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ABSTRACT
There have been several techniques proposed for building
statistics for static XML data. However, very little work
has been done in the area of building XML statistics for
data sources that export XML views of data that is stored in
relational or other databases. For such data sources, we need
statistics that are built in an on-line manner, by observing
the XML queries to the data sources and their results. In
this paper, we present a technique for building on-line XML
statistics by observing the XPath queries issued to a data
source and their result sizes. These XPath queries select
parts of the virtual XML document representing the XML
view of the data at the data source. We convert these XPath
queries to a more abstract and generalized form that we
call annotated path expressions. We present a technique for
storing these annotated path expressions and information
about their selectivity for use in estimating the selectivity
of future XPath queries. We also present an experimental
evaluation of our proposed approach.

Categories and Subject Descriptors
H.2 [Database Management]: Systems

General Terms
Algorithms, Performance, Design

Keywords
query optimization, selectivity estimation, database statis-
tics, XML, hidden web

1. INTRODUCTION
There is currently a lot of interest in developing Internet

query processors that can “query the Web.” Since XML is
becoming the standard data representation format for Web
data, these query processors can be built assuming that all
the data that they query will be in XML format. Examples
of systems that query XML data over the Internet include
Niagara [13] and Xyleme [20].
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These Internet query processors can easily query data that
is in XML files on the Web. We call this static XML data.
However, most of the data on the Web is not in static XML
files, or even HTML files. Most of the data on the Web is
“hidden” in databases and can only be accessed by posing
queries over these databases [6, 16]. This portion of the Web
is known as the hidden Web. Sometimes it is also referred
to as the deep Web. We can expect that, in the near future,
hidden Web data sources will export the data they produce
in response to user queries in XML format. It should there-
fore be possible for Internet query processors like Niagara
to query the hidden Web in addition to the “static Web.”
Querying the hidden Web is of particular importance be-

cause the size of the hidden Web is up to 400 to 500 times
larger than the size of the static Web. Furthermore, data in
the hidden Web is typically very high-quality data [6]. Ex-
amples of hidden Web data sources include the FactFinder
database of census information from the U.S. Census Bureau
and the EDGAR database of company financial statements
from the Securities and Exchange Commission.
Querying the hidden Web requires the ability to optimize

queries over hidden Web data sources, which requires XML
statistics about these sources. Existing solutions fall short
of providing such statistics, and in this paper we propose a
solution to this problem.
As a motivating example, consider the query in Figure 1,

expressed in XQuery [5]. This is a join query that asks for
price quotes under $25,000 from car dealers in Madison for
year 2003 cars that received a 5 star rating in the govern-
ment crash tests. The URLs in this query are for actual Web
sites that can be queried to provide the required informa-
tion. The interface for queries and responses at these sites is
currently HTML not XML. However, it would be reasonable
to expect that this interface may become XML in the near
future, thereby making such a query feasible. Furthermore,
it is always possible to build wrappers around Web sites to
provide an XML view of their HTML data.
The query in Figure 1 uses XPath [4] path expressions to

query the hidden Web data sources. In this paper, we focus
on building statistics that can help in estimating the selec-
tivity of such XPath path expressions. The typical approach
for building statistics for relational or XML data is to scan
the entire data and summarize it in some data structure that
occupies a small amount of memory. This does not work for
the hidden Web because we do not have access to the data.
We only have access to queries on the XML view of this data
and their results. Most hidden Web data is stored in rela-
tional databases, and sometimes in document databases. It
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FOR $r IN document("http://www.nhtsa.gov/")//safety/car[year=2003 and rating=5]

$q IN document("http://autos.yahoo.com/")//newcar/quote[city="Madison"]

WHERE $r/make=$q/make and $r/model=$q/model and $q/price<25000

RETURN $q/dealer

Figure 1: An example query in the XQuery language
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Figure 2: On-line XML statistics

is not stored as native XML. Rather, the XML view of the
data is computed only in response to user queries. Thus, we
cannot scan the entire data to build statistics. Moreover,
even if this data were to be fully converted to native XML
(which is highly unlikely), we would still not have access to
the entire data due to proprietary rights. The owners of data
are typically not willing to export their entire data, even if
they are willing to export answers to queries over this data.
For example, we can easily get the price of an individual
book from Amazon.com but not their entire price list.
For this environment, we need on-line XML statistics,

which are constructed by observing user queries to hidden
Web data sources and their results. In this paper, we propose
a type of on-line XML statistics which we call on-line anno-
tated path tables. We do not require any cooperation from
the data sources in building these statistics; the statistics are
based solely on feedback from user queries. To reduce the
overhead and complexity of the statistics, we use only the
sizes of the query results (i.e., the number of XML elements
they contain) for constructing the on-line XML statistics,
and not the actual XML data in these results.
Thus, the problem we are trying to solve is as follows:

