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Abstract

A problem of learning a prediction rule that
is approximated in a linear span of a large
number of reproducing kernel Hilbert spaces
is considered. The method is based on pe-
nalized empirical risk minimization with ¢;-
type complexity penalty. Oracle inequalities
on excess risk of such estimators are proved
showing that the method is adaptive to un-
known degree of “sparsity” of the target func-
tion.

1 Introduction

Let (X,Y) be arandom couple in Sx T, where (S, S), (T, 7T)

are measurable spaces. Usually, T' is either a finite set,
or a subset of R (in the first case, T' can be also identi-
fied with a finite subset of R). Most often, S is a com-
pact domain in a finite dimensional Euclidean space, or
a compact manifold. Let P denote the distribution of
(X,Y) and II denote the distribution of X. In a general
framework of prediction, X is an observable instance
and Y is an unobservable label which is to be predicted
based on an observation of X. Let ¢ : T'x R — Ry
be a loss function. It will be assumed in what follows
that, for all y € T, the function £(y;-) is convex. Given
f:S — R, denote

(Lo f)(a,y) =Ly, f(z))
and define the (true) risk of f as
EL(Y; f(X)) = P(Ce f).

The prediction problem then can be formulated as con-
vex risk minimization problem with the optimal predic-
tion rule f, defined as

[« = argming g pP(le f)

where the minimum is taken over all measurable func-
tions f : S — R. It will be assumed in what follows that

*Partially supported by NSF grant DMS-0624841.
TPartially supported by NSF grant DMS-0624841.

f« exists and it is uniformly bounded. We shall also as-
sume the uniqueness of f, in the following discussion.

In the case when the distribution P of (X,Y) is
unknown, it has to be estimated based on the training
data which (in the simplest case) consists of n inde-
pendent copies (X1,Y7),...,(X,,Y,) of (X,Y). Let P,
denote the empirical distribution based on the training
data. Then the risk P(£ e f) can be estimated by the
empirical risk

ntY Y, F(X) = Pa(le f).
Jj=1

The direct minimization of the empirical risk over
a large enough family of function f :.S — R almost in-
evitably leads to overfitting. To avoid it, a proper com-
plexity regularization is needed. In this paper, we will
study a problem in which the unknown target function
f« is being approximated in a linear span H of a large
dictionary consisting of N reproducing kernel Hilbert
spaces (RKHS) H1,...,Hy. It will be assumed that we
are given N symmetric nonnegatively definite kernels
K; :SxS—R, j=1,...,N and that H; is the RKHS
generated by K : H; = Hg,. Suppose, for simplicity,
that

Kj(z,z)<1l,zeS, j=1,...,N.

The space

H = 1.s.<j©1 H]-)

consists of all functions f : .S — R that have the follow-
ing (possibly, non-unique) additive representation

f=hH+...fn, [ €H;, fjEeH;, j=1,...,N

and it can be naturally equipped with the ¢;-norm:

N
1l = [l = mf{z TRy
j=1

N
:ij,fj GHj,jl,...,N}.
j=1

Additive models are a well-known special case of
this formulation. In additive models, S is a subset of



RN ie., X = (z1,...,2n), and H; represents a func-
tional space defined over z;. Several approaches have
been proposed recently to exploit the sparsity in addi-
tive models (Lin and Zhang, 2006; Ravikumar et al.,
2007; Yuan, 2007). In this paper, we consider an exten-
sion of /1 penalization technique to a more general class
of problem.

In particular, we study the following penalized em-
pirical risk minimization problem:

fe= argmin p oy, {Pn(ﬁof)—i—sﬂfﬂgl}, (1.1)

where € > 0 is a small regularization parameter. Equiv-
alently, this problem can be written as

N
Pute i+ a0+ |

According to the representer theorem (Wahba, 1990),

the components of the minimizer f; have the following
representation:

fi(@) = & K;(Xi,x)
=1

for some real vector &; = (é; : ¢ = 1,...,n). In other
words, (1.2) can be rewritten as a finite dimensional con-
vex minimization problem over (¢;; : ¢ = 1,...,n;j =
1,...,N).

