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a b s t r a c t

Simultaneously estimating multiple conditional quantiles is often regarded as a more
appropriate regression tool than the usual conditional mean regression for exploring the
stochastic relationship between the response and covariates. When multiple quantile
regressions are considered, it is of great importance to share strength among them.
In this paper, we propose a novel regularization method that explores the similarity
among multiple quantile regressions by selecting a common subset of covariates to model
multiple conditional quantiles simultaneously. The penalty we employ is a matrix norm
that encourages sparsity in a column-wise fashion. We demonstrate the effectiveness of
the proposed method using both simulations and an application of gene expression data
analysis.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Consider a general regression setting where y represents the response and x = (x1, . . . , xp)T represents a set of
predictors. Classical regression methods focus on recovering the conditional expectation E(Y | X). Quantile regression
(Koenker and Bassett, 1978) estimates the conditional quantile functions. Suppose we want to infer the 100τ% quantile
(say τ = 0.5) of the conditional distribution of the response (y) given covariates (x) based on n independent observations
(xi, yi)ni=1. Koenker and Bassett (1978) showed that one can estimate the conditional τ -quantile by minimizing

n∑
i=1

ρτ (yi − β0 − xTi β), (1)

where ρτ (t) = τ t+ + (1 − τ)t− is the so-called check function where subscripts ‘+’ and ‘−’ stand for the positive and
negative parts, respectively. Quantile regression has been widely used in many different areas such as economics (Koenker
and Hallock, 2001) and survival analysis (Koenker and Geling, 2001) among others. Nonlinear estimates can be obtained by
the samemethod, except that we replace the covariates xwith some basis functions such as splines (He et al., 1998; Koenker
et al., 1994; Yuan, 2006). In this paper we consider the variable selection problem in the linear quantile regression model.

Variable selection in conditional mean regression has received a lot of attention in recent years. Several regularization
techniques have been invented for doing automatic variable selection, including the lasso (Tibshirani, 1996) and the SCAD
(Fan and Li, 2001). Similar to the conditional mean regression, variable selection is also crucial in quantile regression
when the number of predictors is large. A sparse model is much more interpretable in practice and often enjoys improved
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estimation accuracy by eliminating irrelevant variables. Koenker (2004) considered using the L1 quantile regression to
automatically select significant predictors in quantile regression. The L1 quantile regression model is estimated by

β̂(L1norm) = argmin
β0,β

n∑
i=1

ρτ (yi − β0 − xTi β) + λ‖β‖1, (2)

where ‖β‖1 =
∑p

j=1 |βj| is the L1-norm penalty (or lasso penalty) on β. When the tuning parameter λ is appropriately cho-
sen, some components of β̂ will be shrunk to exact zero, and the corresponding variables are excluded from the final model.

In this paper, we consider the so-called simultaneous multiple quantiles regression (SMQR, for short), where we are
interested in estimating multiple conditional quantile functions simultaneously. As demonstrated in Koenker (2005), a
main advantage of quantile regression over classical mean regression is its ability to examine multiple conditional quantile
functions, and provide a more comprehensive description of the relationship between the response and the covariates.
Another example of SMQR arises naturally when jointly modelling multiple responses.

When considering multiple regression models such as SMQR, it is of great importance to share strength among different
models as illustrated in Breiman and Friedman (1997). It is of particular interest, when there is a large number of covariates,
to find a common set of variables that can be used for all models under investigation (Turlach et al., 2005). In the context of
mean regression, Turlach et al. (2005) considered the problem of selecting a subset of 770 wavelengths that are suitable as
predictors for 14 different but correlated infra-red spectrometry measurements, and they proposed a novel regularization
method to perform simultaneous variable selection. Complementary to this earlier work, we study simultaneous variable
selection in multiple quantiles regression. Simultaneous model selection is actually more relevant in quantile regression
than in classical mean regression, considering that estimating multiple quantiles of a single response is routinely done in
practice. It is often desirable to select a common set of significant variables for modeling a sequence of quantiles of the
response. More generally, it is natural, in many applications, that the set of variables used to model different conditional
quantiles overlaps with each other. The goal of this paper is to develop amodel selectionmethod that is capable of exploring
such similarity and performing simultaneous model selection in multiple quantiles regression whenever simultaneous
model selection is desirable.

