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Abstract: Regularization with radial basis functions is an effective method in many

machine learning applications. In recent years classes of radial basis functions

with compact support have been proposed in the approximation theory literature

and have become more and more popular due to their computational advantages.

In this paper we study the statistical properties of the method of regularization

with compactly supported basis functions. We consider three popular classes of

compactly supported radial basis functions. In the setting of estimating a periodic

function in a white noise problem, we show that regularization with (periodized)

compactly supported radial basis functions is rate optimal and adapts to unknown

smoothness up to an order related to the radial basis function used. Due to results

on equivalence of the white noise model with many important models including

regression and density estimation, our results are expected to give insight on the

performance of such methods in more general settings than the white noise model.

Key words and phrases: method of regularization, nonparametric estimation, radial

basis functions, rate of convergence, reproducing kernel.

1. Introduction

Radial basis functions (RBF’s) are popular tools in function approxima-

tion and have been used in many machine learning applications. Examples in-

clude RBF regularization networks and, more recently, support vector machines.

See, for example, Girosi, Jones and Poggio (1993), Smola, Schölkopf and Müller

(1998), Wahba (1999) and Evgeniou, Pontil and Poggio (2000). Traditional ra-

dial basis functions have global support. In recent years RBF’s with compact

support have been proposed in the approximation theory literature (Wu (1995);

Wendland (1995); Buhmann (1998)), and have become more and more popular

in function approximation and machine learning applications due to their com-

putational advantages. In this paper, we first present a brief overview of the

commonly used compactly supported radial basis functions, and then give some

theoretical results on the asymptotic properties of the method of regularization

with compactly supported RBF’s.

The radial basis functions have the form Φ(x) = φ(‖x‖) for vector x ∈ Rd.

Here φ is a univariate function defined on [0,∞) and ‖·‖ is the ordinary Euclidean
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norm on Rd. To be applicable in the method of regularization, a radial basis

function must satisfy that K(x, y) ≡ Φ(x−y) is positive definite or conditionally

positive definite. A function K(x, y): Rd ×Rd → R is said to be positive definite

if for any positive integer n, and any distinct x1, . . . , xn ∈ Rd, we have

n
∑

j=1

n
∑

k=1

ajakK(xj , xk) > 0 (1.1)

for any nonzero vector (a1, . . . , an). It is said to be conditionally positive def-

inite of an order m if (1.1) holds for any nonzero vector (a1, . . . , an) satisfying
∑n

i=1 aip(xi) = 0 for all polynomials p of degree less than m. Thus positive

definiteness is the same as conditionally positive definiteness of zero order. Any

positive definite or conditional positive definite function K(·, ·) is associated with

a reproducing kernel Hilbert space of functions on Rd. For an introduction to the

(conditional) positive definite functions and reproducing kernel Hilbert spaces,

the readers are referred to Wahba (1990). Schaback (1997) provided a survey of

reproducing kernel Hilbert spaces corresponding to radial basis functions. We

say a radial basis function Φ (or the corresponding φ) is (conditionally) positive

definite if K(x, y) = Φ(x − y) = φ(‖x − y‖) is (conditionally) positive definite.

For a positive definite radial basis function Φ, the squared norm in the as-

sociated reproducing kernel Hilbert space HΦ can be written as J(f) = (2π)−d/2
∫

Rd |f̃(ω)|2/Φ̃(ω)dω for any function f ∈ HΦ. Here f̃ is the Fourier transform of

f ,

f̃(ω) = (2π)−
d
2

∫

Rd

f(x)e−ixT ωdx,

and, similarly, Φ̃ is the the Fourier transform of Φ. For a conditional radial basis

function, J(f) is a squared semi-norm.