It is known (see, e.g., Micchelli and Pontil, 2005)
that

1l = mt{ 11l : K € conv{E; :j = 1., N}},

where || - || x denote the RKHS-norm generated by sym-
metric nonnegatively definite kernel K and

N
conv{K;:j=1,...,N} = {chKj :
j=1

N
Cj ZO’ZCj = 1}

j=1

Therefore (1.2) can be also written as
(fAEv f(s) = argminKeconv(Kj,j:l,m,N)argminfGHK (13)
Patte 1)+ el

leading to an interpretation of the problem as the one
of learning not only the target function f,, but also the
kernel K in the convex hull of a given dictionary of ker-
nels (which can be viewed as “aggregation” of kernel
machines). Similar problems have been studied recently
by Bousquet et al. (2003), Cramer et al. (2003), Lanck-
riet et al. (2004), Micchelli and Pontil (2005) and Srebro
and Ben-David (2006) among others.

=argming egy o1 N (1.2)

The choice of £1-norm for complexity penalization
is related to our interest in the case when the total num-
ber N of spaces H; in the dictionary is very large, but
the target function f, can be approximated reasonably
well by functions from relatively small number d of such
spaces. The ¢;-penalization technique has been com-
monly used to recover sparse solutions in the case of sim-
ple dictionaries that consist of one-dimensional spaces
H,; (see, e.g, Koltchinskii (2007) and references therein).
The goal is to extend this methodology to more general
class of problems that include aggregation of large en-
sembles of kernel machines and sparse additive models.
In the case of additive models with the quadratic loss,
(1.1) becomes the so-called COSSO estimate recently
introduced by Lin and Zhang (2006).

For f € 'H, define the excess risk of f as
E(f) = PlUsf) = P(taf) = PUef) = inf Plteg)

Our main goal is to control the excess risk of f<, £(f°).

Throughout the paper, we shall also make the fol-
lowing assumption

n' <N<e"

for some ~y > 0.

It will also be assumed that the loss function £
satisfies the following properties: for all y € T, £(y, ) is
twice differentiable, ¢!/ is a uniformly bounded function
inT xR,

sup £(y;0) < 400, sup £, (y;0) < +00
yeT yeT

and

1
R) := — inf inf ¢/ 0, R>0. 1.4
T g o e ) 2 0 2 0 1)
We also assume without loss of generality that, for all
R, 7(R) < 1. These assumptions imply that

10! (y,u)| < Ly + L|u|, y e T,u € R

with some constants Ly, L > 0 (if £/, is uniformly bounded,
one can take L = 0).

The following bound on the excess risk holds under
the assumptions on the loss:

(1 fllse V I£lo)I1f = fll 2o
< &N <CIf = Felliom (1.5)

with a constant C' > 0 depending only on £. This bound
easily follows from a simple argument based on Taylor
expansion and it will be used later in the paper.

The quadratic loss £(y,u) := (y — u)? in the case
when 7' C R is a bounded set is one of the main exam-
ples of such loss functions. In this case, 7(R) = 1 for all
R. In regression problems with a bounded response vari-
able, more general loss functions of the form 4(y,u) :=
¢(y — u) can be also used, where ¢ is an even non-
negative convex twice continuously differentiable func-
tion with ¢” uniformly bounded in R, ¢(0) = 0 and



¢"(u) > 0, u € R. In classification problems, the loss
function of the form £(y,u) = ¢(yu) is commonly used,
with ¢ being a nonnegative decreasing convex twice con-
tinuously differentiable function such that, again, ¢’ is
uniformly bounded in R and ¢”(u) > 0, u € R. The loss
function ¢(u) = logy(1 + ™) (often referred to as the
logit loss) is a specific example.

We will assume in what follows that H is dense in
Lo(IT), which, together with (1.5), implies that

fig{P(ﬁ o f)= feiLr}zf(H)P(fo f)=P{ef,).

