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Abstract perhaps dominant option for the foreseeable future. The

goal of this paper is to investigate techniques for imprgvin

The SQL queries produced in XML-to-SQL query trans- the quality of the SQL that results from this approach.
lation are often unnecessarily complex, even for simple in-  As we illustrate with an example in Section 2, when us-
put XML queries. In this paper we argue that relational ing this shredding approach, sometimes even simple XML
systems can do a better job of XML-to-SQL query transla- path queries get translated into needlessly complex SQL.
tion with the addition of a simple new constraint, which we |ntuitively, the reason for this is that the query transiato
term the “lossless from XML” constraint. Intuitively, this must generate complex queries to ensure that the correct
constraint states that a given relational data set resulted answer to the original XML query is generated for any pos-
from the shredding of an XML document that conformed to sible instance of the relational schema. But only a subset of
a given schema. We illustrate the power of this approach bythese relational instances could possibly result fromdshre
giving an algorithm that exploits the “lossless from XML"  ding documents that conform to the given XML schema,
constraint to translate path expression queries into ffiti  and for these relational instances, in many cases much sim-
SQL, even in the presence of recursive XML schemas. Wg|e queries can be guaranteed to give the correct answer.
argue that this approachiis likely to be simpler and more ef- - pghansiin view of this fact, the research literature [4, 10]
fective than the curren_t state qf th_e artin optimi_zin_g XML- has explored the idea of improving the generated SQL by
to-SQL query translation, which involves identifying and jqyeniifying relational integrity constraints and usingeith
declaring multiple complex relational constraints andithe 5 minimize the generated SQL queries. This approach is
reasoning about relational query containment in the pres- ,plematic for a number of reasons. First, it is not clear

ence of these constraints. how to automatically deduce and express the relational con-
) straints that are essential for the query minimization pro-
1. Introduction cess. Second, even if the appropriate relational consdrain

are discovered and specified, the query minimization prob-

Using relational database systems to store and querylem involves the complex task of reasoning about relational
XML documents has received a lot of attention both query containmentin the presence of integrity constraints
in the research community and in the leading commer-  For this reason, in this paper we argue for a much sim-
cial relational products. Both the research community pler approach. Instead of “forgetting” the source of tharel
and the products have explored a number of ways totional data and then patching things up with the addition of
incorporate support for XML in an RDBMS, but one relational integrity constraints, we propose the use of one
popular approach that is currently implemented in com- simple new integrity constraint: the “lossless from XML
mercial products (including Oracle XML DB [17], integrity constraint. Simply put, this constraint saysttha
Microsoft SQL Server 2000 SQLXML [18] and given relational data set resulted from the lossless shred-
IBM DB2 XML Extender [16]) is to “shred” the XML  ding of an XML document that conformed to a given XML
documentinto relational tuples and to execute XML queries schema. We demonstrate the power of this approach by giv-
by translating them into SQL. While determining the best ing algorithms that exploit this “lossless from XML” con-
way to handle XML in relational database systems is an straint to translate path expressions into efficient SQenev
interesting question, that is not the focus of this paper — we in the presence of recursive XML schemas.
think that this shredding approach has enough advantages pte that we are not claiming any “magic” here — it

and momentum that it will be a commonly provided and g possible (even probable) that any optimization that can

* Work done while the authors were students at the University o € done by eXploiting the “lossless from XMII—" ConStra!m
Wisconsin-Madison could also theoretically be done through the right combina-




tion of relational integrity constraints and relationaleqy query @i, which returns all the item categories:
minimization. However, we are arguing that the “from //ltem/InCategory/Category. The SQL query output
XML" approach is simpler and more direct, and likely to by many published algorithms [5, 8, 13],5%1:

be easier to understand, implement, and extend for other
select category

purposes. o . . from Site S, Item |, InCat C

We close this introduction by some comments setting where S.id = I.siteid and L.id = C.itemid and I.continenfsiza’

this work in the context of other related work. The problem union all ... (6 queries one for each continent except Atitar
we are addressing in this paper has been called the “XML

storage” problem, because it refers to storing XML in a re-
lational system. A closely related problem is XML publish-
ing, in which the data was originally relational but is being
exported as XML. The “lossless from XML” integrity con-
straint is natural for XML storage, but is more problematic
in the XML publishing domain, where the data is literally
not “lossless from XML.” Our previous work has addressed
the XML publishing problem [10]. In that paper the key
idea was to impose relational constraints on the exporte
relational tables and then to exploit these constraintmdur
the XML to SQL query translation.

It is possible that in certain circumstances it may make 50!
sense to put a “lossless from XML" constraint data that was = <1 . .
originally relational, but that would require techniques t NOV\_/ suppose the query translatqr has the“addmonal n-
verify that the constraint holds (that is, that the data Ki®o formfltlon thaF the relatlo!'lal data SaF'Sf'eS the I_osslam;lf
like” it came from an XML document conforming to a spec- XML constralnt_ for t_he given XML ‘;'eW- Then, it can gen-
ified schema). This is an interesting area for future work, erate the following simpler quet§Qy for XML query Q.

but not the focus of this paper — here we focus on what select category
we regard as the most useful and obvious application of thefrom  InCat C
“lossless from XML" constraint, that is, for data that indee
originated as XML.

