
XML Views as Integrity Constraints and their Use in Query Tra nslation

Rajasekar Krishnamurthy∗ Raghav Kaushik∗ Jeffrey F Naughton
IBM Almaden Research Center Microsoft Research Universityof Wisconsin-Madison

rajase@us.ibm.com skaushi@microsoft.com naughton@cs.wisc.edu

Abstract

The SQL queries produced in XML-to-SQL query trans-
lation are often unnecessarily complex, even for simple in-
put XML queries. In this paper we argue that relational
systems can do a better job of XML-to-SQL query transla-
tion with the addition of a simple new constraint, which we
term the “lossless from XML” constraint. Intuitively, this
constraint states that a given relational data set resulted
from the shredding of an XML document that conformed to
a given schema. We illustrate the power of this approach by
giving an algorithm that exploits the “lossless from XML”
constraint to translate path expression queries into efficient
SQL, even in the presence of recursive XML schemas. We
argue that this approach is likely to be simpler and more ef-
fective than the current state of the art in optimizing XML-
to-SQL query translation, which involves identifying and
declaring multiple complex relational constraints and then
reasoning about relational query containment in the pres-
ence of these constraints.

1. Introduction

Using relational database systems to store and query
XML documents has received a lot of attention both
in the research community and in the leading commer-
cial relational products. Both the research community
and the products have explored a number of ways to
incorporate support for XML in an RDBMS, but one
popular approach that is currently implemented in com-
mercial products (including Oracle XML DB [17],
Microsoft SQL Server 2000 SQLXML [18] and
IBM DB2 XML Extender [16]) is to “shred” the XML
document into relational tuples and to execute XML queries
by translating them into SQL. While determining the best
way to handle XML in relational database systems is an
interesting question, that is not the focus of this paper — we
think that this shredding approach has enough advantages
and momentum that it will be a commonly provided and

∗ Work done while the authors were students at the University of
Wisconsin-Madison

perhaps dominant option for the foreseeable future. The
goal of this paper is to investigate techniques for improving
the quality of the SQL that results from this approach.

As we illustrate with an example in Section 2, when us-
ing this shredding approach, sometimes even simple XML
path queries get translated into needlessly complex SQL.
Intuitively, the reason for this is that the query translator
must generate complex queries to ensure that the correct
answer to the original XML query is generated for any pos-
sible instance of the relational schema. But only a subset of
these relational instances could possibly result from shred-
ding documents that conform to the given XML schema,
and for these relational instances, in many cases much sim-
ple queries can be guaranteed to give the correct answer.

Perhaps in view of this fact, the research literature [4, 10]
has explored the idea of improving the generated SQL by
identifying relational integrity constraints and using them
to minimize the generated SQL queries. This approach is
problematic for a number of reasons. First, it is not clear
how to automatically deduce and express the relational con-
straints that are essential for the query minimization pro-
cess. Second, even if the appropriate relational constraints
are discovered and specified, the query minimization prob-
lem involves the complex task of reasoning about relational
query containment in the presence of integrity constraints.

For this reason, in this paper we argue for a much sim-
pler approach. Instead of “forgetting” the source of the rela-
tional data and then patching things up with the addition of
relational integrity constraints, we propose the use of one
simple new integrity constraint: the “lossless from XML”
integrity constraint. Simply put, this constraint says that a
given relational data set resulted from the lossless shred-
ding of an XML document that conformed to a given XML
schema. We demonstrate the power of this approach by giv-
ing algorithms that exploit this “lossless from XML” con-
straint to translate path expressions into efficient SQL, even
in the presence of recursive XML schemas.

Note that we are not claiming any “magic” here — it
is possible (even probable) that any optimization that can
be done by exploiting the “lossless from XML” constraint
could also theoretically be done through the right combina-

1

tion of relational integrity constraints and relational query
minimization. However, we are arguing that the “from
XML” approach is simpler and more direct, and likely to
be easier to understand, implement, and extend for other
purposes.

We close this introduction by some comments setting
this work in the context of other related work. The problem
we are addressing in this paper has been called the “XML
storage” problem, because it refers to storing XML in a re-
lational system. A closely related problem is XML publish-
ing, in which the data was originally relational but is being
exported as XML. The “lossless from XML” integrity con-
straint is natural for XML storage, but is more problematic
in the XML publishing domain, where the data is literally
not “lossless from XML.” Our previous work has addressed
the XML publishing problem [10]. In that paper the key
idea was to impose relational constraints on the exported
relational tables and then to exploit these constraints during
the XML to SQL query translation.

It is possible that in certain circumstances it may make
sense to put a “lossless from XML” constraint data that was
originally relational, but that would require techniques to
verify that the constraint holds (that is, that the data “looks
like” it came from an XML document conforming to a spec-
ified schema). This is an interesting area for future work,
but not the focus of this paper — here we focus on what
we regard as the most useful and obvious application of the
“lossless from XML” constraint, that is, for data that indeed
originated as XML.

The rest of the paper is organized as follows: We present
an example in Section 2 to show how more efficient SQL
queries can be output during XML-to-SQL query transla-
tion. There are many algorithms that could be specified to
make use of the “lossless from XML” constraint. For con-
creteness, in this paper we show how this constraint can be
exploited in the context of the XML translation algorithm
found in [9]. Towards this purpose, we review the frame-
work and algorithm proposed in [9] in Section 3. We then
extend this algorithm for tree XML schemas in Section 4
to exploit the “lossless from XML” constraint. We then
present an algorithm that works for recursive XML schema
in Section 5.

2. Motivating example

In this section, we present an example scenario to illus-
trate how knowing that the “lossless from XML” constraint
holds can help in generating efficient SQL queries.

Part of the XMark benchmark [15] XML schema is given
in Figure 1. One way of mapping the XML schema into re-
lations is given in the figure. We have used a simple anno-
tation mechanism to represent the correspondence between
the XML schema and the relational schema.

Consider the evaluation of the following

query Q1, which returns all the item categories:
//Item/InCategory/Category. The SQL query output
by many published algorithms [5, 8, 13], isSQ1

1:

select category
from Site S, Item I, InCat C
where S.id = I.siteid and I.id = C.itemid and I.continent=’africa’
union all ... (6 queries one for each continent except Antarctica)

Informally, the translation can be summarized as fol-
lows: (i) Identify all paths in the schema that satisfy the
query (PathId stage). (ii) For each path, generate a rela-
tional query by joining all relations appearing in this path
(SQLGen stage). The final query is the union of the queries
over all satisfying paths (six paths forQ1).

Notice how a simple XML query results in a fairly com-
plex SQL query. This happens because the query translator
is not taking advantage of the fact that the relational data
originated from XML. So, the resulting SQL query has to
be a correct translation ofQ1 for every possible instance
of the relational schema. This leads to the complex query
SQ1

1.
Now suppose the query translator has the additional in-

formation that the relational data satisfies the “lossless from
XML” constraint for the given XML view. Then, it can gen-
erate the following simpler querySQ2

1 for XML query Q1.

select category
from InCat C

The above query is a correct translation forQ1 because
the relational data satisfies the “lossless from XML” con-
straint. There are six nodes in the schema whose values are
stored in the columnInCat.Category and the queryQ1

selects all of them. Hence, the scan query is a correct trans-
lation for Q1. In comparison to the complex SQL query
SQ1

1, the above querySQ2
1 is a far more efficient query.

