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Abstract. To date, work on caching for OLAP workloads has focussed
on using cached results from a previous query as the answer to another
query. This strategy is effective when the query stream exhibits a high
degree of locality. It unfortunately misses the dramatic performance im-
provements obtainable when the answer to a query, while not immedi-
ately available in the cache, can be computed from data in the cache.
In this paper, we consider the common subcase of answering queries by
aggregating data in the cache. In order to use aggregation in the cache,
one must solve two subproblems: (1) determining when it is possible to
answer a query by aggregating data in the cache, and (2) determining the
fastest path for this aggregation, since there can be many. We present two
strategies — a naive one and a Virtual Count based strategy. The virtual
count based method finds if a query is computable from the cache almost
instantaneously, with a small overhead of maintaining the summary state
of the cache. The algorithm also maintains cost-based information that
can be used to figure out the best possible option for computing a query
result from the cache. Experiments with our implementation show that
aggregation in the cache leads to substantial performance improvement.
The virtual count based methods further improve the performance com-
pared to the naive approaches, in terms of cache lookup and aggregation
times.

1 Introduction

On-Line Analytical Processing (OLAP) systems provide tools for analysis of
multi-dimensional data. Most of the queries are complex, requiring the aggre-
gation of large amounts of data. However, decision support applications need
to be interactive and demand fast response times. Different techniques to speed
up a query have been studied and implemented, both in research and industrial
systems. These include precomputation of aggregates in the database, having
specialized index structures, and caching in the middle tier.

While a great deal of work has been published on these issues, to our knowl-
edge the published literature has not addressed the important issue of building
an “active cache”, one that can not only speed queries that “match” data in
the cache, but can also answer queries that require aggregation of data in the
cache. We show that a cache with such an ability is much more effective than a
cache without such a capability. Intuitively, this is straightforward: aggregating
cache-resident data is much faster than issuing a SQL query to a remote data
source. However, in practice making this work is non-trivial.

The first issue to be dealt with is that in such an active cache the lookup
process is considerably more complex than it is in an ordinary cache, because it
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is not sufficient to see if the query result is in the cache. One must determine
if the data in the cache is a sufficient basis from which to compute the answer
to the query. This problem is especially difficult with fine granularity caching
schemes such as chunk-based caching [DRSN9S]|, query caching [SDJL96], and
semantic caching [DFJST]. Obviously, this lookup must be fast — it is infeasible
to spend a substantial amount of time deciding if a query can be computed from
the cache, because it is possible that the lookup cost itself could exceed the
time required to bypass the cache and execute the query at the remote backend
database.

The second issue to be dealt with is that in such an active cache, there can be
multiple ways in which to perform the aggregation required to answer the query.
This situation arises due to the hierarchical nature of OLAP multidimensional
data models — in general there are multiple aggregation paths for any query. The
multiple aggregation paths complicate the cache lookup problem even further,
since now not only is it necessary to determine if a query is computable from
the cache, one must also find the best way of doing this computation.

In this paper, we propose solutions to both the cache lookup problem and the
optimal aggregation path problem. Our implementation shows that with a small
space overhead, we can perform much better than naive approaches. Overall, an
active cache substantially outperforms a conventional cache (which does not use
aggregation) for the representative OLAP workloads we studied.

Related Work In the field of caching for OLAP applications, [SSV] presents
replacement and admission schemes specific to warehousing. The problem of
answering queries with aggregation using views has been studied extensively in
[SDJL96]. Semantic query caching for client-server systems has been studied in
[DFJST]. [SLCJ98] presents a method for dynamically assembling views based on
granular view elements which form the building blocks. Another kind of caching
is chunk-based caching which is a semantic caching method optimized for the
OLAP domain. Our previous paper [DRSN98] describes chunk based caching
in detail. The different methods of implementing aggregations compared in this
paper are based on a chunk caching scheme. A recent work on semantic caching is
based on caching Multidimensional Range Fragments (MRF's), which correspond
to semantic regions having a specific shape [KR99].

Paper Organization The remainder of the paper is organized as follows: Sec-
tion 2 gives a brief description of the chunk based scheme; Section 3 presents
an exhaustive search method for implementing aggregations; and Section 4 de-
scribes the virtual count based strategy. These methods are extended to incor-
porate costs in Section 5. Section 6 discusses replacement policies and Section 7
describes our experiments and results. The conclusions are presented in Sec-
tion 8. Some details have been skipped in this paper due to space limitations.
More details are available in [D99].

