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Abstract
Optimizing queries that involve operations on spatial data
requires estimating the selectivity and cost of these oper-
ations. In this paper, we focus on estimating the cost of
spatial selections, or window queries, where the query win-
dows and data objects are general polygons. Cost estima-
tion techniques previously proposed in the literature only
handle rectangular query windows over rectangular data
objects, thus ignoring the very significant cost of exact ge-
ometry comparison (the refinement step in a “filter and re-
fine” query processing strategy). The cost of the exact ge-
ometry comparison depends on the selectivity of the filtering
step and the average number of vertices in the candidate
objects identified by this step. In this paper, we introduce
a new type of histogram for spatial data that captures the
complexity and size of the spatial objects as well as their
location. Capturing these attributes makes this type of his-
togram useful for accurate estimation, as we experimentally
demonstrate. We also investigate sampling-based estima-
tion approaches. Sampling can yield better selectivity es-
timates than histograms for polygon data, but at the high
cost of performing exact geometry comparisons for all the
sampled objects.

1. Introduction

For a database system to fully support spatial data, it must
be able to optimize queries involving this data. This re-
quires the query optimizer to estimate the selectivity and
cost of spatial operations, so that it can choose the query
execution plan with the least estimated cost. In this paper,
we focus on estimating the selectivity and cost of spatial se-
lections, also known aswindow queries. In a window query,
a region called thequery windowis specified, and the query
retrieves all objects in the data set that overlap this region.
The focus of this paper is estimating the selectivity and cost
of window queries where the query windows and the under-
lying data objects are general polygons.

Database systems process window queries and other
spatial operations using a two stepfilter and refinestrat-
egy [11]. The filtering step identifies a set ofcandidate ob-
jectswhoseminimum bounding rectangles(MBRs) overlap
the MBR of the query window. This set of candidates is a

conservative approximation (i.e., a superset) of the result.
The filtering step may use an R-tree index if one exists. The
refinement step tests the exact geometry of the candidate ob-
jects identified by the filtering step to determine the set of
objects that actually overlap the polygonal query window.

Several cost models for window queries have been pro-
posed in the literature [1, 3, 6, 21]. All these cost models
assume that the query windows and the data objects are rect-
angles. In effect, they estimate the selectivity and cost of the
filtering step and ignore the refinement step.

Ignoring the refinement step makes these cost models in-
accurate for two reasons. First, the estimated selectivity of
the filtering step, no matter how accurate, is only an up-
per bound that may significantly over-estimate the actual
selectivity of the query. Second, the refinement step in-
curs significant costs that cannot be ignored. The refine-
ment step involves fetching the exact geometry representa-
tion of all the candidate objects, thus incurring an I/O cost.
It also involves testing these candidate objects to determine
the ones that actually overlap the query window using com-
putational geometry algorithms that have a high CPU cost1.
An important property of the costs incurred by the refine-
ment step is that they depend not only on the selectivity of
the query, but also on the number of vertices, orcomplex-
ity, of the query window and data objects. The cost of the
refinement step cannot be ignored when estimating the cost
of window queries, especially since typical applications of
spatial databases (e.g., GIS) involve objects with high com-
plexities (i.e., a large number of vertices). Our experiments
show that the refinement step can take over an order of mag-
nitude longer than the filtering step (Section 5.3). Ignoring
the cost of refinement is clearly a mistake.

In this paper, we introduce a new type of histogram for
polygon data that captures all properties of a data distribu-
tion required for estimating the cost of both the filtering and
the refinement steps of spatial operations. We present a sim-
ple cost model that uses our histograms to estimate the cost
of window queries where the query windows and data ob-
jects are general polygons. We also investigate the use of
sampling for estimating the selectivity and cost of window

1It has been shown that, for spatial joins, the CPU cost of the refinement
step dominates the query execution cost [4, 15].



queries.
The rest of this paper is organized as follows. In Sec-

tion 2, we present an overview of related work. In Section 3,
we present a cost model for window queries. Section 4 in-
troduces our novel approach to building histograms for spa-
tial data. These histograms are used to estimate the param-
eters required by the cost model. Section 5 presents an ex-
perimental evaluation of the proposed techniques. Section 6
contains concluding remarks.

2. Related work

Several techniques have been proposed for estimating the
selectivity and cost of operations on traditional data types
such as integers or strings. Techniques based on using his-
tograms to approximate data distributions are widely used
by current database systems [17]. Histograms for multi-
dimensional data have also been proposed in the litera-
ture [10, 16].

Another approach to selectivity estimation is sampling,
which provides guaranteed error bounds at the cost of taking
a sample of the data at query optimization time [9].

Traditional multi-dimensional histograms can be used
for point data, but not for polygons or other spatial data
types. Polygons have anextent in space, whereas these
histograms only capture thelocation of the data. On the
other hand, the same sampling approaches used for tradi-
tional data can be used for spatial data. However, dealing
with spatial data increases the cost of sampling.

A cost model for window queries in R-trees is developed
in [8], and independently in [13]. This cost model assumes
that the data consists of uniformly distributed rectangles and
estimates the number of disk I/Os needed to answer a given
rectangular window query.