An important question to answer at this point is whether
the associated performance gains are substantial. In [10],
using a synthetic ADEX dataset conforming to a standard
advertisement schema [1] and a dataset from the XMark
Benchmark [15], we showed that the associated perfor-
mance benefits are significant (ranging from a relative per-
formance improvement of 1.15 to 93). Many queries
had a speed up of an order of magnitude or more. The
datasets used in these experiments satisfied the “lossless
from XML” constraint; hence, the results also demonstrate
the potential benefits that can be reaped by exploiting the
“lossless from XML” constraint during query translation.

At this point the reader may wonder if XML query min-
imization will be helpful in the above scenario. Note that
the above path query is already minimal (and so will be
all the other example queries we use later in this paper),
it is the translation that caused the problem, not the orig-
inal XML query. All the work on XML query minimiza-
tion [2, 6, 12] and on containment and equivalence of path

Site
id

Item
id ...parentid parentcodecategory

InCat
id parentid parentcode name... ...

Regions

Africa Asia Australia

Site Site

..
..

Europe
87654

1 e1 : parentCode = 1

e6 : parentCode = 6

..
..

..
..

Item

Incategory

*

InCat

9

11

Item

Incategory

*

InCat

29

31

SAmericaNAmerica

.....................

Item.name

30
10

Item.name

Item Item

e1
e6

Category
InCat.category

12 Category
InCat.category

32

name

2

3

name

e3 e4 e5e2

Figure 1. Part of XMark XML benchmark schema
and corresponding Relational Schema

........

0

2

3

1

Incategory

category

* − Item

Item

Regions

Site Site

2,0

Africa

Item

category
InCat.category

Item

3,0

9,1

12,3

IncategoryInCat
11,2

SAmerica

Item

category
InCat.category

Item

8,0

29,1

32,3

IncategoryInCat
31,2

a1 a6

Regions

Site Site

Africa

a1

Item

category
InCat.category

Item

1,1

2,2

3,3

9,4

12,6

IncategoryInCat
11,5

1,0

CPS CPSAQ
1 1 2

Figure 2. Result of PathId stage for Q1

and Q2

expression queries [3, 11, 14] is complementary to the focus
of this paper and can be used as the first stage to minimize
the input XML queries.

3. Preliminaries

In order to explain how the “lossless from XML” con-
straint can be exploited in XML-to-SQL query translation,
we extend the algorithm proposed in [9] for the XML stor-
age scenario to make use of this constraint. In this section,
we first describe a class of XML-to-Relational mappings
and then describe when the “lossless from XML” constraint
is satisfied. We then briefly explain the algorithm proposed
in [9] for translating path expression queries into SQL.

3.1. XML to Relational Mappings

We represent the mapping between XML elements and
relational columns through annotations on the schema
graph. Each non-leaf (internal) node in the schema is asso-
ciated with a relation name (shown next to the node). Each
leaf node is associated with a column name as well. The
relational schema into which we shred the XML data is the
set of relations that occur in the node annotations. Each re-
lation has anid field, which is the primary key. In addition,
parentid and parentcode fields are included as required to
preserve document structure. For ease of exposition, we as-
sume that every non-leaf node has anelemid attribute that
uniquely identifies an element within an XML document.

3.2. “Lossless from XML” constraint

While the above description defines the syntax of an
XML-to-Relational mapping, we need to define when the
relational data satisfies the “lossless from XML” constraint.

A shredding algorithm uses the XML-to-Relational map-
ping to convert XML data into relational data. We say that
the shredding algorithmrespectsa mapping if it satisfies the
following properties:

• The shredding algorithm actually shreds the XML data
into relations based on the annotations of the mapping.

• All the XML data is completely shredded into relations
and no part of the XML data is stored multiple times.

• No data, other than what which is present in the XML
document, is inserted into the relations mentioned in
the mapping.

• Enough information is maintained in the relational
data to enable reconstruction of the original XML data.

Every decomposition scheme we have encountered in the
literature satisfies the above properties.

We say that thelossless from XMLconstraint is satisfied
if all the relational data was loaded by a shredding algo-
rithm that respects the XML-to-Relational mapping. This
implies that the relational data set resulted from the lossless
shredding of an XML document that conformed to a given
XML schema.

For example, consider the following shredding algorithm
A that satisfies the above properties. Given an XML docu-
mentD1 conforming to the schema in Figure 1, algorithm
A creates (and inserts into the RDBMS) relational tuples
in the following fashion. The algorithm processes the el-
ements in the order in which they appear in the document.
For the rootSite element, a tuple is inserted into theSite
relation. Then, for theRegions child element, no action
is taken as the node has no annotations. Similarly, no ac-
tion is taken for theAfrica child element. Then for each
Item child element, a tuple is inserted into theItem re-
lation with theparentid column having the value of the
id field of theSite tuple. Also, theparentcode col-
umn’s value is set to 1 to capture the edge annotation. The
value of thenamecolumn is set to the value of thename
subelement. Then, for eachIncategory subelement tu-
ples are inserted in a similar fashion into theIncategory
relation. Once, the XML subtree rooted underAfrica has
been processed, the subtrees corresponding to the other five
continents are processed in a similar fashion.

The above definition of the “lossless from XML” con-
straint is complete if we formally define the notion of when
a shredding algorithm respects a mapping. We introduce
some terminology for this purpose.

With every pathp =<n1, . . . , nk>, we associate an
SQL query,SQL(p) obtained by joining all the relations
on the path. The annotations on the edges are added as se-
lection conditions. The annotation of nodenk, Annot(nk),
is the value returned bySQL(p). Intuitively, the SQL query
retrieves from the relational shredding the information that
appeared in portions of the original document that match
the pathp.

With a leaf schema nodel, we associate a root-to-leaf
SQL queryRtoL(l) as follows. Let the root-to-leaf paths
to l bep1, . . . , pm. Then,RtoL(l) = ∪m

i=1SQL(pi). The
union operation here preserves duplicates. If the mapping
schema is recursive, the number of root-to-leaf paths will be
infinite for certain leaf nodes and theRtoL query for such
nodes is the union of infinitely many queries. For example,
for the above schemaRtoL(12) is given below.

select IC.category
from Site S, Item I, InCat IC
where S.id = I.parentid and I.parentcode = 1 and I.id = IC.parentid

For a relational columnR.C, we defineLeafNodes(R.C)
to be the set of leaf schema nodes annotated withR.C.

Again, intuitively, RtoL(l) retrieves from the relations
the information that would be found in the original XML
document by starting at the route and traversing all paths
that matchl.

A shredding algorithm respects an XML-to-Relational
mapping,T,if for every collection of XML documents con-
forming to the given XML schema, the algorithm loads data
into the relational database such that the following proper-
ties hold.

