x+ x ∧ ¬(∃z E(y, z)).

If addition is the only numerical predicate allowed, then it is shown in [37] that
addition-invariant FO(Succ) definable regular languages are exactly those expressible
in FO(τs, lm), where lm is the family of predicates testing the length of a string modulo
some fixed number. We now show that adding any other numerical predicate does
not allow new regular languages to be defined, i.e., we prove Theorem 1.3.

In order to do so, we make use of an equivalent characterization of definability of
regular languages in FO(τs, lm) in terms of closure under certain operations. We first
introduce those operations, which are themselves based on the notion of idempotence
for a regular language.

Let L be a regular language; a string e of A∗ is said to be idempotent (for L, but
we will omit L when it is understood from the context) if it is not the empty string
and for all u, v ∈ A∗, uev ∈ L iff ueev ∈ L. Let ω ∈ N be the smallest positive integer
such that for all u ∈ A+, uω is idempotent. Note that ω is well-defined.

A regular language L is closed under swaps if for all x, u, y, v, z, e, f ∈ A∗ such
that e, f are idempotent we have

(6.1) xeufyevfz ∈ L iff xevfyeufz ∈ L.

A regular language L is closed under transfers if for all x, u, y, v, z ∈ A∗ such that
|u| = |v| we have

(6.2) xuωuyvωz ∈ L iff xuωyvvωz ∈ L.

The following result was shown in [37].
Lemma 6.1 (see [37]). Let L be a regular language. Then L is definable in

FO(τs, lm) iff L is closed under transfers and under swaps.
Lemma 6.1 allows us to prove Theorem 1.3 by arguing that the regular languages

definable in Arb-invariant FO(Succ) are closed under transfers and swaps. In sec-
tion 6.1 we consider a generalization of the notion of closure under transfers for an
arbitrary language L, namely, closure under r-transfers, where r : N → R≥0 is a
function. We prove that Arb-invariant FO(Succ) is closed under (logn)O(1)-transfers.
In section 6.2 we use a pumping argument to show that for a regular language L,
closure under r-transfers for any function r implies closure under transfers. Using a
similar pumping argument, we show that for regular languages, Hanf locality implies
closure under swaps. The upper bound in Theorem 1.2 then concludes the proof of
Theorem 1.3.

1518 ANDERSON, VAN MELKEBEEK, SCHWEIKARDT, AND SEGOUFIN

x

z

y

u u u u

v v v v

v u . . .

u0 u1 u2 u2m

v0 v1 v2 v2m

s1 s2

︸ ︷︷ ︸
b1=0

︸ ︷︷ ︸
b2=1

Fig. 6.1. Constructing the string wb from b. (Note that the strings v and z are drawn right to
left.)

6.1. Closure under transfers. Let r ∈ N and w ∈ A∗. A string w′ ∈ A∗ is
obtained from w by an r-transfer operation if w = xuruyvrz and w′ = xuryvrvz for
some x, u, y, v, z ∈ A∗ with |u| = |v| �= 0.

Let r : N → R≥0. A language L is said to be closed under r(n)-transfers if there
exists a n0 ∈ N such that for all strings w,w′ ∈ A∗, with |w| = n > n0, if w

′ is
obtained from w by a r(n)-transfer operation, then we have

w ∈ L iff w′ ∈ L.

We begin by proving a lemma similar to Lemma 4.2 but specialized to the task
at hand. We show that an Arb-invariant FO(Succ) sentence that can distinguish
strings separated by a transfer can be used to solve the hard promise problem from
Theorem 2.3.

Lemma 6.2. Let m ∈ N. Let x, u, y, v, z be strings over A with |u| = |v|. Let
w := xu3m+1yv3m+1z and w′ := xu3myv3m+2z. Suppose C is a circuit that accepts
all strings in Rep(w) and rejects all strings in Rep(w′); then there is a circuit C̃
with the same size and depth as C that distinguishes |b|1 = m and |b|1 = m + 1 for
b ∈ {0, 1}2m.

Proof. Let b := b1b2 . . . b2m be a string of 2m Boolean variables. We design a
string wb that is easy to compute from b and has the following property:

If |b|1 = m, then wb ∼= w.
If |b|1 = m+ 1, then wb ∼= w′.

Once we have such a string wb, we argue as follows. Consider any binary encoding
Γb ∈ Rep(wb). When |b|1 = m, C(Γb) accepts because wb ∼= w. Similarly, when
|b|1 = m+1, C(Γb) rejects because wb ∼= w′. Thus, C̃(b) := C(Γb) yields the required
circuit provided Γb is sufficiently easy to compute from b. We construct the string wb
and a representation Γb ∈ Rep(wb) as follows. Let

(6.3) wb = xu4m+1−|b|1yv2m+1+|b|1z.