Let f be a function of interest in a nonparametric function estimation prob-

lem. The method of regularization with a radial basis function takes the form

min
f∈HΦ

[L(f,data) + λJ(f)], (1.2)

where L is the empirical loss, often taken to be the negative log-likelihood. The

smoothing parameter λ controls the trade-off between minimizing the empirical

loss and obtaining a smooth solution. For example, in nonparametric regression

yj = f(xj) + δj , j = 1, . . . , n, (1.3)

where xj ∈ Rd, j = 1, . . . , n, are the regression inputs, yj’s are the responses,

and δj ’s are independent Gaussian noises. In this case we may take L(f,data) =
∑n

j=1(yj − f(xj))
2 in (1.2).
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In many situations including regression and generalized regression, the repre-

senter theorem (Kimeldorf and Wahba (1971)) for regularization over reproducing

kernel Hilbert spaces guarantees that the solution to (1.2) over HΦ falls in the

finite dimensional space spanned by {Φ(· − xj), j = 1, . . . , n}. For example, in

the regression problem, when Φ is positive definite the solution to (1.2) has the

form f̂ =
∑n

j=1 cjΦ(x − xj), and the coefficient vector c = (c1, . . . , cn)′ can be

solved by minimizing

‖y − Kc‖2 + λc′Kc. (1.4)

Here, with a little abuse of notation, K stands for the n by n matrix (Φ(xi−xj)),

and y stands for the vector (y1, . . . , yn)′. It is clear that the solution to (1.4) can

be obtained by solving the linear system

(K + λI)c = y. (1.5)

Traditional radial basis functions are globally supported. Common examples

are given by φ(r) = r2m log(r) (thin plate spline RBF), φ(r) = e−%r2/2 (Gaussian

RBF), φ(r) = (c2+r2)1/2 (the multiquadrics RBF), and φ(r) = (c2+r2)−1/2 (the

inverse multiquadrics RBF). In recent years radial basis functions with compact

support have been constructed. These RBF’s are computationally appealing and

have become more and more popular in practical applications. In Section 2 we

give a brief introduction to them that focuses on aspects that are most relevant

to statistical applications.

In Sections 3−4 we present some results on the asymptotic properties of

the method of regularization with (periodized) compactly supported radial basis

functions. The asymptotic properties will be studied in the problem of estimating

periodic functions in the nonparametric white noise model:

Yn(t) =

∫ t

−π
f(u)du + n− 1

2 B(t), t ∈ [−π, π], (1.6)

where B(t) is a standard Brownian motion on [−π, π] and we observe Yn =

(Yn(t),−π ≤ t ≤ π). We consider the situation where the function f belongs to a

certain Sobolev ellipsoid of periodic functions on [−π, π], Hm(Q), with unknown

m:

Hm(Q) = {f ∈ L2(−π, π) : f is 2π-periodic,

∫ π

−π
[f(t)]2 + [f (m)(t)]2dt ≤ Q}.

(1.7)

It is well known that spaces of periodic functions induce periodic reproducing

kernels, see Schaback (1997) and Smola, Schölkopf and Müller (1998), for ex-

ample. Therefore, for the estimation of periodic functions, it is appropriate to

consider the periodic version of the radial basis functions. For any function
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Φ, the corresponding periodized function with period 2π is given by: Φ0(s) =
∑

k∈Zd Φ(s − 2πk), where Z is the set of integers.

Consideration of the white noise model is motivated by the results on its

equivalence to nonparametric regression (Brown and Low (1996)), density es-

timation (Nussbaum (1996)), spectral density estimation (Golubev and Nuss-

baum (1998)), and nonparametric generalized regression (Grama and Nussbaum

(1997)). We choose to work with periodic function estimation because it allows

a detailed and unified asymptotic analysis. We believe the results obtained in

this paper also give insights on the statistical properties of radial basis function

regularization in more general situations. For simplicity, we work in the case

of univariate white noise model, but similar results can be obtained in higher

dimensional situations.

Our results in Section 3 show that for (1.6) with f ∈ Hm(Q), the method

of regularization with periodized compactly supported radial basis functions

achieves the optimal rate of convergence, and that this is true whenever m does

not exceed a certain number known for the specific compactly supported radial

basis function used, and the tuning parameter λ is appropriately chosen. In Sec-

tion 4 we show that the smoothing parameter λ can be chosen adaptively in our

situation without any loss in the rate of convergence. Section 5 contains some

discussion. The technical proofs are given in the Appendix.