P1: For each root-to-leaf pathp, SQL(p) returns the val-
ues of all elements that satisfyp.

P2: For every relational column R.C with
LeafNodes(R.C) 6= φ, let Q be the SQL
query: “select R.C from R”. Then, Q =⋃

l∈LeafNodes(R.C) RtoL(l)

P3: For each pathp ∈ T ending in a leaf node, letP de-
note the set of root-to-leaf pathsp′ ∈ T such that the
relation names annotating the nodes inp match the
annotations for some suffix ofp′. Then,SQL(p) ⊆⋃

p′∈P SQL(p′).

All the above comparisons are under multiset semantics.
Every shredding algorithm we have encountered in the liter-
ature, including the shredder we presented above, satisfies
the above properties.

Notice how the shredding algorithm A needs to be val-
idated just once to make sure that it shreds data respect-
ing any given XML-to-Relational mapping. Once this is

done, as long as all the data (in the relations appearing in
the mapping) is loaded by the algorithm A , the “lossless
from XML” constraint is guaranteed to hold.

3.3. Path Expression Queries

A simple path expression (SPE) can be denoted as “s1

l1 s2 l2 . . . sk lk,” where each of theli is a tag name and
each of thesi is either/ (denoting a parent-child traversal)
or // (denoting an ancestor-descendant traversal). Eachsi

li pair is a navigation step of the path expression andk is the
number of steps in the query. The result of a path expression
is the values of thesetof all nodes that match the query. For
non-leaf nodes, we return the value of the corresponding
elemid attributes.

3.4. Query Translation Algorithm

The query translation algorithm proposed in [9] has two
stages: PathId stage and SQLGen stage. In the PathId stage,
the paths in the XML schema that match the query are iden-
tified. This is done by treating the schema and the query
as automata and constructing the cross-product automaton.
For example, consider the query automaton and the corre-
sponding cross-product result shown in Figure 2 for query
Q1. The cross-product schema has been labelled with the
pair of schema node and query state number. The result of
this stage is a compact representation of all the matching
schema paths.

We have also shown the result of the PathId stage
for the queryQ2, which returns all the item categories
in Africa: /Site/Regions/Africa/Item/Incategory/Category.
Notice how there is only one matching schema path for this
query.

In the SQLGen stage, the SQL query is generated corre-
sponding to the set of matching paths encoded in the cross-
product schemaSCP . Informally, the union of all root-to-
leaf paths inSCP corresponds to the query result. A sim-
ple algorithm to generate an SQL query corresponding toQ
is to returnRQ =

⋃
RtoL(l) over all leaf nodes inSCP .

While this is a good algorithm whenSCP is a tree, it does
not suffice whenSCP is a DAG (directed acyclic graph) or
is recursive. The SQLGen algorithm proposed in [9] uses
thewith clause in SQL99 to handle the DAG and recursive
cases.

4. Exploiting the “lossless from XML” con-
straint for Tree XML Schemas

In this section, we show how we can use the “lossless
from XML” constraint while translating queries over a tree
schema in order to generate a query that may be more ef-
ficient than the corresponding naively generated query. We
extend this to directed acyclic graph (DAG) and recursive
XML schema in Section 5.

procedureXML to SQL translation(Q, S)
begin
1. Perform PathId using the mappingS and queryQ.

Let SCP be the resultant cross-product schema.
2. PruneSCP using of the “lossless from XML” constraint .
3. Translate the prunedSCP into SQL.

Figure 3. Query Translation Algorithm using
the “lossless from XML” constraint

The outline of this algorithm is given in Figure 3. The
output of the PathId stage is pruned making use of the “loss-
less from XML” constraint and this pruned cross-product
schema is the input to the SQLGen stage. The PathId stage
is identical to the algorithm presented in [9]. We explain the
pruning stage and the SQLGen stage in this section.

4.1. Basic Idea behind the Algorithm

Consider the set of pathsP in the schema that end in a
node annotated with the columnR.C. Since the XML-to-
Relational mapping satisfies the “lossless from XML” con-
straint, we know that every tuple in the relationR corre-
sponds to the value of (exactly) one element in the XML
document. In other words, each tuple in relationR will
appear in the result of the SQL query corresponding to (ex-
actly) one root-to-leaf path in the XML schema. Notice that
this gives us two guarantees: (i) No two root-to-leaf paths
will have a common tuple in their results and (ii) All the
root-to-leaf paths combined together correspond to a scan
of the columnR.C.

Let us look at some example queries to see how we
can use the above information to prune the cross-product
schema. In the process, we identify two important concepts
that form the core of our algorithm. We use the mapping
schema in Figure 1 in the following discussion, and will dis-
cuss how the algorithm works informally in these specific
examples before turning to specifying the full algorithm.

Consider the example queryQ2 from Section 3.4,
/Site/Regions/Africa/Item/Incategory/Category. The out-
put of the PathId stage is the cross-product schemaS2

CP

given in Figure 2. We use the first component of the
node identifiers in the cross-product automaton to identify
the nodes in the following discussion. There is a single
pathp =<1, 2, 3, 9, 11, 12> in S2

CP and issuing the query
SQL(p) is a correct translation forQ1. Our goal in this
case is to find a shorter suffixp′ of p such thatSQL(p) is
an equivalent translation under the given mapping.

Now, for any suffixp′ of p, SQL(p′) will certainly con-
tain all the results forQ1. We also know that the “loss-
less from XML” constraint is satisfied. So, if we ensure
that SQL(p′) does not have any results corresponding to
some other path in the mapping schema, then we are done.
We do this as follows: We first start with the smallest suf-
fix p′ = {<12>}. The equivalent query will be a scan of

the InCat.category column. We notice that there is a path
q = {<32>} in the original schemaS that has the same an-
notation. So,SQL(p′) will also return results correspond-
ing to the pathq. Since the queries corresponding to the
pathsp′ andq have common results, we say that they are in
conflictwith each other. Now, sinceq does not have a cor-
responding path inS1

CP , we know that it is not a part of the
query result. This implies that forp′ = {<12>}, SQL(p′)
will have results corresponding to this pathq as well.

So, we go up one level and setp′ = {<11, 12>}. The
same conflict persists with the pathq = {<31, 32>} and
we have to incrementp′ by another level. Repeating this,
we get top′ = {<3, 9, 11, 12>}. Now we see that the cor-
responding pathq = {<8, 29, 31, 32>} is not in conflict
with p′ due to the difference in the parentCode condition
(edge annotationse1 ande6). In fact, there is no other path
in conflict with p′ elsewhere in the schema. So, the query
SQL(p′) will be equivalent toSQL(p) and it is a correct
translation forQ1. This query is given below:

select C.eid
from Item I, InCat C
where I.id = C.parentid and I.parentCode=1

Contrast this withSQL(p), which will be the relational
query output by existing algorithms that do not use the
“lossless from XML” constraint.SQL(p) has an additional
join with theSite relation, which has been removed using
the mapping information. This leads us to the first impor-
tant concept that we will use in developing an algorithm to
exploit the “from XML” constraint while doing path expres-
sion to SQL translation.