We also need several basic facts about RKHS which
can be found in, for example, Wahba (1990). Let K be
a symmetric nonnegatively definite kernel on S x .S with

sup K (z,z) <1
€S

and H g be the corresponding RKHS. Given a probabil-
ity measure Il on S, let ¢,k > 1 be the orthonormal
system of fuctions in Lo (IT) such that the following spec-
tral representation (as in Mercer’s theorem) holds:

K(z,y) =Y Mér(@)oe(y), 7,y € S,
k=1

which is true under mild regularity conditions. Without
loss of generality we can and do assume that {\;} is a
decreasing sequence, A\, — 0. It is well known that for
f7 g€ HK;

<f7 g>HK = Z <f7 ¢k>L2(H))\I<€ga ¢k>L2(H) '
k=1

Denote Hp C Hg the linear span of functions f € Hx
such that

i <f7 ¢k>%2(n) < 00
2
k=1 A

k

and let D : Hp +— Lo(II) be a linear operator defined
as follows:

Df ::Zm%, fe Hp.

k=1 Ak
Then we obviously have
<f7g>HK = <Dfag>L2(H)af S HDvg € HK

Given a dictionary {Hi,...,Hn} of RKHS, one
can quite similarly define spectral representations of ker-

nels K; with nonincreasing sequences of eignevalues {)\Eﬁj )

k > 1} and orthonormal in Lo (IT) eigenfunctions {gzﬁg )
k > 1}. This also defines spaces H D; and linear opera-
tors D; : Hp, +— Lo(II) such that

<f7g>Hj = <Djf7g>L2(H)7f S HDj7g € HKJ

2 Bounding the /;-norm

Our first goal is to derive upper bounds on ||f¢||,, that
hold with a high probability. In what follows we use the

notation

(o f)(x,y) =,y (),
where £, (y,u) is the derivative of ¢ with respect to the
second variable.

Theorem 1 There exists a constant D > 0 depending
only on € such that for all A > 1 and for all e > 0 and
f € H satisfying the condition

Alog N
e> Dlefllocy/ o \/4 max  sup [P (( e f)hy)l,
n ISESN | hg g, <1
the following bound holds
P{fsuel > 3||f|e1} SN @
In particular, if € > D||¢' ® /4| o1/ AIOTgN, then
IP{nfEnel > 3||f5/4||e1} SN (22)

Proof. By the definition of fﬂ for all f € H,

Po(Ce f*) el folle < PulCo f) +ell flle-

The convexity of the functional f +— P, (¢ e f) implies
that

Pa(le f) = Pa(te f) = P (¢ 0 ))(f7 = D).
As a result,

elflle <

A

ellflles + Pu (€0 )0 = F9))
[Pa (€@ F)ha) | %

IN

ellflle, + max sup
L ISESN iy g, <1

x| £ = flle,
It follows that

(5 — max  sup |P, ((¢' e f)hy) |) 1511y

1SESN || ng I3, <1

< <6+ max sup
LSESN [[hy |7, <1

P (0 ) |) 1l

Under the assumption

| P (€7@ f)hie) |,

€ > Imax sup
LSESN | ng I, <1

this yields
€ + MAX1<k<N SUD|py, |4, <1 [P (€7 @ f)hy) |

€ — MAaX1<k<N SUP|jp, ||5, <1 [P (€7 @ f)hy) |
(2.3)

15l <

[1fllex-



Note that
[P (€7@ f)hy) |

max  sup
1sk<N Il <1

< max sup

Py — P)({' & f)hy| +
1S’€SN||hkqus1|( )(¢" o f)hi|

[P ((¢" @ f)hu) |-

+ max sup
LSESN [yl <1

Also, for any i =1,..., N
sup [(P, — P)(¢' o f)h]

lPill, <1
= sup [n7! Z((W o /)X, Y5) (i, Ki(X5,-))m,
llhills, <1 j=1

—Ew-fNXfxnmmeXﬁ»H)

n

DN (R VRGTIE

j=1

B )OG V) )|

Hi
Using Bernstein’s type inequality in Hilbert spaces, we
are easily getting the bound

(P = P)(¢" @ f)he| <

max  sup
LSESN |l hg I3, <1

y AlogN \ ; Alog N
Cle o fllo (1 BN 22X

with probability at least 1 — N=4. As soon as

Alog N\ ; Alog N
2 A0 s o (| R SR

and

we get
[P (€ 0 i) | < €/2,

max  sup
LSESN | ng I, <1

and it follows from (2.3) that with probability at least
1-N—4
e+e/2

e
<
171 < 552

£ ller = 301 Ners

implying (2.1).