We construct wb as in Figure 6.1.
Add the strings x, y, and z to wb (this includes the vertices, internal edges, and

labels). Construct 2m + 1 copies of the strings u and v and add them to wb. Call

LOCALITY FROM CIRCUIT LOWER BOUNDS 1519

these copies u0, u1, . . . , u2m and v0, v1, . . . , v2m, respectively. Add edges from x to u0,
u2m to y, y to v2m, and v0 to z, i.e., connect the vertex at the end of the former
string to the vertex at the beginning of the latter. Construct 2m strings of length
|u| = |v| with no labels and add them to wb. Call these strings s1, . . . , s2m. Observe
that wb contains exactly |w| = |w′| vertices thus far, though wb itself is not yet a
string because not all edges or labels have been set.

For each i ∈ [2m],
1. if bi = 0, connect vi to si, si to vi−1, and ui−1 to ui and label si as v;
2. if bi = 1, connect ui−1 to si, si to ui, and vi to vi−1 and label si as u.

Note that the wb constructed is a string of length |w| = |w′| and can be written
as in (6.3). Since the presence of each edge and the value of each label depend on at
most one bit of b, the string wb can be encoded in binary Γb ∈ Rep(wb) so that each
bit of the encoding is either a constant or a literal from b. (See the proof of Lemma 4.2
for more details.) This allows us to define the circuit C̃(b) := C(Γb), which has depth
and size no larger than C, and completes the proof.

With this lemma we can prove that Arb-invariant FO(Succ) is closed under
(logn)O(1)-transfers following the same approach as in the proof of Theorem 1.1.

Lemma 6.3. If L is a language definable in Arb-invariant FO(Succ), then there
is a c ∈ N such that L is closed under (logn)c-transfers.

Proof. The proof is immediate from Lemma 6.2 and Theorem 2.3 via the same
type of manipulation that proves Theorem 1.1.

6.2. Definability under Arb-invariance. We now use Lemma 6.3 to show
that a regular language is definable in Arb-invariant FO(Succ) iff it is definable in
FO(Succ, lm). The “only if” direction is straightforward as any predicate of the
form lm can be expressed in Arb-invariant FO(Succ). (Actually, only addition is
needed.) For the “if” direction we show that a pumping argument combined with
Hanf (logn)O(1)-locality and (logn)O(1)-transfers implies closure under swaps and
transfers, and we can conclude using Lemma 6.1.

Proof of Theorem 1.3. As L is definable in Arb-invariant FO(Succ), by Theo-
rem 5.1 there is a constant c ∈ N such that L is Hanf (logn)c-local. Hence there is a
constant n0 such that for all strings w,w′ with |w| = |w′| > n0, w ≡(logn)c w

′ implies
w ∈ L iff w′ ∈ L.

Consider x, u, y, v, z, e, and f as in the hypothesis for closure under swaps. As e
and f are idempotents we have for all i ∈ N, xeiuf iyeivf iz ∈ L iff xeufyevfz ∈ L.
Take i large enough so that i · |e|, i · |f | ≥ (log |xe2iuf2iye2ivf2iz|)c ≥ (log n0)

c. Notice
that xe2iuf2iye2ivf2iz ≡(logn)c xe

2ivf2iye2iuf2iz via the bijection sending, respec-
tively, xei, eiyf i, eiuf i, eivf i, and f iz to their corresponding substring in the other
string. Hence by Theorem 5.1 we have xe2iuf2iye2ivf2iz ∈ L iff xe2ivf2iye2iuf2iz ∈
L. But again, as e and f are idempotents, this implies xeufyevfz ∈ L iff xeufyevfz ∈
L. Therefore L is closed under swaps.

The pumping argument for closure under transfers is identical. By Lemma 6.3
there are constants c and n0 such that L is closed under (log n)c-transfers for strings
of length bigger than n0.

Consider x, u, y, v, z as in the hypothesis for closure under transfers. As uω and
vω are idempotents we have for all i ∈ N, xuω·iuyvω·iz ∈ L iff xuωuyvωz ∈ L.
Take i large enough so that i · ω ≥ (log |xuω·iuyvω·iz|)c ≥ (logn0)

c. Hence we can
apply closure under (logn)c-transfers and by Lemma 6.3 we have xuω·iuyvω·iz ∈ L iff
xuω·iyvvω·iz ∈ L. But again, as uω and vω are idempotents, this implies xuωuyvωz ∈
L iff xuωyvvωz ∈ L. Therefore L is closed under transfers.