2 Chunk based caching

Chunk-based caching was proposed in [DRSN98]. In this section, we review
chunk-based caching in order to make this paper self-contained. Chunk based
caching takes advantage of the multi-dimensional nature of OLAP data. The
dimensions form a multi-dimensional space and data values are points in that
space. The distinct values for each dimension are divided into ranges, thus divid-
ing the multi-dimensional space into chunks. Figure 1 shows a multidimensional



space formed by two dimensions Product and Time and the chunks at lev-
els (Product, Time) and (Time). The caching scheme uses chunks as a unit of
caching. This works well since chunks capture the notion of semantic regions.
Note that there can be chunks at any level of aggregation.
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Fig. 1. Chunks at different levels. Fig. 2. Reusing cached chunks.

In the chunk-based caching scheme, query results to be stored in the cache are
broken up into chunks and the chunks are cached. When a new query is issued,
the query is analyzed to determine what chunks are needed to answer it. The
cache is probed to find these chunks. Depending on what chunks are present
in the cache, the list of chunks is partitioned into two. One part is answered
from the cache. The other part consists of the missing chunks which have to
be computed from the backend. To compute the missing chunks, a single SQL
statement is issued to the backend translating the missing chunk numbers into
the selection predicate of the SQL query.

Ezxample 1. Figure 2 shows three queries Q1, Q2 and Q3 which are issued in that order.
Q3 can use some of the cached chunks it has in common with Q1 and Q2. Only the
missing chunks (marked by the shaded area) have to be computed from the backend.

An important property we use later is the closure property of chunks de-
scribed in [DRSN98]. This means that there is a simple correspondence between
chunks at different levels of aggregation. A set of chunks at a detailed level can
be aggregated to get a chunk at higher level of aggregation. For example, Fig-
ure 1 shows that chunk 0 of (T'ime) can be computed from chunks (0, 1,2, 3) of
(Product, Time).

3 Aggregations in the Cache

‘We now consider the problem of aggregation in more detail. In a multi-dimensional
schema, there are many possible levels of aggregation, each of which corresponds
to a different group-by operation. These group-bys can be arranged in the form
of a lattice using the “can be computed by” relationship. This kind of structure
has been extensively used in previous work [AAD+96][HRU96][SDN9S|.

For any group-by there are many group-bys from which it can be computed.
In general, a group-by (1,1, 21) can be computed from (xs, Y2, 22) if 21 < o,
y1 < y2 and z; < z9. For example, group-by (0,2,0) can be computed from
(0,2,1) or (1,2,0). Thus we need to consider all the ancestors to determine if a
particular group-by query can be answered from the cache.



Ezxample 2. Consider a schema with
three dimensions A, B and C. Dimen-
sion B has a two level hierarchy de-
fined on it, whereas A and C' have a 1102 00 9 (1.1.0)
single level hierarchy. Figure 3 shows

the lattice formed by these dimensions.
(z,y,2) denotes the level on each of
the dimensions. (1,2, 1) is the most de-
tailed level (A1B2C1) whereas (0,0, 0) (0.00)
is the most aggregated level (AoBoCh).
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Fig. 3. Lattice of group-bys.

The problem becomes more complex when using the chunk-based caching
scheme. Due to the closure property, there is a simple correspondence between
chunks at different levels of aggregation. For example, a chunk at level (0,2, 0),
say chunk 0, will map to a set of chunks at level (1,2,0), say chunks 0 and 1.
To compute chunk 0 of (0,2,0) from (1,2,0), we need both chunks 0 and 1 of
(1,2,0). It may happen that only chunk 0 of (1,2,0) is present in the cache
whereas chunk 1 is computable from other chunks. This implies that chunk 0
of (0,2,0) is still computable from the cache. Thus to determine if a chunk of
a particular group-by is computable from the cache, it is necessary to explore
all paths in the lattice from that group-by to the base group-by. Figure 3 shows
the different paths possible for computation of a chunk of (0,2,0). Let us first
examine a naive method of finding if a chunk is computable from the cache.