A naive approach to model selection in multiple quantiles regression will separately fit individual L1 quantile regression
models and take a union of the selected variables from each regression model. This naive approach cannot guarantee that
the same set of variables are selected within each L1 quantile regression model. Furthermore, the naive approach may also
be suboptimal in terms of predictive accuracy in some problems. For example, consider the classicalmodel underlying linear
quantile regression

y = x1β1 + · · · + xpβp + ε. (3)

We omit the intercept for brevity. Clearly, all conditional quantiles can be described by the same set of variables. By
recognizing this fact, estimation can be greatly improved. The naive approach does not share information across the quantile
regression models, hence the results might be suboptimal compared with the methods which combine strengths from
multiple models. It is well known that when estimating multiple statistical models, it is beneficial to share information
across them (Breiman and Friedman, 1997). The same wisdom applies to multiple quantiles regression, as demonstrated in
Section 4.

To overcome the drawbacks of the naive approach, we introduce a new regularization method for performing
simultaneous model selection in multiple quantiles regression. We propose to penalize the sum of the check functions
of multiple quantile regression models by a norm of the coefficient matrix that encourages column-wise sparsity. As the
regularization parameter varies, the penalty does simultaneous variable selection via continuous shrinkage. The rest of the
paper is organized as follows. In Section 2 we present methodological details of the penalizedmultiple quantiles regression.
Section 3 discusses the implementation details of the proposed method. Simulation results are presented in Section 4 and
we also demonstrate the utility of the proposed method on the cardiomyopathy data in Section 5.

2. Penalized multiple quantiles regression

To fix the idea, consider first estimating multiple quantiles of a single response. Suppose we want to estimate the
τ1, . . . , τG quantiles of the conditional distribution y|x. Denote by β(k)

= (β
(k)
1 , . . . , β

(k)
p )T the coefficients of the covariates

in the τk conditional quantile function of y given x, where k = 1, 2, . . . ,G. We also write β(j) = (β
(1)
j , . . . , β

(G)
j )T for each

j = 1, 2, . . . , p. We say β(j) the coefficient vector of variable xj. Let β be the coefficient matrix whose (k, j) element is β
(k)
j .

With such a notation we define a norm of β as follows

‖β‖1∞ =

p∑
j=1

max
k

{|β
(k)
j |}, (4)

where the subscript reflects the fact that we take the vector L1 norm of the column-wise L∞ norms. The newmatrix norm (4)
was considered in Turlach et al. (2005). It is similar in spirit to the F∞-norm penalty used by Zou and Yuan (2008), which is a
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vector norm rather thanmatrix norm. It is interesting to note that in the context of variable selection formulti-class support
vector machines, Zhang et al. (2008) also considered using a similar penalty function as ours to select the same variables for
discriminating all classes.

Instead of estimating β(k) separately, we propose estimating them simultaneously by minimizing

β̂ = argmin
β

G∑
k=1

{
n∑

i=1

ρτk(yi − xTi β
(k))

}
+ λ‖β‖1∞. (5)

The estimated conditional τk-quantile of y(k) is xTβ̂
(k)

.
When G = 1, then (5) reduces to the L1 quantile regression. Just as the lasso penalty does automatic variable selection,

the new matrix norm penalty enables one to perform simultaneous variable selection. If the regularization parameter λ is
appropriately chosen, some β̂j will be exact zero, that is, every component of β̂j is exactly zero. Hence variable xj is excluded
from all G quantile regression models. This nice property comes from the singular nature of the penalty. As pointed out in
Fan and Li (2001), singularity (at the origin) of the penalty function plays a central role in automatic feature selection.