The rest of the paper is organized as follows: We present
an example in Section 2 to show how more efficient SQL
gueries can be output during XML-to-SQL query transla-

tion. There are many algorithms that could be specified toI ion f | ; h lex SOL
make use of the “lossless from XML" constraint. For con- ation for @y. In comparison to the complex SQL query

1 23 el
creteness, in this paper we show how this constraint can béng' the above quergQyj is a far more efficient query.

exploited in the context of the XML translation algorithm h An |mp9rta3tqu?st|on to answer at th|sg)omt 'S lvvr:ethfcr)
found in [9]. Towards this purpose, we review the frame- the associated performance gains are substantial. In [10],

work and algorithm proposed in [9] in Section 3. We then using a synthetic ADEX dataset conforming to a standard
extend this algorithm for tree XML schemas in Section 4 advertisement schema [1] and a dataset from the XMark
to exploit the “lossless from XML" constraint. We then Benchmark [15], we showed that the associated perfor-

present an algorithm that works for recursive XML schema mance benefits are significant (ranging from a relative per-
in Section 5 formance improvement of 1.15 to 93). Many queries

had a speed up of an order of magnitude or more. The
2. Motivating example datasets used in these experiments satisfied the “lossless
from XML" constraint; hence, the results also demonstrate
In this section, we present an example scenario to illus-the potential benefits that can be reaped by exploiting the
trate how knowing that the “lossless from XML” constraint “lossless from XML" constraint during query translation.
holds can help in generating efficient SQL queries. At this point the reader may wonder if XML query min-
Part of the XMark benchmark [15] XML schemais given imization will be helpful in the above scenario. Note that
in Figure 1. One way of mapping the XML schema into re- the above path query is already minimal (and so will be
lations is given in the figure. We have used a simple anno-all the other example queries we use later in this paper),
tation mechanism to represent the correspondence betweeit is the translation that caused the problem, not the orig-
the XML schema and the relational schema. inal XML query. All the work on XML query minimiza-
Consider the evaluation of the following tion[2, 6, 12] and on containment and equivalence of path

Informally, the translation can be summarized as fol-
lows: (i) Identify all paths in the schema that satisfy the
query (Pathld stage). (ii) For each path, generate a rela-
tional query by joining all relations appearing in this path
(SQLGen stage). The final query is the union of the queries
over all satisfying paths (six paths f@r).

Notice how a simple XML query results in a fairly com-
plex SQL query. This happens because the query translator

dis not taking advantage of the fact that the relational data
originated from XML. So, the resulting SQL query has to
be a correct translation @), for every possible instance
of the relational schema. This leads to the complex query

The above query is a correct translation €pr because
the relational data satisfies the “lossless from XML” con-
straint. There are six nodes in the schema whose values are
stored in the columhnCat . Cat egor y and the query),
selects all of them. Hence, the scan query is a correct trans-
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Figure 1. Part of XMark XML benchmark schema Figure 2. Result of Pathld stage for @Q;
and corresponding Relational Schema and Q-

expression queries [3, 11, 14] is complementary to the focus The shredding algorithm actually shreds the XML data
of this paper and can be used as the first stage to minimize into relations based on the annotations of the mapping.
the input XML queries.

All the XML data is completely shredded into relations
and no part of the XML data is stored multiple times.

3. Preliminaries ¢ No data, other than what which is present in the XML
document, is inserted into the relations mentioned in

In order to explain how the “lossless from XML’ con- .
the mapping.

straint can be exploited in XML-to-SQL query translation,
we extend the algorithm proposed in [9] for the XML stor- e Enough information is maintained in the relational
age scenario to make use of this constraint. In this section, ~ datato enable reconstruction of the original XML data.
we first describe a class of XML-to-Relational mappings N )

and then describe when the “lossless from XML’ constraint Every decomposition scheme we have encountered in the

is satisfied. We then briefly explain the algorithm proposed literature satisfies the above properties.

in [9] for trans|ating path expression queries into SQL. We say that théossless from XMlconstraint is satisfied
if all the relational data was loaded by a shredding algo-
3.1. XML to Relational Mappings rithm that respects the XML-to-Relational mapping. This

implies that the relational data set resulted from the ésssl
We represent the mapping between XML elements andshredding of an XML document that conformed to a given
relational columns through annotations on the schemaxXML schema.
graph. Each non-leaf (internal) node in the schema is asso-  For example, consider the following shredding algorithm
ciated with a relation name (shown next to the node). Eacha that satisfies the above properties. Given an XML docu-

leaf node is assocjated With a column name as WeII.. ThementD; conforming to the schema in Figure 1, algorithm
relational schema into which we shred the XML data is the A creates (and inserts into the RDBMS) relational tup|es

set of relations that occur in the node annotations. Each re4p the following fashion. The algorithm processes the el-
lation has and field, which is the primary key. In addition,  ements in the order in which they appear in the document.
parentid and parentcode fields are included as required to=or the rooSi t e element, a tuple is inserted into tBet e
preserve document structure. For ease of exposition, we asrelation. Then, for th&kegi ons child element, no action
sume that every non-leaf node hasedemid attribute that s taken as the node has no annotations. Similarly, no ac-
uniquely identifies an element within an XML document.  tion is taken for theAf r i ca child element. Then for each
| t emchild element, a tuple is inserted into theemre-
3.2. “Lossless from XML constraint lation with thepar ent i d column having the value of the
i d field of theSi t e tuple. Also, thepar ent code col-
While the above description defines the syntax of an umn’s value is set to 1 to capture the edge annotation. The
XML-to-Relational mapping, we need to define when the value of thenamecolumn is set to the value of theame
relational data satisfies the “lossless from XML” consttain subelement. Then, for ea¢imcat egor y subelement tu-
A shredding algorithm uses the XML-to-Relational map- ples are inserted in a similar fashion into thecat egor y
ping to convert XML data into relational data. We say that relation. Once, the XML subtree rooted undérr i ca has
the shredding algorithmespecta mapping if it satisfies the  been processed, the subtrees corresponding to the other five
following properties: continents are processed in a similar fashion.



The above definition of the “lossless from XML” con-

done, as long as all the data (in the relations appearing in

straint is complete if we formally define the notion of when the mapping) is loaded by the algorithm A , the “lossless
a shredding algorithm respects a mapping. We introducefrom XML” constraint is guaranteed to hold.

some terminology for this purpose.
With every pathp =<ng,...,n,>, we associate an
SQL query,SQL(p) obtained by joining all the relations

on the path. The annotations on the edges are added as S A

lection conditions. The annotation of nodg, Annot(ny),
is the value returned b§Q L(p). Intuitively, the SQL query
retrieves from the relational shredding the informatioait th

appeared in portions of the original document that match

the pathp.