Concept 1: For every pathp in the result automaton
SCP , we need to identify a suffixp′ that has the following
property: SQL(p′) will not return results corresponding to
any path not appearing in the query result.

Now let us revisit queryQ1 from Section 2. The output
of the PathId stage is the cross-product schemaS1

CP given
in Figure 2. There are six satisfying paths in the schema
(we will denote thesep1 to p6). We need to find the short-
est suffix for each of these paths that will together result in
a correct SQL query. While we can handle each path in-
dependently in a fashion similar to queryQ1, we perform
an additional optimization — we combine the queries for
different paths whenever possible. In addition to grouping
the SQL queries for paths with similar relational joins, this
optimization also allows us to eliminate longer prefixes as
we will see in this example.

Consider the pathp1 =<1, 2, 3, 9, 11, 12>. We start
with the suffixesp′1 = {<12>} for this path. The path
q = {<1, 2, 8, 29, 31, 32>} is in conflict with p′1. So,
SQL(p′1) will have results corresponding to the pathq. But
this time q appears inS1

CP , which means that it is a part
of the query result (categories of South American items
are a part of the query result). The corresponding suffix

is q′1 = {<32>}. At this point, if we issue SQL queries
for the two pathsp′1 and q′1 separately, then we will get
duplicate results. All the item categories will be returned
twice. So, we need to go further up the tree for both the
paths. On the other hand, if we issue a common query
for the two paths, then we need not worry about the com-
mon results across these paths. In this case, since the two
pathsp′1 andq′1 have the same relation sequence (scan of
the InCat.Category column), we can combine the
queries for these two paths. Similarly, the other four schema
nodes that have the annotationInCat.categoryare also
part of the query result. So, the suffixp′1 = {<12>} suf-
fices for the pathp1. We reach a similar decision for the
other five paths. Finally, combining the queries for the six
paths, we obtain the final relational querySQ2

1 (see Sec-
tion 2) that is a scan of theInCat.Category column.

Notice how by using the “lossless from XML” constraint,
we are able to replace a querySQ1

1 that was the union of six
queries, each with 2 joins, by a simpler scan querySQ2

1.
Concept 2: Suppose we are considering suffixesp′

andq′ for pathsp andq respectively. We need not worry
about the queries corresponding to the two suffixes generat-
ing common results as long as we issue a combined single
SQL query for them.

From the above discussion, we see that by making sure
that the above two concepts are satisfied we can find the
required prefix for every path in the cross-product schema.
Notice that we are able to do this only because the “loss-
less from XML” constraint holds. This constraint implies
that there is a “one-to-one” correspondence between the re-
lational data and the XML data. So, if we know that for
a pathp and a suffixp′, SQL(p′) satisfies concept 1, we
are then guaranteed that it does not return any extra results.
This holds because the mapping completely captures the re-
lational data, i.e., all the root-to-leaf queries togetherrepre-
sent the entire relational data. Similarly, concept 2 holdsbe-
cause the relational data stores values corresponding to each
XML element separately, i.e., the result of no two root-to-
leaf queries will have the value of the same XML element.

On the other hand, if we did not use the fact that the
“lossless from XML” constraint holds for this instance,
things will be a lot different. For example, suppose the join
betweenItem andInCat relations was not a key foreign-
key join. Then, the “lossless from XML” constraint may
no longer be valid — for example,RtoL(12) may return
some tuples in theInCat relation multiple times as they
join with several tuples in theItem relation. So,SQ2

1 will
no longer be a correct translation for queryQ1. The fact
that the “lossless from XML” constraint is satisfied makes it
a lot simpler to design a good query translation algorithm.

In the above examples, notice that we used the notions
of combinability and conflict in the context of two paths in
the mapping. We formally define these notions and then

describe the pruning andSQLGen stages of the algorithm.

4.2 Terminology

We next introduce some terminology that will be used in
the full specification of the translation algorithm. Whenever
we refer to paths, we mean paths in the schema graph that
end in leaf nodes.

Let p =<n1, . . . , nk> be a path in the schema graph,
ending in a leaf node. We refer tonk as p.last. Let
RelSeq(p) denote the sequence of relations joined in
SQL(p) in a top-down order. For example, for the path
p =<1, 2, 3, 9, 11, 12>, RelSeq(p) = <Site,Item,InCat>.

We say that two pathsp1 and p2 are combin-
able if the corresponding relation sequencesRelSeq(p1)
and RelSeq(p2) are the same andAnnot(p1.last) and
Annot(p2.last) are the same. Note that combinability
is an equivalence relation. Combinable paths are useful
in identifying when we can rewrite a union query, say
(SQL(p1) union all SQL(p2)), as a SQL query without
unions. For example, letp

′

=<1, 2, 8, 29, 31, 32>. Then
the pathsp andp

′

are combinable. From the “lossless from
XML” constraint we know that the resulting query does not
have to retain any duplicate results. This allows us to com-
bine the two queries even if they have overlapping results.

Given two pathsp1 andp2, we define when the two paths
are inconflict. Intuitively, the two paths are in conflict if the
result of SQL(p1) and SQL(p2) will have common results.
Here, by common results, we refer to the two queries re-
turning the value of a common element in the original XML
document. For example, the pathsp andp

′

are not in con-
flict as they return the categories of Africa items and South
America items respectively. So, while the results of SQL(p)
and SQL(p

′

) may have common values, these will be the
values of different elements in the original XML document.
On the other hand, considerp

′′

=<29, 31, 32>. The two
pathsp and p

′′

are in conflict as the corresponding SQL
queries overlap: the categories of africa items are common
to the two query results.

Given two paths,p1 andp2, we say that they are in con-
flict if the following conditions hold.

• RelSeq(p1) is a suffix ofRelSeq(p2) or vice versa.
• Without loss of generality, letRelSeq(p1) be a suffix

of RelSeq(p2). Let p3 be the longest suffix ofp2 such
thatRelSeq(p1) = RelSeq(p3). Let RelSeq(p1) =
RelSeq(p3) =<R1, . . . , Rk>. Then,
there is no columnRi.C such thatSQL(p1) has a se-
lectionRi.C = val1, andSQL(p3) has a selection
Ri.C = val3, whereval1 6= val3.

The former condition checks if the two paths differ in the
sequence of relations joined. If each sequence has a join not
present in the other, they will not generate common results.

procedurePruning(SCP ,S)
begin
1. Let PathSet= {<n> |n is a leaf node inSCP }.
2. do
3. foreach (p ∈ PathSet)
4. Let Conflict(p) denote the set of root-to-leaf paths inS

that are in conflict with CurrPath(p)
5. If (∃p′ ∈ Conflict(p) that does not match the query)
6. Incrementp by one level
7. endFor
8. while (some path was modified in the previous iteration)
9. do
10. Letp andq be two paths in PathSet that are in conflict
11. If p andq are not combinable
12. Let RelSeq(p) be no longer than RelSeq(q)
13. Incrementp by one level
14. while (some path was modified in the previous iteration)
15. ReturnPathSet

end

Figure 4. Pruning stage for tree mappings

We know this from the “lossless from XML” constraint. The
latter condition checks if a conflicting edge annotation is
present on any relation across the two paths; if so they will
not generate common results and are not in conflict.

