
A General Technique for Querying XML Documents 
using a Relational Database System 

Jayavel Shanmugasundaram Rajasekar Krishnamurthy Igor Tatarinov 
Eugene Shekita Efstratios Viglas 
Jerry Kiernan Jeffrey Naughton 

IBM Almaden Research Center 
San Jose, CA 95120 

{shanmuga, kiernan, shekita} 
@almaden.ibm.com 

University of Wisconsin 
Madison, WI 53706 

{sekar, stratis, naughton} 
@ cs.wisc.edu 

University of Washington 
Seattle, WA 98195 

igor@ cs.washington.edu 

A B S T R A C T  
There has been recent interest in using relational database systems 
to store and query XML documents. Each of the techniques 
proposed in this context works by (a) creating tables for the 
purpose of storing XML documents (also called relational 
schema generation), (b) storing XML documents by shredding 
them into rows in the created tables, and (c) converting queries 
over XML documents into SQL queries over the created tables. 
Since relational schema generation is a physical database design 
issue - dependent on factors such as the nature of the data, the 
query workload and availability of schemas - there have been 
many techniques proposed for this purpose. Currently, each 
relational schema generation technique requires its own query 
processor to efficiently convert queries over XML documents into 
SQL queries over the created tables. In this paper, we present an 
efficient technique whereby the same query-processor can be used 
for all such relational schema generation techniques. This greatly 
simplifies the task of relational schema generation by eliminating 
the need to write a special-purpose query processor for each new 
solution to the problem. In addition, our proposed technique 
enables users to query seamlessly across relational data and XML 
documents. This provides users with unified access to both 
relational and XML data without them having to deal with 
separate databases. 

1. I N T R O D U C T I O N  
XML [14] has emerged as the dominant standard for 
representing and exchanging data over the Internet. Its 
nested, seK-describing structure provides a simple yet 
flexible means for applications to model and exchange data. 
For example, a business can easily model complex 
structures such as purchase orders in XML form. As another 
example, all of  Shakespeare's plays can be marked up and 
stored as XML documents. 

With a large amount of  data represented as XML 
documents, it becomes necessary to store and query these 
XML documents. To address this problem, there has been 
work done on building native XML database systems 
[6] [9]. These database systems are built from scratch for the 
specific purpose of  storing and querying XML documents. 
This approach, however, has two potential disadvantages. 
Firstly, native XML database systems do not harness the 
sophisticated storage and query capability already provided 
by existing relational database systems. Secondly, native 
XML database systems do not allow users to query 
seamlessly across XML documents and other data stored in 
relational database systems. 

To overcome the first of the above limitations, there have 
been techniques proposed for storing and querying XML 
documents using relational database systems [3][5][11]. 
These approaches work as follows. The first step is 
relational schema generation, where relational tables are 
created for the purpose of storing XML documents. The 
next step is XML document shredding, where XML 
documents are "stored" by shredding them into rows of  the 
tables that were created in the first step. The final step is 
XML query processing, where XML queries over the 
"stored" XML documents are converted into SQL queries 
over the created tables. The SQL query results are then 
tagged to produce the desired XML result. 

The wealth of  literature in this field [3][5][10][11] makes it 
clear that there are many possible approaches for relational 
schema generation. This is because the appropriate 
relational schema for a given application depends on many 
factors such as the nature of  the data, the query workload, 
and availability of XML schemas. Currently, each relational 
schema generation technique has its own query processor 
for translating XML queries into SQL queries. This is 
because there was no known way of  providing a general and 
efficient query capability for all relational schema 
generation techniques. (As will be discussed in more detail 
in the section on related work, previous techniques only 
provided partial solutions to this problem.) 