In particular, we can use in (2.1) f := f</%. Then,
by the necessary conditions of extremum in the defini-
tion of f&/4,

max sup
LSESN Yl hg [0, <1

P (€0 f ) | < 5.

and the second bound follows. 11

We now provide an alternative set of conditions on
€ so that (2.1) holds. By the conditions on the loss,

16" @ flloe < C(1+ Ll flloc) < C(L+ L fller)

with constants C, L depending only on ¢ (if ¢ is uni-
formly bounded, L = 0).

Since, by the necessary conditions of minimum at
e,
P((¢' e f)hy) =0, hy € Hi,k=1,...,N,
we also have

[P ((¢"® f)h) |

max sup
LSRSN by fleg, <1

= max sup
LSESN b e, <1

ClIf = fell Loy

where we used the fact that ¢, (y,u) is Lipschitz with
respect to u. Therefore, the condition on ¢ in (2.1) is

satisfied if
Alog N
e 2 D(1+ || flle)y)

If = fellLomy < €/D
with a properly chosen D (depending only on £).

P((€ 0 f) = (¢ o £) )l

IN

and

3 Oracle inequalities

In what follows we will assume that R > 0 is such that
Ife, <R

with probability at least 1—N 4. In particular, if f € H
satisfies the assumption of Theorem 1, i.e.,

- Alog N
e > Dl|t/ef ooy

then one can take R = 3||f]|¢,

We need some measures of dependence (in a prob-
abilistic sense) between the spaces H;,j =1,...,N. In
the case of a simple dictionary {hq,...,hy} consisting
of N functions (equivalently, N one-dimensional spaces)
the error of sparse recovery depends on the Gram matrix
of the dictionary in the space La(II) (see, e.g., Koltchin-
skii (2007)). A similar approach is taken here. Given
hj € Hj, j =1,...,N and J C {1,...,N}, denote
by k({h; : j € J}) the minimal eigenvalue of the Gram

[P (¢ f)h) |,

4 max sup
LSESN [y l2g, <1

matrix ({hi, h) o) Jand &({h; 1 j € J}) its max-
1,]€

imal eigenvalue. Let

A(T) = inf{k({h; 1§ € T}) : by € My, glnum = 1

and

R(J) = sup{ k({1 j € 1) by € Hy, gy = 1

Also, denote L ; the linear span of subspaces H;, j €
J. Let

o) = Sup{ (fs9) Lo

1o gl

:fELJ7g€LJC>

f#O,g#O}-



In what follows, we will consider a set O = O(My, M3)

of functions (more precisely, their additive representa-
tions) f = fi+---+fvEH, ffEH;, j=1,....,N
that will be called “admissible oracles”. Let J; := {j :
fj # 0} and suppose the following assumptions hold:

O1. The “relevant” part J; of the dictionary satisfies
the condition

K(Jr)
RN = 2y =M

0O2. For some [ > 1/2 and for all j € Jy

A < Mk k=1,2,...

Recall that D; is the linear operator defined in the
first section. Denote

1 I1D; £511%, )
)= Gy & 5,

jEJf
We are now in the position to state the main result

of this paper.

Theorem 2 There exist constants D, L depending only
ont (L =0 if £, is uniformly bounded) such that for all
A>1, for all f € O with card(Js) = d and for all

log N
n

e>D(1+LR)

with probability at least 1 — N—4
Ef)+2e ) (If5 I

J¢Js
d2B-1)/(28+1)

2
aarea - T U)de

)

Alog N
< TE(f) + K[ ‘f]
where K is a constant depending on £, R, My, Ma, || f1lco
and || f+]|oe-