In [3] and [6], the authors suggest using the concept that
all data sets are self-similar to a certain degree to represent
the distribution of spatial data. The degree of self-similarity
of a data set is represented by itsfractal dimension. These
papers present models developed based on this concept for
estimating the selectivity of window queries over point data
and the cost of these queries in R-trees.

Another cost model for window queries in R-trees is pro-
posed in [21]. This cost model is based on thedensityof
the dataset, which is the average number of data objects per
point of the space. The authors propose using the density
at several representative points of the space to capture non-
uniformity in the data distribution.

Acharya, Poosala, and Ramaswamy [1] study different
partitionings that could be used to build spatial histograms,
and introduce a new partitioning scheme based on the novel
notion ofspatial skew. This work is closely related to ours,
and a detailed comparison is given in Section 4.5.

As mentioned earlier, all these works assume that the
query windows are rectangles and that the data objects are

points or rectangles, thus ignoring the refinement step. Fur-
thermore, with the exception of [1], these works do not
present general solutions for accurately approximating spa-
tial data distributions.

A different approach to estimating the selectivity of spa-
tial selections is given in [2]. This work assumes that an
R-tree index for the spatial attribute exists, and uses a tree
traversal augmented by sampling to estimate selectivity.

3. A cost model for window queries

In this section, we present a cost model for estimating the
I/O and CPU costs of both the filtering and the refinement
steps of a window query. The model assumes that the query
window and the data objects are general polygons. The cost
of the filtering step depends on whether a sequential scan
or an R-tree index [7] is used as the access method, and the
cost of the refinement step is assumed to be independent of
the access method used for filtering.

3.1. Filtering
3.1.1. Sequential scan.If the input relation is accessed by
a sequential scan, the I/O cost of the filtering step is given
by N ∗ cseqio

whereN is the number of pages in the relation, andcseqio

is the per page cost of a sequential read.
During the sequential scan, the MBRs of all tuples of

the relation are tested to determine whether they overlap the
query MBR. The CPU cost of this test is given by

T ∗ cMBRtest

where T is the number of tuples in the relation, and
cMBRtest is the CPU cost of testing whether two rectangles
overlap.

3.1.2. R-tree index.To estimate the cost of the filtering step
if an R-tree index is used as the access method, we assume
that the R-tree is “good”, in the sense that retrieving the data
objects that overlap the query window MBR requires the
minimum number of disk I/Os and rectangle overlap tests.
We also assume that the buffer pool is managed in such a
way that each required R-tree node is read from disk exactly
once.

The filtering step retrievessMBR ∗ T tuples, where
sMBR is the MBR selectivityof the query, defined as the
fraction of tuples in the relation identified as candidates by
the filtering step. This is the fraction of tuples in the re-
lation whose MBRs overlap the query window MBR. The
assumption that the R-tree is “good” implies that the tuples
retrieved by the filtering step will be in the minimum num-
ber of R-tree leaf nodes. This number can be estimated as
sMBR ∗ T/m, wherem is the average number of entries
per R-tree node. Extending this argument, we can estimate
the number of nodes that have to be read from the level
above the leaves bysMBR ∗ T/m2, from the next level up
by sMBR ∗ T/m3, and so on until we reach the root level,



at which only1 node has to be read. Thus, the I/O cost of
this step is given by

(
sMBR ∗ T

m
+

sMBR ∗ T

m2
+ · · · + 1

)
∗ crandio =

[(
1

m−1

) (
1 − 1

mh−1

)
∗ sMBR ∗ T + 1

]
∗ crandio

whereh is the height of the R-tree (number of levels in-
cluding the root node), andcrandio is the cost per page of
a random read. We assume that we will not encounter any
“false hits” while searching the R-tree. This means that we
do not have to read any nodes beyond those accounted for
in the above formula. Notice that, for typical values ofm,
the number of internal R-tree nodes read will be very small.

The filtering step has to test all the entries in each R-tree
node read from the disk for overlap with the query window
MBR. Since each node contains, on average,m entries, the
CPU cost of this step can be estimated by
[(

1

m − 1

)(
1 − 1

mh−1

)
∗ sMBR ∗ T + 1

]
∗ m ∗ cMBRtest

3.2. Refinement

The refinement step has to retrieve the exact representation
of all the candidate polygons identified by the filtering step.
We estimate the I/O cost of reading a polygon by two com-
ponents. The first component is a fixed cost independent of
the size of the polygon, which we callcpolyio. The second
component is a variable cost that depends on the number of
vertices of the polygon. The number of vertices of a poly-
gon is referred to as itscomplexity. We estimate this com-
ponent of the cost byvcand∗cvertio, wherecvertio is the per
vertex I/O cost of reading a polygon andvcand is the aver-
age number of vertices in the candidate polygons. Thus, the
I/O cost of the refinement step can be estimated by

sMBR ∗ T ∗ (cpolyio + vcand ∗ cvertio)

The CPU cost of the refinement step depends on the al-
gorithm used for testing overlap. Detecting if two general
polygons overlap can be done inO(n log n) using a plane
sweep algorithm, wheren is the total number of vertices in
both polygons [5]. We assume that every candidate polygon
hasvcand vertices and use the following formula to estimate
the CPU cost of the refinement step:

sMBR ∗ T ∗ (vq + vcand) log (vq + vcand) ∗ cpolytest

wherevq is the number of vertices in the query polygon,
and cpolytest is a proportionality constant. Database sys-
tems may use algorithms other than plane sweep to test for
overlap between polygons. However, since the complexity
of almost all overlap testing algorithms is a function of the
number of vertices of the polygons, variations of the above
formula can typically be used. Each system should replace
then log n term in the formula with the complexity of the
overlap testing algorithm it uses.