The idea can be naturally generalized to more complicated situations with multiple quantiles and/or multiple responses.
Given n training samples {(xi, y

(1)
i , . . . , y(G)

i )}ni=1, we can estimate the τk quantile of y(k) conditioning on x, 1 ≤ k ≤ G by

β̂ = argmin
β

G∑
k=1

{
n∑

i=1

ρτk(y
(k)
i − xTi β

(k))

}
+ λ‖β‖1∞. (6)

Here the responses y(k), k = 1, . . . ,G can be the same or different depending on the problem. For instance, if we want
to study the relationship between the height (y(1)) and weight (y(2)) of infants and a set of medical/biologial/genetical
measurements (x), then it is quite reasonable to use the same variables to model the height and weight. To that end, we
can employ the above SMQR method.

In some applications, we may just want to penalize a subset of the variables. For instance, x includes 1 and we do not
penalize the intercept. This is actually a common practice, as done in our numerical examples. The proposed method can be
easily modified to meet this requirement. Let S denote the subset of variables which are to be penalized. Similar to before,
we estimate β by

β̂ = argmin
β

G∑
k=1

{
n∑

i=1

ρτk(y
(k)
i − xTi β

(k))

}
+ λ‖βS‖1∞. (7)

We should point out here that (4) is not the only penalty function that can be used to do simultaneous model selection.
One possible alternative is the grouped lasso penalty proposed by Yuan and Lin (2006). Consider (β1

j , . . . , β
G
j ) as a group of

coefficients. The grouped lasso penalty on βj is defined as
√∑G

k=1(β
k
(j))

2 = ‖β(j)‖2. We consider

argmin
β

G∑
k=1

{
n∑

i=1

ρτk(y
(k)
i − xTi β

(k))

}
+ λ

p∑
j=1

‖β(j)‖2. (8)

Yuan and Lin (2006) suggested using an iterative procedure to solve the grouped lasso, which could be expensive for high
dimensional problems. In contrast, we show in the next section that using the new matrix norm penalty allows us to take
advantage of efficient linear programming tools to fit the penalized multiple quantiles regression model. Computational
efficiency is a major reason for us to employ the new matrix norm penalty in penalized multiple quantiles regression.

3. Implementation

In this sectionwe show that (5) can be solved efficiently by linear programming techniques.We also consider data-driven
methods for selecting the regularization parameter λ.

3.1. Computing algorithm

To derive an equivalent linear program for (5), we introduce the following slack variables

ξ
(k)
i = ρτk(y

(k)
i − xTi β

(k)), (9)

Mj = max
k

{|β
(k)
j |}. (10)
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It is clear that Mj is the maximum absolute value of the coefficient vector of variable xj. Write β
(k)
j as (β

(k)
j )+ − (β

(k)
j )−

where (β
(k)
j )+ and (β

(k)
j )− denote the positive and negative parts of β

(k)
j , respectively. Using this notation, (5) amounts to

minimizing

G∑
k=1

n∑
i=1

ξ
(k)
i + λ

p∑
j=1

Mj (11)

subject to

ξ
(k)
i ≥ −(1 − τk)

(
y(k)
i −

p∑
j=1

xi,j[(β
(k)
j )+ − (β

(k)
j )−]

)
,

ξ
(k)
i ≥ τk

(
y(k)
i −

p∑
j=1

xi,j[(β
(k)
j )+ − (β

(k)
j )−]

)
,

Mj ≥ (β
(k)
j )+ + (β

(k)
j )−,

ξ
(k)
i ≥ 0, (β(k)

j )+ ≥ 0, (β(k)
j )− ≥ 0

for all 1 ≤ i ≤ n, 1 ≤ k ≤ G and 1 ≤ j ≤ p. Note that (11) is a linear program and can be solved using a standard
linear programming solver. For example, in R the lpSolve package provides functions for solving linear programs. We have
implemented the procedure in R by using lpSolve package and our R code is available for interested readers upon request.