3.1 Exhaustive Search Method

The Exhaustive Search Method (ESM) is a naive implementation of finding if
a chunk is computable from the cache. If a chunk is missing from the cache, it
searches along all paths to the base group-by, to check if it can be computed
from the cache. The algorithm is listed below:

Algorithm : ESM(Level, ChunkNumber)
Inputs:  Level — Indicates the group-by level
ChunkNumber — Identifies chunk that needs to be computed
if (CacheLookup(Level, ChunkNumber)) // Lookup in the cache
return true;
For each Parent Group-by in the lattice
ParentLevel = level of the Parent Group-by
ParentChunkNumbersList = GetParentChunkNumbers(ChunkNumber, Level, ParentLevel)
success = true;
For each chunk number CNum in ParentChunkNumbersList
if ('ESM(ParentLevel, CNum))
success = false
break
if (success)
return true
return false

In the above algorithm, GetParentChunkNumbers() is a function which maps a
chunk at one level to a set of chunks at a more detailed level. This algorithm
searches different paths and quits as soon as it finds a successful path.



Lemma 1. Consider a schema having n dimensions, with hierarchies of size
h; on dimension i. Let (I1,la,...l,) denote the level of a group-by. Note that
(0,0,...0) is the most aggregated level and (hi,ha,...hy) is the base level. The
number of paths in the lattice for a group-by at level (l1,ls,...l,) to the base
level is given by:

(ZFy (hi — 1))!

mr  (hy —1)!

Proof. The proof follows from a simple combinatorial argument. We will skip it
due to space constraints.

The actual number of recursive calls to ESM is much higher than this because
a single aggregate chunk maps to multiple chunks at a detailed level (through
the MapChunkNumbers() function) and ESM has to be called on each of those
chunks, i.e. there is a fanout along each step of the path.

Lemma 1 suggests that the complexity of determining if a chunk can be
computed from the cache depends on the level of aggregation of the chunk. For
highly aggregated chunks, the number of paths searched is higher since there
are many ways to compute them. For example, for the most aggregated level
(0,0,...0), it is (hy + ho... + hy)!/(h1! * ha! % ... hy,!). Note that this is the
worst case complexity. The algorithm will complete as soon as it finds one way
to compute the chunk. The average complexity depends on the actual contents
of the cache.

4 Virtual Count Based Method

There is a lot of room for improvement in the naive ESM method. Our strategy,
the Virtual Count based method (VCM) is motivated by two observations:

1. As ESM searches along different paths, a lot of vertices are visited multiple
times due to the lattice structure.

2. A lot of the work can be reused by maintaining some summary of the state
of the cache in terms of some meta-information about each chunk.

2 3
Example 3. Consider a small sub-
section of a lattice as shown in Fig- [1]0] (161)
ure 4. Suppose ESM is searching for
chunk 0 at level (0, 0). Two of the paths
from (0, 0) intersect at (1,1). As ESM [0]1
searches these two paths, it will search o 0 0 I%\@
for each of chunks 0, 1, 2 and 3 at level
(1,1) two times once for each path.
It does not reuse the work done previ-
ously. (0,0) @

Fig. 4. Virtual counts.

In accordance with these observations, VCM maintains a count for each chunk
at each group-by level. A chunk may be either directly present in the cache or
may be computable through some path. Each path has to pass through some
parent of that node in the lattice. Thus, the virtual count for a chunk is defined
as:



Definition 1. Virtual Count: The virtual count for a chunk indicates the
number of parents of that node through which there is a successful computation
path. The count is incremented by one if the chunk is directly present in the
cache.

The following property follows from the above definition:

Property 1. The virtual count of a chunk is non-zero if and only if it is com-
putable from the cache.

Ezxample 4. Figure 4 shows a very simple lattice with two dimensions having hierarchy
size of 1 each. Level (1,1) has 4 chunks, levels (1,0) and (0, 1) have 2 chunks each and
level (0,0) has only 1 chunk. The figure shows the chunks that are present in the cache
and the counts maintained by the VCM. Chunk 0 at level (1,1) has count 1 since it
is present in the cache and that is the only way to compute it. Chunk 1 at level (1, 1)
is not computable, nor is it present in the cache, thus giving a count of 0. Chunk 0 at
level (1,0) has a count of 1 even though it is not present in the cache. This is because
there is a successful computation path through 1 of its parents, i.e. level (1,1). Chunk
0 at level (0,0) is present in the cache. Also, there are successful computation paths
through two of its parents. Thus the count for chunk 0 at level (0,0) is 3.