3.3. Notes

• Estimating the cost of a window query does not require
knowing its actual selectivity. It only requires knowing
the selectivity of the filtering step. All candidate poly-
gons identified by the filtering step have to be tested in
the refinement step, whether or not they appear in the
final result of the query.

• The parameters required by the cost model are ob-
tained from several sources.N , T , m, andh should
be available in the system catalogs.cseqio, crandio,
cpolyio, cvertio, cMBRtest, andcpolytest are calibration
constants that are provided by the system implementer
at system development or installation time. These con-
stants depend on the specific database system and its
run-time environment.vq is known at query optimiza-
tion time. Finally,sMBR andvcand must be estimated.
The next section introduces histograms that can be
used to accurately estimate these two parameters.

• The cost model we have presented here is, like all es-
timation models used in query optimization, a simpli-
fication of reality. For example, it does not capture
such things as buffer pool management, or the degree
to which the system is able to overlap the CPU time
of the refinement step on some polygons with the I/O
time to fetch others. Certainly, variants of the equa-
tions we have given are possible, and different variants
may be more accurate for different systems. Neverthe-
less, the key point remains that any reasonable model
must involve the parameterssMBR andvcand.

4. SQ-histograms

In this section, we introduce a novel approach to build-
ing histograms that represent the distribution of polygon
data. These histograms capture information not only about
the location of the data polygons, but also about their size
and complexity. We call these histogramsSQ-histograms,
for structural quadtree histograms, because they capture
the structure of the data polygons and are based on a
quadtree partitioning of the space. In this paper, we use
SQ-histograms to estimatesMBR andvcand.

SQ-histograms partition the data objects into possibly
overlapping rectangular buckets. The partitioning is based
on the object MBRs, and tries to group similar objects
together in the same buckets, with each object being as-
signed to one histogram bucket. Each bucket stores the
number of objects it represents, their average width and
height, and their average complexity, as well as the bound-
aries of the rectangular region containing these objects. The
objects within a bucket are assumed to be uniformly dis-
tributed. SQ-histograms are built off-line as part of updating
the database statistics. If the database is update intensive,



the SQ-histograms could potentially become inaccurate and
should therefore be periodically rebuilt.

4.1. Partitioning the data into buckets

The goal of partitioning the data into buckets is to have each
bucket represent a “homogeneous” set of objects. This goal
– minimizing variation within a bucket – is a common goal
for all histogram techniques. The partitioning algorithm
should take into account:

• The location of the objects. A bucket should represent
objects that are close to each other in the space. This
minimizes the “dead space” within a bucket. Similar
rules are used for histograms for traditional data.

• The size (area) of the objects. The size of the objects in
a bucket determines the expected number of objects in
this bucket that overlap a query window. The larger the
objects in a bucket, the more likely they are to overlap a
query window. As such, grouping objects with widely
varying sizes in the same bucket should be avoided.

• The complexity of the objects. Estimating the cost
of the refinement step requires accurately estimating
vcand, which requires the variation in object complex-
ity within a bucket to be as small as possible.

SQ-histograms are built using a quadtree data struc-
ture [18]. A quadtree is a recursive data structure in which
each node represents a rectangular region of the space. A
node can have up to four children, each representing a quad-
rant of the region that the parent node represents (Figure 1).
SQ-histograms partition the space into buckets using this
quadtree partitioning.

The algorithm for building an SQ-histogram starts by
building acomplete quadtreewith l levels for the space con-
taining the data, wherel is a parameter of the histogram
construction algorithm. The different levels of this com-
plete quadtree represent partitionings of the space at several
different resolutions. We use this property to separate the
data polygons according to size and location by assigning
each polygon to a quadtree node.

The quadtreelevel to which a polygon is assigned is the
highest level (i.e., the furthest from the root) such that the
width and height of the polygon MBR are less than or equal
to the width and height of the quadtree nodes at this level.
Informally stated, this means that the polygon “fits” in a
quadtree node at this level but not at higher levels. Note that
choosing a quadtree level for a polygon depends only on the
dimensions of the polygon MBR and not on its location. Af-
ter choosing a quadtree level for a polygon, we choose the
quadtree node at this level that contains the center of the
polygon MBR. The polygon is assigned to this node. Fig-
ure 1 demonstrates assigning polygons to quadtree nodes.
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Figure 1. A quadtree partitioning and the assignment of
polygons to quadtree nodes

For the purpose of illustration, the quadtree in this figure is
not complete.