With a leaf schema nodke we associate a root-to-leaf
SQL queryRtoL(l) as follows. Let the root-to-leaf paths
tol bepy,...,pm. Then,RtoL(l) = U™, SQL(p;). The

union operation here preserves duplicates. If the mapping

schemaiis recursive, the number of root-to-leaf paths will b
infinite for certain leaf nodes and thtoL query for such

nodes is the union of infinitely many queries. For example,

for the above schemBtoL(12) is given below.

select IC.category
from Site S, Item |, InCat IC
where S.id = l.parentid and |.parentcode = 1 and l.id = |@&ptd

For a relational columik.C', we defineLeafNodes(R.C)
to be the set of leaf schema nodes annotated ith.

Again, intuitively, RtoL(l) retrieves from the relations
the information that would be found in the original XML

document by starting at the route and traversing all paths

that match.
A shredding algorithm respects an XML-to-Relational
mapping,T,if for every collection of XML documents con-

3.3. Path Expression Queries

A simple path expression (SPE) can be denotedsas “

. s lx,” where each of the; is a tag name and
each of thes; is either/ (denoting a parent-child traversal)
or // (denoting an ancestor-descendant traversal). Each

l; pair is a navigation step of the path expression/aisthe
number of steps in the query. The result of a path expression
is the values of theetof all nodes that match the query. For
non-leaf nodes, we return the value of the corresponding
elemid attributes.

3.4. Query Translation Algorithm

The query translation algorithm proposed in [9] has two
stages: Pathld stage and SQLGen stage. In the Pathld stage,
the paths in the XML schema that match the query are iden-
tified. This is done by treating the schema and the query
as automata and constructing the cross-product automaton.
For example, consider the query automaton and the corre-
sponding cross-product result shown in Figure 2 for query
Q1. The cross-product schema has been labelled with the
pair of schema node and query state number. The result of
this stage is a compact representation of all the matching
schema paths.

We have also shown the result of the Pathld stage
for the query@s, which returns all the item categories
in Africa: /Site/Regions/Africa/ltem/Incategory/Catey.
Notice how there is only one matching schema path for this

forming to the given XML schema, the algorithm loads data query.

into the relational database such that the following proper
ties hold.

P1: For each root-to-leaf pagh SQL(p) returns the val-
ues of all elements that satisfy

For every relational column R.C  with

LeafNodes(R.C)# ¢, let @ be the SQL
query: ‘“select R.C' from R".  Then, @
UieLeasNodes(r.cy BEOL(1)

For each path € T ending in a leaf node, leP de-

note the set of root-to-leaf paths € T such that the
relation names annotating the nodespimatch the
annotations for some suffix gf. Then,SQL(p) C

Up/eP SQL(p/)

P2:

P3:

All the above comparisons are under multiset semantics.

In the SQLGen stage, the SQL query is generated corre-
sponding to the set of matching paths encoded in the cross-
product schem&p. Informally, the union of all root-to-
leaf paths inScp corresponds to the query result. A sim-
ple algorithm to generate an SQL query correspondirgg to
is to returnRQ = |J RtoL(l) over all leaf nodes ifbcp.
While this is a good algorithm whesicp is a tree, it does
not suffice wher¢p is a DAG (directed acyclic graph) or
is recursive. The SQLGen algorithm proposed in [9] uses
thewith clause in SQL99 to handle the DAG and recursive
cases.

4. Exploiting the “lossless from XML’ con-
straint for Tree XML Schemas

Every shredding algorithm we have encountered in the liter-  In this section, we show how we can use the “lossless
ature, including the shredder we presented above, satisfierom XML" constraint while translating queries over a tree
the above properties. schema in order to generate a query that may be more ef-

Notice how the shredding algorithm A needs to be val- ficient than the corresponding naively generated query. We
idated just once to make sure that it shreds data respectextend this to directed acyclic graph (DAG) and recursive
ing any given XML-to-Relational mapping. Once this is XML schema in Section 5.



procedure XML _to_SQL translation@, S) the InCat.category column. We notice that there is a path

begin q = {<32>} inthe original schem4 that has the same an-
1. Perform Pathld using the mappisicand queryQ). notation. So,SQL(p’) will also return results correspond-
Let Scp be the resultant cross-product schema. ing to the pathy. Since the queries corresponding to the
2. PruneScp using of the “lossless from XML" constraint . pathsp’ andq have common results, we say that they are in
3. Translate the pruneslp into SQL. conflictwith each other. Now, sincg does not have a cor-
Figure 3. Query Translation Algorithm using responding path i}, », we know that it is not a part of the
the “lossless from XML" constraint query result. This implies that for = {<12>}, SQL(p')

will have results corresponding to this paths well.

The outline of this algorithm is given in Figure 3. The So, we go up one level and ggt= {<11,12>}. The
output of the Pathld stage is pruned making use of the “loss-same conflict persists with the path= {<31,32>} and
less from XML constraint and this pruned cross-product we have to increment’ by another level. Repeating this,
schemais the input to the SQLGen stage. The Pathid stageve get top’ = {<3,9,11,12>}. Now we see that the cor-
is identical to the algorithm presented in [9]. We explai@ th  responding patly = {<8,29,31,32>} is not in conflict

pruning stage and the SQLGen stage in this section. with p’ due to the difference in the parentCode condition
(edge annotations; andeg). In fact, there is no other path
4.1. Basic Idea behind the Algorithm in conflict with p’ elsewhere in the schema. So, the query