Throughout this paper, an ∼ bn means that there exists 0 < c1 < c2 < ∞

such that c1 < an/bn < c2, for all n = 1, 2, . . ..

2. Radial Basis Functions with Compact Support

In this section we briefly review those aspects of commonly used, compactly

supported radial basis functions that are most relevant to machine learning and

statistical applications. The review is mostly based on material in the papers by

Wendland (1995), Schaback and Wendland (2000), and the book by Buhmann

(2003). Interested readers are referred to them for further details.

There are several popular classes of radial basis functions with compact sup-

port. These classes of radial basis functions are constructed by finding compactly

supported radial symmetric functions with positive (or nonnegative and not iden-

tically zero) Fourier transforms. Let Φ(x) ≡ φ(‖x‖) be a bounded integrable

radially symmetric function from Rd to R, with Fourier transform Φ̃. Then for

any n ∈ Z, distinct x1, . . . , xn ∈ Rd, and nonzero vector (a1, . . . , an), it is easy

to show that,

n
∑

j,k=1

ajakφ(‖xj − xk‖) = (2π)−
d
2

∫

Rd

|

n
∑

j=1

aje
ixT

j ω|2Φ̃(ω)dω. (2.1)
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Since the exponentials are linear independent on every open subset of Rd, we see

from (2.1) that if Φ̃ is positive (or nonnegative and not identically zero), then Φ

is a positive definite radial basis function. In fact, this is a special case of the

famous Bochner’s theorem that completely characterizes translation invariant

positive definite functions through Fourier transforms.

2.1. Wendland functions

A particularly interesting part of the work on radial basis functions with

compact support is due to Wendland, initiated in part by Wu (1995). The

Wendland functions are of the form

φ(r) =

{

p(r) if 0 ≤ r ≤ 1,

0 if r > 1,
(2.2)

with a univariate polynomial p. They are supported in the unit ball, but a

different support can easily be achieved by scaling.

Define an operator I by Ig(r) ≡
∫ ∞
r g(t)tdt, and write φl(r) = (1 − r)l

+.

Then the Wendland functions are

φd,k(r) = Ikφb d
2
c+k+1(r),

where Ik stands for the I-operator applied k times, and bsc stands for the max-

imum integer less than or equal to s. It is easy to see that φd,k is compactly

supported, and is a polynomial within its support. It has been shown (Wendland

(1995)) that Φd,k(x) ≡ φd,k(‖x‖) has strictly positive Fourier transform except

when d = 1 and k = 0, in which case the Fourier transform is nonnegative and

not identical zero. Thus in all cases φd,k(r) gives rise to a positive definite radial

basis function. It was also shown in Wendland (1995) that φd,k(r) is 2k times

continuously differentiable, and is of minimal polynomial degree among all posi-

tive definite radial basis functions of the form (2.2) that is 2k times continuously

differentiable.

The explicit forms of Wendland functions can be computed directly from the

definition or, alternatively, from the formula (Wendland (1995)):

Ik(1 − r)`
+ =

k
∑

i=0

βi,kr
i(1 − r)`+2k−i

+ ,

with coefficients β0,0 = 1, and

βj,k+1 =

k
∑

i=j−1

βi,k[i + 1]i−j+1

(` + 2k − i + 1)i−j+2
, 0 ≤ j ≤ k + 1,
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if the term for i = −1 and j = 0 is ignored. Here (·)k and [·]k are defined

by [q]−1 = (1 + q)−1, (q)0 = [q]0 = 1, (q)k = q(q + 1) · · · (q + k − 1) and

[q]k = q(q − 1) · · · (q − k + 1).