The meaning of this result can be described as fol-
lows. Suppose there exists an oracle f such that the
excess risk of f is small (i.e., f provides a good ap-
proximation of f,); the set J; is small (i.e., f has a
sparse representation in the dictionary); the condition
(O1) is satisfied, i.e. the relevant part of the dictionary
is “well posed” in the sense that the spaces H;,j € J;
are not “too dependent” among themselves and with
the rest of the spaces in the dictionary; the condition
(02) is satisfied, which means “sufficient smoothness”
of functions in the spaces H;,j € Jy; finally, the com-
ponents fj,7 € Jy of the oracle f are even smoother
1D; fill Loy (my

[FZIE
properly bounded. Then the excess risk of the empir-
ical solution fg is controlled by the excess risk of the
oracle as well as by its degree of sparsity d and, at the

same time, f€ is approximately sparse in the sense that

in the sense that the quantities ,J € Jy are

Zjle || £5 l7¢; is small. In other words, the solution ob-

tained via fi-penalized empirical risk minimization is
adaptive to sparsity (at least, subject to constraints de-
scribed above).

Proof. Throughout the progf we fix representa-
tions f = fi+---+ fy and f© = fT +---+ [} (and we
use (1.2) to define f5). The definition of f; implies that
for all f € H,

Po(te f*) +elfolle < Pa(Co ) +el £l
Therefore,
Ef) +e D If5ll
JE¢Jy
< &) +e Y (il = 155 lx,)
jGJf
+(P—P,)(lef—1lef).
We first show that
E(F) +2e D 15l
JEJy
2x(d
Th(Jr)(1 = p*(Jy))
+2(P — Po) (e f— Lo f?),

< 3E(f)+

where .
T=T([fllec V I/ lloc V [ fllo0)-

Let s;(f;) be a subgradient of f; — |[|f;[%, at
[i € Hj, ie. si(f;) = Hfjfffﬁj if f; # 0 and s;(f;) is an
arbitrary vector with [[s;(f;)|lz; < 1 otherwise. Then
we have
il = 15l < (si (o) fi = Fim,
(Djs;(f3), fi = f7) paam

D85 (F)llLamlf5 = F£ N Lo

IN

It follows that
)+ > £l

J€Jy
1/2
< 5(f)+6(zIDij(fj)II%2(n)> x
jle
X 1/2
y (Z I, - fflliz(n)>
JjE€Jf

+H(P—P,)(lef—Lef)

It can also be shown that (see Koltchinskii, 2007, Propo-
sition 1)

R 1/2
(Z I, - f;||%2<n>)

jEJf

1 re
S \/H(Jf)(l — pQ(Jf)) ||f - f HLQ(H)'



This allows us to write

E(f)+e X If5ln,

JEJy

< E(f)+€\//€(Jf)(1—p2(Jf))|f_fE|L2(H)

+H(P—Po)(Cef—Lef)
Then, using the bounds

If = FEllracn < I = Fll o + 175 = fell o
and
E) = 7f = Flliya, €)= 7IF = £llf,
we get

EF) +e 3 15l

JEJg

< &(f)+e \/ OB i(i)d

)

(Lo f—Lef)
Applying the inequahty ab <a?/2+b2 / 2, we show that

. C(f)d E(f)
()X =p?(Tp)) V7

&) ¢(f)d 5
-2 2me(Jp)(1—p2(Jp))

\/ E(f°)
) | C(f)d E
> 2RI =2 )

This leads to the following bound
Ef)+e Y 15l

Similarly,

<

J¢Js
£(f°) ¢(f)d
< &(f)+ 2 +27H(Jf)(1—P2(Jf))€2
+5(f) N ¢(f)d £2

2 2mR(Jf)(1 = p*(Jp))
+(P—P)(lef—Clef).
It easily follows that
E(f)+2e Y 15l
JE s

2¢(f)d 22
Th(Jp)(1 = p*(Jy))
+2(P = P,)(Ce f—lef).