After assigning all the polygons to quadtree nodes, the
complete quadtree can be used as an accurate histogram.
Each quadtree node represents a number of polygons with
similar location and size. Polygons that are far from each
other will have MBRs whose centers lie within different
quadtree nodes, and polygons with widely varying sizes will
be assigned to nodes at different levels of the quadtree. Note
that the algorithm for building Filter Tree spatial indexes
also uses a quadtree partitioning to segregate objects by size
and location [19].

The algorithm for assigning polygons to quadtree nodes
does not take into account the complexity of the polygons.
It assumes that polygons in the same vicinity and with sim-
ilar sizes have similar complexities. In the next section, we
present a solution for cases in which this assumption does
not hold.

The problem with the complete quadtree is that it may
take too much memory. Database systems typically limit
the amount of memory available to histograms. This trans-
lates to an upper bound on the number of buckets that a
histogram can have. In our case, we can reduce the number
of buckets by reducing the number of levels of the complete
quadtree. However, this limits the granularity at which the
space is partitioned. Instead, we want to start with a com-
plete quadtree with as many levels as we wish, but still guar-
antee that the final histogram will fit in the assigned mem-
ory.

To satisfy this requirement, we start with a histogram in
which the buckets correspond to the non-empty nodes of
the complete quadtree. We repeatedlymergebuckets corre-
sponding tosibling quadtree nodesamong which the data
distribution has little variation, until the number of buck-
ets drops to the required bound. We must choose a method
of measuring thevariation in data distributionamong four
histogram buckets (corresponding to sibling nodes in the
quadtree). For example, we could use the variance of the
number of polygons represented by the buckets, or the



maximum difference in the number of polygons. We use
this measure to compute the variation in data distribution
among every set of four buckets corresponding to four sib-
ling nodes of the quadtree. Sets of sibling nodes at all levels
of the quadtree are considered in this computation. After
this computation, we merge the histogram buckets corre-
sponding to the four sibling quadtree nodes with theleast
variation in data distribution.

The merging operation is repeated as many times as
needed to satisfy the memory requirement2. We merge
buckets corresponding to sibling quadtree nodes only if they
contain objects initially assigned to the same quadtree level.
This guarantees that objects in a histogram bucket always
have similar sizes.

After choosing the histogram buckets, the boundaries of
each bucket are set to the MBR of all the objects that it
represents. This step is required because polygons can ex-
tend beyond the boundaries of the quadtree nodes to which
they are assigned. It results in histogram buckets that poten-
tially represent overlapping regions of the space. After this
step, the regions represented by the histogram buckets no
longer correspond exactly to the regions represented by the
quadtree nodes. Thus, the quadtree cannot be used as an in-
dex to search for buckets that overlap a given query window.
We use the quadtree only to build the SQ-histogram, not to
search it at cost estimation time. At cost estimation time, a
sequential search is used to determine the buckets that over-
lap the query window. Note that the histogram construction
algorithm requires only one scan of the data.

4.2. Handling objects with varying complexities

The above algorithm does not take into account the com-
plexity of the polygons when creating the histogram buck-
ets. To handle data sets in which polygons with similar
sizes and locations may have widely varying complexities,
we should build not one but several quadtrees, one for “low
complexity” objects, one for “medium complexity” objects,
and so on.

To build an SQ-histogram using this approach, we deter-
mine the minimum and maximum number of vertices of all
the polygons in the data set. This requires an extra scan of
the data. We also specify the number of quadtrees to build
as a parameter to the algorithm. The range of vertices in
the data set is divided into sub-ranges of equal width, where
the number of sub-ranges is equal to the required number
of quadtrees. Each quadtree represents all the objects with
a number of vertices in one of these sub-ranges. We de-
cide the quadtree to which a data object is initially assigned
based on the number of vertices of this object. When merg-
ing buckets, we only merge buckets corresponding to sib-
ling nodes of the same quadtree. We merge the buckets

2Repeatedly choosing the buckets with the least variation can be done
in O(n log n) using a priority queue.

xlbi xrbi

xlq xrqox

Figure 2. Thex-dimension of a query overlapping a bucket

with the least variation in data distribution among all sib-
ling nodes of all quadtrees.

4.3. Assuming uniformity within a bucket
To estimate the cost of a given query, we need to estimate
sMBR andvcand for this query. This requires estimating the
fraction of the objects in a bucket whose MBRs overlap the
query MBR. This is the fraction of the objects in the bucket
that appear in the result of the filtering step, and we term it
fi, wherei is the index of the bucket in the histogram. In
estimatingfi, we assume a uniform distribution within the
histogram buckets.

Let bi be a histogram bucket andq be a query MBR.
If q does not overlapbi, fi = 0. If q totally enclosesbi,
fi = 1. If q is totally enclosed inbi or partly overlaps it,fi

is the probability ofq overlapping an object represented by
bi. Next, we consider computing this probability assuming
the objects inbi are uniformly distributed.

For q to overlap an object inbi, it must overlap it in both
thex andy (horizontal and vertical) dimensions. Consider
thex dimension, and let the left and right boundaries ofbi

bexlbi andxrbi, respectively. Let the left and right bound-
aries ofq be xlq andxrq , respectively. Letox be the av-
erage width of the MBRs of the objects represented bybi.
Figure 2 illustrates these quantities.