1520 ANDERSON, VAN MELKEBEEK, SCHWEIKARDT, AND SEGOUFIN

This concludes the proof of Theorem 1.3.

7. Further research. We end with a few suggestions for further research.
We have established the precise level of locality of Arb-invariant FO formulas for

the Gaifman notion of locality. As pointed out in [18], “It would be interesting to see
a small complexity class like uniform AC0 . . . captured by a logic.” This remains an
open problem—recall that although Arb-invariant FO does capture AC0, it does not
have an effective syntax. Note that over regular languages, we do have an effective
syntax, as we have shown that Arb-invariant FO(Succ) has exactly the same expressive
power as FO(τs, lm).

Recall that order-invariant FO queries are Gaifman local with a constant local-
ity radius [17], whereas our Theorem 1.1 shows that Arb-invariant FO queries are
Gaifman local with a polylogarithmic locality radius. We also constructed, for any
constant c, formulas with locality radius larger than (log n)c only using the numerical
predicates of addition + and multiplication × (cf. Remark 4.8). It is an open question
whether multiplication is really necessary for constructing such formulas. The authors
of [17] conjectured that this is indeed the case—in fact, they conjectured that Arb-
invariant FO queries that only use the numerical predicate of addition + (so-called
addition-invariant FO queries) are Gaifman local with a constant locality radius.

A further open question is whether our upper bound for Gaifman locality also
holds for Hanf locality on arbitrary structures. We have established this bound for
string structures only. We believe that a similar argument should also work for tree
structures. We end with a sketch of that argument.

Hanf locality for trees. We indicate here how the proof of section 5 could be
adapted to the tree case. We would introduce two kinds of swaps, a “vertical swap”
and an “horizontal swap.” The vertical r-swap resembles the r-swap operation for
strings. It is based on four nodes of the tree, all aligned on a path from its root to
one of its leaves and such that the r-neighborhood of the first node (resp., second
node) is identical to the r-neighborhood of the third node (resp., fourth node). It
then swaps the corresponding parts of the tree. The horizontal r-swap considers two
nodes having the same r-neighborhoods and such that the subtrees rooted at those
nodes do not intersect. It then swaps the two subtrees.

To prove that sets of trees defined by Arb-invariant sentences are closed under
vertical and horizontal (log n)O(1)-swaps one could proceed as in the proof of Lemma
5.4. That is, first show that it is enough to consider disjoint neighborhoods and then
solve the disjoint neighborhoods case using a reduction to Gaifman locality.

The link between these swap operations and Hanf locality could be proved using
the same ideas as for the proof of Lemma 5.2.

As before, it follows almost by definition that horizontal and vertical r-swap
operations do not change the ≡r-class of a tree as each of these swaps preserves
r-neighborhoods.

For the opposite direction we would prove that if two trees are in a same ≡r-
class, then there is a sequence of (r − 1)-swap operations transforming one into the
other using the same inductive argument as in the proof of Lemma 5.2. We recall
the sketch of Lemma 5.2 and adapt it to trees to illustrate the respective role of
the two swap operations. Assuming that t ≡r t′, we would transform by induction
t′ using (r − 1)-swap operations in order to embed larger and larger prefixes of t
within t′. Over trees, a prefix is a set of nodes closed under the parent function and
an embedding is a function on nodes preserving r-neighborhoods and the ancestor
relationship. Eventually t itself will embed into t′ and because |t| = |t′| this implies

LOCALITY FROM CIRCUIT LOWER BOUNDS 1521

that t = t′ as desired. For the induction step, consider the largest prefix u of t that
can embed in t′ via some embedding h. Let i be any boundary node of u, i.e., a node
of u having a child i′ not in t, and let j := h(i). Because t ≡r t′, there is a node
j′ in t′, outside the image of h, that has the same r-neighborhood as i′. Using the
maximality of u, which rules out the case j < j′, we distinguish two cases.

In the first case we assume that j′ < j, i.e., j′ is an ancestor of j. Let i1 be
the node of u such that h(i1) < j′ and no descendant of i1 has this property. As
h(i1) < j′ < j, by maximality of i1 there is a child i′1 of i1 such that in t′ we have
h(i1) < j′ < h(i′1) ≤ j. As in the string case we derive, from the known child-parent
relationships and the fact that an embedding preserves r-neighborhoods, equalities
between suitable (r − 1)-neighborhoods and can apply a vertical (r − 1)-swap. We
would then observe that the resulting tree embeds a prefix of t strictly bigger than u
(it now also encompass i′) and that it remains in the same ≡r-class. The induction
can continue from here.