3.2. Regularization parameter selection

The choice of the tuning parameter plays an important role in determining the performance of the proposed estimate.
Koenker et al. (1994) suggested using Schwartz Information Criterion (SIC) as the tuning method for quantile regression.
SIC can be written as

SIC(λ) = log

(
1
nG

G∑
k=1

n∑
i=1

ρτk(y
(k)
i − f̂ (k)

λ (xi))

)
+

log(nG)

2nG
pλ, (12)

where pλ is the effective degrees of freedom of the fitted model, which is similar to the effective degrees of freedom in
ordinary regression (Meyer and Woodroofe, 2000). For a given tuning parameter λ, we define a set Eλ as

Eλ =

{
(k, i) : y(k)

i − f̂ (k)
λ (xi) = 0

}
. (13)

Following Li and Zhu (2008) we call Eλ the elbow set. Let |Eλ| denote the size of the set Eλ. Koenker et al. (1994) conjectured
that |Eλ| is the effective degrees of freedom in the quantile regression. Li et al. (2007) and Li and Zhu (2008) provided a
rigorous proof to that conjecture. Following their results, pλ should be taken as the size of elbow set. Therefore, we have

SIC(λ) = log

(
1
nG

G∑
k=1

n∑
i=1

ρτk(y
(k)
i − f̂ (k)

λ (xi))

)
+

log(nG)

2nG
|Eλ|. (14)

Let λ̂ be the minimizer of SIC(λ), i.e.,

λ̂ = argmin
λ

SIC(λ).

Then our fit is {f̂ (k)
λ̂

(x)}Gk=1.
Alternatively, we can also use nonparametric model assessment and selection methods such as cross-validation and

bootstrap (Hastie et al., 2001) to select the tuning parameter. According to our experience, SIC generally has comparable
performance with these methods but is much faster to compute.

4. Simulation

In this section we conduct a Monte Carlo simulation to check the performance of the proposed method. Two criteria are
considered: model error and model selection performance. For any fit {f̂ (k)

}
G
k=1 its model error is defined as

ME(f̂ ) = Ey,x

[
1
G

G∑
k=1

(
1
n

n∑
i=1

Ez(k)
[
ρτk(z

(k)
i − f̂ (k)(xi))

])]
. (15)

In all simulated examples the underlying model has a sparse representation. Model selection performance is measured by
the sparsity of the fitted model.
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Table 1
Simulation model 1 (n = 100)

ErrDist Oracle SMQR L1
ME ME NC NIC ME NC NIC

N 0.522 0.545(0.002) 3(0) 1.78(0.12) 0.554(0.002) 3(0) 3.26(0.12)
DE 0.401 0.420(0.001) 3(0) 1.60(0.12) 0.427(0.001) 3(0) 3.30(0.12)
MN 0.447 0.471(0.001) 3(0) 1.48(0.12) 0.479(0.002) 3(0) 3.05(0.12)

‘‘ErrDist’’ denotes the error distribution. ‘‘N’’ stands for normal, ‘‘DE’’ stands for double exponential and ‘‘MN’’ stands for amixture of normals. The numbers
in parenthesis are standard errors.

As a comparison we also include the L1 quantile regression model (Koenker, 2004) in the simulation. For response y(k)

we estimate its conditional τk quantile by

β̂
(k)

(L1norm) = argmin
n∑

i=1

ρτk(y
(k)
i − b(k)

− xTi β) + λk‖β‖1. (16)

As discussed before, each β̂
(k)

(L1norm) can adopt a sparse representation, but the L1-norm estimates do not necessarily
conduct the simultaneous selection. Let A(k)

= {j : β̂
(k)
j (L1norm) 6= 0} denote the selected variables in the τk quantile

function. Then ∪
G
k=1 A

(k) is the set of variables that are used in the L1 quantile regression.
In the first set of simulations we considered the following model

y = 3x1 + 1.5x2 + 2x5 + ε,

where the predictors x = (x1, x2, x3, x4, x5 ,x 6, x7, x8)T follow amultivariate normal distributionN(0,Σ) andΣ i,j = 0.5|i−j|

for 1 ≤ i, j ≤ 8. This is a classical model for testing variable selectionmethods. Note that we can derive the exact conditional
quantiles of y given x, which is called the oracle

f̂ (k)
oracle(x) = 3x1 + 1.5x2 + 2x5 + bk,

where bk is the τk quantile of the error distribution. We want to simultaneously estimate the 10%, 25%, 50%, 75%, 90%
conditional quantiles of y. Since the error follows a symmetric distribution, it suffices to estimate the 50%, 75% and 90%
quantiles. We use themodel error of the oracle as the benchmark for measuring the prediction performance of an estimator.