20 S I G M O D  R e c o r d ,  V o l .  30 ,  N o .  3, S e p t e m b e r  2001 



In this paper, we present an efficient technique whereby the 
same query processor can be used with all  relational schema 
generation techniques as long as they satisfy the following 
two conditions. Firstly, they should provide a lossless 
mapping from XML to relations; i.e., there should be 
sufficient structural information in the created relational 
tables to reconstruct the shredded XML documents. 
Secondly, they should map XML element and attribute 
names/values to relational column values (so that XML 
queries can be translated into SQL queries over columns). 

All relational schema generation techniques that we are 
aware of satisfy the above two conditions, and 
consequently, can use the same query processor. This 
greatly simplifies the task of relational schema generation 
by eliminating the need to write a special-purpose query 
processor for each new solution to the problem. We also 
show how the query processor used for these relational 
schema generation techniques can be the same as the query 
processor used for querying XML views of existing 
relational data. Therefore, this query processor can also be 
used to process queries that span XML documents and 
(XML views of) relational data. 

We have implemented the above technique in the context of 
the XPERANTO system [1][13]. Our implementation is 
extensible and new relational schema generation techniques 
can be easily added to the system. We have used this 
extensibility feature to implement two relational schema 
generation techniques published in the literature [5] [ 11]. 

The remainder of  this paper is organized as follows. In 
Section 2, we present our proposed technique, and in 
Sections 3 and 4, we illustrate this using two different 
relational schema generation techniques published in the 
literature. In Section 5, we discuss related work, and in 
Section 6, we present our conclusions. 

2.  T H E  P R O P O S E D  T E C H N I Q U E  
In the proposed technique, whenever an XML document 
repository is to be created over a relational database system, 
one of possibly many relational schema generation 
techniques is used to automatically create relational tables 
for storing XML documents. Inserted XML documents are 
then shredded and "stored" as rows in these tables. In 
addition, a reconstruct ion X M L  view is created over the 
created relational tables, which (virtually) reconstructs the 
"stored" XML documents from the shredded rows. The 
reconstruction XML view is specified just like a regular 
XML view of relational data [1][2][4]. Queries over the 
stored XML documents are then treated as queries over the 
reconstruction XML view. This is shown in Figure 1. 

The key observation here is that a reconstruction XML view 
makes it possible to treat XML documents as though they 
are an XML view of relational data. As a result, a query 

Create XML 
Document RcposiLory 

Store XML Que~3' over Slored 
Documenls XML O~.~ ment~ 

i 
i Relnllonal 

Relational Schema = - - .  ........ -~  v, cnema 
Generator i lnformntlon 

............ I . . . . . . . . . . . . . . . . . .  i i 

j 
X M L  Documen t  i f or  X M L  v i e w s  i 
Shredder i 0 f  R e l a t i o n a l  D a t a  i .......... ............... ................... / 

lahles 

fTNTrq Fy~V77 ... Ki,;g/-~ 

Relational Database System__l 

Figure 1: High-level Architecture 

over XML documents can be processed as a query over the 
reconstruction XML view. This in turn can be efficiently 
handled by a query processor used for processing queries 
over XML views of  relational data [1][2][4]. Thus, a single 
query processor is sufficient to provide a general XML 
query capability over XML documents, regardless of the 
relational schema generation technique. Further, this query- 
processor can process queries over XML documents and 
XML views of  existing relational data, because they are all 
just XML views of  relational data. This makes it possible to 
query seamlessly over XML documents and  relational data. 

As mentioned earlier, the proposed technique is general 
enough to support many mechanisms for relational schema 
generation. This is because, for a given mechanism, only a 
program stub that does the following is required. When the 
stub is invoked (possibly with the schema of the XML 
documents to be stored), it does the following. 

1) Generates the desired relational schema for storing 
XML documents. 

2) Produces an XML shredder object that can take in 
XML documents and shred them into rows in the tables 
of the generated relational schema. 

3) Creates a reconstruction XML view over the generated 
relational schema that indicates how shredded XML 
documents are to be (virtually) re-constructed. 

