
Approximating Streaming Window Joins Under CPU Limitations

Ahmed Ayad Jeffrey Naughton Stephen Wright
Computer Sciences Department

University of Wisconsin – Madison
{ahmed, naughton, swright}@cs.wisc.edu

Utkarsh Srivastava
Department of Computer Science

Stanford University
usriv@db.stanford.edu

Abstract

Data streaming systems face the possibility of having to
shed load in the case of CPU or memory resource limita-
tions. We study the CPU limited scenario in detail. First, we
propose a new model for the CPU cost. Then we formally
state the problem of shedding load for the goal of obtain-
ing the maximum possible subset of the complete answer,
and propose an online strategy for semantic load shedding.
Moving on to random load shedding, we discuss random
load shedding strategies that decouple the window main-
tenance and tuple production operations of the symmetric
hash join, and prove that one of them – Probe-No-Insert
– always dominates the previously proposed coin flipping
strategy.

1. Introduction

In the context of data streaming systems, the system has
no control over the rate of the incoming data. Hence, the
adoption of a push model of computation is mandatory. In
steady state, the system resources must be greater than what
is required by the input, or the system is unstable and the
query is infeasible [2]. The system CPU has to keep up with
the arrival rate to avoid the input queues and response time
growing indefinitely. Also, the amount of available memory
has to be enough to hold the required state of the query plus
tuples arriving in the input queues of the data streams that
await processing.

If the system resources are less than the input require-
ments, some of the input must be shed to bring the load
down to within the available capacity. Previous work has
addressed the case of memory-limited execution [5][7].
Specifically, it looked at the case when the system can not
hold the complete state of the operators (e.g., the tuples
that satisfy the window predicate in a sliding window join).
Such work, however, does not address the case when in-
put queues are overflowing, which is a result of high CPU
utilization. This means CPU limitation can be a cause of

memory limitations, even if enough memory is available to
store the state of the operators. Hence our focus on CPU-
limited execution.

We investigate the problem of load shedding for the
streaming window join operator under CPU limitations in
detail. We start by revising the unit time model for the CPU
cost of executing the join. We study semantic and random
load shedding for the Max-Subset goal [5]. In particular,
our contributions are:

• We present an accurate unit-time model for the CPU
cost of executing a streaming window join.

• For the Max-Subset load shedding goal, we formulate
the theoretical problem for shedding load under CPU
limitations in an offline scenario. We prove that, unlike
the case for memory limited execution [5], the problem
is NP-Hard.

• We develop an online strategy for semantic load shed-
ding for the same goal.

• We study a different set of strategies for random load
shedding for the Max-Subset goal that decouples the
decision of inserting and probing tuples.

• We prove that one such strategy, the Probe-No-Insert,
outperforms previously suggested methods for random
load shedding. In doing so, we show that having suffi-
cient memory to store the whole state of the join does
not help.

2. Cost Model

For the purpose of this work, we are concerned with the
sliding window streaming join operator. Concrete defini-
tions of data streams, sliding windows, and the sliding win-
dow streaming join are given in [1]. We will refer to the
data structure that holds the tuples that satisfy the sliding
window predicate on a stream as the window synopsis [3].

There are basically four operations performed for every
incoming tuple. The four operations can be categorized into



update operations; which include insertion and expiration,
and production related operations; which include probing
and producing the results. The cost of update operations is
proportional to the tuple arrival rate (in steady state, every
tuple inserted in the window synopsis has to expire), and the
cost of production operations is proportional to the output
rate of the join. Let Cu be the cost of inserting and expiring
a tuple from the window synopsis, Cp be the cost of probing
and producing one result tuple, and λo/p be the output rate.
The cost of the join can then be expressed as

CL./R = (λL + λR) · Cu + λo/p · Cp (1)

By assigning the cost of probing and production to output
tuples instead of input tuples, the model takes into account
the variable cost of probing between different input tuples.

2.1. Goals of Load Shedding

Streaming applications differ in their requirements when
faced with the inability to produce the full answer. Different
applications require different characteristics in the approxi-
mate answer produced by the load shedding scheme. In this
work, we focus on the Max-Subset goal, in which it is re-
quired to produce a subset of the join of the maximum size
allowed by the system’s computational resources. We also
look at an orthogonal dimension which is the availability of
statistical information on the data distributions of the input.
If any such information is available, semantic load shed-
ding, in which the strategy intelligently picks tuples to dis-
card based on their values, is possible. Otherwise, random
load shedding is the only option. In Section 3, we discuss
the load shedding problem under CPU-limited constraints
for the Max-subset problem.

3. The Max-subset Goal

We investigate the problem for the goal of obtaining the
maximum possible subset of the answer given the CPU bud-
get. The problem is formally defined in [5].

3.1. Semantic Load Shedding

Using the model developed in Section 2, we investigate
the optimum load shedding strategy. Since the join query
is continuous, the sizes of the input streams are infinite.
Hence, modeling of the complete result of join is infeasi-
ble. Instead, we model only a prefix of the join result that
extends until a specific time in the future. Consider the join
L[T1] ./ R[T2]. Assuming we are looking T time units into
the future, the total CPU cost budget available for the join
operator K is T ∗C where C is the unit time capacity of the
CPU. According to equation 1, there is a cost Cu for main-
taining each tuple in the input and a cost Cp for producing

an output tuple. We can represent the join result as a bipar-
tite graph in which the set of nodes on the right (left) hand
side represents tuples of L (R) and an edge joining two in-
put tuples represents the tuple resulting from their join, with
Cu attached to the nodes and Cp to the edges. The optimum
algorithm should select a subset of the output tuples such
that the cost of their production is less than K while maxi-
mizing the number of selected edges. In the full version of
this note [1], we concretely define the problem and analyze
two variants of an off-line algorithm called the Offline Max-
Subset and the Offline Induced Max-Subset algorithms for
solving the problem.