Letfxi be the probability ofq overlapping an object rep-
resented bybi, o, in thex dimension.fxi is given by

fxi = 1 − Pr{o left of q} − Pr{o right of q}
Since we are assuming a uniform distribution withinbi, the
leftmost point ofo is uniformly distributed betweenxlbi and
xrbi − ox. Thus,fxi is given by

fxi = 1−max(xlq − ox − xlbi, 0)

xrbi − ox − xlbi
−max(xrbi − ox − xrq, 0)

xrbi − ox − xlbi

Similarly, the probability ofq overlapping an object in
they dimension is given by

fyi = 1− max(ybq − oy − ybbi, 0)

ytbi − oy − ybbi
− max(ytbi − oy − ytq, 0)

ytbi − oy − ybbi

whereybbi andytbi are the bottom and top boundaries ofbi,
respectively,ybq andytq are the bottom and top boundaries
of q, respectively, andoy is the average height of the MBRs
of the objects represented bybi. To estimatefi, we use
fi = fxi ∗ fyi.

From these formulas, we see that estimatingfi requires
each histogram bucket to store the boundaries of the region
that it represents, and the average width and height of the
MBRs of the objects that it represents. To estimatesMBR

andvcand, each bucket must also store the number of ob-
jects it represents and the average number of vertices in
these objects.
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Query Data

Figure 3. The difficulty of estimating actual selectivities.
The query overlaps the data polygons in (a) but not in (b)

4.4. Estimation using SQ-histograms
To estimatesMBR andvcand, we use a sequential search
of the histogram buckets to identify the buckets that over-
lap the MBR of the query window. We estimate the re-
quired quantities using the formulassMBR =

∑
i∈B fiNi

andvcand =
∑

i∈B
fiNiVi

sMBR
, whereB is the set of indices

in the histogram of buckets overlapping the query window
MBR, Ni is the number of objects in bucketi, andVi is the
average number of vertices per object in bucketi.

SQ-histograms provide an estimate for the MBR selec-
tivity of window queries, but not for their actual selectivity.
We do not attempt to estimate the actual selectivity of win-
dow queries, as this would require information about the
exact layout of the vertices of the query and data polygons.
One cannot estimate whether or not two general polygons
overlap based only on their MBRs, areas, or number of ver-
tices. To demonstrate this, consider the two cases presented
in Figure 3. The first case is a query polygon that overlaps
two data polygons. The polygons in the second case are
identical to the ones in the first case, except that the query
polygon is flipped vertically. In the second case, the query
polygon does not overlap either of the data polygons, de-
spite the MBRs, areas, shapes and number of vertices being
the same as in the first case.

The query optimizer can use the MBR selectivity esti-
mated using an SQ-histogram as an upper bound on the ac-
tual selectivity of the query. Alternately, the actual selec-
tivity of the query can be estimated using sampling (Sec-
tion 5.7).

4.5. Comparison with MinSkew partitioning
Acharya, Poosala, and Ramaswamy recently proposed a
partitioning scheme for building histograms for spatial data
called MinSkew partitioning[1]. Like SQ-histograms,
MinSkew partitioning is based on the MBRs of the data ob-
jects. Partitioning starts by building a uniform grid that cov-
ers the input space and determining the number of objects
that overlap each grid cell. The partitioning algorithm main-
tains a set of buckets currently in the histogram. This set

initially contains one bucket representing the whole space.
The algorithm repeatedly splits a bucket into two until the
histogram has the required number of buckets. The bucket
to split and the split point are chosen to give the maximum
reduction inspatial skew, defined as the variance of the
number of objects in the grid cells constituting the bucket.
The algorithm builds several grids at different resolutions
and generates an equal number of buckets from each grid.
To reduce computation time, the splitting decision is based
on the marginal frequency distributions of the grid cells in
the buckets.

Both MinSkew partitioning and SQ-histograms have to
choose a partitioning of the space from an intractably large
number of possibilities. SQ-histograms deal with this prob-
lem by considering only quadtree partitionings of the space.
MinSkew partitioning restricts itself to binary space parti-
tionings along the grid lines, which is a more general set
than quadtree partitionings. However, MinSkew partition-
ing based on the marginal frequency distribution uses a one-
dimensional measure of variation to construct the multi-
dimensional partitioning, while SQ-histograms use a multi-
dimensional measure of variation.

Another advantage of SQ-histograms is taking the varia-
tion in object sizes into account. MinSkew partitioning only
considers the number of objects that overlap a grid cell, and
not the sizes of these objects. SQ-histograms, on the other
hand, assign small and large objects to different quadtree
levels and thus place them in different buckets.

The most important issue in comparing SQ-histograms
and MinSkew partitioning is that SQ-histograms contain in-
formation about the complexity of the objects. This infor-
mation is essential for accurate cost estimation. Our exper-
iments in the next section demonstrate that SQ-histograms
are more accurate than MinSkew partitioning, even if we
add the number of vertices to the information stored in the
MinSkew buckets.