If p1 is not in conflict withp2, then we say thatp1 is
safefrom p2. In the presence of the “lossless from XML”
constraint, we know that no two root-to-leaf pathsp1 andp2

have common results. In other words, root-to-leaf paths are
always safe from each other. Observe that this may not be
true if the integrity constraint is not satisfied.

4.3. The Pruning Stage

We present the pruning algorithm for translating path
expression queries in Figure 4. Recall that the result of
the PathId stage isSCP , which represents all the match-
ing paths inS. For each path, instead of constructing the
SQL query from the root of the schema, our goal is to start
bottom-up and stop at the lowest possible level.

So, for every pathp ∈ SCP , we start with just the leaf
node and keep going up until we find a suffixp′ that satisfies
the following property:
For every pathp′′ in conflict withp′

• p′′ appears in the cross-product schemaSCP and

• The queries corresponding top′ andp′′ are combin-
able.

For every pathp, steps 2-8 make sure that conflicts with
paths not in the query result are resolved. Steps 9-14 make
sure that duplicate results are not produced, i.e, conflicts
with paths appearing in the query result are resolved, if the
corresponding relation sequences are not combinable. We
do the above computation for all paths inSCP and stop
when we have found the required suffixes for all of them.

Since, each iteration in both the while loops will increment
the length of the path, they will terminate in at mostd iter-
ations (combined), whered is the length of the longest path
in SCP .

The result of the pruning stage is a set of paths,
PathSet, in the cross-product schemaSCP . We know that
the setSCP has all the schema paths matching the query.
So, the union of the queries corresponding to all root-to-
leaf paths inSCP is a correct SQL translation. In the prun-
ing stage, for each pathp, we have removed some prefix of
p and have the suffix pathp′ in PathSet instead ofp. For
correctness, we need to argue that the same results are re-
turned if we usep′ instead ofp. Since the “lossless from
XML” constraint is satisfied, it can be easily shown that
every suffixp′′ of p will return a superset of results, i.e.,
SQL(p) ⊆ SQL(p′′). So, we need to make sure that ex-
tra results are not returned. In the above algorithm, through
additional checks we make sure that this does not happen,
i.e., tuples corresponding to schema paths not matching the
query are not returned and tuples corresponding to schema
paths matching the query are returned exactly once. The
first while loop in the algorithm takes care of the former and
the second while loop takes care of the latter. These checks
make use of the fact that the “lossless from XML” constraint
is satisfied.

While incrementing a path by one level, we make the fol-
lowing optimization. If the edge we traverse to go up one
level has an edge annotation on it, we split the operation of
going up one level into two parts: (1) use the edge annota-
tion to see if that suffices and (2) go up to the parent node,
if necessary. By doing this optimization, we may be able
to save a join operation. We will later show an example in
Section SQLGen that uses this optimization.

4.4. The SQLGen Stage

The result of the pruning stage is a set of paths,
PathSet in the cross-product schemaSCP . We parti-
tion this set based on the relation sequence and issue a SQL
query for each equivalence class created. The final query is
the union of the queries corresponding to all the partitions.

Suppose a single equivalence classC had two pathsp1

and p2 in it. Since p1 and p2 are combinable, SQL(p1)
and SQL(p2) involve the same relations. Thus, thefrom
clause of the grouped querySQL(C) contains these re-
lations. LetCcommon denote the set of conditions that
are common to both SQL(p1) and SQL(p2). Let Ci

denote the conditions corresponding topi that are not
present inCcommon. The where clause has the condi-
tion (Ccommon and(C1 or C2)). This solution generalizes
when we have to combine more than two paths.

In the example queries we saw earlier, the secondwhile
loop is trivially satisfied — forQ1 all the six paths in Path-
Set were combinable, while forQ2 there was only one path

b c

x y

a

d

xx
R3.C1 R3.C1 R3.C1R3.C1

pc = 1

pc = 1 pc = 2

pc = 3
pc = 2

**
**

*
*

*

path from root

5352
R2

51
R2R2

57565554

50
R1

S1

c

x

d

xx
R3.C1 R3.C1R3.C1

pc = 1

pc = 3
pc = 2

**
*

*
*

5352
R2R2

575654

b c

x

d

xx
R3.C1 R3.C1R3.C1

pc = 1

pc = 1

pc = 3
pc = 2

**
*

*
*

*
5352

R2
51

R2R2

575654

PathSet PathSet1 2

Figure 5. Example mapping S1

in PathSet. We next present an example scenario where we
find two paths that appear in the result, but are not combin-
able.

We use the example XML schema and mapping in Fig-
ure 5 in the following discussion. Alla elements are stored
in relationR1. The child elements are all stored in relation
R2, with thepc column distinguishing betweenb,c andd
children. Similarly, the children ofb elements are stored in
relationR3, with thepc column distinguishing betweenx
andy children. The children ofc andd elements are all
stored in relationR3. Since all the children arex elements
in these two cases, thepc column is not specified in these
cases. An important point to note here is that since the value
of the column is not specified for tuples corresponding to
schema nodes 56 and 57, any value in the corresponding
domain (including 1,2 and null) is allowed. As we will see
later, this difference in the information available about the
columnR3.pc needs to be handled correctly when we at-
tempt to find the correct suffix for each path.

Notice that we are only concerned with the subtree
rooted at elementa and this is only a portion of the entire
schema. Let us assume that the element namex does not oc-
cur anywhere else in the XML schema. Also, no other leaf
node in the schema is annotated with the columnR3.C1.

Consider the evaluation of queryQ3 that returns allx
elements, //x. The PathId stage will identify the three
pathsp1, p2 andp3 ending in nodes 54,56 and 57 respec-
tively. Suppose we execute the algorithm in Figure 4. After
the first while loop (steps 2-8), we observe that the suffixes
arep′1 =<51, 54>, p′2 =<50, 52, 56>, p′3 =<50, 53, 57>.
The only conflicting pathp4 ends in node 55. Forp1, the
annotation on edge<51, 54> makes it safe fromp4. So,
going up one level was sufficient. Note that the edge anno-
tation was sufficient in this case, and we did not need the
join with relationR1 (annot(51)). Forp2 andp3, there was
no annotation on the edges<52, 56> and<53, 57>. So,
we had to go up one more level till node 51. The annota-
tion on edges<50, 52> and<50, 53> are different from
the one on edge<50, 51>. Hence by going up two levels,
p′2 andp′3 become safe fromp4.

Let us observe what happens if we skip the next while

loop. The resulting PathSet is shown in Figure 5 as PathSet1

and the corresponding SQL querySQ1
3 is

select R3.C1
from R3
where R3.pc = 1
union all
select R3.C1
from R2,R3
where R2.id = R3.parentid and R2.pc IN{2,3}

Notice how values ofx elements corresponding to
schema nodes 56 and 57 may appear twice in the query
result. This happens when thepc column of these tuples
has a value of 1, which is valid as the XML-to-Relational
mapping conveys no information about the value of thepc
column of these tuples. So, the above query is not a correct
translation forQ1. While it returns the correct set of results,
it may return duplicates.