SQL(p") will be equivalent toSQL(p) and it is a correct

Consider the set of path3 in the schema that end in a translation forQ;. This query is given below:

node annotated with the colunRC. Since the XML-to-
Relational mapping satisfies the “lossless from XML’ con- select C.eid
straint, we know that every tuple in the relatiéhcorre- ~ from lteml, InCatC
. where l.id = C.parentid and |.parentCode=1

sponds to the value of (exactly) one element in the XML
document. In other words, each tuple in relatiBrwill Contrast this withSQ L(p), which will be the relational
appear in the result of the SQL query corresponding to (ex-query output by existing algorithms that do not use the
actly) one root-to-leaf path in the XML schema. Notice that “lossless from XML’ constraintSQL(p) has an additional
this gives us two guarantees: (i) No two root-to-leaf paths join with the Site relation, which has been removed using
will have a common tuple in their results and (ii) All the the mapping information. This leads us to the first impor-
root-to-leaf paths combined together correspond to a scartant concept that we will use in developing an algorithm to
of the columnR.C. exploit the “from XML" constraint while doing path expres-

Let us look at some example queries to see how wesion to SQL translation.
can use the above information to prune the cross-product Concept 1: For every patlp in the result automaton
schema. In the process, we identify two important conceptsSqp, we need to identify a suffix’ that has the following
that form the core of our algorithm. We use the mapping property: SQLg’) will not return results corresponding to
schemain Figure 1 in the following discussion, and will dis- any path not appearing in the query result.
cuss how the algorithm works informally in these specific ~ Now let us revisit query); from Section 2. The output
examples before turning to specifying the full algorithm.  of the Pathld stage is the cross-product schéfaa given

Consider the example quer§), from Section 3.4, in Figure 2. There are six satisfying paths in the schema
/Site/Regions/Africa/ltem/Incategory/Category. Thet-ou (we will denote these; to pg). We need to find the short-
put of the Pathld stage is the cross-product schéfha est suffix for each of these paths that will together result in
given in Figure 2. We use the first component of the a correct SQL query. While we can handle each path in-
node identifiers in the cross-product automaton to identify dependently in a fashion similar to quef};, we perform
the nodes in the following discussion. There is a single an additional optimization — we combine the queries for
pathp =<1,2,3,9,11,12> in SZ, and issuing the query different paths whenever possible. In addition to grouping
SQL(p) is a correct translation fof);. Our goal in this the SQL queries for paths with similar relational joinssthi

case is to find a shorter suffiX of p such thatSQL(p) is optimization also allows us to eliminate longer prefixes as
an equivalent translation under the given mapping. we will see in this example.
Now, for any suffixp’ of p, SQL(p’) will certainly con- Consider the pathy; =<1,2,3,9,11,12>. We start

tain all the results foQ;. We also know that the “loss-  with the suffixesp! = {<12>} for this path. The path
less from XML" constraint is satisfied. So, if we ensure ¢ = {<1,2,8,29,31,32>} is in conflict with p}. So,
that SQ L(p') does not have any results corresponding to SQL(p;) will have results corresponding to the patBut
some other path in the mapping schema, then we are donethis time ¢ appears inS},,, which means that it is a part
We do this as follows: We first start with the smallest suf- of the query result (categories of South American items
fix p = {<12>}. The equivalent query will be a scan of are a part of the query result). The corresponding suffix



is ¢; = {<32>}. At this point, if we issue SQL queries describe the pruning andSQLGen stages of the algorithm.
for the two pathg| and ¢ separately, then we will get
duplicate results. All the item categories will be returned 4.2 Terminology
twice. So, we need to go further up the tree for both the
paths. On the other hand, if we issue a common query
for the two paths, then we need not worry about the com-
mon results across these paths. In this case, since the tw
pathsp; andgqj have the same relation sequence (scan of
thel nCat . Cat egory col um), we can combine the
gueries for these two paths. Similarly, the other four sclhem
nodes that have the annotationCat . cat egor y are also
part of the query result. So, the suffif = {<12>} suf-
fices for the pattp;. We reach a similar decision for the
other five paths. Finally, combining the queries for the six
paths, we obtain the final relational quesy)? (see Sec-
tion 2) that is a scan of thenCat . Cat egor y column.
Notice how by using the “lossless from XML” constraint,
we are able to replace a ques{)! that was the union of six
queries, each with 2 joins, by a simpler scan queg.

We next introduce some terminology that will be used in
the full specification of the translation algorithm. Wheeaev
ye refer to paths, we mean paths in the schema graph that
end in leaf nodes.

Let p =<n4,...,n;> be a path in the schema graph,
ending in a leaf node. We refer to, as p.last. Let
RelSeqp) denote the sequence of relations joined in
SQL(p) in a top-down order. For example, for the path
p=<1,2,3,9,11,12>, RelSeqp) = <Site,ltem,InCat-.

We say that two pathsp; and p, are combin-
able if the corresponding relation sequencRslSeq(p;)
and RelSeq(p2) are the same andinnot(p;.last) and
Annot(ps.last) are the same. Note that combinability
is an equivalence relation. Combinable paths are useful
in identifying when we can rewrite a union query, say

SQL union all SQLps)), as a SQL query without
Concept 2: Suppose we are considering suffixgs Eln(i?)n(g.l)For example,quiﬁl)Q):)<1,278,2(§73lq, 32; Then

andq’ for pathsp andq respectively. We need not Worry e hathg, andp’ are combinable. From the “lossless from
about the queries corresponding to the two suffixes generaty 1| » constraint we know that the resulting query does not