< 3E(f)+

Denote

an(8, A, R) := sup{|(Pn —P)leg—1Lef):

lg = Fllzaan <6, llgslg, < Allglle, < R}~
Jé€J¢

If ||f€||e

ey < R (which holds with probability at least
);

then we have

E(f) +2¢ Y IF5 I,

2

2¢(f)d 2
< 38+ TR(Jf)(1 - pz(‘]f))g

200 (175 = Fleaans D 155 e, R)

J€Jy

with 7 = 7(RV || flloo V || fx]loo). We use Lemma 8 to get

E(f)+2e ) 15l

J€Jy
2¢(f)d 2
Tr(J)(1 = p2(Jy))

R(Jr)
TO+LE) {\/ R0 - 22070

. [dm max;ey Z m)\(j)
XHfE _ f||L2 () W —i—R\/ J€Jf k> k +
() log
R, fmax iy == + 3 15l %
log(N

J€Jy
—d)+1
n

AlogN
<5 = fllzoqny/

Alog N
FOR( + LR)%

3E(f) +

+C(1+LR) x

(Lemma 8 can be used only under the assumption R <
eV: however, for very large R > eV, the proof of the
inequality of the theorem is very simple). Recall that

15 = Flraan < 4 2L 422

Under the assumption

(3.1)



we get

E(f)+e Y If5ln,

J€Jy
2w(f)d
RN — 2T

7(Jf)
C(l1+ LR
(L )[\/ R(IN - 2T
/ fe /Ef dm+R
wn Ew# 21
jEJy n

< 3&8(f)+2

o1+ LR \/ f \/ AIOgN
Al N
+CR(1+ LR) ‘;g (3.2)

Then we have

C(1+LR)\/ zenl 17 T \/ fs./dm

< e R0 LR <Jf><1— Trp
and
dm
C(1+LR)\/ T 1_ ) \/ \/
1 IQ
—& C? .
< 8N +20A+LRY <Jf><1— T
Similarly,
C(l—i—LR)\/g(f)\/Ak;gN
< 15(ff)+2(J2(1+/:R)2Al°7gN
4 n
and
C(1+ LR) E(Tf) AIZgN
< ié‘(f)+202(1+LR)2AlOTgN.

This yields the following bound

SEF) +e S 1l

JEJg
2¢(f)d
Tr(Jp)(1 = p2(Jy))

e

(4)
+R\/man€Jf %:lom )‘kj n

~ flogd
R /%XA%)\/OEL} +4C%(1 + LR)? x
J f

><AlogN Alog N
n n

2
7
5 e+

IN

E(f)+2

dm
(Jp)) n

+CR(1+ LR) (3.3)

It remains to take

nl/ A1) /(1 + LR)? —2/(26+1)
e ()

R(J;) —2/(28+1)
(s )
K(Jg) (L = p*(Jy))
to get the following bound (with some constant C' > 0)

E)+2e ) If I,

JEJg

m = X

¢(f)d
Tr(Jp)(1 = p2(Jy))
21\ (26-1)/(28+1)
+C((1 + LR) )

T

< TE(f)+8 g2 +

X

R(Jf) >(2ﬁ1)/(25+1) y

X
<“(Jf)(1 —0*(Jy))
d(26-1)/(28+1)

(3.4)

Alog N
+OR(1+LR)) (;Lg ,

which implies the result. ll

4 Appendix

The Rademacher process is defined as

=n! Z g;9(X;)
j=1

where {¢;} are i.i.d. Rademacher random variables in-
dependent of {X;}.

We will need several bounds for Rademacher pro-
cesses indexed by functions from RKHS (some of them
are well known; see, e.g., Mendelson (2002) and Blan-
chard, Bousquet and Massart (2007)). We state them
without proofs for brevity.

First we consider a single RKHS Hy where K is

a kernel with eingenvalues \;, and eigenfunctions ¢y, (in
Lo(1)).



Lemma 3 The following bound holds:

<A
E sup |Ra(h)] < /2=

(IRl 5 <1 n

Let m > 1. Denote by L the linear span of the
functions {¢x : k = 1,...,m} and by L* the closed
linear span (in Ly (II)) of the functions {¢y : & > m+1}.
Py, Py will denote orthogonal projectors in Lo(II) on
the corresponding subspaces.