In this simulatedmodelwe know the true underlyingmodel has a sparse representation. LetNC denote the number of co-
variates in {x1, x2, x5} that have nonzero coefficient vectors and letNIC denote the number of covariates in {x3, x4, x6, x7, x8}
that have nonzero coefficient vectors. Hence NC is the number of correctly selected variables and NIC is the number of in-
correctly selected variables. We can use the pair (NC,NIC) to describe the model selection performance of a procedure.

We generated 100 training samples from the above model. Model fitting and tuning were done only using the training
data. SIC was used to select the regularization parameters in the two methods. We also collected an independent test data
set of 10,000 samples to compute the model error of each fit. We considered three types of error distributions: N(0, 3) (N),
a double exponential (DE) and a mixture of normals (MN) 0.1N(0, 25) + 0.9N(0, 1). Table 1 presents the model errors of
the oracle estimator for the three error distributions. For a given error distribution we repeated the simulation 100 times.
Table 1 also shows the mean and standard errors of the interested quantities over the 100 replications.

FromTable 1,we see that both the proposedmethod and the L1 quantile regressionproduce accuratemodels that are close
to the ground truth. Nevertheless, SMQR is significantly more accurate than the three L1 quantile regression models. SMQR
has its biggest advantage in variable selection. We see from Table 1 that SMQR produces a significantly sparser model than
the L1 quantile regression, because the former has the ability to conduct simultaneous elimination. Tomore explicitly reveal
this property, we took the output of one simulation with double exponential errors and plotted the estimated coefficients
of each variable against λ (in logarithmic scale) in Fig. 1. Each variable has three coefficient curves. Let us look at the plots
for variables x3, x4, x6, x7 and x8. As λ reaches the value which gives the smallest SIC, all three coefficient curves collapse to
zero. This phenomenon is simultaneous elimination.

In the second set of simulationswe considered estimating quantiles of different responses.We generated three responses
from the following model

y(1)
= 4x1 + 4x2 + ε(1),

y(2)
= 4x1 + 4x2 + 2x5 + ε(2),

y(3)
= 3x1 + 3x2 + ε(3),

where ε(1), ε(2) and ε(3) are independent samples from N(0, 3), the double exponential and the mixture of normals
(0.9N(0, 25) + 0.1N(0, 1)), respectively.

We generated predictors x = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12)T from a multivariate normal distribution
N(0,Σx). In the experiment we considered three types of covariance:

(1) Uncorrelated predictors: Σx = Σ1, where Σ1 is the 12 × 12 identity matrix.
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Fig. 1. SMQR in simulation model 1 (n = 100). We plot the coefficients of each variable. In each panel the thick broken line indicates the optimal λ

value selected by SIC. The SIC curve is shown in the last panel (right corner). When λ is small, the three coefficient curves in each panel are different. That
is expected since a small λ does not provide enough regularization through the penalty function. When λ is greater than a certain threshold, the three
coefficient curves merge into one, because the penalty tends to shrink the coefficients of variables within a group to a common value.

(2) Pairwise constant correlation: Σx = Σ2, where Σ2 i,j = 0.5 for i 6= j.
(3) AR(1): Σx = Σ3, where Σ3 i,j = 0.5|i−j|.

For each covariance structure, we generated 100 training samples from the abovemodel.We estimated the 50% quantiles
of y(1) and y(2) and the 90% quantile of y(3). Model fitting and tuning were done only using the training data. SIC was used
to select the regularization parameters. We also collected an independent test data set of 10,000 samples to compute
the model error of each fit. The model error of the oracle is 0.497 and is independent of Σ . We repeated the simulation
100 times. Table 2 summarizes the results.