Given a sequence of XPath queries on a virtual XML doc-
ument representing the XML view of the data at a hidden
Web data source, and given the result sizes of these queries,
construct on-line XML statistics for this data source (Fig-
ure 2). The statistics should leverage the information ob-
tained from past XPath queries to estimate the selectivity
of future XPath queries issued to the data source, including
XPath queries that are seen for the first time. Selectivity
estimation accuracy should increase as more queries are ob-
served. Also, there should be a mechanism for bounding
the amount of memory consumed by the statistics to any
given value. We consider XPath path expressions of the
form //a1/a2/ · · · /an. Each step, ai, of a query path ex-
pression is either of the form ti, where ti is a tag name, or of
the form ti[ci] where ti is a tag name and ci is an arbitrarily
complex condition. Examples of such XPath queries include
//safety/car[make="Saturn" and year=2003]/rating,
and //chapter[@title="Introduction"]/section[1].
The rest of this paper is organized as follows. Section 2

presents an overview of related work. Section 3 introduces

path annotations, which we use in our on-line statistics. Sec-
tion 4 describes these statistics. Section 5 presents an ex-
perimental evaluation of our proposed technique. Section 6
contains concluding remarks.

2. RELATED WORK
Many different techniques for building statistics for static

XML data have recently been proposed. The techniques
in [7] build statistics that are used to estimate the selec-
tivity of twig queries, or branching path expressions. The
techniques we propose in [1] provide more accurate selectiv-
ity estimates for the case of simple path expressions, which
are path expressions that have one branch and navigate in
the XML data based on structure, without conditions. [9]
proposes a statistics framework that leverages information
from the XML schema of a document. [14] proposes a syn-
opsis data structure for graph structured XML data, and [15]
extends this framework to handle values. While these pa-
pers represent significant advances in the area of statistics
for static XML data, the techniques they propose are not
applicable to the hidden Web as they require access to the
data, and sometimes its schema, to construct the statistics.
To our knowledge, the only paper proposing an on-line

technique for constructing XML statistics is [11]. The tech-
nique proposed in that paper can only handle very simple
conditions in the path expressions of the form tag="value",
whereas we focus on handling complex conditions. Also, the
technique in [11] only captures local information about the
steps of the path expressions, whereas our technique cap-
tures information about entire path expressions.
Querying multiple hidden Web data sources in an Internet

query processor is similar to querying multiple data sources
in data integration systems such as Tukwila [10], Garlic [17],
or HERMES [3]. Data integration systems optimize and ex-
ecute queries over diverse data sources, so they must address
the problem of obtaining statistics for these sources.
Some systems require the data sources to explicitly export

the statistics required for query optimization [12, 17]. This
is not applicable to our problem of building statistics for
the hidden Web, because the hidden Web data sources are
autonomous and provide no information beyond answers to
user queries. Moreover, the data sources themselves may not
have the required information about the XML data, because
this data is materialized only in response to user queries.
Another approach is to design the data integration system

to allow for run-time re-optimization of queries [10]. This
approach assumes that the query optimizer will have little
or no statistics about the data sources, so it may choose an
inefficient query execution plan. As the plan is executed,
more information about the data sources is obtained, and
the query processor may choose to re-optimize the query
based on this new information. Providing statistics at query
optimization time, as we do in this paper, helps the query
optimizer choose a good plan from the outset. It may still
be possible to improve the performance of the query by
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run-time re-optimization, although the need for such re-
optimization will be less because the initial plan is good.
The HERMES system records the result sizes of queries is-

sued to data sources and uses the recorded values to estimate
the selectivity of future queries issued to these sources [3].
We also use the result sizes of queries to build statistics, but
we focus on XML path expressions over hidden Web data
sources, while the HERMES system focused on function calls
to external programs or data sources in a distributed medi-
ator system. Their techniques for gathering, summarizing,
and using statistics do not extend to our problem.

3. PATH ANNOTATIONS
A simple way of building on-line XML statistics would

be to cache the XPath queries issued to a data source and
their result sizes. This way, if we see an XPath query for
the second time, we could find its exact selectivity from
the query cache. However, this technique must cache every
query and its result size, so it does not scale in the number of
queries. Furthermore, this technique is of no use for XPath
queries that are seen for the first time.
Instead, our approach is to syntactically analyze the XPath

path expressions and convert them into a more abstract and
general representation that we call annotated path expres-
sions. We then store these annotated path expressions and
information about their result sizes for use in selectivity esti-
mation. An annotated path expression represents all XPath
path expressions that have a particular form, so it provides
a degree of summarization and generalization to previously
unseen XPath queries. The intuition behind annotated path
expressions is that it is unlikely that we will see the exact
same XPath query over and over in a query workload, but
it is highly likely that we will see XPath queries of the same
form repeated in the workload. Next, we describe the two
types of path annotations used in our approach: condition
annotations and structure annotations.