Lemma 4 For allm > 1,

1 A
Ihllrey, <1 -

E sup

We now turn to the case of a dictionary {H; : j =

., N} of RKHS with kernels {K; : j = 1,...N}.
As before, denote {)\,(f )ik > 1} the eigenvalues (ar-

ranged in decreasing order) and {gb](cj )k o> 1} the
Lo (IT)-orthonormal eigenfunctions of K;. The following
bounds will be needed in this case.

Lemma 5 With some numerical constant C,

Ry (hy)| < \/maxlsJ‘SN S A
n\'ty =

E max  sup

FSISN gl <1 n

log N
—

+C

Proof. We use bounded difference inequality to

get for each j = 1,..., N with probability at least 1 —
e—t—logN

Cyt+log N
sup  |Ro(hy)| <E  sup  |Rp(hy)|+ 082
(st gl <1 Vn

By the union bound, thls yleldb with probability at least
1 — Ne t7losN —1

max sup |Rn(h )|< max E sup
LSTEN |1l <1 ISTSEN lhg I <1

+C’\/{f n Cy/log N
vn N
which holds for all ¢ > 0 and implies that

E max sup |R,(h;)| < max E sup |R,(hj)]
LSISN lhy gy <1 ISV gy <t

_'_C\/logN
Vn

with a properly chosen constant C' > 0. Note that, by
Lemma 3,

E sup [Ralhy)] < 1) ==
I I, <1 n

[ R (1)

which implies the result. Nl
As before, denote Lj,le the subspaces of Lo(II)

spanned on {(béj) i k < m} and {gzb,(cj) : k> m}, re-
spectively, Pr, 7PL being the corresponding orthogonal

projections. Recall that sequence {\], '} is nonincreasing.
The following statement is a uniform version of Lemma

4.

Lemma 6 With some numerical constant C,

E max  sup
LSTEN s lla, <1

€]
< 2\/maX1§j§N D b1 AR

n

+9 [ max A9 [log N +C 2logN—i—C’
1<5<n ™" n n

[Ra(Pahy)|

Lemma 7 The following bound holds:
Esup{ 8o~ 1)+ o~ Fleay < 8ol < 7.

| k(Jy) dm
> lgillwg < A} = C\/H(Jf)(l - /JQ(Jf))(S n

JEJ¢

(J)
1
+2R\/maXJle Zk>m k _;'_CR\/HlaT)\m oz
JjeJy
1
+CA\/Og—
n

Proof. First note that

sonf a5

Jj=1

fﬂ)‘ 19— Fllaan <8 llglle <

Z lgjll#; < A} < Esup{’Rn( Z(gj — fj))’ .
i#Js J€Js
lg = Flleaa <6, lglle, < B3 gl < A} n

Jé€Js

Bsup | (305 - ) | lo = Fleay < .l < R
JEJ g
S llgslbe, < A}

JEJy



The second term can be bounded as follows:

o5

2

> lahe, <2} < Bawn{ [ (3 ol )

J¢Jy J¢Js

gj)\ g = Fleaan < 6 lglles < B,

S llgsllr, < A sl < 1} <
J€Jy
log(N —d) +1

AEmax sup |R,(hj)| < CAy ——F——,
s sup_ [Ra(0) -

where we used Lemma 5. As to the first term, we use
the bound

saan{ (S5

jedy

JE€J¢ JjEJf

19— Floam < a}

- 1)) |slal, < =}

—HEsup{‘ (Z Pr.(g

JjE€J

Note that

|E 2 = 5],y <700 TPt

jeJy Jj€Jy

< R(Jy) Z lg; — fJHLz(H) Jf HZ

j€Jy j€Jy

s -

.

HL -
<
2(I0)

K(Jy) 52
K(Jp) (1= p2(Jp))

Also, Z]EJ Pr,(g; — f;) takes values in the linear span
of U;e Js L; whose dimension < dm. This yields the

followmg bound
)| o= Ty <

k(Jy) dm
< C\/ SN0 — 2TV

e (55 -

7€Jf

)| o= Fleaan < lalls < 7.