By direct calculation we obtain the following examples of Wendland func-

tions: if ` = bd/2c + k + 1, we have

φd,k(r) =















(1 − r)`
+ when k = 0,

(1 − r)`+1
+ {(` + 1)r + 1}/(` + 1)2 when k = 1,

(1 − r)`+2
+ {(` + 1)(` + 3)r2 + 3(` + 2)r + 3}/(` + 1)4 when k = 2.

(2.3)

2.2. Buhmann functions

A different technique for generating compactly supported radial basis func-

tions is due to Buhmann (1998, 2000). Let g(β) = (1 − βµ)ν+,with 0 < µ ≤ 1/2

and ν ≥ 1, and define

φd,γ,α(r) =

∫ ∞

r2

(1 −
r2

β
)γβαg(β)dβ,

and Φd,γ,α(x) ≡ φd,γ,α(‖x‖), where d is the dimension of x. It is easy to see that

φd,γ,α(r) is compactly supported. It is supported in the unit ball, but a different

support can easily be achieved by scaling. It has been shown (Buhmann (2003))

that

1. For d = 1, the Fourier transform of Φd,γ,α(x) is everywhere positive if (i)

γ ≥ 1, −1 < α ≤ γ/2, or (ii) γ ≥ 1/2, −1 < α ≤ min(1/2, γ − 1/2);

2. For d > 1, the Fourier transform of Φd,γ,α(x) is everywhere positive if γ ≥

(d − 1)/2 and −1 < α ≤ [γ − (d − 1)/2]/2.

Thus φd,γ,α induces positive definite radial basis functions and Φd,γ,α(x)∈C1+d2αe

(Rd), where dse stands for the minimum integer greater than or equal to s.

For example, if d = 1 and we take µ = 1/2, ν = 1, α = 1/2, and γ = 1, we

get

φ1,1,1/2(r) =

{

−1
2r4 + 4

3r3 − r2 + 1
6 if 0 ≤ r ≤ 1,

0 if r > 1,

This function is twice continuously differentiable. If d = 2 and we take µ = 1/2,

ν = 1, α = 0, and γ = 2, we get

φ2,2,0(r) =

{

4r2 log r + r4 − 16
3 r3 + 4r2 + 1

3 if 0 ≤ r ≤ 1,

0 if r > 1.
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This function is once continuously differentiable.

2.3. Product functions

A well-known property of positive definite functions is that the product of

positive definite functions is positive definite. See, for example, Proposition 3.12

of Cristianini and Shawe-Taylor (2000). This suggests a strategy for constructing

new compactly supported radial basis function based on known ones. If φ1(r) is

a positive definite radial basis function and φ2(r) is a positive definite function

radial basis function with compact support, φ(r) = φ1(r)φ2(r) is a positive defi-

nite radial basis function with compact support. This approach was proposed in

Gaspari and Cohn (1999). As an example, we take φ1 to be the Gaussian kernel

e−%r2/2 and φ2 to be a Wendland or Buhmann function.

3. Rates of Convergence in Sobolev Spaces

To study the convergence rates of the method of regularization with pe-

riodized radial basis function in the white noise problem (1.6), we first trans-

form the problem into a form that is particularly amenable to analysis. Let

{ξ0(t) = (2π)−1/2, ξ2`−1(t) = π−1/2 sin(`t), and ξ2`(t) = π−1/2 cos(`t)} be the

classical trigonometric basis in L2(−π, π), and let θ` = (f, ξ`) be the correspond-

ing Fourier coefficients of f , where (f, φ) =
∫ π
−π f(t)ξ(t)dt denotes the usual

inner product in L2(−π, π). By converting the functions into the corresponding

sequences of Fourier coefficients, we can see that the white noise problem (1.6)

is equivalent to the following Gaussian sequence model:

y` = θ` + ε`, ` = 0, 1, . . . , (3.1)

where ε`’s are independent N(0, 1/n) variables. The condition that f belongs to

Hm(Q), the Sobolev ellipsoid of periodic functions defined in (1.7) with unknown

m and Q, is equivalent to the condition that

∞
∑

`=0

ρ`θ
2
` ≤ Q, (3.2)

where ρ0 = 1, and ρ2`−1 = ρ2` = `2m + 1.