ing common results as long as we issue a combined singl&, e tg retain any duplicate results. This allows us to com-
SQL query for them. ) ) ) bine the two queries even if they have overlapping results.
From the above discussion, we see 'Fhat by mak|r}g sure  Given two pathg; andp,, we define when the two paths
that the above two concepts are satisfied we can find there inconfiict Intuitively, the two paths are in conflict if the
required prefix for every path in the cross-product schema.yegyit of SQLp;) and SQL-) will have common results.
Notice that we are able to do this only because the “loss-yegre by common results, we refer to the two queries re-
less from XML” constraint holds. This constraint implies turning the value of a common element in the original XML
that there is a “one-to-one” correspondence between the regocument. For example, the paghandp are not in con-
lational data and the XML data. So, if we know that for fiict a5 they return the categories of Africa items and South
a pathp and a suffixp’, SQL{') satisfies concept 1, we  America items respectively. So, while the results of SQL(
are then guaranteed that it does not return any extra resultsyq SQL$') may have common values, these will be the
This holds because the mapping completely captures the reya|yes of different elements in the original XML document.
lational data, i.e., all the root-to-leaf queries togettegre- On the other hand, considgl =<29,31,32>. The two
sent the entire _reIationaIdata. Similarly, concept 2 _hbkds pathsp andp” are in conflict as the corresponding SQL
cause the relational data stores values correspondingtto ea qyeries overlap: the categories of africa items are common
XML element separately, i.e., the result of no two root-to- 4 the two query results.
leaf queries will have the value of the same XML element. Given two pathsp; andp., we say that they are in con-
On the other hand, if we did not use the fact that the flict if the following conditions hold.
“lossless from XML constraint holds for this instance,
things will be a lot different. For example, suppose the join e RelSeq(p;) is a suffix of RelSeq(p2) or vice versa.

between t emandl nCat relations was not a key foreign- e Without loss of generality, leRelSeq(p;) be a suffix
key join. Then, the “lossless from XML" constraint may of RelSeq(ps). Letps be the longest suffix gf, such
no longer be valid — for example€®toL(12) may return that RelSeq(p1) = RelSeq(ps). Let RelSeq(p:) =
some tuples in thé nCat relation multiple times as they RelSeq(ps) =<Ry, ..., Ry>. Then,

jOin with several tup|eS in thet emrelation. SOSQ% will there is no C0|ummi.0 such thatS’QL(pl) has a se-
no longer be a correct translation for quepy. The fact lection R;.C' = waly, andSQL(ps) has a selection
that the “lossless from XML" constraint is satisfied makes it R;.C = wvals, whereval, # vals.

a lot simpler to design a good query translation algorithm.

In the above examples, notice that we used the notions The former condition checks if the two paths differ in the
of combinability and conflict in the context of two paths in sequence of relations joined. If each sequence has a join not
the mapping. We formally define these notions and then present in the other, they will not generate common results.



procedure PruningScr,S) Since, each iteration in both the while loops will increment

begin . . the length of the path, they will terminate in at mdster-

;' 'agt PathSet {<n> |n is a leaf node iScp }. ations (combined), wheréis the length of the longest path

3. foreachy € PathSet) n Scp. . .

4. Let Conflict(p) denote the set of root-to-leaf pathsin The res_ult of the pruning stage is a set of paths,
that are in conflict with CurrPath(p) Pat hSet , in the cross-product schema p. We_ know that

5 If (3p’ € Conflict(p) that does not match the query) the setScp has all the schema paths matching the query.

6. Incremeni by one level So, the union of the queries corresponding to all root-to-

7. endFor leaf paths inS¢p is a correct SQL translation. In the prun-

8. while (some path was modified in the previous iteration) ing stage, for each path we have removed some prefix of

9. do p and have the suffix pat) in PathSet instead aof. For

10.  Letp andq be two paths in PathSet that are in conflict correctness, we need to argue that the same results are re-

11.  Ifpandg are not combinable turned if we usey’ instead ofp. Since the “lossless from

12. Let RelSeqf) be no longer than RelSeg( XML" constraint is satisfied, it can be easily shown that

13. Incremenp by one level

. . o every suffixp” of p will return a superset of results, i.e.,
14. while (some path was modified in the previous iteration) 1
15 ReturnPathSet SQL(p) C SQL(p"”). So, we need to make sure that ex-

end tra results are not returned. In the above algorithm, thnoug
additional checks we make sure that this does not happen,
i.e., tuples corresponding to schema paths not matching the
We know this from the “lossless from XML” constraint. The query are not returned and tuples corresponding to schema
latter condition checks if a conflicting edge annotation is paths matching the query are returned exactly once. The
present on any relation across the two paths; if so they will first while loop in the algorithm takes care of the former and

Figure 4. Pruning stage for tree mappings

not generate common results and are not in conflict. the second while loop takes care of the latter. These checks
If p; is not in conflict withp,, then we say thap; is make use of the fact that the “lossless from XML” constraint

safefrom ps. In the presence of the “lossless from XML" s satisfied.

constraint, we know that no two root-to-leaf pathsandp- While incrementing a path by one level, we make the fol-

have common results. In other words, root-to-leaf paths arelowing optimization. If the edge we traverse to go up one
always safe from each other. Observe that this may not belevel has an edge annotation on it, we split the operation of

true if the integrity constraint is not satisfied. going up one level into two parts: (1) use the edge annota-
tion to see if that suffices and (2) go up to the parent node,
4.3. The Pruning Stage if necessary. By doing this optimization, we may be able

to save a join operation. We will later show an example in

We present the pruning algorithm for translating path Section SOLGen that uses this optimization.

expression queries in Figure 4. Recall that the result of
the Pathld stage i$cp, which represents all the match-
ing paths inS. For each path, instead of constructing the 4.4. The SQLGen Stage

SQL query from the root of the schema, our goal is to start  The result of the pruning stage is a set of paths,
bottom-up and stop at the lowest possible level. Pat hSet in the cross-product schem#-p. We parti-

So, for every patlp € Scp, we start with just the leaf  tion this set based on the relation sequence and issue a SQL
node and keep going up until we find a suffixhat satisfies  query for each equivalence class created. The final query is
the following property: the union of the queries corresponding to all the partitions
For every path” in conflict withp’ Suppose a single equivalence clasfiad two pathg,
andp, in it. Sincep; andp, are combinable, SQlf)
and SQLf») involve the same relations. Thus, tfrem
clause of the grouped quetyQL(C) contains these re-
lations. LetClommon denote the set of conditions that
are common to both SQk() and SQLfs). Let C;