In order to avoid generating duplicate results, we go up
the schema further (steps 9-14 in algorithm 4) resulting in
the set of paths PathSet2 shown in Figure 5. This will result
in the following correct SQL querySQ2

3:

select R3.C1
from R2,R3
where R2.id = R3.parentid and (R2.pc IN{2,3} or

(R2.pc = 1 and R3.pc = 1))

The above example illustrates the point that we should
make sure that two pathsp′ andq′ that appear in the query
result are not in conflict, if they are not combinable (i.e., if
we are going to construct the queries for them separately).
The second while loop (steps 9-14) in the algorithm takes
care of this.

5. Exploiting the “lossless from XML” con-
straint for complex XML Schemas

In this section, we extend the techniques for exploit-
ing the “lossless from XML” constraint to more complex
XML schemas: directed acyclic graph (DAG) and recursive
schemas. The outline of the algorithm remains the same
as for tree XML schema (Figure 3). We need to augment
the pruning stage to address some additional challenges
that arise for complex XML schemas such as extending
the notion of combinability to handle more complex XML
schemas.

5.1. Combinability for Complex Schema
Consider the mapping shown in Figure 6. Suppose

the query result is the set of paths shown in the figure.
First of all, as shown in [9], enumerating all the match-
ing paths may be expensive, as the number of paths may
be exponential in the size of the DAG schema. So, the
algorithm in [9] uses thewith clause in SQL99 to rep-
resent common computation present in the DAG schema.

x1 x2x1 x2 x1 x2

y1 y1 y1

z zz z

R2 R1 R2

S1 S1 S1

T1.C1 T2.C1 T1.C1 T1.C1

R1 x3 20

21 22

26 272524

23

R3R2

a1 a2 a3

R1

R0 R0 R0

one or more paths from the root

S2

1918
17

161514

11 12 13

pc = 1 pc = 2 pc = 3

a1 a2 a3 a4

Figure 6. Example mapping S2

For example, the paths<11, 14, 21, 24>, <11, 14, 21, 25>
, <11, 15, 21, 24> and<11, 15, 21, 25> share some com-
mon computation as represented by the common schema
nodes across them. So, the SQL fragment generated will be

with temp 21 as (
select S1.*
from R0,R1,S1
whereR0.id = R1.parentid and R0.parentcode = 1

and R1.id = S1.parentid
union all
select S1.*
from R0,R2,S1
whereR0.id = R2.parentid and R0.parentcode = 1

and R2.id = S1.parentid
)
select T1.C1
from temp21, T1
where temp21.id = T1.parentid and a1
union all
select T2.C1
from temp21, T2
where temp21.id = T2.parentid and a2

Notice how thewith clause is used to group together
paths that have common computation. In a similar fash-
ion, thewith clause is used to handle the other two subtrees
rooted at nodes 12 and 13 also. The final query result is the
union of the three queries.

Let us revisit the definition of combinability of paths in
this context. Suppose we want to combine the SQL queries
corresponding to the subtrees rooted at nodes 11 and 12.
This implies that we will have a single SQL query for the
six paths. The following problem arises: while the structure
of thewith clause (R0 ⊲⊳ R1 ⊲⊳ S1

⋃
R0 ⊲⊳ R2 ⊲⊳ S1) is

common for the two subtrees, the subtree rooted at node 11
has two suffixes, edges<21, 24> and<21, 25>. On the
other hand, the subtree rooted at node 12 has only one suf-
fix, edge<22, 26>. So, if we combine thewith clause for
the two subtrees in a simple fashion, we will generate two
spurious paths<12, 16, 22, 25> and<12, 17, 22, 25>. In
order to avoid this, we need to somehow differentiate be-
tween tuples corresponding to nodes 21 and 22. One way to
do this is to use the annotations on the incoming edges to the
nodes 11 and 12. This helps us in differentiating between
tuples corresponding to nodes 21 and 22 and the resulting
query is:

with temp21 22 as (
select S1.*,R0.parentcode
from R0,R1,S1
whereR0.id = R1.parentid and R0.parentcode = 1

and R1.id = S1.parentid
union all
select S1.*,R0.parentcode
from R0,R2,S1
whereR0.id = R2.parentid and R0.parentcode = 1

and R2.id = S1.parentid
)
select T1.C1
from temp21 22, T1
where temp21 22.id = T1.parentid and

((a1 and temp21 22.parentcode = 1)
or (a3 and temp21 22.parentcode = 2))

union all
select T2.C1
from temp21 22, T2
where temp21 22.id = T2.parentid and a2

and temp21 22.parentcode = 1

Notice how if the annotationsa1 anda3 are different,
we again need to differentiate between tuples corresponding
to schema node 21 and 22.

Suppose we want to combine the SQL queries corre-
sponding to the subtrees rooted at nodes 12 and 13 instead.
In this case, notice how the path<13, 20, 23, 27> has no
equivalent path in the other subtree. So, we need to be
careful and ensure that we do not create a spurious path
<13, 20, 23, 26> (through the joinR0 ⊲⊳ R3 ⊲⊳ S1 ⊲⊳ T 1).

To summarize, from the above discussion we observe
that for DAG schemas, we have a lot of options in defin-
ing when and how we combine the queries corresponding
to different subtrees. Notice that whenever we have sub-
trees that have a different set of relation sequences (such as
subtrees rooted at nodes 11,12 and 13), we have a choice:
either combine the queries by maintaining some more state
information or construct the queries separately. Whenever
we need to maintain state information, we are also making
thewhereclause of the SQL query complex. More impor-
tantly the relational query optimizer may have problems in
optimizing the final SQL query efficiently, as it has no way
of interpreting the semantics of this additional state infor-
mation.

In this paper, we use a simple definition for combin-
ability over complex schemas: one that requires minimal
additional state information. Intuitively, we combine two
subtrees if they are similar: the joins involved in each part
of the resultant query are identical (the selection conditions
can be different). This definition of combinability extends
naturally to recursive schema also. Notice that this is a gen-
eralization of the definition of combinability in Section 4.2
for single paths. We next define this formally as follows.