As shown in Figure 1, the above three components are 
sufficient to provide a general query capability over XML 
documents using any relational schema generation 
technique. It is important to note that (1) and (2) have to be 
written regardless of  whether the proposed technique is 
used. However, using the proposed technique, it is sufficient 
to just generate a reconstruction XML view (3) instead of 
writing a full-blown XML query processor. The former is 
probably an order of  magnitude easier to accomplish than 
the latter. Thus, the proposed technique greatly simplifies 
the task of relational schema generation. 

S I G M O D  R e c o r d ,  Vol .  30,  N o .  3, S e p t e m b e r  2001 21 



1. Create XML Document Repository PurchaseOrder using DTD 
2. <!ELEMENT PurchaseOrder (itemsBought, Payments)> 
3. <!ATTLIST PurchaseOrder BuyerName CDATA#REQUIRED 
4. Date CDATA #REQUIRED 
5. 
6. <!ELEMENTltemsBought (Item)*> 
7. 
8. <!ELEMENT Item EMPTY> 
9. <!ATTLIST Item Partld CDATA #REQUIRED 

10. Cost CDATA #REQUIRED> 
11. 
12. <!ELEMENT Payments (Payment)* > 
13. 
14. <!ELEMENT Payment EMPTY> 
15. <!ATTLIST Payment CreditCard CDATA#REQUIRED 
16. ChargeAmt CDATA #REQUIRED> 

Figure 2: Creating an XML Document Repository 

For the remainder of this paper, we illustrate how the 
reconstruction XML view is relatively easy to generate for 
widely different relational schema generation techniques. In 
order to do this, we use two relational schema generation 
techniques published in the literature - one that uses XML 
schema information, and one that does not. 

3. CASE STUDY 1 
In this section, we show how a reconstruction XML view 
can be generated for the shared relational schema 
generation technique proposed in [11]. We begin by briefly 
describing this relational schema generation technique. 

3.1 Relational Schema Generation and XML 
Document Shredding 
The shared relational schema generation technique uses 
XML schema information (DTDs [14]) to create the 
appropriate relational tables. To illustrate how the technique 
works, consider the XML document repository definition 
shown in Figure 2. The body of  the definition specifies the 
DTD of the XML documents to be stored. A description of  
the DTD specification is provided for readers unfamiliar 
with DTDs. The top-level element is called 
"PurchaseOrder" (lines 2-4). Each purchase order element 
has two sub-elements, namely "ItemsBought" and 
"Payments" (line 2). Each purchase order element also has 
two attributes, namely "BuyerName" and "Date" (lines 3-4). 
Each "ItemsBought" element has zero or more "Item" 
elements (line 6), and each "Item" element in turn has two 
attributes (lines 9-10) but no sub-elements (line 8). 
"Payments" elements are defined similarly. 

Given the DTD of the XML documents to be stored, the 
relational schema generation works as follows. First, a 
structure called the DTD graph that mirrors the structure of 
the DTD is created. The DTD graph for our example is 
shown in Figure 3. As can be seen, each node in the graph 
represents an XML element, an XML attribute or an 

PurchaseOrder I 
I Type: Element I 

T~eY:e~tNtna'~:e Type..D~ribute ~ E ' l ; : S e n  t 

, I /  

Type: ~)perator Type: (~peratol 

Item Payment I 
Type: Element IType: Element I 

Partld Cost [ CreditCard I I  ChargeAmt ] 
Type: Attribute Irype: Attribute I [Type: Attribute] [Type: Attribute] 

Figure 3: A DTD Graph  

"operator". The "*" operator is used to identify "set" sub- 
elements, i.e., those that can occur many times under a 
parent element. 