Two interesting observations can bemade from Table 2. First, both SMQR and the L1 quantile regression produce accurate
models that are comparable to the oracle. SMQR is still significantly more accurate than the three L1 quantile regression
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Table 2
Simulation model 2 (n = 100)

Σx SMQR L1
ME NC NIC ME NC NIC

Σ1 0.515(0.001) 2(0) 1.87(0.17) 0.526(0.001) 2(0) 5.27(0.20)
Σ2 0.512(0.001) 2(0) 2.23(0.18) 0.524(0.001) 2(0) 5.43(0.21)
Σ3 0.512(0.001) 2(0) 1.40(0.14) 0.523(0.001) 2(0) 4.44(0.23)

The numbers in parenthesis are standard errors. The model error of the oracle is 0.497.

Table 3
Simulation model 3 (n = 100)

ρ SMQR L1
ME NC NIC ME NC NIC

0 0.754(0.002) 6(0) 6(0.10) 0.725(0.001) 6(0.01) 3(0.15)
0.5 0.756(0.002) 6(0.01) 5(0.12) 0.723(0.001) 6(0) 2(0.14)
0.8 0.753(0.002) 6(0.014) 6(0.15) 0.719(0.001) 6(0.03) 2(0.13)

The numbers in parenthesis are standard errors. The model error of the oracle is 0.69.

models. More importantly, SMQR produces a much sparser model than the L1 quantile regression without missing any truly
significant variable. This clearly shows the advantage of SMQR in simultaneous model selection.

As discussed in Section 3.1, simultaneous elimination in SMQR is closely connectedwith shrinking themaximumabsolute
value of the coefficient vector to exact zero. Here we show a graphical illustration of this viewpoint. In Fig. 2 we took the
outputs of one simulation and plotted Mj as a function of λ (in logarithmic scale) for variables x3, . . . , x12. In each panel,
increasing λ drives Mj towards zero, although the curve is not always monotone. Mj becomes zero when λ reaches λ̂, the
tuning parameter chosen by SIC, then variable xj is excluded from all three quantile functions.

We have seen from the previous two examples that if these multiple quantile functions share the same significant
variables, then SMQR can do much better than the naive L1 method. To see a complete picture, we also want to see the
performance of SMQR when the assumption is violated. For that, we present the third simulation example. We generated
three responses from the following model

y(1)
= 3x1 + 2x2 + ε(1),

y(2)
= 2x4 + 3x5 + ε(2),

y(3)
= 2x3 + x6 + ε(3),

where ε(1), ε(2) and ε(3) are independent samples from N(0, 1). Obviously, the true models do not have any common
significant variable at all.

The used predictors are x = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12)T generated from a multivariate normal
distribution such that the pairwise correlation between xi and xj is 0.5|i−j| and each xj has variance 1. We generated 100
training samples from the above model. We estimated the 50% quantiles of all three responses. We also collected an
independent test data set of 10,000 samples to compute the model error of each fit. We repeated the simulation 100 times.
Table 3 summarizes the results. We see that fitting individual L1 models has better prediction accuracy. SMQR correctly
selects the six true variables needed for explaining the three quantile functions, but it tends to select more insignificant
variables than the L1 method does. Overall, fitting multiple L1-penalized quantile regression models work better in this
simulation example.

5. Real data

In this section we apply the developed penalized multiple quantiles regression method to analyze the cardiomyopathy
data. The response variable in this study is a G protein-coupled receptor, designated Ro1. When the receptor is over-
expressed in the heart of adult mice, the mice develop a lethal dilated cardiomyopathy that has many hallmarks of human
disease. The mice recover when the expression of the receptor is turned off (Segal et al., 2003). The goal of the study is to
investigate the association between the changes in gene expression and the expression of Ro1. Thirty-twomice were tested
in the study (Redfern et al., 2000). To determine which changes in gene expression were due to the expression of the Ro1
transgene, Segal et al. (2003) suggested to first find the top 50 genes that correlate with the Ro1 expression profile and
then use these genes to fit a linear model to predict the gene expression of Ro1. The rationale is that genes that can explain
Ro1 expression profile are potential candidates to provide additional therapeutic targets and clues to the mechanism of the
disease. Although simple and ad hoc, this filtering strategy has been widely used in practice. A recent paper by Fan and Lv
(2008) provided some theoretical justification for filtering. They showed that for the gene selection purpose it is appropriate
to do the filtering step before fitting the linear model, because the filtering will only eliminate irrelevant genes and keep
informative genes with very high probability. In this work we do not argue whether the filtering is the best strategy in
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Fig. 2. SMQR in simulation model 2 (independent predictors). We plot the maximum absolute value of the coefficients of each variable. In each panel the
thick broken line indicates the optimal λ value selected by SIC.

analyzing the cardiomyopathy data. Instead, we shall focus on the choice of regression analysis methods. In the following
discussion we try to build a linear model based on these 50 genes. In our analysis we used 5-fold cross-validation to select
the regularization parameter of each regression method.