The following theorem gives the complexity of these two
variants [1]:

Theorem 1. Both Offline Max-Subset and Offline Induced
Max Subset are NP-Hard.

We can try to approximate the procedure of finding the
optimum answer for both variants by a deterministic al-
gorithm that selects edges for inclusion in the answer ac-
cording to a specific criterion. We propose in [1] two such
criteria and methods to quantify them. We also propose a
greedy algorithm to approximate the optimum for the off-
line case. We use the algorithm as a basis for an online
semantic load shedding strategy for the CPU-limited execu-
tion of the streaming join.

3.2. Random Load Shedding

We now examine the case in which the details of the dis-
tribution of the input are unknown. We only assume the
input follows the frequency model [7].

The approach previously taken for random load shedding
was to find the best setting of random sampling operators
applied to the input stream so that the maximum subset is
obtained while keeping the load within CPU limits. We
shall call this the coin flipping strategy (or CF) [4]. Our
contribution is to investigate whether more can be gained
by decoupling the update and the production procedures of
an incoming tuple in the shedding process. Recall that to
execute the join, every incoming tuple has to be inserted
in the window of its stream for later matching and it has
to probe the window of the opposite stream for matching
with tuples that arrived earlier to produce results. The coin
flipping approach couples these two procedures by insisting
that either the whole contribution of the tuple to the join be
taken completely or none is. This is not necessary, since the
two procedures are independent. Realizing this, two other
approaches arise; namely the Insert-No-Probe (or INP) and
the Probe-No-Insert (or PNI) strategies.

Consider the join L[T1] ./ R[T2] with λL and λR as the
rates of the input streams, with join selectivity f . If the join



is feasible, the output rate is [2]:

λo/p = f · λL · λR · (TL + TR) (2)

In the following we describe each shedding strategy in
some detail.

Coin Flipping (CF)
In the CF strategy a sampling operator is placed in

front of each the two streams, with xL and xR being
the sampling probability of the one on stream L and R
respectively. The coin flipping strategy can be formalized
as the following optimization problem [2]:

Max:

λo/p = f · λL · λR · (TL + TR) · xL · xR (3)

Subject to:

(λL · xL + λR · xR) · Cu + λo/p · Cp ≤ 1
0 ≤ xL, xR ≤ 1 (4)

Insert-No-Probe (INP)
In the INP strategy, instead of dropping some of the tu-

ples completely, all incoming tuples are admitted into the
window. Then a coin is flipped with probability of probing
xL and xR for L and R respectively. If the flip is a success,
the tuple probes the opposite window, otherwise the tuple is
dropped. The strategy calls for the best setting of xL and
xR while maximizing the output rate. It can be formalized
as the following optimization problem:
Max:

λo/p = f · λL · λR · (TL · xR + TR · xL) (5)

Subject to:

(λL + λR) · Cu + λo/p · Cp ≤ 1
0 ≤ xL, xR ≤ 1 (6)

The intuition behind this strategy is that since we are
not constrained in terms of memory, why not keep all the
state we can in the hope that the extra kept state produces
more tuples. This strategy appears at first sight to be the
candidate for delivering the maximum possible subset,
since it capitalizes on the asset which is not constrained; in
this case memory.

Probe-No-Insert (PNI)
The PNI strategy is the inverse of the previous one. All

incoming tuples are allowed to probe the opposite window,
and then a coin is flipped on inserting them in the window
synopsis for later matching. It can be formalized as follows:

Max:

λo/p = f · λL · λR · (TL · xL + TR · xR) (7)

Subject to:

(λL · xL + λR · xR) · Cu + λo/p · Cp ≤ 1
0 ≤ xL, xR ≤ 1 (8)

Analyzing the three alternatives, we found the PNI strat-
egy to be the superior alternative and the INP the inferior
one. The extended version of this note [1] contains the de-
tails of the analysis. To understand the intuition behind this
result, note that the cost of outputting a single tuple of the
join result is divided into production cost, which cannot be
reduced, and an amortized cost of maintaining the input tu-
ples in the window. In the INP strategy, the tuples that do
not probe the opposite window actually pays the price of
maintenance while missing on producing tuples, hence the
amortized cost of maintenance is high compared to the other
strategies. The PNI strategy allows tuples already inserted
in the window to be probed by all the possible tuples they
later matche with, hence amortizing their update cost that is
already incurred to the maximum possible. The CF strategy
misses on some of that by dropping some of the incoming
tuples.

Acknowledgements

This research was supported in part by NSF grant ITR
0086002.

Ahmed Ayad is thankful to Raghav Kaushik for fruitful
discussions and suggestions.

References

[1] A. Ayad, J. Naughton, S. Wright, and U. Srivastava. Approx-
imating streaming window joins under cpu limitations. Tech-
nical report, Department of Computer Sciences, University of
Wisconsin - Madison, 2005.

[2] A. Ayad and J. F. Naughton. Static optimization of conjunc-
tive queries with sliding windows over infinite streams. In
SIGMOD Conference, pages 419–430, 2004.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In PODS, pages
1–16, 2002.

[4] S. Chaudhuri, R. Motwani, and V. R. Narasayya. On random
sampling over joins. In SIGMOD Conference, pages 263–
274, 1999.

[5] A. Das, J. Gehrke, and M. Riedewald. Approximate join pro-
cessing over data streams. In SIGMOD Conference, pages
40–51, 2003.

[6] J. Kang, J. F. Naughton, and S. Viglas. Evaluating window
joins over unbounded streams. In ICDE, pages 341–352,
2003.

[7] U. Srivastava and J. Widom. Memory-limited execution of
windowed stream joins. In VLDB, pages 324–335, 2004.