Once the DTD graph is created, it is traversed to construct 
the desired relational schema. This is done by creating a 
relation for the root element of  the DTD graph 
("PurchaseOrder" in our example). All children of  an 
element are represented in the same relation as the element 
except if the child is a "*" node. In this case, because it 
corresponds to a "set" child, and because regular relations 
cannot capture set-valued attributes, the child of the "*" 
node is represented in a separate relation. Thus separate 
relations are created for the "Item" and "Payment" elements 
in our example. The relational schema generated for our 
example DTD graph is shown in Figure 4. Note that all 
relations have an "Id" field, which serves as the primary 
key. In addition, all relations corresponding to non-root 
elements ("Item", "Payment") also have a "Parentld" field, 
which is a foreign key reference to its parent 
"PurchaseOrder". This links a child element to its parent 
element. Each relation corresponding to a non-root element 
also has an order field, which specifies the element's 
relative order among its siblings. 

The XML document shredder uses the DTD graph to shred 
XML documents as rows in the generated tables. Figure 4 
shows the rows obtained by shredding the XML document 
in Figure 5. 

3.2 Recons truc t ion  X M L  View Generat ion  
We now show how the reconstruction XML view can be 
generated for the technique described in the previous 
section. Recall that a reconstruction XML view is defined 
over the tables used to store shredded XML documents. It is 
used to reconstruct the original XML documents. This 
enables queries over XML documents to be treated as 
queries over the reconstruction XML view. 

22 S I G M O D  R e c o r d ,  Vol .  30,  N o .  3, S e p t e m b e r  2001 



[ Legend X Primary Key X Foreign Key - ..ll,,.Foreign Key Reference ] 

............................................................. Item 
...... "" ld Parentld Order Partld Cost 

12 '1 ,o I ' I ' 13000 I 
Bu~,erName Date"-,. [21[ 5 0 1 2 1 2  160001 

50 Car 1 Jan xx 
[ I Corporation ] 2000 [ ~ Payment 

l_.fl Parentld Order CreditCard ChargeAmt 

31 51 2 3474324934 2000 

Figure 4: Generated Relational Schema 

<PurchaseOrder BuyerName="Car Corporation" Date="l Jan 2000"> 
<ItemsBought> 

<Item Partld="l" Cost= "3000'7> 
<Item Partld= 2" Cost="6000"/> 

</ItemsBought> 
<Payments> 

<Payment CreditCard="8342398432" ChargeAmt="8000.00"/> 
<Payment CreditCard="3474324934" ChargeAmt="2000.00"/> 

</Payments> 
</PurchaseOrder> 

Figure 5: Purchase Order XML Document 

<db> 
<PurchaseOrder> 

<row> <Id>50 </Id> <BuyerName> Car Corporation </BuyerName> <Date> 1 Jan 2000 .</Date> </row> 
</PurchaseOrder> 
<Item> 

<row> <ld> 20 </Id> <Parentld> 50 </Parentld> <Order> I </Order> <Partid> 1 </Partld> <Cost> 3000 </Cost> </row> 
<row> <Id> 21 </Id> <Parentld> 50 </ParentId> <Order> 2 </Order> <Partld> 2 <fPartld> <Cost> 6000 </Cost> </row> 

</Item> 
<Payment> 
... s imilar to <PurchaseOrder> and <Item> 
</Payment> 

[ </db> 

Figure 6: The Default XML View 

1. For $PurchaseOrder in view("default")/PurchaseOrder/row 
2. Return <PurchaseOrder BuyerName=$PurchaseOrder/BuyerName Date=$PurchaseOrder/Date> 
3. <ltemsBought> 
4. For $1tem in view("default")/Item/row[Parentld = $PurchaseOrder/ld] 
5. Return <Item Partld=$1tem/Partld Cost=$1terrdCost/> 
6. Sortby ($1tem/Order) 
7. </ItemsBought> 
8. <Payments> 
9. For SPayment in view("default")/Payment/row[Parentld = SPurchaseOrder/Id] 

I 0. Return <Payment CreditCard=$Payment/CreditCard 
11. ChargeAmt=$ Payment/ChargeAmt/> 
12. Sortby ($Payment/Order) 
13. </Payments> 
14. </PurchaseOrder> 

Since a reconstruction XML view is just an XML view of 
relational data, it can be processed in the same way. We 
illustrate this in the context of the XPERANTO system 
[1][13]. The technique described should also work with 
other systems that support the creation and querying of 
XML views of  relational data [2][4]. 