Algorithm : VCM(Level, ChunkNumber)
Inputs:  Level — Indicates the group-by level
ChunkNumber — Identifies chunk that needs to be computed
if (Count(Level, ChunkNumber) == 0) // Count is the array of counts
return false; . n
if (CacheLookup(Level, ChunkNumber))
return true;
For each Parent Group-by in the lattice
ParentLevel = level of the Parent Group-by
ParentChunkNumbersList = GetParentChunkNumbers(ChunkNumber, Level, ParentLevel)
success = true;
For each chunk number CNum in ParentChunkNumbersList
if (!VCM(ParentLevel, CNum))
success = false
break
if (success)
return true
assert(false) // control should never reach here

This algorithm looks similar to ESM in structure. However, the check for
Count to be non-zero in statement (I) acts as a short circuit to reduce the com-
plexity. If a chunk is not computable from the cache, VCM returns in constant
time (just a single count lookup). If a chunk is indeed computable, VCM explores
exactly one path (the one which is successful). Unsuccessful paths are rejected
immediately without exploring completely. Compare this with the factorial num-
ber of paths for ESM.

4.1 Maintaining the Counts

Maintenance of the virtual counts makes lookups instantaneous. However, it
adds an overhead when chunks are inserted or deleted from the cache since
counts have to be updated at that time. The update algorithm while adding a
chunk is listed below:



Algorithm : VCM_InsertUpdateCount(Level, ChunkNumber)
Inputs:  Level — Indicates the group-by level
ChunkNumber — Identifies chunk whose count needs to be incremented
Count(Level, ChunkNumber) = Count(Level, ChunkNumber) + 1
if (Count(Level, ChunkNumber) > 1) // Chunk was previously computable
return
For each Child Group-by in the lattice
ChildLevel = level of the Child Group-by
ChildChunkNumber = GetChildChunkNumber(ChunkNumber, Level, ChildLevel)
ChunkNumbersList = GetParentChunkNumbers(ChildChunkNumber, ChildLevel, Level)
flag = true;
For each chunk number CNum in ChunkNumbersList
if (Count(Level, CNum) == 0)
flag = false
break
if (flag)
VCM_InsertUpdateCount(ChildLevel, ChildChunkNumber)

We will not go into formal proof of the correctness of the above update algorithm
in maintaining virtual counts. However, we do comment on its complexity.

Lemma 2. Suppose we are inserting a new chunk in the cache at level (11,1a, .. .1y,).
The number of counts updated is bounded by n * I (I; + 1).

Proof. The proof can be found in [D99].

The trick of the VCM algorithm is to maintain just sufficient information
to determine if a chunk is computable, keeping the update cost minimal at
the same time. The exact complexity of a single insert depends on the cache
contents. The amortized complexity over all the inserts is much lower than this
worst case complexity. This is because, the updates are propagated only when a
chunk becomes newly computable. A chunk can become newly computable only
once. It could be more if there are deletes also since a chunk can keep switching
between computable and non-computable state. However we don’t expect this
to happen very often for each chunk. Typically a chunk insert will cause update
to propagate to only one level. This is similar to B-Tree splits, where most page
splits do not propagate more than one level. The counts also have to be updated
when a chunk is thrown out of the cache. The algorithm for that is similar to
the VCM_InsertUpdate Count() method both in implementation and complexity,
so we will omit the details in this paper.

It can be shown from Lemma 1 and 2 that the worst case complexity of
the ESM find is much higher compared to the update complexity of the VCM
update. Again, due to space constraints we will skip the proof.

5 Cost Based Strategies

The ESM and the VCM algorithms find just one path for the computation of a
chunk. Assuming a linear cost of aggregation, the cost of computing a chunk is
proportional to the number of tuples aggregated. This assumption has been used
previously, for solving the precomputation problem [HRU96][SDN98]. There may
be multiple successful paths through which a chunk could be computed. Each
path will have different cost of computation depending on what chunks are being
aggregated along that path. Both ESM and VCM can be extended to find the
least cost path.



Ezample 5. Consider the simple lattice
shown in Figure 5. There are two paths
for computation of chunk 0 at level ®
(0,0). One way is to aggregate chunk

1 at level (1,0) and chunks 0 and 2 at

level (1,1). Another way is to aggre- 1
gate chunks 0 and 1 at level (0,1). The ©31) I
costs for these two options are different

since the number of tuples being aggre-

gated is different. In general, it is bet-

ter to compute from a more immediate ©.0) []
ancestor in the lattice, since group-by 0

sizes keep reducing as we move down . .
the lattice. Fig. 5. Different costs of com-

putation.
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5.1 Cost Based ESM

The Cost based ESM (ESMC), instead of quitting after finding the first path,
continues to search for more paths which might be of lesser cost. A listing of
the ESMC algorithm is available in [D99]. The worst case complexity of ESMC
is same as ESM. However, its average case complexity is much higher since it
always explores all paths to find the minimum cost path. Whether this extra
time is worth it depends on the time saved in aggregation. We present some
experimental results which examine this in Section 7.