We first fitted a lasso regression model and selected 17 genes. We then followed the quantile regression philosophy
to estimate multiple conditional quantile functions of Ro1 in order to obtain a more complete description of the
stochastic relationship between Ro1 and these 50 genes. Following the usual practice in quantile regression we considered
simultaneously estimating the 10%, 25%, 50%, 75% and 90% conditional quantiles of Ro1. Using the L1 quantile regression,
we separately fitted the 10%, 25%, 50%, 75% and 90% conditional quantiles. The selected genes were different in different
models and in total 38 genes were selected. Our simulation has shown that under the linear regression model assumption,
separately fitting multiple L1 quantile regression models can be very conservative in variable selection. Therefore, we tend
to think the variable selection result by the lasso mean regression is more trustworthy. On the other hand, we still wish to
find a small set of genes to model the 10%, 25%, 50%, 75% and 90% conditional quantiles of Ro1. To this end, we fitted the
SMQR model and selected 12 genes. It is interesting to see that the 12 genes selected by SMQR are a subset of the 38 genes
selected by the five L1 quantile regression models and the 17 genes selected by the lasso mean regression model. Table 4
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Table 4
Genes selected by SMQR

ID Mu6500probeset GeneBank Description

128 Msa.10108.0 W46084 Homologous to sp P07814: MULTIFUNCTIONAL AMINOACYL
194 Msa.1043.0 L14751 Mouse ATP receptor (P2u) mRNA, complete cds
702 Msa.1293.0 L04961 Mouse Xist (X inactive specific transcript) mRNA
1210 Msa.15442.0 AA044561 Homologous to sp P07379: PHOSPHOENOLPYRUVATE CARBO
2375 Msa.2134.0 U25708 Murine mRNA for 4F2 antigen heavy chain
3178 Msa.2546.0 X55126 M.musculus Zfp-29 gene for zinc finger protein
3409 Msa.26751.0 AA064467 Homologous to sp Q07244: HETEROGENEOUS NUCLEAR RIB
3758 Msa.2877.0 D31717 Mouse MARib mRNA for ribophorin, complete cds
4015 Msa.30232.0 AA096793 Homologous to sp P05141: ADP,ATP CARRIER PROTEIN
5580 Msa.5707.0 W97077 Homologous to sp P33150: T-CADHERIN PRECURSOR
6007 Msa.778.0i U73744 Mus musculus heat shock 70 protein (Hsc70) gene
6355 Msa.964.0 M20985 Mouse MHC class I H2-Qa-Mb1 gene, complete cds

shows the list of genes selected by SMQR and their descriptions. We also repeated the analysis using the 10%, 20%, 30%, 40%,
50%, 60%, 70%, 80%, 90% quantiles and obtained similar conclusions. Hence the SMQR analysis seems reliable. Due to space
considerations, these results are not shown here.

6. Conclusion

In this paper we have proposed the a new regularization technique to perform regularized simultaneous model
selection inmultiple quantiles regression.We have demonstrated the promising performance of the proposedmethod using
simulated and real data. It is also worth noting that SMQR provides a unified solution to handle three different multiple
quantiles regression problems: (1) multiple quantiles of a single response; (2) the same quantile of multiple responses; and
(3) multiple quantiles of multiple responses. Finally, one should only use SMQR to perform simultaneous model selection
when the goal of the study is to select the same subset of variables inmultiple quantile regressionmodels or it is reasonable to
assume the same subset of variables appear in the multiple quantile functions. Otherwise, fitting multiple L1-norm quantile
regression models should be considered, as suggested by the third simulation example in Section 4.
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