As a starting point, XPERANTO automatically creates a 
d e f a u l t  X M L  view, which is a low-level XML view of the 
underlying relational database. Users can then define their 
own XML views on top of  the default view using the 
XQuery query language [15]. Figure 6 shows the default 
XML view for the relational database shown in Figure 4. As 
shown, top-level elements correspond to tables with table 
names appearing as tags. Row elements are nested under the 

Figure 7: A Reconstruction XML View 

table elements. Within a row element, column names appear 
as tags of  sub-elements, and column values appear as text. 

The XML query over the default XML view that defines the 
reconstruction XML view for our example is shown in 
Figure 7. It reconstructs the XML document of Figure 5 
from the rows in Figure 4. As shown, the query loops over 
all rows in the PurchaseOrder table to (re)construct the top- 
level "PurchaseOrder" XML elements. Nested queries are 
used to (re)construct "Item" and "Payment" sub-elements. 
Note that a sortby clause appears in the nested queries so 
that the sub-elements appear in the same order as they 
appeared in the original XML document. Given this 
reconstruction XML view, queries over the stored MML 
documents can be processed by the XPERANTO query- 
processor as queries over the reconstruction XML view. 

S I G M O D  R e c o r d ,  Vo l .  30 ,  N o .  3, S e p t e m b e r  2001 23 



Algorithm buildReconstructionQuery (DTDGraphNode node, String parentTableRowVariable) 
returns query 

1. II First identify the type of the DTD Graph node 
2. if (node is of type Element) then 
3. //Check whether a separate table is created for this element node 
4. if (node is stored in separate table from parent) then 
5. //Create a new variable that ranges over the rows of the table 
6. QueryString = "For $" + node.name + " in  view(DefaultView)/" + node.name + "/row 
7. //Join on parentld if this is not the root element 
8. if (not node.isRoot) then 
9. QueryString += "[parentld = "  + parentTableRowVariable + "/Id]" 

I 0. endif 
1 I. QueryString += "Return" 
12. currTableRowVariable = "$" + node.name 
!13. else 
I14.  //Child is represented in the same table as the parent. 
15. currTableRowVariable = parentTableRowVariable; 
16. endif 
17. //Construct the element template by recursing on the attributes and sub-elements 
18. QueryString += "<" + node.name + .... 
19. for (all attributes A of node) do 
Z0. QueryString += buildReconstructionQuery(A, currTableRowVariable) 
21. endfor 
22. QueryString += ">" 
23. for (all sub-element, operator and text node children E of node) do 
24. QueryString += buildReconstructionQuery(E, currTableRowVariable) 
25. endfor 
26. QueryString += "</" + node.name + ">" 
27. / / I f  this element node is joined with its parent, then sort by the Order field 
28. if (node stored in separate table from.parent and not node.isRoot) then 
29. QueryString += "sortby (" + currTableRowVariable + "/Order)" 
30. endif 
31. else if (node is of type Attribute) then 
32. //Attributes are always in the same relation as the parent. So, just create attribute 
33. QueryString = node.name + "  = " +  parentTableRowVariable + "/" + node.name 
34. else if (node is of type Text) then 
35. //Add the text value of the node to the query 
36. QueryString = parentTableRowVariable + "/" + node.name 
37. else//Node is of type Operator 
38. //Simply recurse on child 
39. QueryString = buildReconstructionQuery(node.child, parentTableRowVariable) 
40. endif 
41.//Return the query string built 
42. return QueryString 

Figure 8 presents the algorithm for creating a reconstruction 
XML view given an arbitrary DTD graph 1. The algorithm 
works by recursively traversing the DTD graph. Let us walk 
through the algorithm using the DTD graph in Figure 3 as 
an example. The algorithm is invoked with the root node of 
the DTD graph (PurchaseOrder in our example). Since the 

1 This algorithm does not handle recursive DTD graphs. Although 
we have a general algorithm that handles recursion, we do not 
present it here because the details are not particularly 
illuminating in the current context. 