5.2 Cost Based VCM

The cost based VCM (VCMC) finds the best path for computing a chunk by
maintaining cost information in addition to the count information. For each
computable chunk, it stores the cost of the least cost path to compute it (Cost
array) and the parent through which the least cost path passes (BestParent
array). The find complexity is still constant time, which makes this method very
attractive. The algorithm is similar to the VCM method and is listed in [D99].
The update algorithm is also similar to the one used by VCM. The only difference
is that in VCMC an update is propagated in two cases — when a chunk becomes
newly computable and when the least cost of computing a chunk changes. The
worst case complexity of update remains the same, but the average complexity
is slightly higher since an update is now propagated even when the least cost of
a chunk changes.

Another advantage to maintaining the costs for the VCMC method is that it
can return the least cost of computing a chunk instantaneously (without actually
doing the aggregation). This is very useful for a cost-based optimizer, which can
then decide whether to aggregate in the cache or go to the backend database.

6 Replacement Policies

The possibility of aggregating the cache contents to answer queries leads to
interesting options for effectively using the cache space. In [DRSN98], we showed
that a benefit based replacement policy works very well for chunks. In a simple
cache, highly aggregated chunks have a greater benefit, since they are expensive
to compute and thus are given a higher weight while caching. For aggregate



aware caching schemes, it is much more difficult to associate a benefit with a
chunk. There are two reasons:

1. Other than being used to answer queries at the same level, a chunk can
potentially be used to answer queries at a more aggregated level.

2. Whether a chunk can be used to answer a query at a more aggregated level
depends on the presence of other chunks in the cache. This is because an
aggregated chunk maps to a set of chunks at a more detailed level and
all those chunks need to be present in order to compute the aggregated
chunk. This also means that the benefit of a chunk is not constant but keeps
changing as the cache contents change.

A detailed discussion of these issues can be found in [D99]. We will just summa-
rize them here.
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Ezample 6. In Figure 6(a),
chunk 0 at level (1,1) has a
lower benefit than chunk O at
level (1,1) in Figure 6(b). The " ‘“’)' LIo] @ @2 L[]
presence of chunk 1 at level
(1,1) in Figure 6(b) leads to a

higher benefit to both chunks
0 and 1, since they can now
be used to compute chunk 0 (a) (b)
at level (0,1).

(o, 0) 0,0)

Fig. 6. Benefits.

6.1 Computing Benefits
The benefit of a newly computed chunk depends on how it has been computed.

1. Cache computed chunk — this is computed by aggregating other cached
chunks. Its benefit is equal to the cost of this aggregation

2. Backend chunk — this is computed at the backend. Its benefit should also
incorprate the cost of connecting to the backend, issuing a query and fetching
results

Chunks which get computed at the backend should get a higher priority while
caching than those which can be computed from other chunks already in the
cache, since typically the overhead of fetching results from the backend is very
high.

6.2 Forming Groups of Chunks

The optimal replacement policy should also try to form groups of useful chunks,
since having a complete group leads to higher benefit for all chunks in the group
as seen in Example 6. This is very difficult since it amounts to predicting what
chunks are going to be inserted in the future. One way to solve this problem is to
pre-compute entire group-bys and cache them. Since all the chunks in the group-
by get cached, they can be used to compute any chunk at a higher aggregated
level. In other words, pre-computing a group-by leads to the formation of useful
group of chunks.



6.3 Two Level Policy
We propose the following policy in accordance with our observations:

— Backend chunks have higher priority and can replace cache computed chunks,
but not the other way around. Replacement within each group is accord-
ing to the normal benefit policy (i.e. highly aggregated chunks have higher
benefit — same as that used in [DRSN9S]).

— Whenever a group of chunks is used to compute another chunk, the clock
value (we approximate LRU with CLOCK) of all the chunks in the group
is incremented by an amount equal to the benefit of the aggregated chunk.
This tries to maintain groups of useful aggregatable chunks in the cache.