For every pathp, steps 2-8 make sure that conflicts with denote the conditions corresponding 9 that are not
paths not in the query result are resolved. Steps 9-14 makeresent iNCeommon- The where clause has the condi-
sure that duplicate results are not produced, i.e, conflictstion (Ccommon @and(Cy or Cz)). This solution generalizes
with paths appearing in the query result are resolved, if thewhen we have to combine more than two paths.
corresponding relation sequences are not combinable. We Inthe example queries we saw earlier, the seadrid e
do the above computation for all paths $fz:» and stop loop is trivially satisfied — forQ; all the six paths in Path-
when we have found the required suffixes for all of them. Set were combinable, while f@p, there was only one path

e p” appears in the cross-product schesigg> and

e The queries corresponding 6 andp” are combin-
able.
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loop. The resulting PathSet is shown in Figure 5 as PathSet
and the corresponding SQL quesy)y is

select R3.C1

from RS3

where R3.pc=1

union all

select R3.C1l

from R2,R3

where R2.id = R3.parentid and R2.pc {1,3}

Notice how values ofx elements corresponding to
schema nodes 56 and 57 may appear twice in the query
result. This happens when tipe column of these tuples

in PathSet. We next present an example scenario where w&as @ value of 1, which is valid as the XML-to-Relational

find two paths that appear in the result, but are not combin-

able.

We use the example XML schema and mapping in Fig-
ure 5 in the following discussion. A elements are stored
in relationR1. The child elements are all stored in relation
R2, with thepc column distinguishing betwedn ¢ andd
children. Similarly, the children df elements are stored in
relationR3, with thepc column distinguishing between
andy children. The children o€ andd elements are all
stored in relatiorR3. Since all the children ane elements
in these two cases, thee column is not specified in these

cases. An important point to note here is that since the value

of the column is not specified for tuples corresponding to

mapping conveys no information about the value ofpibe
column of these tuples. So, the above query is not a correct
translation forQ,. While it returns the correct set of results,

it may return duplicates.

In order to avoid generating duplicate results, we go up
the schema further (steps 9-14 in algorithm 4) resulting in
the set of paths PathSethown in Figure 5. This will result
in the following correct SQL quergQ3:
select R3.C1l
from R2,R3

where R2.id = R3.parentid and (R2.pc {12,3} or
(R2.pc =1 and R3.pc = 1))

The above example illustrates the point that we should

schema nodes 56 and 57, any value in the correspondingnake sure that two paths andq’ that appear in the query

domain (including 1,2 and null) is allowed. As we will see
later, this difference in the information available abdu t
columnR3. pc needs to be handled correctly when we at-
tempt to find the correct suffix for each path.

Notice that we are only concerned with the subtree
rooted at elemerd and this is only a portion of the entire
schema. Let us assume that the element nadees not oc-

cur anywhere else in the XML schema. Also, no other leaf

node in the schema is annotated with the collR8nC1.
Consider the evaluation of quetys; that returns all

result are not in conflict, if they are not combinable (i.E., i
we are going to construct the queries for them separately).
The second while loop (steps 9-14) in the algorithm takes
care of this.

5. Exploiting the “lossless from XML’ con-
straint for complex XML Schemas

In this section, we extend the techniques for exploit-
ing the “lossless from XML” constraint to more complex

elements, /ix. The Pathld stage will identify the three XML schemas: directed acyclic graph (DAG) and recursive
pathsp;, p» andps ending in nodes 54,56 and 57 respec- schemas. The outline of the algorithm remains the same
tively. Suppose we execute the algorithm in Figure 4. After s for tree XML schema (Figure 3). We need to augment
the first while loop (steps 2-8), we observe that the suffixes the pruning stage to address some additional challenges

arep] =<51,54>, ph, =<50,52,56>, p5 =<50,53,57>.
The only conflicting pathps ends in node 55. Far, the
annotation on edge51, 54> makes it safe fromps. So,

that arise for complex XML schemas such as extending
the notion of combinability to handle more complex XML
schemas.

going up one level was sufficient. Note that the edge anno- ) B
tation was sufficient in this case, and we did not need the5.1. Combinability for Complex Schema

join with relation R, (anno{51)). Forp, andps, there was
no annotation on the edges2, 56> and <53,57>. So,

Consider the mapping shown in Figure 6. Suppose
the query result is the set of paths shown in the figure.

we had to go up one more level till node 51. The annota- First of all, as shown in [9], enumerating all the match-

tion on edges<50, 52> and <50, 53> are different from
the one on edge50, 51>. Hence by going up two levels,
ph andp’, become safe fromy.

ing paths may be expensive, as the number of paths may
be exponential in the size of the DAG schema. So, the
algorithm in [9] uses thewith clause in SQL99 to rep-

Let us observe what happens if we skip the next while resent common computation present in the DAG schema.



=2 he 1 n with temp21.22 as (
one or more paths from the root SeleCt Sl.*,RO.pal’entCOde

pc = pc = pc =
11a’1yRO 1o a0 a0 from RO,R1,S1
whereRO0.id = R1.parentid and RO.parentcode = 1
1ax1 rR115 X272 16 lel17 x2R2 18%1 T xF2 X350 ] and R1.id = S1.parentid
> ,é 2 é >\ )( union all .
a}&{‘ az a;/’ll aél select S1.*,R0.parentcode
from RO,R2,S1
2‘:12_(:1 Zs‘rzz_c1 ZGTfm 271'21_(:1 whereRO0.id = R2.parentid and R0.parentcode = 1
and R2.id = S1.parentid
Figure 6. Example mapping S )
9 P pping 2 select T1.Ci1

from temp2122,T1
For example, the paths11, 14,21, 24>, <11, 14, 21, 25> where temp21.22.id = T1.parentid and