Figure 8: Algorithm to generate Reconstruction XML Views 

root node has no parents, parcntTableRowVariable is set to 
null. Since the PurchaseOrder node is of  type "Element" 
and a new table is created for this element during relational 
table creation, an XQuery "For" clause that binds the 
variable $PurchaseOrder to the rows of  the 
PurchaseOrderTable is created (line 6 in Figure 8 generating 
line 1 in Figure 7). Then the PurchaseOrder XML element 
tag is created (line 18 in Figure 8) and the algorithm is 
invoked recursively on the child attribute (lines 19-21), sub- 
element, operator and text (lines 23-25) nodes to create the 
XQuery fragments to reconstruct these nodes. 

2 4  S I G M O D  R e c o r d ,  V o l .  30 ,  N o .  3,  S e p t e m b e r  2 0 0 1  



During the recursion, parentTableRowVariable is set to the 
value "$PurchaseOrder" so that children can refer to rows 
in the parent table. Constructing XQuery query fragments 
for attribute nodes (lines 31-33) simply assigns the attribute 
name to the appropriate attribute value using the parent 
table row variable because attributes are always represented 
in the same table as their parent elements. This generates the 
attribute construction fragments in lines 2, 5, 10 and 11 in 
Figure 7. Constructing XQuery query fragments for text 
nodes of  elements is done similarly (lines 34-36). 

Constructing XQuery query fragments for operator nodes 
(lines 37-39) is achieved by recursing on the child of  the 
operator node. Constructing XQuery fragments for sub- 
element nodes is similar to that of  the root node, except that 
a join condition is needed to relate it to its parent (lines 8-10 
in Figure 8 generating lines 4 and 9 in Figure 7). Also, a 
sortby clause is needed to order the sub-elements in the 
same way as they appear in the original XML document 
(lines 28-30 in Figure 8 generating lines 6 and 12 in Figure 
7). If a separate relation has been created for a node in the 
relational schema, a new (sub-)query is generated. In our 
example, separate queries are created for PurchaseOrder, 
Item and Payment nodes. Nested queries are related to the 
parent query using the parentld field. 

Note how the algorithm of Figure 8 eliminates the need for 
a special-purpose query-processor for this relational schema 
generation technique. In addition, it enables seamless query 
capability over XML documents and relational data. 

4. C A S E  S T U D Y  2 
We now show how a reconstruction XML view can be 
generated for the edge relational schema generation 
technique proposed by Florescu and Kossman [5]. This 
technique, unlike the previous one, does not make use of 
XML schema information. We first briefly describe the 
technique, and then show how the reconstruction XML view 
can be generated. 

4.1 R e l a t i o n a l  S c h e m a  G e n e r a t i o n  a n d  X M L  

D o c u m e n t  S h r e d d i n g  
The basic idea behind this approach to relational schema 
generation is to view an XML document as a graph. The 
nodes of the graph are XML elements and attributes, and 
the edges of  the graph represent containment relationships 2. 
Each edge of this graph is then stored in a relational table 
called the Edge table. Figure 9 shows the Edge table 
populated with the edges of the XML document in Figure 5. 

As shown, each edge is uniquely identified by the id fields 
of  the source and destination nodes (the sid and did fields). 

2 Florescu and Kossmann [5] do not distinguish between 
attributes and sub-elements. However, since these are 
distinguished in the XML model, we treat them separately. 