— To help in the formation of useful groups, we pre-load the cache with a group-
by that fits in the cache and has the maximum number of descendents in
the lattice. Picking such a group-by will enable answering queries on any of
its descendents.

Clearly this replacement policy is not optimal, and improving on it is fertile
ground for future work. But as our experiments show, this policy provides sub-
stantial benefits over such policies as simple benefit based LRU.

7 Experiments

In this section, we describe the experiments used to evaluate the performance of
the different schemes. We have a three tier system. The client issues queries to the
middle tier which does caching of results. Both the client and the middle tier were
running on a dual processor Pentium 133 MHz machine with 128 MB of main
memory running SunOS 5.5.1. The backend database used was a commercial
database system, running on a separate machine (a Sun UltraSparc 200 MHz
with 256 MB of main memory running SunOS 5.5.1). A buffer pool size of 30
MB was used at the backend. The chunked file organization was achieved by
building a clustered index on the chunk number for the fact file. The query
execution times reported are the execution times at the middle tier.

All experiments were run on the APB-1 Schema [APB]. APB-1 is an ana-
lytical processing benchmark developed by the OLAP Council. APB has five
dimensions with hierarchies — Product, Customer, Time, Channel and Scenario.
Also, there is a measure UnitSales associated with the dimensions Product, Cus-
tomer, Time and Channel. This mapping is stored in a fact table HistSale.

All queries are on the fact table HistSale, and ask for sum of UnitSales
at different levels of aggregation. The number of nodes in the APB lattice is
6+1)*x(24+1)*x(B34+1)*%(14+1)*(1+1) = 336, since the hierarchy sizes
are 6, 2, 3, 1 and 1 respectively. The data was generated using the APB data
generator [APB], with the following parameters: number of channels = 10 and
data density = 0.7. The table HistSale had about a million tuples, each of 20
bytes giving a base table size of about 22MB. The estimated size of the full cube
for this schema is 902 MB. We experimented with cache sizes of 10 MB to 25 MB
which is quite small compared to the size of the full cube. We performed two
kinds of experiments. For one set (unit experiments) we used a very precise set
of input queries, which were designed to bring out the best case, worst case and
the average behavior. For the other set, we generated an artificial query stream.
We describe the experiments in brief here. More details can be found in [D99].

7.1 Unit Experiments

The details of the first two experiments can be found in [D99]. We just summarize
the results here.



Benefit of Aggregation This experiment demonstrates the benefit of imple-
menting aggregations in the cache. We found that, on the average, aggregating
in cache is about 8 times faster than computing at the backend. Note that this
factor is highly dependent on the network, the backend database being used and
the presence of indices and pre-computed aggregates.

Aggregation Cost Optimization This experiment measures how aggregation
costs can vary along different paths in order to determine if cost based optimiza-
tion is important. The difference between the fastest path and the slowest path
is more for highly aggregated group-bys and lower for detailed group-bys. Ex-
periments show that the average factor over all the group-bys was about 10.

Lookup Times In this experiment we measured the lookup times for all four
algorithms ESM, ESMC, VCM and VCMC. We measured the lookup time for
one chunk at each level of aggregation. The lookup time depends on the level
of aggregation as well as on the cache contents. Table 1 lists the minimum,
maximum and the average lookup times over all the group-bys for two cases:
one where the experiment was run with an empty cache and the other where the
cache was warmed up with all the base table chunks.

In both cases, the cache lookup times for VCM and VCMC are negligible.
These methods explore a maximum of one path. The times for the ESM and
ESMC are more interesting. When the cache is empty, none of the paths will
be successful. However, both these methods have to explore all the paths. For
detailed level group-bys the lookup time is low since very few paths of computa-
tions exist. For aggregated group-bys the time is much higher due to explosion
in the number of paths. This variation is one of the drawbacks of the exhaus-
tive methods since query response time will no longer be consistent. VCM and
VCMC do not have these problems.

When all the base table chunks are in the cache, lookup times for ESM
becomes negligible, since the very first path it explores becomes successful (base
table makes all paths successful). For ESMC, the lookup time is unreasonable
when all the base level chunks are cached, since ESMC has to explore all the
paths, to find the best cost path. The cost of each path itself becomes much
higher, since each chunk on each path is computable and the ESMC is called
recursively on it. We have ignored this fanout factor (one chunk at a particular
level maps to a set of chunks at a more detail level) in estimating the complexity
of the lookup. Even a savings in aggregation costs cannot justify such high lookup
times. So we do not consider the ESMC method in any further experiments.