A graph pathgp corresponds to a subgraph of the
schema. It is a concise way of representing a large num-
ber (possibly infinite) paths. Let Paths(gp) denote the set of

S3
CP
4
CP
4

PSCP
4

SCP
5

PCP
5

E0

E1 E2

E3

E4 E5

E6

E7 E8

E9

E10

* *

* *
*

*
* *

* *

*
*

*

* *

R0

R1 R2

R10

R9
*

R8R7R4

R6

R3

R5

elemid
R10.elemid

E6R6

E10

elemid
R10.elemid

*
R10

E0

E1 E2

E3

E4 E5

* *

* *

*
*

* *

R0

R1

R4

R3

R5

E6R6

E10

elemid
R10.elemid

*
R10

R2

E0

E3

E4 E5

*
*

* *

R0

R4

R3

R5

E6R6

E10

elemid
R10.elemid

*
R10

E1R1

*

*

E3

E4 E5

*
*

* *

R4

R3

R5

E6R6

E10

elemid
R10.elemid

*
R10

E1R1

*

Figure 7. Example queries over recursive schema S3

paths represented by the graph path.
For a graph pathgp, let Template(gp) denote the cor-

responding graph constructed based on the relational an-
notations. The template graph represents the structure of
the SQL query corresponding to the subtree. For example,
Template(11) will be a graph with five nodes, one for each
node in the subtree (since each edge traversal corresponds
to a join operation). Each node will be labelled with the
name of the corresponding relation. In this case, the nodes
will be labelled with relation names R0,R1,R2,T1 and T2.
For each edgee ∈ gp that corresponds to a join between
two relations, we add a corresponding edge in the template
graph. Note that the template graph is similar to the orig-
inal subtree; if the latter is recursive the template graph is
recursive as well.

We say that two graph pathsgp1 andgp2 are combinable
if the corresponding templates are isomorphic.

Just like the tree schema case, the above definition makes
use of the fact that as the “lossless from XML” constraint is
satisfied, we can combine any two graph paths even if they
have overlapping results. Since the result of a path expres-
sion query returns the values of all matching XML elements
(exactly once), and there is a “one-to-one” correspondence
between XML elements and relational tuples, this implies
that no relational tuple will appear multiple times in the re-
sult of any equivalent SQL query.

5.2. The Pruning Stage

The pruning algorithm for recursive mappings is shown
in Figure 8. While it looks very similar to the tree schema
case, there are some important differences. These include
the definition of combinability and conflict, and how we
keep track of all the matching paths in PathSet.

We say that a pathp is in conflictwith a graph pathgp if
p is in conflict with some pathq ∈ Paths(gp).

Another important difference is that the set of match-
ing paths is maintained as subgraphs of the cross-product
schema (as there may be infinitely many of them if we
enumerate them). Contrast this with the algorithm for tree
schema where we explicitly keep track of all the paths. We

procedurePruning(SCP ,S)
begin
1. Let PathSet= {<n> |n is a leaf node inSCP }.
2. do
3. foreach (p ∈ PathSet)
4. Let Conflict(p) denote the set of root-to-leaf paths inS

that are in conflict with p
5. If (∃p′ ∈ Conflict(p) that does not match the query)
6. Incrementp by one level
7. endFor
8. while (some path was modified in the previous iteration)
9. do
10. Letp andq be two (graph) paths inSCP that are not combinable
11. If ∃ pathq′ ∈ q such thatq′ is in conflict withp

12. Letp′ be the path∈ p that is in conflict withq′

13. Incrementp′ by one level
14. while (some path was modified in the previous iteration)
15. ReturnPathSet

end

Figure 8. Pruning stage for recursive mappings

describe how we increment the graph paths by one level
(steps 6 and 13) through some examples later in this sec-
tion.

Also note that in order to check the condition in Steps 4-
5, we need to enumerate all the paths that do not appear
in the query result. Since the query automaton for simple
path expression queries is a deterministic finite automaton
as constructed in [9], we can do this efficiently.

The SQLGen stage is similar to the original algorithm
proposed in [9], with a slight modification. We combine
the queries corresponding to two different graph paths in
PathSet, if they are combinable. To do this, we partition the
graph paths based on combinability (similar to Section 4.4)
and construct the SQL query for each equivalence class in a
fashion similar to [9].

We now explain some example query evaluations over
the XML schemaS3 in Figure 7.

Consider queryQ4 =/E0//E6/E10/elemid. After the
PathId stage, we obtain the cross product mappingS4

CP

shown in Figure 7. If we directly translate this into SQL,
we will get a complex query involving twowith clauses,

PCP
7SCP

7SCP
6 PCP

6

E0

E1 E2

E3

E7 E8

E9

* *

* *
*

*
*

* *

R0

R1 R2

R9
*

R8R7

R3

E10

*

R10

elemid
R10.elemid

E10

*

R10

elemid
R10.elemid

E9
R9

E7 E8

E9
*

*

* *

R9
*

R8R7

E2
R2

*

R10E10

elemid
R10.elemid

E7 E8

E9
*

*

* *

R9
*

R8R7

E2
R2

E0
R0

*

*

R10E10

elemid
R10.elemid

Figure 9. Example queries over recursive schema S3

Regions

Africa Asia Australia

Site

Europe
987654

3

1

Item

Incategory

*
10

12

Item

Incategory

*
35

37

SAmericaNAmerica

.....................
e6

Category14elemid13 elemid Category
38 39

36elemid
11

elemid

2
elemid

Edge

Edge
Edge.value

Edge.value

Edge.value Edge.value Edge.value Edge.value

Edge.value

Edge

Edge

Edge

Edge

Edge

Edge

a1

a1
a1

a1 : tag = (element name of destination node)

a1
a1a1

Figure 10. XMark schema
mapped to the Edge relation

corresponding to elementsE3 andE6. On the other hand,
by using the pruning algorithm in Figure 8, we obtain the
pruned mappingP 4

CP . The corresponding SQL query is
fairly simple. Let us look at how the algorithm worked in
this case. We start with the single pathp = elemid in
PathSet. Since, pathp1 =<E0,E2,E3,E7,E9,E10,elemid>
does not appear in the query result and is in conflict withp,
we incrementp by one level. The same conflict persists and
so we go up one more level. Now,p =<E6,E10,elemid>
andp1 is no longer in conflict withp (they have different
relation sequences now). So, we have completed steps 2-
8 of the algorithm. Now since there is only one path left,
steps 9-14 can be skipped and we return PathSet as the re-
sult.

Let us now considerQ5 =/E0//E1//E6/E10/elemid. The
result of the PathId stage,S5

CP , is shown in the figure. No-
tice that there are two satisfying paths. Let us see what hap-
pens in the pruning stage. We start with the single path
p = elemid in PathSet. Just like the previous query, we
need to go two levels higher andp =<E6,E10,elemid>.
Notice how whilep1 is no longer in conflict withp, the path
p2 =<E0,E2,E3,E4,E6,E10,elemid> is in conflict with p.
Also, p2 is not in the query result. So, we need to in-
crementp by one more level. Element E6 has two par-
ent nodes and so we go up along both paths. In the pro-
cess, a single graph pathp gets split into two graph paths
p′ and p′′, rooted at nodes E4 and E5 respectively.p′

is still in conflict with p2, while p′′ is in conflict with
p3 =<E0,E2,E3,E5,E6,E10,elemid>. So, we increment
the paths,p′ andp′′, by one level each. The two paths are
merged into one (sayp rooted at E3), but the conflict withp2

andp3 persist. Finally, when we incrementp by one more
level to get the graphP 5

CP in the figure. This graph path
is safe from bothp2 andp3 (join with relation R1, instead
of relation R2). Also, there are no other conflicting paths.
Hence,P 5

CP is the result of the pruning stage.
We now consider some example queries that

match recursive parts of the schema. Consider query
Q6 = /E0//E9//E10/elemid. The set of matching paths

S6
CP is shown in Figure 9. The result of the pruning stage

P 6
CP is shown in the figure. Notice how the join between

relationsR9 andR10 suffices to make the path safe from
all the paths not satisfying the query.