Did Sid Ordinal Name 
1 0 0 PurchaseOrder 
2 1 null BuyerName 
3 1 null Date 
4 1 0 ItemsBought 
5 1 1 Payments 
6 4 0 Item 

Value Type 
i null Element 
Car Corp Attribute 
1 Jan 00 Attribute 

null Element 
null Element 
null Element 

Figure 9: The Edge Table 

Each edge also contains the name, value, and type 
information about its destination node. The order among 
sibling sub-elements is captured using the ordinal field. In 
our example, the edge pointing to the root XML element 
("PurchaseOrder") is mapped to the first row. Its sid field is 
0, which represents the id of  the document root. The edges 
pointing to the BuyerName and Date attributes of the 
"PurchaseOrder" element are mapped to the second and 
third row, respectively. Note that these are related to the 
purchase order did field using the sid field. Similarly, the 
"ItemsBought" and "Payments" sub-elements of the 
"PurchaseOrder" element are represented by the fourth and 
fifth row respectively. The ordinal field captures their order. 
The other edges of  the document are stored similarly. 

4 .2  R e c o n s t r u c t i o n  X M L  V i e w  
Figure 10 shows the XQuery query used to define the 
reconstruction XML view for the above relational schema 
generation approach. The query first determines the edge 
pointing to the root element and invokes a function called 
buildElement to construct the root element (lines 14-16). 
The buildElement function (lines 1-13) is recursive and 
builds up document fragments rooted at a given element. It 
first creates an element with the appropriate tags (line 3). It 
then produces the character values associated with an 
element (line 4). A nested sub-query is then used to 
determine the edges pointing to the attributes of  the element 
(lines 5-7), and the attributes are then created using the 
XQuery built-in function attribute (line 7). Finally, another 
nested sub-query is used to determine the edges pointing to 
the sub-elements of the element (lines 8-9), and these are 
then created by recursively invoking the buildElement 
function (line 10). The sub-elements are then ordered by 
their ordinal position (line 11). 

Note that since XML schema information is not used in this 
technique, the same reconstruction XML view can be used 
for any XML document. Given this reconstruction XML 
view, queries over XML documents can be processed using 
a query-processor for XML views of  relational data. Again, 
the need for a special-purpose query engine is made 
unnecessary because of  the reconstruction XML view. 

S I G M O D  R e c o r d ,  Vol .  30 ,  N o .  3, S e p t e m b e r  2001 25 



I. Function buildElement ($id integer, $name string, 
2. $value string) returns element { 
3. <Shame> 
4. Svalue, 
5. For $att in view("default")/Edge/row 
6. Where $att/sid = $id and $att/type = "Attribute" 
7. Return attribute($att/name, $att/value), 
8. For $subelem in view("default")/Edge/row 
9. Where $subelem/sid = $id and $att/type = "Element" 

10. Return buildElement($subelem/did, 
11. Ssubelern/name,$subelem/value) 
12. Sort by $subelem/ordinal 
13. </Shame>} 
14. for $root in view("default")/Edge/row 
15. where $root/sid = 0 
16. return buildElement($root/did, $root/name, $root/value) 

Figure 10: Reconstruction XML View 

5. R E L A T E D  W O R K  
Deutsch et al. [3] present a technique whereby different 
relational schema generation techniques can be specified 
using a declarative language called STORED. They also 
present algorithms for translating semi-structured queries 
into SQL queries, given a STORED specification. However, 
the expressive power of the STORED language is rather 
limited, and it cannot handle relational schema generation 
techniques involving recursion (such as edge [5] and shared 
[11]). Further, unlike our technique, their query processor 
cannot query across relational data and XML documents. 

In parallel work, Manolescu et al. [8] describe a query 
processor that works for different relational schema 
generation techniques. Their work is done in the context of  
data integration, and the tables generated by each relational 
schema generation technique are specified as materialized 
views over a virtual global schema. Materialized view 
matching algorithms are then used to rewrite XML queries 
into SQL queries. However, these materialized view 
matching algorithms are NP-Hard even for simple 
conjunctive queries [7][8] (approximations cannot be used 
because materialized views have to be matched for queries 
to run). Further, their approach does not currently handle 
complex SQL constructs such as arbitrarily nested queries. 
In contrast, the approach presented in this paper relies on 
more efficient view/query composition [2][4][13] over the 
reconstruction XML view, and can handle arbitrarily 
complex query constructs [ 13]. 