3.1 Condition Annotations
An important issue we must address is how to deal with

conditions in the XPath path expressions in our on-line XML
statistics. On the one hand, we must allow conditions in the
XPath queries that we consider. Without conditions, users
would be able to express only a very limited and weak form
of queries. For example, without conditions, users would be
able to ask a car safety data source for “the safety rating
of all cars” (//safety/car/rating) but not for “the safety
rating of 2003 Saturns” (//safety/car[make="Saturn" and

year=2003]/rating).
On the other hand, conditions complicate the construction

of statistics because we cannot ignore their effect, nor can we
isolate it. The selectivity of the query
//safety/car[make="Saturn" and year=2003]/rating is
much smaller than the selectivity of the unconditional query
//safety/car/rating. Thus, we cannot ignore the effect
of the condition [make="Saturn" and year=2003]. But at
the same time, the effect of such a condition on selectiv-
ity cannot be isolated, since we only have the number of
//safety/car/rating elements that satisfy the condition
[make="Saturn" and year=2003], but not the total num-
ber of //safety/car/rating elements.
To solve this problem, we analyze the syntax of the con-

ditions in the different steps of the XPath path expressions,
and we classify these conditions based on their syntactic

form. For example, we can classify conditions into either
“conditions that are based only on the structure of the XML
data,” such as the condition in car[rating] (a car that has
a safety rating), or “conditions that are based on the ele-
ment or attribute values in addition to the structure of the
data,” such as the condition in car[rating=5] (a car with a
safety rating that has the value 5). These are two different
forms of conditions in the XPath steps.
We use this syntactic classification to deal with conditions

by making the assumption that conditions of a particular
form have a uniform effect on selectivity. This means that
a condition of a particular form on a tag in an XPath path
expression has the same effect on selectivity as any other
condition of the same form on this tag. We reflect this as-
sumption by annotating every tag in a path expression with
an annotation describing the form of the condition on this
tag. Thus, if we classify conditions as above into “conditions
on structure” and “conditions on values,” we would anno-
tate a tag, A, as follows: If A has no condition, we would
annotate it with U , for unconditional. If A has a condition
on structure, such as A[B], we would annotate it with CS.
If A has a condition involving element or attribute values,
such as A[B = 5], we would annotate it with CV . Thus, for
the purpose of selectivity estimation, the tag, A, is repre-
sented as AU , ACS , or ACV . We treat AU , ACS , and ACV

as three distinct tags, thereby reflecting our assumption that
all conditions of a particular form have the same effect on se-
lectivity but that conditions of different forms have different
effects on selectivity.
This framework of syntactically classifying conditions

based on their form and annotating the steps of the path ex-
pressions to reflect this classification allows for a wide range
of classification and condition annotation schemes. The goal
of any scheme should be to group conditions into classes
based on syntactic analysis, such that all conditions in the
same class have the same effect on selectivity, and conditions
in different classes have different effects on selectivity.
An alternative to the classification scheme outlined above

is to classify conditions into three classes: “simple condi-
tions” with no logical operators, such as [B=5]; “conjunc-
tive conditions” that involve only the logical operator “and,”
such as [B=5 and C=7]; and “disjunctive conditions” that
have one or more instances of the logical operator “or,” such
as [B=5 or C=7]. It is intuitively clear that these different
classes of conditions can have different effects on selectivity.
For this classification scheme, we would annotate tags in the
XPath path expressions with U , CS, CA, or CO for uncon-
ditional, simple condition, conjunctive condition with only
“and,” or disjunctive condition with some “or,” respectively.
Another alternative would be to opt for maximum simplic-

ity and classify tags into “tags without a condition,” which
would be annotated with a U , and “tags with a condition,”
which would be annotated with a C (i.e., group all condi-
tions into one class). This classification scheme allows for
the maximum possible generalization from observed XPath
queries to future XPath queries. When we observe an XPath
query with some condition on a certain tag, we can use the
selectivity information obtained from this query to estimate
the selectivity of other similar XPath queries that have any
condition on this tag.
In any condition classification and annotation scheme,

having more classes increases the granularity with which
we partition the space of possible conditions, but it de-
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creases the degree of generalization from conditions in ob-
served XPath queries to conditions in future XPath queries.
We can only generalize from conditions in a particular class
to other conditions in the same class (i.e., with the same
condition annotation).