To study the method of regularization (1.2) with the periodized radial ba-

sis function Φ0(s) =
∑

k∈Z Φ(s − 2πk), we need the norm or seminorm of the

reproducing kernel Hilbert space corresponding to Φ0. The classes of compactly

supported radial basis functions we consider in this paper are positive definite,

therefore we seek the norm in the reproducing kernel Hilbert space.

Proposition 1. Let Φ be a positive definite radial basis function with compact

support, and Φ0 be the periodization of Φ: Φ0(s) =
∑

k∈Z Φ(s − 2πk). Then Φ0
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is positive definite and the norm in the reproducing kernel Hilbert space corre-

sponding to Φ0 is given by

‖f‖2 =

∞
∑

`=0

β`θ
2
` , (3.3)

where the θ’s are the Fourier coefficients of f , and β0 = (2π)−1/2[Φ̃(0)]−1,

β2`−1 = β2` = (2π)−1/2[Φ̃(`)]−1, ` = 1, 2, . . ..

Therefore the method of regularization with Φ0 corresponds to

min

∞
∑

`=0

(y` − θ`)
2 + λ

∞
∑

`=0

β`θ
2
` (3.4)

with β2`−1 = β2` = (2π)−1/2[Φ̃(`)]−1.

Theorem 1. Assume f ∈ Hm(Q) with m ≥ 1 in the white noise model (1.6).

Consider the method of regularization estimator θ̂ at (3.4) with β2`−1 = β2` =

(2π)−1/2[Φ̃(`)]−1.

1. If φ(r) = σ−1φd,k(r/σ) is a scaled Wendland radial basis function of compact

support with scale σ, and k ≥ 1, m ≤ 2k+2, then when λ(n) ∼ n−(2k+2)/(2m+1)

we have

sup
θ∈Hm(Q)

∑

`

E(θ̂` − θ`)
2 ∼ n− 2m

2m+1 .

That is, the optimal rate of convergence in the Sobolev space is achieved if the

smoothing parameter is appropriately chosen.

2. If φ(r) = σ−1φd,γ,α(r/σ) is a scaled Buhmann radial basis function of compact

support with scale σ, and m ≤ 3 + 2α, then when λ(n) ∼ n−(3+2α)/(2m+1) we

have

sup
θ∈Hm(Q)

∑

`

E(θ̂` − θ`)
2 ∼ n− 2m

2m+1 .

That is, the optimal rate of convergence in the Sobolev space is achieved if the

smoothing parameter is appropriately chosen.

3. If φ(r) = G(r)φ1(r) where G(r) = e−%r2/2 is the Gaussian radial basis function

and φ1 is a scaled Wendland function (or scaled Buhmann function) given in

part 1 (or 2), then

sup
θ∈Hm(Q)

∑

`

E(θ̂` − θ`)
2 ∼ n− 2m

2m+1

when the conditions of part 1 (or 2) hold.
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4. Adaptive Tuning

The proper choice of the tuning parameters depends on the unknown smooth-

ness order m of the estimand. In this section, we consider choosing the tuning

parameters λ and σ adaptively with Mallows’ Cp. We show that the tuning pa-

rameters chosen by the unbiased estimator of risk give rise to an estimator that

has the same asymptotic risk as the estimator with the optimal (theoretical)

tuning parameter. Thus no asymptotic efficiency is lost due to not knowing m.

Formally, we take a finite number of σ’s, σ1, . . . , σJ , and tune λ and σ

jointly over λ and σj ∈ {σ1, . . . , σJ}. In our asymptotic considerations, a range

of [0, 1] for λ suffices, since λ should go to zero. In practice we may use a slightly

larger range. The tuning of σ in addition to λ is motivated by the common

practice of tuning both λ and σ in the implementation of radial basis function

regularization. All our asymptotic results go through if we fix one σ and only

tune λ (this corresponds to J = 1 in our setting). However, with a finite sample

size it is desirable to tune both λ and σ. In fact, it is clear that in the finite

sample situation, fixing σ at a value that is too small compared to the distances

between sample points leads to poor estimation performance.