6.  C O N C L U S I O N  
We have presented a technique for querying XML 
documents using a relational database system, which (a) 
enables the same query processor to be used with most 
relational schema generation techniques, and (b) allows 
users to query seamlessly across relational data and XML 
documents. The proposed technique can thus serve as the 
infrastructure for investigating issues common to different 

relational schema generation techniques, such as document 
caching, updates, and information retrieval style querying. 

A potential cause for concern is that our general technique 
may be less efficient than a special-purpose query processor 
for translating XML queries into SQL queries. However, 
based on our prototype implementation in Java, we have 
found that it only takes about 100-300 milliseconds to 
translate complex XML queries into SQL queries [13]. 
Most of  the time is actually spent in SQL query execution, 
which typically takes on the order of seconds. For SQL 
query execution, we use the sorted outer union technique, 
which has been shown to be both stable and efficient [ 12]. 

7 .  R E F E R E N C E S  
[1] M. Carey, et al . ,  "XPERANTO: Publishing Object- 

Relational Data as XML", Workshop on the Web and 
Databases (WebDB), Dallas, Texas, May 2000. 

[2] V. Christophides, S. Cluet, J. Simeon, "On Wrapping Query 
Languages and Efficient XML Integration", SIGMOD 
Conference, Dallas, Texas, June 2000. 

[3] A. Deutsch, M. Fernandez, D. Suciu, "Storing Semi- 
structured Data with STORED", SIGMOD Conference, 
Philadelphia, Pennsylvania, May 1999. 

[4] M. Fernandez, W. Tan, D. Suciu, "SilkRoute: Trading 
Between Relations and XML", World Wide Web 
Conference, Toronto, Canada, May 1999. 

[5] D. Florescu, D. Kossman, "Storing and Querying XML Data 
using an RDBMS", IEEE Data Engineering Bulletin, 22(3), 
pp. 27-34, 1999. 

[6] R. Goldman, et al., "From Semi-structured Data to XML: 
Migrating the Lore Data Model and Query Language", 
WebDB Workshop, Philadelphia, Pennsylvania, June 1999. 

[7] A. Levy, A. Mendelzon, Y. Sagiv, D. Srivastava, "Answering 
Queries using Views", PODS Conference, San Jose, 
California, 1995. 

[8] I. Manolescu, D. Florescu, D. Kossman, "Answering XML 
Queries over Heterogenous Data Sources", VLDB 
Conference, Rome, Italy, September 2001 (to appear). 

[9] J. Naughton, et al., "The Niagara Internet Query System", 
IEEE Data Engineering Bulletin, Vol. 24, No. 2, 2001. 

[10]A. Schmidt, et al., "Efficient Relational Storage and 
Retrieval of XML Documents", Workshop on the Web and 
Databases (WebDB), Dallas, Texas, May 2000. 

[ l l ]J .  Shanmugasundaram, et al., "Relational Databases for 
Querying XML Documents: Limitations and Opportunities", 
VLDB Conference, Edinburgh, Scotland, September 1999. 

[12]J. Shanmugasundaram, et al., "Efficiently Publishing 
Relational Data as XML Documents", VLDB Conference, 
Cairo, Egypt, September 2000. 

[13]J. Shanmugasundaram, et al., "Querying XML Views of 
Relational Data", VLDB Conference, Rome, Italy, 
September 2001 (to appear). 

[14]World Wide Web Consortium, "Extensible Markup 
Language (XML) 1.0 (Second Edition)", W3C 
Recommendation, October 2000. 

[15]World Wide Web Consortium, "XQuery: A Query Language 
for XML", W3C Working Draft, February 2000. 

26 S I G M O D  R e c o r d ,  Vol .  30,  N o .  3, S e p t e m b e r  2001 