> oy, <8} < Bsuwd [, (T 21,0 - 1)

Finally, we use Lemma 6 to get

]Esup{ (Z Pr:(g )‘ lglle, < R}
€Jf
Esup | (3 s - fj||HjPL]+hj)] gl < R

jEJf

IN

sl < 1,5 = 1,...,N}

< 2REmax sup |R,(PpLhj)]

JEIT |1l <1

()
< 2R\/maxj@fz’“>“’“ +c\/m\/logd.
n JjeJy n

Combining the above bounds we get

Esup{mn(g — Ol g = Floaan < 6 llglle < R,

| k(Jy) dm
D lgsllag < A} = C\/H(Jf)(l —7TV

JEJ¢

+2R\/maXJle D km AE L CR [ax AU ogd
n JjE€Jy n

log(N —d)+1 I
—

+CA

Recall that
an(8, A, R) :=
sup{|<Pn _P)(teg—tef)ige gw,A,R)},
where
G(5,A,R) :=
{g: 19— Flloaa <6 3 lgsllng, < A llglle, < R}.
J€Js

We will assume that R < eV
sumption N > n7).

(recall also the as-

Lemma 8 There exist constants C, L depending only
on the loss £ (L =0 if £ is bounded) such that for all

nY2<§<2R, nY?<A<R (4.1)

and for all A > 1 the following bound holds with proba-
bility at least 1 — N—4

k(Jy) "
w(Jp) (1= p2(Jy))

(4)
) dﬂ + R\/maxjejf Zk>m Ak] +
V n n
R fax @) /logd N log(N —d) +1
jedg " n

Alog N Alog N
+C(1 + LR)3y/ ‘;Lg +CR(1+ LR)OTg. (4.2)

an(8,A,R) < C(1 + LR) {\/




Proof. First note that, by Talagrand’s concentra-
tion inequality, with probability at least 1 —e~¢
an(0; A1 R) <
t CR(14+LR)t
2| Ean(8; A, R) + C(1 + LR)(S\/;—i- CRA+ LR))

n

To apply Talagrand’s inequality we used the assump-
tions on the loss function. It follows from these assump-
tions that for all g € G(9, A, R)

[og—to iy < CO+LR) g fllLym) < C+LR)S
and also
[€eg—"Leflloc < CR(1+ LR).

Next, by symmetrization inequality,

Ean (5 A, R) < 2Esup{|Ru((fag—taf : g € G(6, A, ). }.

We write u = g — f and
leg—lef=Le(f+u)—Lef

and observe that the function
[-R,R|>ur—Le(f+u)—Lef

is Lipschitz with constant C(1 + LR). This allows us
to use Rademacher contraction inequality (Ledoux and
Talagrand, 1991) to get

Ea,(3; A, R) < O(1 + LR) x
x]Esup{’Rn(g — f)’ 1g € g(é,A,R)}.

The last expectation can be further bounded by Lemma
7. As a result, we get the following bound that holds
with probability at least 1 — e~ :

(08 S O+ B w TV

| ) —
+R\/maxj€,]f Zk>m k + R. /max )\grjz) logd +
n JjE€Jy n

A log(Nd)H} +O(1+ LR)a\/z

n
CR(1+ LR)t
+7

The next goal is to make the bound uniform in
nY/2<§<2R and n 2 < A<R. (4.4)
To this end, consider
§j:==2R277, Aj:=R277.

We will replace t by ¢ + 2loglog(2R+/n) and use bound
(4.3) for all 6 = §; and A = Ay, satisfying the conditions
(4.4). By the union bound, with probability at least

1 — log(R+v/n)log(2R/n) exp{—t — 2log log(QR\/ﬁ)}

>1—et

)

=: B, (6, A, R;t).(4.3)

the following bound holds for all §;, Ay satisfying (4.4):

vn
It is enough now to substitute in the above bound t :=
Alog N and to use the fact that the functions ., (6, A, R)

and Bn(é,AJ%; t) are nondecreasing with respect to 0
and A. Together with the conditions R < eV and N >
n?, this implies the claim. Il

~ 2
an(d;, Ak, R) < B, (6j, Ag, Rt + 210glog(R>>.
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