Cache Empty Cache Preloaded
Min] Max [Average[Min] Max [Average
ESM | 0 [106826] 1896.1 | O 44 4.54
ESMC| 0 134490 2390 | 0 [19826592| 272598
VCM | 0 0 0 0 62 6.32
VCMC| 0 0 0 0 149 13.15

Table 1. Lookup times (ms).

Update Times The VCM and VCMC method incur an update cost while
inserting and deleting chunks, since they have to maintain count and cost in-
formation. ESM and ESMC do not have any update cost. Lemma 2 suggests



that update complexity is higher for more detail level chunks. To look at the
worst case behavior we loaded all chunks of the base table — level (6,2,3,1,0)
followed by all chunks at level (6,2,3,0,0). The update times vary while inserting
different chunks, since how far an update propagates depends on what has been
inserted in the cache previously. For example, while inserting the last chunk at
level (6,2,3,1,0), update propagates all the way, since a lot of aggregate chunks
become computable because of it. Table 2 shows the maximum, minimum and
the average update time for the VCM and VCMC method. Even the maxi-
mum update time is quite feasible and on an average the cost is negligible. We
can observe an interesting difference between VCM and VCMC. When inserting
chunks at level (6,2,3,0,0), the update times for VCM are 0. All the chunks are
already computable due to previous loading of level (6,3,3,1,0), so the updates
do not propagate at all. However, for VCMC, insertion of chunks of (6,2,3,0,0)
changes the cost of computation for all its descendents in the lattice. The cost
information needs to be changed and the update costs reflects this.

Loading (6,2,3,1,0)[Loading (6,2,3,0,0) ESM 0
Min|Max| Average [Min|Max| Average ESMC 0
VCM | 0 [19] 1797 [0 | O 0 VCM | 32256*1 = 32 KB
VCMC| 1 | 36| 5427 | 0 | 15 | 10.09 VCMC|32256*%6 = 194 KB
Table 2. Update times (ms). Table 3. Maximum Space
Overhead.

Space Overhead The improved performance of VC based methods comes at
the expense of additional memory required for the Count, Cost and BestParent
arrays. The number of array entries is equal to total number of chunks at all
possible levels. This might seem large, but it is feasible since the number of
chunks is much smaller than the actual number of tuples. For example, in the
schema used for our experiments, the base table had one million tuples of 20
bytes each. The total number of chunks over all the levels is 32256. Also, sparse
array representation can be used to reduce storage for the arrays. Table 3 shows
the maximum space overhead for the different methods assuming 4 bytes to
store the cost and 1 byte each for the count and bestparent. Even for VCMC,
the maximum overhead is quite small (about 0.97%) compared to the base table
size. We can expect space overhead to scale linearly with the database size, since
the number of chunks typically increases linearly assuming the average chunk
size is maintained.

7.2 Query Stream Experiments

For these experiments, we generated a stream of queries using different parame-
ters. These were similar to the ones used in [DRSN98]. For each experiment the
cache was pre-loaded with a group-by as our “two-level policy”. Performance is
measured as an average over 100 queries. The cache sizes used ranged from 10
MB to 25 MB.

Generating a Query Stream The query stream is a mix of four kinds of
queries - Random, Drill down, Roll Up and Proximity which try to model
an OLAP workload. Roll-up, drill-down and proximity queries give rise to some
locality in the query stream. While traditional caching can exploit proximity
locality, we need active caches with aggregation to improve performance of roll-
up queries. The query stream we used had a mix of 30% each of drill-down,
roll-up and proximity queries. The rest of them (10%) were random queries.



Replacement Policies This experiment was designed to compare the “two
level policy” described in Section 6 with the plain benefit based policy. Fig-
ure 7 plots the percentage of queries which are complete hits in the cache for
different cache sizes. By “complete hits” we mean queries which are completely
answered from the cache, either directly or by aggregating other chunks. The av-
erage query execution times are plotted in Figure 8. As the cache size increases,
the percentage of complete hits increases. There are two reasons: the cache can
be pre-loaded with a larger group-by (so more queries can be answered by aggre-
gating ) and just more chunks are cached leading to better hit ratio in general.
The results show that the “two level policy” performs better. The main reason
for this is that it has a better complete hit ratio. For example, consider the case
when the cache is large enough (25 MB) to hold the entire base table. The “two
level policy” caches the the entire base table, leading to 100% complete hit ratio.
The ratio is lower for the other case (since it throws away useful base chunks in
favor of computed chunks), causing it to go to the backend for some queries.
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Fig. 7. Complete hit ratios. Fig. 8. Average execution times.