5. Experimental evaluation

5.1. Generating synthetic polygons

In our experiments, we need to generate random polygons
for the test queries and the synthetic data sets. To gener-
ate a polygon, we start by choosing a rectangle in the space
within which the polygon is generated. This rectangle spec-
ifies the size and location of the polygon. We then choose a
number of points at random inside this rectangle. These
points are the vertices of the polygon. Next, we choose
a random horizontal line that cuts through the rectangle,
and divide the points into two groups: points that lie above
this line and points that lie below it. The points in each
of the groups are sorted by theirx (horizontal) coordinate,
and connected in the sorted order to create two “chains” of
points. To avoid generating self-intersecting polygons, the
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Figure 4. Generating a synthetic polygon

Figure 5. Synthetic data set

leftmost and rightmost points of the two chains are moved
vertically so that they lie on the splitting line. Next, the two
chains of points are connected at their end-points, forming
a polygon. Finally, we rotate the polygon by a random an-
gle to avoid generating polygons that are all horizontally
aligned. This algorithm generatesmonotonepolygons [12],
a very general class of polygons. Figure 4 gives an exam-
ple of a polygon generated by this algorithm. Figure 4(a)
shows the initial rectangle, the split line, and the two chains
of points. Figure 4(b) shows the generated polygon.

5.2. Experimental setup

5.2.1. Data sets.In this paper, we present results for one
real and one synthetic data set (except in Section 5.3, where
we use three other synthetic data sets). Results on other
synthetic data sets corroborate the conclusions drawn here.

The real data set we use is the set of polygons represent-
ing land use in the state of California from the Sequoia 2000
benchmark [20]. This data set consists of58, 586 polygons
having between4 and5, 583 vertices, with an average of56
vertices per polygon.

The synthetic data set we present here consists of10, 000
polygons generated using the above procedure. The poly-
gons have between3 and 100 vertices, with an average
of 20 vertices per polygon.30% of the polygons are dis-
tributed uniformly throughout the space, and70% of the
polygons are distributed in three clusters at different parts
of the space. The rectangles in which the points of the
polygons were generated have areas between0.0025% and
0.75% of the area of the space, and aspect ratios uniformly
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Figure 6. Query selectivity (Sequoia data set)

distributed in the range1–3. Figure 5 presents a20% sam-
ple of this data set.

5.2.2. Query workloads. The number of vertices for
the polygonal query windows is randomly chosen from the
range3–15. The polygons are generated inside rectangles
of 9 different sizes, with areas ranging from0.01% to 10%
of the area of the space. Each workload contains50 queries
at each size, for a total of450 queries.

When issuing a workload on some data set, we choose
the centers of the rectangles in which the query polygons
are generated at random from the centers of the MBRs of the
data objects (i.e., the rectangles follow a distribution similar
to the data [13]). Experiments with workloads in which the
queries are uniformly distributed in the space give the same
conclusions. In this paper, we use the same workload for
each data set in all the experiments. For the Sequoia data
set, the average selectivities of the queries of different sizes
are shown in Figure 6. The figure shows both the MBR se-
lectivity (the selectivity of the filtering step) and the actual
selectivity (the selectivity of the whole query after both fil-
tering and refinement). The selectivity of an operation is
defined as the fraction of objects that appear in its result.
Figure 6 shows that the MBR selectivity of a window query
is only a very loose upper bound for its actual selectivity.

5.2.3. Run-time environment. Our experiments were
conducted on a Pentium Pro 200 MHz machine with 128
Mbytes of RAM running Solaris 2.6. We used one disk for
the database, another disk for the log, and a third disk for
the software (the database system and our test programs, as
well as any working files and result files). Our experiments
were conducted on the university version of the Paradise
object-relational database system [14]. Both the server and
the client programs were run on the same machine, and the
server buffer pool size was set to 32 Mbytes.

5.2.4. Error metric. In measuring the estimation accu-
racy of the various techniques, we use theaverage rela-



tive estimation erroras our error metric. The relative er-
ror in estimating a quantity,x, for a query is defined as
|estimated value ofx−measured value ofx|

measured value ofx . Queries with
a result size of zero are removed from the test run. Since
the query distribution is similar to the data distribution, we
encounter very few queries with a result size of zero.

5.3. Importance of the cost of refinement

In this section, we illustrate the significance of the cost of
refinement, and the importance of including it in any win-
dow query cost model. The data sets and query workloads
used in this section are different from those used in our re-
maining experiments.

To generate the data sets for this experiment, we generate
a set of10, 000 uniformly distributed squares, each with an
area of0.01% of the area of the space. We generate three
data sets, each consisting of randomly generated polygons
having these squares as their MBRs. The polygons of the
first, second, and third data sets have10, 100, and1000
vertices, respectively. Since the polygons of the three data
sets have the same MBRs, the filtering step for any window
query will be the same for all three data sets.

Table 1 presents the average execution time for50 win-
dow queries on each data set, starting with a cold buffer
pool. The same queries are executed for all data sets.
The query windows are random polygons with100 vertices
each, and their MBRs are squares with an area of1% of the
area of the space. The centers of these MBRs are randomly
chosen from the centers of the data polygon MBRs. R-tree
indexes are available for all data sets, and they are used by
all the queries.