The tuning is based on the Cp criterion. Writing τ` = (1 + λβ`)
−1, our

estimator is θ̂` = τ`y`. We can express the risk of our estimator as

∑

E(θ̂` − θ`)
2 =

1

n

∞
∑

`=0

τ2
` +

∞
∑

`=0

(1 − τ`)
2θ2

` .

Now an unbiased estimator for θ2
` is y2

` − (1/n). Plugging in, we get that

∞
∑

`=0

[(τ2
` − 2τ`)(y

2
` −

1

n
) +

1

n
τ2
` ] =

∞
∑

`=0

[(τ2
` − 2τ`)y

2
` +

2

n
τ`] (4.1)

is an unbiased estimator of
∑

E(θ̂` − θ`)
2 −

∑

θ2
` . We choose λ∗ and σ∗ that

minimize (4.1), and use the corresponding estimator θ̂∗. Li (1986, 1987) estab-

lished the asymptotic optimality of Cp in many nonparametric function estima-

tion methods, including the method of regularization. Kneip (1994) studied the

adaptive choice among ordered linear smoothers with the unbiased risk estimator.

A family of ordered linear smoothers satisfy the condition that for any member

θ̂` = τ`y`, ` = 0, 1, . . ., of the family, we have τ` ∈ [0, 1], ∀`; and for any two

members of the family τ`y` and τ ′
`y`, ` = 0, 1, . . . ., we have either τ` ≥ τ ′

`, ∀`, or

τ ′
` ≥ τ`, ∀`.

Theorem 2. Consider (3.1) and the method of regularization (3.4) with φ(r)

defined as in Theorem 1(1), 1(2) or 1(3). Suppose λ∗ and σ∗ minimize (4.1)



434 YI LIN AND MING YUAN

over λ ∈ [0, 1] and σ ∈ {σ1, . . . , σJ}, and θ̂∗ is the corresponding method of

regularization estimator. Then

sup
θ∈Hm(Q)

∑

E(θ̂∗` − θ`)
2 ∼ n− 2m

2m+1 .

Therefore the adaptive method of regularization with compactly supported

radial basis function estimator θ̂∗ achieves the optimal rate in Hm(Q). In the

case of product radial basis functions, one may want to tune %k ∈ {%1, . . . , %K}

as well as λ ∈ [0, 1] and σ ∈ {σ1, . . . , σJ}. The estimator obtained still achieves

the optimal rate in Hm(Q), as can be proved in similar fashion.

5. Discussion

Compactly supported radial basis functions have also been used in spatial

statistics to model and approximate spatial covariance. Gneiting (2002) is a

good source of compactly supported covariances. Furrer, Genton and Nychka

(2005) proposed a method to taper the spatial covariance function to zero be-

yond a certain range, using an appropriate compactly supported radial radial

basis function. This gives an approximation to the standard linear spatial pre-

dictor that is both accurate and computationally efficient. They show that their

approximate taper-based method makes it possible to analyze and fit very large

spatial data sets, and gives a linear predictor that is nearly the same as the exact

solution.

Radial basis function regularization has been shown to give excellent perfor-

mance in practical applications. Direct implementation with traditional globally

supported radial basis functions require a computation of order O(n3). Com-

pactly supported radial basis functions have computational advantages. The

results in this paper suggest that regularization with compactly supported radial

basis functions enjoy good statistical properties. Further study is needed to in-

vestigate these properties more generally. Another interesting research topic is

how to efficiently make use of their computational advantages. This is especially

important when analyzing large datasets. When the compactly supported radial

basis function is used in the method of regularization, the kernel matrix K in

(1.5), for example, is sparse. Sparse matrix computation can be used directly in

the non-iterative evaluation of the estimator in (1.5). This is the approach taken