,<11,15,21,24> and <11, 15, 21, 25> share some com- ((al and temR1 22.parentcode = 1)

mon computation as represented by the common schema | or (a3 and tem@1 22 parentcode = 2))
. nion a
nodes across them. So, the SQL fragment generated will bééeleCt T.c1
from temp2122, T2
where temp21.22.id = T2.parentid and a2
and temp21 22.parentcode = 1

with temp.21 as (
select S1.*
from RO,R1,S1
whereRO0.id = R1.parentid and RO.parentcode = 1
and R1.id = S1.parentid

union all Notice how if the annotational anda3 are different,

fselect RSol-F: bs1 we again need to differentiate between tuples correspgndin

rom y ,

whereRO0.id = R2.parentid and RO.parentcode =1 to schema node 21 and 22. . .

and R2.id = S1.parentid Suppose we want to combine the SQL queries corre-

) sponding to the subtrees rooted at nodes 12 and 13 instead.
;56“3‘1 tTl'Cgl - In this case, notice how the pathl3, 20, 23, 27> has no
rom temp21, . .
where temp21id = T1.parentid and al equivalent path in the other subtree. So, we ne.ed to be
union all careful and ensure that we do not create a spurious path
select T2.C1 <13, 20, 23, 26> (through the joinR0 <t R3 1 S1 <1 T'1).
from  temp21, T2 To summarize, from the above discussion we observe

here temp21l.id = T2. i . . .
where - temp2.L parentid and a2 that for DAG schemas, we have a lot of options in defin-

ing when and how we combine the queries corresponding

Notice how thewith clause is used to group together to different subtrees. Notice that whenever we have sub-
paths that have common computation. In a similar fash- trees that have a different set of relation sequences (such a
ion, thewith clause is used to handle the other two subtreessubtrees rooted at nodes 11,12 and 13), we have a choice:
rooted at nodes 12 and 13 also. The final query result is theeither combine the queries by maintaining some more state
union of the three queries. information or construct the queries separately. Whenever

Let us revisit the definition of combinability of paths in we need to maintain state information, we are also making
this context. Suppose we want to combine the SQL queriesthe whereclause of the SQL query complex. More impor-
corresponding to the subtrees rooted at nodes 11 and 12tantly the relational query optimizer may have problems in
This implies that we will have a single SQL query for the optimizing the final SQL query efficiently, as it has no way
six paths. The following problem arises: while the struetur of interpreting the semantics of this additional state iinfo
of thewith clause R0 <t R1 < S1|J RO <t R2 <1 S1) is mation.
common for the two subtrees, the subtree rooted at node 11 In this paper, we use a simple definition for combin-
has two suffixes, edges21,24> and <21,25>. On the ability over complex schemas: one that requires minimal
other hand, the subtree rooted at node 12 has only one sufadditional state information. Intuitively, we combine two
fix, edge<22,26>. So, if we combine thavith clause for subtrees if they are similar: the joins involved in each part
the two subtrees in a simple fashion, we will generate two of the resultant query are identical (the selection cooddi
spurious pathsc12,16,22,25> and<12,17,22,25>. In can be different). This definition of combinability extends
order to avoid this, we need to somehow differentiate be- naturally to recursive schema also. Notice that this is a gen
tween tuples corresponding to nodes 21 and 22. One way teeralization of the definition of combinability in Sectior24.
do this is to use the annotations on the incoming edges to thdor single paths. We next define this formally as follows.
nodes 11 and 12. This helps us in differentiating between A graph pathgp corresponds to a subgraph of the
tuples corresponding to nodes 21 and 22 and the resultingschema. It is a concise way of representing a large num-
query is: ber (possibly infinite) paths. Let Pathg] denote the set of
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Figure 7. Example queries over recursive schema S
paths represented by the graph path. procedure PruningGcrp,S)
For a graph pattyp, let Templat denote the cor-  Pegin
graph patiyp plategp) Let PathSet {<n> |nis aleaf node itbcp}.

responding graph constructed based on the relational an=-
notations. The template graph represents the structure of;’
the SQL query corresponding to the subtree. For example,,’
Template{1) will be a graph with five nodes, one for each
node in the subtree (since each edge traversal corresponds
to a join operation). Each node will be labelled with the 6. Incremenp by one level

name of the corresponding relation. In this case, the nodesr.  endFor

will be labelled with relation names RO,R1,R2,T1 and T2. 8. while (some path was modified in the previous iteration)

For each edge € gp that corresponds to a join between 9. do

two relations, we add a corresponding edge in the templatel0-  Letp andg be two (graph) paths ificp that are not combinable
graph. Note that the template graph is similar to the orig- 11 !f3pathq’ € g such thay’ is in conflict withp

do
foreach f € PathSet)
Let Conflict(p) denote the set of root-to-leaf pathsin
that are in conflict with p
If (3p" € Conflict(p) that does not match the query)

B wWwmN'E

inal subtree; if the latter is recursive the template graph i
recursive as well.

We say that two graph patlgg; andgp, are combinable
if the corresponding templates are isomorphic.

12. Letp’ be the pathe p that is in conflict withg’

13. Incremenp’ by one level

14. while (some path was modified in the previous iteration)
15. ReturnPathSet

end

Just like the tree schema case, the above definition makes
use of the fact that as the “lossless from XML” constraint is
satisfied, we can combine any two graph paths even if theydescribe how we increment the graph paths by one level
have overlapping results. Since the result of a path expres{steps 6 and 13) through some examples later in this sec-
sion query returns the values of all matching XML elements tjgn.

(exactly once), and there is a “one-to-one” correspondence a5 pote that in order to check the condition in Steps 4-

between XML elements and relational tuples, this implies 5, we need to enumerate all the paths that do not appear

that no relation_al tuple will appear multiple times in the re in the query result. Since the query automaton for simple

sult of any equivalent SQL query. path expression queries is a deterministic finite automaton
. as constructed in [9], we can do this efficiently.