Vertices Execution time (secs)

10 0.2
100 0.5
1000 3.4

Table 1. Cost of a query with MBR area= 1% of space

There is a significant difference in execution time be-
tween the three data sets. The MBRs of the polygons in the
three data sets are the same. Therefore, the filtering step
of a window query will be the same for all three data sets.
The difference in execution time is due to differences in the
refinement step.

This demonstrates the need to incorporate the cost of re-
finement in estimating the cost of window queries. Any
window query cost model that does not take into account
the complexity of the data and query polygons, and does
not estimate the cost of the refinement step, will not be able
to distinguish between these three data sets. Even if such a
cost model accurately estimates the execution time for one
data set, it will be inaccurate for the other two.

Table 1 also illustrates the significance of the cost of re-
finement, thereby validating one of the main premises of
this paper. If we take the execution time for the10-vertex
data set to be an approximation of the filtering time for all
three data sets, we see that refinement for the1000-vertex
data set is over an order of magnitude more expensive than
filtering.

In the next sections, we demonstrate the effectiveness of
our proposed techniques in estimating the cost of window
queries, including the cost of the refinement step. The re-
mainder of the paper uses the real and synthetic data sets
described in Section 5.2.1 and the workloads described in
Section 5.2.2.

5.4. Estimation accuracy using SQ-histograms

In this section, we demonstrate the accuracy of SQ-
histograms in estimatingsMBR and vcand compared to
MinSkew partitioning and assuming uniformity. We com-
pare to MinSkew partitioning because it is identified as a
winner among several techniques in [1]. We compare to as-
suming uniformity because it is the simplest approach in the
absence of information about the data distribution. To allow
MinSkew partitioning to be used for estimatingvcand, we
have each bucket store the average complexity of the ob-
jects it represents, in addition to the information required
in [1].

The SQ-histograms are given5 Kbytes of memory. They
are built starting with10 complete quadtrees of8 levels
each. We use10 quadtrees to accommodate the varying
complexities of the data objects. The histograms are built
using the “maximum difference in the number of objects”
to measure the variation in distribution among the quadtree
nodes (Section 5.6 provides a detailed study of the ef-
fect of the different parameters of histogram construction).
MinSkew partitioning is also given5 Kbytes of memory.
We start the MinSkew partitioning with a25 × 25 grid.
This grid is progressively refined two times, so that the final
buckets are generated from a100 × 100 grid.

Figures 7 and 8 present the error in estimatingsMBR and
vcand for the Sequoia and synthetic data sets, respectively.
Each point in the figures represents the average relative esti-
mation error for50 queries of a particular size. The figures
show that using a histogram is always more accurate than
assuming uniformity, and that SQ-histograms are generally
more accurate than MinSkew partitioning. The figures also
show that SQ-histograms are accurate enough in the abso-
lute sense to be useful to a query optimizer. The irregular-
ities in Figure 7(a) are due to one or two queries per data
point that have a filtering step with a small measured result
size appearing in the denominator of the error formula, thus
leading to a large relative estimation error.
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Figure 7. Estimation error (Sequoia data set)
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Figure 8. Estimation error (Synthetic data set)

5.5. Accuracy of the window query cost model

We determine two sets of calibration constants for the win-
dow query cost model presented in Section 3. One set of
constants is for a cold buffer pool and the other is for a
warm buffer pool. These constants calibrate the cost model
for use with Paradise in our run-time environment to esti-
mate the execution time of window queries in seconds. In
the interest of space, the values of these constants are not
shown here.

Figures 9 and 10 show the actual execution times of the
workloads on the Sequoia and synthetic data sets, respec-
tively. The figures show the execution times when we start
with a cold buffer pool for every query (i.e., when the buffer
pool is flushed between queries), and when the buffer pool
is kept warm (i.e., not flushed between queries). An R-tree
index is available, but the query optimizer may choose not
to use it for queries with large areas and, hence, a large
expected selectivity. The figures also show the estimated
execution times using the calibration constants for our en-
vironment and withsMBR andvcand estimated using SQ-
histograms built using the parameters described in the pre-
vious section. Each point in the figures is the average exe-

cution time for50 queries of a particular size.
The figures show that, even with the variability in exe-

cution time, with the simplifying assumptions made by the
cost model, and with the estimation errors introduced by
histograms, the cost model still estimates the overall ex-
ecution times of the window queries relatively accurately.
While the estimated time does not, in general, match the ac-
tual time exactly, it is likely to be good enough for query
optimization.

The cost model is more accurate for a warm buffer pool
than it is for a cold buffer pool. A warm buffer pool reduces
the variability in query execution time, making cost estima-
tion easier. The cost model is also more accurate for the
Sequoia data set than it is for the synthetic data set. Queries
on the Sequoia data set have longer execution times, so esti-
mation accuracy is more important for this data set. On the
other hand, the short execution times of the queries on the
synthetic data set make small estimation errors appear more
pronounced.