in Zhang, Genton and Liu (2004). Another approach to improving computation

speed is to solve (1.5) with an iterative method, such as the conjugate gradi-

ent method. Due to the sparsity and positive definiteness of the linear system

(1.5), the conjugate gradient method is expected to be very effective. There have

been a number of effective proposals in the approximation theory literature for
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fast computation in function interpolation with compactly supported radial basis

functions. See, for example, Schaback and Wendland (2000) and Floater and Iske

(1996). It is promising that adapting these ideas for function approximation in

noise free situations to function estimation in noisy situations can lead to fast and

efficient machine learning and statistical methods based on compactly supported

radial basis functions.
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Appendix

Proof of Proposition 1. Applying Lemma 14 of Williamson, Smola and

Schölkopf (2001) (see also Lin and Brown (2004)), we get

Φ0(s − t) = (2π)−
1
2 Φ̃(0) +

∞
∑

`=1

2(2π)−
1
2 Φ̃(`) cos[`(s − t)],

which can be rewritten as

Φ0(s − t) = (2π)
1
2 Φ̃(0)ξ0(s)ξ0(t) +

∞
∑

`=1

(2π)
1
2 Φ̃(`)ξ2`−1(s)ξ2`−1(t)

+

∞
∑

`=1

(2π)
1
2 Φ̃(`)ξ2`(s)ξ2`(t),

where the ξj form the classical trigonometric basis in L2(−π, π). Then ξ`,

` = 0, 1, . . ., are the eigenvectors of the reproducing kernel Φ0(s − t), and the

corresponding eigenvalues are β−1
` , where β−1

0 = (2π)1/2Φ̃(0), β−1
2`−1 = β−1

2` =

(2π)1/2Φ̃(`), ` = 1, 2, . . . .. Now applying Lemma 1.1.1 of Wahba (1990), we get

that for any function f in the reproducing kernel Hilbert space induced by Φ0,

‖f‖2 =
∑∞

`=0 β`(f, ξ`)
2, and the proposition is proved.

Proof of Theorem 1(1). Since k ≥ 1, we have Φ̃d,k(ω) ∼ (1+‖ω‖2)−(1+2k+d)/2

(Theorem 2.1 of Wendland (1998)). Therefore, for our scaled Wendland function

Φ and d = 1, we have Φ̃(ω) = Φ̃d,k(σω) ∼ (1 + σ2ω2)−(k+1), and then β2`−1 =

β2` ∼ (1 + σ2`2)k+1.

Solving the minimization problem (3.4), we get the method of regularization

estimator θ̂` = (1 + λβ`)
−1y`. We consider the variance and bias of θ̂ separately.
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First, since λ ∼ n−(2k+2)/(2m+1), we have,

∑

`

varθ̂` =
1

n

∑

(1 + λβ`)
−2 ∼

2

n

∞
∑

`=0

[1 + λ(σ`)2k+2]−2

∼
2

n

∫ ∞

0
[1 + λ(σx)2k+2]−2dx

=
2

n
λ− 1

2k+2 σ−1

∫ ∞

0
(1 + y2k+2)−2dy

∼ n−1λ− 1
2k+2 σ−1 ∼ n− 2m

2m+1 .

For the bias part, we have

sup
θ∈Hm(Q)

∑

`

(Eθ̂` − θ`)
2 = sup

θ∈Hm(Q)

∞
∑

`=0

(1 + λ−1β−1
` )−2θ2

`

= sup
θ∈Hm(Q)

∞
∑

`=0

(1 + λ−1β−1
` )−2ρ−1

` (ρ`θ
2
` )

= Qmax
`

[(1 + λ−1β−1
` )−2ρ−1

` ]

∼ max
0≤`<∞

[{1 + λ−1(1 + σ2`2)−(k+1)}−2(1 + `2m)−1].