The second case is when j and j′ are not related by the ancestor relationship. But
then j′ and a child of j have the same (r − 1)-neighborhood and their corresponding
subtrees do not intersect. We can therefore apply a horizontal (r−1)-swap operation.
If the resulting tree now embeds i′, and all its ancestors, and remains in the same ≡r-
class, it may not embed a prefix of t strictly bigger than u. This situation happens
only when the subtree rooted at j′ contains a node in the image of h. We cope
with this situation as follows. Let i1 be the node of u such that h(i1) < j′ and no
descendant of i1 has this property. Then all the children of i1 that are in the domain
of h have their image under h inside the subtree of j′. Let k be a child of i1. Notice
that its (r − 1)-neighborhood is the same as the one of the children of i1. Therefore,
after the initial horizontal (r − 1)-swap between j′ and some child of j, we can now
apply another horizontal (r − 1)-swap between k and the corresponding child of i1,
putting the subtree rooted in k below i1 preserving the descendant relationship for
this part of u. All children of i1 could be treated this way independently because their
subtrees do not intersect. Eventually, we would obtain a tree embedding at least u
and i′ and remaining in the same ≡r-class. The induction can continue from here.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their helpful feedback.

REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases, Addison-Wesley, Reading,
MA, 1995.

[2] M. Ajtai, Σ1
1-formulae on finite structures, Ann. Pure Appl. Logic, 24 (1983), pp. 1–48.

[3] M. Ajtai, First-order definability on finite structures, Ann. Pure Appl. Logic, 45 (1989),
pp. 211–225.

[4] N. Alon and R. B. Boppana, The monotone circuit complexity of boolean functions, Combi-
natorica, 7 (1987), pp. 1–22.

[5] M. Anderson, D. van Melkebeek, N. Schweikardt, and L. Segoufin, Locality of queries
definable in invariant first-order logic with arbitrary built-in predicates, in Proceedings
of the International Colloquium on Automata, Languages and Programming (ICALP),
Lecture Notes in Comput. Sci. 6756, Springer, Berlin, 2011, pp. 368–379.

[6] A. E. Andreev, On a method for obtaining lower bounds for the complexity of individual
monotone functions, Soviet Math. Dokl., 31 (1985), pp. 530–534.

[7] D. Beauquier and J.-É. Pin, Factors of words, in Proceedings of the International Colloquium
on Automata, Languages and Programming (ICALP), Lecture Notes in Comput. Sci. 372,
Springer, Berlin, 1989, pp. 63–79.

[8] M. Benedikt and L. Segoufin, Regular tree languages definable in FO and FOmod, ACM
Trans. Comput. Log., 11 (2009).

1522 ANDERSON, VAN MELKEBEEK, SCHWEIKARDT, AND SEGOUFIN

[9] M. Benedikt and L. Segoufin, Towards a characterization of order-invariant queries over
tame structures, J. Symbolic Logic, 74 (2009), pp. 168–186.

[10] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking, MIT Press, Cambridge,
MA, 1999.

[11] A. Durand, C. Lautemann, and M. More, Counting results in weak formalisms, in Cir-
cuits, Logic, and Games, Dagstuhl Seminar Proceedings, Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

[12] H.-D. Ebbinghaus and J. Flum, Finite Model Theory, Springer, Berlin, 1999.
[13] R. Fagin, L. J. Stockmeyer, and M. Y. Vardi, On monadic NP vs. monadic co-NP, Inform.

and Comput., 120 (1995), pp. 78–92.
[14] M. Furst, J. Saxe, and M. Sipser, Parity, circuits, and the polynomial-time hierarchy, Math.

Systems Theory, 17 (1984), pp. 13–27.
[15] H. Gaifman, On local and non-local properties, in Proceedings of the Herbrand Symposium,

Logic Colloquium 1981, J. Stern, ed., 1982, pp. 105–135.
[16] M. Grohe and S. Kreutzer, Methods for algorithmic meta theorems, in Model Theoretic

Methods in Finite Combinatorics, M. Grohe and J. Makowsky, eds., Contemp. Math. 558,
American Mathematical Society, Providence, RI, 2011.

[17] M. Grohe and T. Schwentick, Locality of order-invariant first-order formulas, ACM Trans.
Comput. Log., 1 (2000), pp. 112–130.