We consider queryQ7 = /E0/E2/E8//E10/elemid to il-
lustrate what happens when we need to go up the schema
and enter a recursive component. The result of PathIdS7

CP

is shown in the figure. Notice how the edge<E3,E7>
does not match the query. So, query results correspond-
ing to all the paths that pass through this edge need to be
avoided in the final SQL query. The pruned schemaP 7

CP is
shown in the figure. Notice how we have to go up the re-
cursive component during step 6 of the algorithm. We start
with elemid and go up two levels till E9. The next time
we have to increment a level, we enter the recursive com-
ponent (comprising of nodes E7,E8 and E9). Here, we use
a simple algorithm to go up the schema: include the entire
recursive component in one step. Finally, when we add the
element E2, we can stop. In this particular case, we man-
aged to save a single join operation with relation R0.

5.3. Schema-Oblivious Storage

The examples in the preceding sections may give the
erroneous assumption that the optimizations discussed in
this paper depend somehow upon the relational schema into
which the documents are shredded reflecting a good deal of
the XML schema for the document being shredded. In this
section we show that this is not true — in fact, the “lossless
from XML” constraint is useful even when the relational
schema is generic and reflects nothing of the XML schema
(a scenario we term “schema-oblivous storage.”)

In schema-oblivious XML storage, the relational schema
is fixed independent of the XML schema. This option may
be chosen either because the XML schema may is unavail-
able during data load time or due to the fact that the XML
schema changes frequently.

The Edge approach [7] is one example of schema-
oblivious storage. Here, the input XML document is viewed

as a graph and each edge of the graph is represented as a tu-
ple in a single table. ThisEdgerelation has5 columns,ID ,
PARENTID, TAG, ORDER AND VALUE.

During query translation time, let us assume that an
XML schema is either given or has been inferred from
the XML documents loaded into the system. For exam-
ple, a sample XML-to-Relational mapping is shown in Fig-
ure 10. All the nodes are annotated with the same relation
nameEdge. All the edges have similar annotations. For
example, an edgee = u → v has the annotation “tag = el-
ementname(v)”. Notice each edge traversal will translate
into a join operation.

Since this input scenario satisfies the “lossless from
XML” constraint, the query translation algorithms pre-
sented earlier in this paper are applicable. For example, the
queryQ8 =/Site//Item//Category will translate into the fol-
lowing two-way join query over theEdge relation.

select E2.value
from Edge E1, Edge E2
where E1.tag = ’InCategory’ and E2.tag = ’Category’

and E1.id = E2.parentid

The above query was obtained by exploiting the “loss-
less from XML” constraint. In contrast, if we use just the
XML schema information, we will identify the six matching
paths and the equivalent SQL query will be the union of six
queries, one corresponding to each matching schema path
(similar to querySQ1

1 in Section 2). Each of these queries
will be a join between six copies of the Edge relation. If
we do not use the XML schema information at all (like the
algorithm proposed in [7]), the resulting SQL query will be
a recursive SQL query (due to the // in the XML query).

The above example illustrates how the “lossless from
XML” constraint can be used to generate efficient SQL
queries in a wide spectrum of scenarios: ranging from
schema-based to schema-oblivious techniques.

6. Summary and Future Work

We considered the problem of generating efficient SQL
queries from queries expressed over XML views and
showed how the presence of a simple “lossless from
XML” integrity constraint can help us in improving the
quality of the final SQL queries produced. We then pre-
sented an algorithm to translate simple path expression
queries over recursive XML schema by exploiting this sin-
gle constraint. While some techniques have been proposed
previously to achieve a similar goal for tree XML schema,
they rely on using the underlying relational integrity con-
straints to reason about how we can simplify the SQL query.
In contrast, the technique proposed in this paper is simple
and does not rely on solutions to complex problems such as
relational query containment and equivalence. Moreover it
naturally extends to complex XML schema.

A number of avenues exist for future research includ-
ing extending our techniques to more general class of XML
queries and looking at alternate definitions of combinability
for complex XML schema. Designing efficient data struc-
tures to speedup the various steps involved in our algorithm
is important future work and a study of real-world schema
will go a long way in helping this process. Also, looking
at how relational schema design for XML storage can be
more tightly coupled with query translation is an interesting
problem.
Acknowledgement: This work was supported in part by
NSF grant ITR-0086002.

References

[1] Naa classified advertising standards task force.
http://www.naa.org/technology/clsstdtf/.

[2] S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and D. Srivas-
tava. Minimization of tree pattern queries. InSIGMOD, 2001.

[3] A. Deutsch and V. Tannen. Containment and Integrity Con-
straints for XPath Fragments. InKRDB, 2001.

[4] A. Deutsch and V. Tannen. MARS: A System for Publishing
XML from Mixed and Redundant Storage. InVLDB, 2003.

[5] M. Fernandez, A. Morishima, and D. Suciu. Efficient Evalu-
ation of XML Middle-ware Queries. InSIGMOD, 2002.

[6] S. Flesca, F. Furfaro, and E. Masciari. On the minimization
of Xpath queries. InVLDB, 2003.

[7] D. Florescu and D. Kossman. Storing and Querying XML
Data using an RDBMS.Data Engineering Bulletin, 22(3),
1999.

[8] S. Jain, R. Mahajan, and D. Suciu. Translating XSLT Pro-
grams to Efficient SQL Queries. InWWW, 2002.

[9] R. Krishnamurthy, V. Chakaravarthy, R. Kaushik, and J. F.
Naughton. Recursive XML Schemas, Recursive XML
Queries, and Relational Storage: XML-to-SQL Query Trans-
lation. In ICDE, 2004.

[10] R. Krishnamurthy, R. Kaushik, and J. F. Naughton. Efficient
XML-to-SQL Query Translation: Where to Add the Intelli-
gence? InVLDB, pages 144–155, 2004.

[11] G. Miklau and D. Suciu. Containment and equivalence for
an xpath fragment. InPODS, 2002.

[12] P. Ramanan. Efficient algorithms for minimizing tree pattern
queries. InSIGMOD, 2002.

[13] J. Shanmugasundaram, J. Kiernan, E. J. Shekita, C. Fan,and
J. Funderburk. Querying XML Views of Relational Data. In
VLDB, 2001.

[14] P. T. Wood. Containment for XPath Fragments under DTD
Constraints. InICDT, 2003.

[15] Xmark: The xml benchmark project.
http://monetdb.cwi.nl/xml/index.html.

[16] DB2 XML Extender. http://www-
3.ibm.com/software/data/db2/extenders/xmlext/index.html.

[17] Oracle XML DB. http://otn.oracle.com/tech/xml/xmldb.
[18] SQLXML and XML Mapping Technologies.

http://msdn.microsoft.com/sqlxml/default.asp.