Here ρ2`−1 = ρ2` = 1 + `2m are the coefficients in the condition (3.2) of the

Sobolev ellipsoid Hm(Q). Define Bλ(`) = {1 + λ−1(1 + σ2`2)−(k+1)}2(1 + `2m).
Then

sup
θ∈Hm(Q)

∑

`

(Eθ̂` − θ`)
2 ∼ [min

`≥0
Bλ(`)]−1. (A.1)

Now Bλ(0) = (1 + λ−1)2 and

min
`≥1

Bλ(`) ∼ min
`≥1

{1 + λ−1(σ2`2)−(k+1)}2`2m

∼ min
x≥1

{1 + λ−1(σ2x2)−(k+1)}2x2m

= min
x≥1

{xm + λ−1σ−(2k+2)xm−(2k+2)}2.

If m = 2k + 2, then obviously the last expression is {1 + λ−1σ−(2k+2)}2 ∼ λ−2 =
λ−2m/(2k+2). When m < 2k+2, direct calculation shows that the minimum in the
last expression is achieved at x = (2k + 2 − m)1/(2k+2)m−1/(2k+2)λ−1/(2k+2)σ−1,

and the minimum is of order λ−2m/(2k+2). Since m ≤ 2k+2, we have min`≥0 Bλ(`)
∼ λ−2m/(2k+2).

From (A.1) and λ ∼ n−(2k+2)/(2m+1), we get

sup
θ∈Hm(Q)

E
∑

`

(θ̂` − θ`)
2 =

∑

`

varθ̂` + sup
θ∈Hm(Q)

∑

`

(Eθ̂` − θ`)
2 ∼ n− 2m

2m+1 .
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Proof of Theorem 1(2). We note that Φ̃d,γ,α(ω) ∼ (1 + ‖ω‖2)−(1+α+d/2)

(Buhmann (2003, p.158)). The rest of the proof is similar to that of Theorem

1(1).

Proof of Theorem 1(3). In the following, a = k+1 if φ1 is Wendland function

and a = α + 3/2 if φ1 is Buhmann function. We have

Φ̃(ω) =

∫ ∞

−∞
Φ̃1(s)G̃(ω − s)ds

∼

∫ ∞

−∞
(1 + σ2s2)−ae−

(s−ω)2

2% ds

∼ E(1 + σ2Z2
ω,%)

−a,

where Zω,% is N(ω, %). Since E(1 + σ2Z2
ω,%)

−a is a positive and continuous func-

tion in ω, when |ω| → ∞ we have E(1 + σ2Z2
ω,%)

−a = ω−2aE[1/ω2 + (σ +

σZ0,%/ω2)2]−a ∼ ω−2a. We get that Φ̃(ω) ∼ E(1 + σ2Z2
ω,%)

−a ∼ (1 + ω2)−a.

The rest of the proof is similar to that of Theorem 1(1).

Proof of Theorem 2. It is easy to check that, for any fixed σ ∈ {σ1, . . . , σJ},

the method of regularization estimators with varying λ form a family of ordered

linear smoothers. Applying the result in Kneip (1994) (see also expression (15) in

Cavalier, Golubev, Picard and Tsybakov (2002)) shows that there exist positive

constants C1 and C2 such that, for any θ with
∑

θ2
l < +∞ and any positive

constant B, we have

∑

E(θ̂∗` − θ`)
2 ≤ (1 + C1B

−1)min
λ,σj

{
∑

E(θ̂` − θ`)
2} + n−1C2B. (A.2)

Therefore we have

sup
θ∈Hm(Q)

∑

E(θ̂∗` − θ`)
2

≤ (1 + C1B
−1) sup

θ∈Hm(Q)
min
λ,σj

{
∑

E(θ̂` − θ`)
2} + n−1C2B

≤ (1 + C1B
−1))min

λ,σj

sup
θ∈Hm(Q)

{
∑

E(θ̂` − θ`)
2} + n−1C2B.

Now take B = (log n)1/3 and the conclusion of the theorem then follows from

Theorem 1.
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