[18] M. Grohe, Fixed-point definability and polynomial time, in Proceedings of the Conference
for Computer Science Logic (CSL), Lecture Notes in Comput. Sci. 5771, Springer, Berlin,
2009, pp. 20–23.

[19] W. Hanf, Model-theoretic methods in the study of elementary logic, in The Theory of Models,
J. W. Addison, L. Henkin, and A. Tarski, eds., North-Holland, Amsterdam, 1965, pp. 132–
145.

[20] J. Håstad, Computational Limitations for Small-Depth Circuits, Ph.D. thesis, MIT, Cam-
bridge, MA, 1986.

[21] L. Hella, L. Libkin, and J. Nurmonen, Notions of locality and their logical characterizations
over finite models, J. Symbolic Logic, 64 (1999), pp. 1751–1773.

[22] N. Immerman, Relational queries computable in polynomial time, Inform. Control, 68 (1986),
pp. 86–104.

[23] N. Immerman, Languages that capture complexity classes, SIAM J. Comput., 16 (1987),
pp. 760–778.

[24] N. Immerman, Descriptive Complexity, Springer, Berlin, 1999.
[25] L. Libkin and J. Nurmonen, Counting and locality over finite structures: A survey, in Gen-

eralized Quantifiers and Computation, 9th European Summer School in Logic, Language,
and Information (ESSLLI’97), Lecture Notes in Comput. Sci. 1754, Springer, Berlin, 2000,
pp. 18–50.

[26] L. Libkin, Expressive power of SQL, Theoret. Comput. Sci., 296 (2003), pp. 379–404.
[27] L. Libkin, Elements of Finite Model Theory, Springer, Berlin, 2004.
[28] N. Linial, Y. Mansour, and N. Nisan, Constant depth circuits, Fourier transform, and

learnability, J. ACM, 40 (1993), pp. 607–620.
[29] J. A. Makowsky, Invariant definability (extended abstract), in Computational Logic and Proof

Theory, Proceedings of the 5th Kurt Gödel Colloquium (KGC’97), Lecture Notes in Com-
put. Sci. 1289, Springer, Berlin, 1997, pp. 186–202.

[30] J. A. Makowsky, Invariant definability and P/poly, in Proceedings of the Conference for
Computer Science Logic (CSL), Lecture Notes in Comput. Sci. 1584, Springer, Berlin,
1998, pp. 142–158.

[31] M. Otto, Epsilon-logic is more expressive than first-order logic over finite structures, J. Sym-
bolic Logic, 65 (2000), pp. 1749–1757.

[32] A. A. Razborov, Lower bounds on the monotone complexity of some boolean functions, Soviet
Math. Dokl., 31 (1985), pp. 354–357.

[33] B. Rossman, Successor-invariant first-order logic on finite structures, J. Symbolic Logic, 72
(2007), pp. 601–618.

[34] B. Rossman, On the constant-depth complexity of k-clique, in Proceedings of the Symposium
on the Theory of Computing (STOC), ACM, New York, 2008, pp. 721–730.

[35] B. Rossman, Average-Case Complexity of Detecting Cliques, Ph.D. thesis, MIT, Cambridge,
MA, 2010.

[36] N. Schweikardt, T. Schwentick, and L. Segoufin, Database theory: Query languages, in
Algorithms and Theory of Computation Handbook, 2nd ed., M. J. Atallah and M. Blanton,
eds., CRC Press, Boca Raton, FL, 2009.

LOCALITY FROM CIRCUIT LOWER BOUNDS 1523

[37] N. Schweikardt and L. Segoufin, Addition-invariant FO and regularity, in Proceedings of
the Symposium on Logic in Computer Science (LICS), IEEE Computer Society, New York,
2010, pp. 273–282.

[38] N. Schweikardt, Arithmetic, first-order logic, and counting quantifiers, ACM Trans. Comput.
Log., 6 (2005), pp. 634–671.

[39] T. Schwentick, On winning Ehrenfeucht games and monadic NP, Ann. Pure Appl. Logic, 79
(1996), pp. 61–92.

[40] D. Thérien and A. Weiss, Graph congruences and wreath products, J. Pure Appl. Algebra,
36 (1985), pp. 205–215.

[41] M. Vardi, The complexity of relational query languages, in Proceedings of the Symposium on
the Theory of Computing (STOC), ACM, New York, 1982, pp. 137–146.

[42] A. C.-C. Yao, Separating the polynomial-time hierarchy by oracles (preliminary version), in
Proceedings of the Symposium on Foundations of Computer Science (FOCS), IEEE Com-
puter Society, New York, 1985, pp. 1–10.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