Comparison of Different Schemes In this experiment, we compared the dif-
ferent approaches to caching: no aggregation, ESM and VCM based methods.
Experiments in Section 7.1 showed that the lookup times for ESMC are unrea-
sonable. Also, the lookup and update costs of VCMC are comparable to that
of VCM. So we consider only ESM and VCMC. The case with no aggregations
in the cache is considered to demonstrate the benefit of having an active cache.
Fig 9 shows the average execution times for running the query stream described
earlier. The “two level policy” was used for replacement for the ESM and VCMC
methods. However, for the no aggregation case, the simple benefit based policy
was used since detail chunks don’t have any higher benefit in the absence of
aggregation. Both ESM and VCMC outperform the no aggregation case by a
huge margin. This is expected, since, without aggregation, the number of cache
misses are large. In fact only 31 out of the 100 queries are complete hits in the
cache. For ESM and VCMC, the number of complete hits are much more.
VCMC outperforms ESM, with the difference being more for lower cache
sizes. It might seem that the difference is not large. However, this is because of
the fact that we are plotting the average execution times over all the queries.
The queries which have to go the backend take disproportionately larger time
and that affects the average. The difference between VCMC and ESM is more



pronounced for queries which are complete hits. When the query stream has lot
of locality we can expect to get many complete hits. So speeding up complete hit
queries is critical for increased system throughput. Table 4 shows the percentage
of queries that are complete hits and the speedup factor for these queries.

To further analyze the speedup, Figure 10 shows the average execution times
for queries that hit completely in the cache. We split the total cost for each
query into three parts: cache lookup time, aggregation time and update time (to
add the newly computed chunks). The bars on the left are for the ESM method
and those on the right are for VCMC method. Even though it seems that the
execution times are increasing for larger caches, note that the times cannot be
compared across different cache sizes. This is because the set of queries which
are complete hits is different for different cache sizes. At lower cache sizes, the
speedup is more. This is because for smaller caches, the cache cannot hold a
lot of chunks. So ESM has to spend a lot of time in finding a successful path
of computation. This is reflected in very high lookup times. Also, there is a
difference in the aggregation costs for ESM and VCMC, since VCMC considers
costs to find the best path of computation. As the cache size is increased, the
lookup time for ESM reduces, since there are more successful paths. In fact,
for a cache size of 25 MB, the entire base table fits in memory and the first
path it searches is a successful path. So the find time becomes negligible. The
performance difference is now only due to the difference in the aggregation cost.
We can also observe that the update times for VCMC method are very small.
The update times, for a cache size of 25 MB, are slightly higher since it holds all
the base level chunks. Whenever a new aggregated chunk is added or removed,
it changes the costs of computation for its descendent chunks and these costs
have to be updated. The find times for VCMC are negligible.
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Cache Size (MB) 10] 1520 | 25
% of Complete Hits 66| 74 | 77 [100
Speedup factor (VCMC over ESM)|[5.8(4.11|3.17|1.11

Table 4. Speedup of VCMC over ESM.



8 Conclusions

Providing a cache with the “active” capability of computing aggregates from
cached data allows the cache to satisfy queries that would otherwise result in
cache misses. Results from our implementation show that this can yield a sub-
stantial performance improvement over traditional caching strategies. The “two-
level” policy works better than the simple benefit policy since it maintains useful
groups of chunks and reduces accesses to backend. VCMC always performs bet-
ter than ESM. When the cache size is small compared to the base (or “active”
data size), the win of VCMC over ESM is more pronounced. A large part of this
gain is due to savings in the find time and a smaller one due to aggregation time.
When the cache is big enough to hold all base data and some more aggregated
chunks, the gain in the find time is lost (since the first path chosen by ESM is
successful). The improvement is now only due to the aggregation cost. So, in this
case, we have a choice of using either ESM or VCMC depending on the locality
in the query stream and the implementation effort one is willing to put in.

The area of active caching opens up a lot of opportunities for future work.
One direction for such work would be to investigate the efficacy of such active
caching approaches in workloads more general than those typically encountered
in OLAP applications. There are also many interesting open issues for active
caching for multidimensional workloads. One of the most interesting issues is
that of cache replacement policies, since the problem is very complex for “active”
caches.
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