5.6. Parameters of histogram construction
Next, we turn our attention to the effect of the different pa-
rameters of the SQ-histogram construction algorithm. The
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default histogram for this experiment uses5 Kbytes of
memory, and is built starting with one10-level quadtree
using “maximum difference in the number of objects” to
measure the variation in data distribution. We vary each of
the histogram construction parameters in turn and show that
the histogram is robust under all these variations. The errors
shown in this section are average errors for all the queries
of the workload.

Figure 11 shows the effect of the amount of memory
available to a histogram on its accuracy. The figure shows
the error in estimatingsMBR for the Sequoia data set us-
ing SQ-histograms and MinSkew partitioning occupying
the same amount of memory. SQ-histograms are more ac-
curate than MinSkew partitioning for the whole range of
available memory. As expected, more available memory re-
sults in more estimation accuracy. Notice, though, that the
error at5 Kbytes is already reasonable, and that the slope of
the error beyond this point is small.

Figure 12 shows the effect of the number of levels in the
initial complete quadtree on the accuracy of SQ-histograms
in estimatingsMBR for the Sequoia and synthetic data sets.
Starting with more quadtree levels is generally better, as it
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Figure 11. Effect of available memory on the accuracy of
estimatingsMBR (Sequoia data set)

allows the histogram to consider the space at a finer gran-
ularity. Furthermore, using more levels allows for better
separation of objects according to size. However, having
too many levels may actually increase the error by creating
a histogram with an unnecessarily large number of small
buckets. The most important observation, though, is that
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the error is relatively flat for a wide range of initial quadtree
levels. The histogram construction algorithm is not overly
sensitive to this parameter.

Next, we compare SQ-histograms constructed using dif-
ferent measures of variation in the data distribution. We
experiment with three measures of variation. The first is
the maximum difference between the number of objects in
the different buckets. The second is the maximum differ-
ence between the number of objects in the different buck-
ets relative to the maximum number of objects in any of
the buckets. The third is the variance of the number of ob-
jects in the buckets. We also try choosing the buckets to
merge based on the total number of objects in these buck-
ets. Under this scheme, we merge the buckets in which the
total number of objects is minimum. This scheme tries to
construct histograms where the buckets all have the same
number of objects, similar to equi-depth histograms for tra-
ditional data [17]. Figure 13 presents the error in estimating
sMBR using SQ-histograms constructed using the different
measures of variation. Maximum difference is the winner
by a small margin. More importantly, we notice that the
histogram is robust across three of the four methods.
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In the interest of space, we do not present the results for
starting with different numbers of quadtrees for different
object complexities. The number of quadtrees does affect
histogram accuracy, but the effect is small.

5.7. Sampling

In this section, we consider sampling for selectivity estima-
tion. Figure 14 presents the accuracy of using sampling to
estimate the MBR selectivity and the actual selectivity for
the Sequoia data set (similar results were obtained for the
synthetic data set). The figure presents the errors for sample
sizes of100 and200 random tuples. Sampling is very inac-
curate for queries with low selectivity because most of the
samples taken are negative samples (i.e., do not satisfy the
selection predicate). Thus, the figure presents the average
errors for all queries in the workloads with actual selectivi-
ties> 1%.

Sampling is less accurate than SQ-histograms for esti-
mating MBR selectivities. The key advantage of sampling
is that, since it accesses and tests the actual data objects, it
can be used to accurately estimate actual selectivities. His-
tograms provide only summary information that does not
reflect the exact layout of the data objects, and hence can-
not be used to estimate actual selectivities. Using the MBR
selectivities estimated using the histograms as estimates of
the actual selectivities leads to large errors (shown in the
figure).

The disadvantage of sampling is its cost. Sampling in-
volves the I/O cost of fetching the sampled tuples, as well
as the high CPU cost of the exact geometry test for the ob-
jects in the sample. In our experiments, we found that tak-
ing a positive sample of one polygon (i.e., a sample where
the polygon does overlap the query window) takes up to 25
ms when all the required indexes are buffered. A negative
sample can often be detected by testing the MBRs of the
query and polygon. In this case, the sample usually takes
less than 1 ms if the indexes are in the buffer pool. Thus, the
argument that sampling is expensive, which is often made
in the context of traditional data, is more pronounced in the
context of spatial data.



As expected, estimation accuracy increases with increas-
ing the number of samples. Hence, one can reduce the error
as desired by increasing the number of samples.

6. Conclusions
Accurate estimation of the cost of spatial selections requires
taking into account the I/O and CPU costs of the refinement
step. This requires estimating the MBR selectivity of the
query and the average number of vertices in the candidate
polygons identified by the filtering step.

SQ-histograms effectively estimate these two quantities
and can be used to provide reasonably accurate cost esti-
mates. SQ-histograms are also robust for a wide range of
construction parameters.

Sampling can also be used to estimate these two quanti-
ties. Sampling does not work well for very selective queries.
For other queries, sampling offers the additional benefit of
accurately estimating the actual selectivity of the query in
addition to its MBR selectivity. However, sampling from
spatial databases is expensive because the samples require
expensive polygon overlap tests.

Estimating the cost of spatial operations, in general, re-
quires information about the location, size, and complex-
ity of the data objects. In this paper, we demonstrated how
to effectively capture these properties using SQ-histograms,
and how to use them for accurate estimation of the cost of
spatial selections.
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