5.2. The Pruning Stage The SQLGen stage is similar to the original algorithm
The pruning algorithm for recursive mappings is shown Proposed in [9], with a slight modification. We combine
in Figure 8. While it looks very similar to the tree schema the queries corresponding to two different graph paths in
case, there are some important differences. These includ&athSet, if they are combinable. To do this, we partition the

Figure 8. Pruning stage for recursive mappings

the definition of combinability and conflict, and how we
keep track of all the matching paths in PathSet.

We say that a pathis in conflictwith a graph patlyp if
p is in conflict with some path € Pathsgp).

Another important difference is that the set of match-

graph paths based on combinability (similar to Section 4.4)
and construct the SQL query for each equivalence class in a
fashion similar to [9].

We now explain some example query evaluations over
the XML schemaSs in Figure 7.

ing paths is maintained as subgraphs of the cross-product Consider queryQ, =/EOQ//E6/E10/elemid. After the
schema (as there may be infinitely many of them if we Pathld stage, we obtain the cross product mapgifig
enumerate them). Contrast this with the algorithm for tree shown in Figure 7. If we directly translate this into SQL,
schema where we explicitly keep track of all the paths. We we will get a complex query involving twavith clauses,
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mapped to the Edge relation

corresponding to elemenE3 andE6. On the other hand,  S& is shown in Figure 9. The result of the pruning stage
by using the pruning algorithm in Figure 8, we obtain the P¢, is shown in the figure. Notice how the join between
pruned mapping®s .. The corresponding SQL query is relationsR9 and R10 suffices to make the path safe from
fairly simple. Let us look at how the algorithm worked in all the paths not satisfying the query.
this case. We start with the single paih= el eni d in We consider query); = /EO/E2/E8//E10/elemid to il-
PathSet. Since, pafh =<EO,E2,E3,E7,EQ,E10,elemid |ustrate what happens when we need to go up the schema
does not appear in the query result and is in conflict with  and enter a recursive component. The result of Paifild
we incremenp by one level. The same conflict persists and is shown in the figure. Notice how the edgeE3,E7>
SO we go up one more level. Noy,=<E6,E10,elemid does not match the query. So, query results correspond-
andp; is no longer in conflict withp (they have different  ing to all the paths that pass through this edge need to be
relation sequences now). So, we have completed steps 2avoided in the final SQL query. The pruned schef{ia is
8 of the algorithm. Now since there is only one path left, shown in the figure. Notice how we have to go up the re-
steps 9-14 can be skipped and we return PathSet as the rezursive component during step 6 of the algorithm. We start
sult. with el eni d and go up two levels till E9. The next time
Let us now considef)s =/EOQ//E1//E6/E10/elemid. The we have to increment a level, we enter the recursive com-
result of the Pathld stagé?. », is shown in the figure. No-  ponent (comprising of nodes E7,E8 and E9). Here, we use
tice that there are two satisfying paths. Let us see what hap-a simple algorithm to go up the schema: include the entire
pens in the pruning stage. We start with the single path recursive component in one step. Finally, when we add the
p = el enm d in PathSet. Just like the previous query, we element E2, we can stop. In this particular case, we man-
need to go two levels higher and =<E6,E10,elemick. aged to save a single join operation with relation RO.
Notice how whilep; is no longer in conflict wittp, the path
po =<EO0,E2,E3,E4,E6,E10,elemidis in conflict with p.
Also, p» is not in the query result. So, we need to in-
crementp by one more level. Element E6 has two par-  The examples in the preceding sections may give the
ent nodes and so we go up along both paths. In the pro-erroneous assumption that the optimizations discussed in
cess, a single graph pathgets split into two graph paths this paper depend somehow upon the relational schema into
p’ andp”, rooted at nodes E4 and E5 respectively. which the documents are shredded reflecting a good deal of
is still in conflict with po, while p” is in conflict with the XML schema for the document being shredded. In this
ps =<EO0,E2,E3,E5,E6,E10,elemid So, we increment  section we show that this is not true — in fact, the “lossless
the pathsp’ andp”, by one level each. The two paths are from XML" constraint is useful even when the relational

5.3. Schema-Oblivious Storage

merged into one (sgyrooted at E3), but the conflict with, schema is generic and reflects nothing of the XML schema
andps persist. Finally, when we incrementby one more (@ scenario we term “schema-oblivous storage.”)
level to get the graptP?, in the figure. This graph path In schema-oblivious XML storage, the relational schema

is safe from botlp, andps (join with relation R1, instead is fixed independent of the XML schema. This option may

of relation R2). Also, there are no other conflicting paths. be chosen either because the XML schema may is unavail-

Hence,PZ , is the result of the pruning stage. able during data load time or due to the fact that the XML
We now consider some example queries that schema changes frequently.

match recursive parts of the schema. Consider query The Edge approach [7] is one example of schema-

Q¢ = /EO//EQ//EL1O/elemid. The set of matching paths oblivious storage. Here, the input XML document is viewed



as a graph and each edge of the graph is represented as a tu- A number of avenues exist for future research includ-
ple in a single table. ThiEdgerelation hass columns,iD, ing extending our techniques to more general class of XML
PARENTID, TAG, ORDER AND VALUE. gueries and looking at alternate definitions of combingbili
During query translation time, let us assume that an for complex XML schema. Designing efficient data struc-
XML schema is either given or has been inferred from tures to speedup the various steps involved in our algorithm
the XML documents loaded into the system. For exam- is important future work and a study of real-world schema
ple, a sample XML-to-Relational mapping is shown in Fig- will go a long way in helping this process. Also, looking
ure 10. All the nodes are annotated with the same relationat how relational schema design for XML storage can be
nameEdge. All the edges have similar annotations. For more tightly coupled with query translation is an intenegti
example, an edge = u — v has the annotation “tag = el- problem. _ )
ementname(v)”. Notice each edge traversal will translate Acknowledgement: This work was supported in part by
into a join operation. NSF grant ITR-0086002.
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