3.2 Structure Annotations
Another problem that we face when designing on-line XML

statistics for hidden Web data sources is that the result of
an XPath query does not give any information about the
part of the XML tree that was navigated to get this result.
For example, consider the XPath query //A/B/C. Fig-

ure 3 shows an XML tree in which the path //A/B/C occurs
a certain number of times with only one A node and one B
node for all the C nodes. Figure 4 shows a different XML
tree in which the path //A/B/C occurs the same number of
times as in the first XML tree, but with one A node and one
B node per C node. Knowing the result of the XPath query
//A/B/C does not help us to distinguish between these two
cases.
Our solution to this problem is not to make any guesses

about the structure of the XML tree. Such guesses would
be hard to justify given the limited information about the
structure of the tree provided by the XPath queries. Instead,
we distinguish between the target tag of an XPath path ex-
pression and the tags used for navigating the XML tree to
get to this target tag. In an XPath query, say //A/B/C,
we annotate the final tag, C, with an annotation D, for des-
tination, and the preceding tags, A and B, with an anno-
tation N , for navigation. Thus, the XPath query becomes
//AN/BN/CD. We only have selectivity information for
destination tags. Navigation tags are needed to get to the
destination tag, but we do not have selectivity information

pi ni si

//ANU/BNCA/CDU 5 25
//ANU/BNU/CDCS 13 67
//CDU 2 29
//F NCO /GNCA /HDU 2 2

· · · · · · · · · · · ·
//BNCS /CDU 4 90

Figure 5: An on-line annotated path table

for them. In general, we treat AN and AD as distinct tags.
Information about A as the destination of an XPath query
does not help us for XPath queries that use A for navigation.
The N or D annotation does not need to be explicitly

represented. In any XPath query, only the final tag gets the
D annotation, while all preceding tags get an N annotation.
Thus, theN orD annotation of a tag can be inferred from its
position in the path expression. In this paper, we make the
N or D annotation explicit for clarity of exposition, noting
that this does not add any overhead to our algorithms.
We combine the condition annotations and structure an-

notations for path expression tags. For example, if we clas-
sify conditions into “conditions on structure” and “condi-
tions on values,” a tag, A, is annotated as ANU , ANCS ,
ANCV , ADU , ADCS , or ADCV . These annotated tags are
treated as distinct tags for the purpose of selectivity esti-
mation. Selectivity information for one does not help us
for queries involving another. As an example of path an-
notation, the XPath path expression //A[E/F ]/B/C[@a =
”val”] is annotated as //ANCS /BNU/CDCV . We call this
representation an annotated path expression.

4. ON-LINE ANNOTATED PATH TABLES
Our approach to building on-line XML statistics for a hid-

den Web data source is to store the annotated path expres-
sions corresponding to all XPath queries issued to this one
data source in a table that we call the on-line annotated path
table. If we have multiple data sources, we would have one
on-line annotated path table per data source. Every entry
in an on-line annotated path table corresponds to one an-
notated path expression. An entry, i, stores the annotated
path expression it represents, pi, or a hash value of pi, the
number of observed XPath queries that correspond to this
annotated path expression, ni, and the total result size of all
these ni queries, si (i.e., the sum of all the individual result
sizes). Figure 5 shows an example on-line annotated path
table in which the condition annotation represents whether
the condition is simple (CS), conjunctive (CA), or disjunc-
tive (CO).
When an XPath query is issued to a hidden Web data

source, we observe the actual result size of the query and use
it to update and refine the on-line annotated path table. We
determine the annotated path expression corresponding to
the XPath query. If this annotated path expression is found
in the table, its entry is updated (the ni value is incremented
and the result size of the XPath query is added to the si

value). If the annotated path expression is not found in the
table, a new entry is created for it.
To estimate the selectivity of an XPath query using an

on-line annotated path table, we determine the annotated
path expression corresponding to this query and look up this
path expression in the table. If the path expression is found
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in the table, the estimated selectivity of the XPath query
is si/ni, the average selectivity of all previous executions
of XPath queries corresponding to this annotated path ex-
pression. Under our assumptions, the result size of a query
corresponding to an annotated path expression is a good
predictor of the result size of any other query corresponding
to the same annotated path expression. If the annotated
path expression corresponding to the XPath query whose
selectivity is being estimated is not found in the table, we
estimate the selectivity to be 0.
An on-line annotated path table collects and aggregates

information about the selectivities of XPath queries issued
to a hidden Web data source. The path annotations allow
us to aggregate information from several queries in one ta-
ble entry. They also allow us to generalize the information
obtained from observed XPath queries to estimate the se-
lectivity of different, previously unseen XPath queries. As
more XPath queries are observed, more and more informa-
tion is added to the table, so the selectivity estimates it
provides become more accurate.
To bound the amount of memory consumed by an on-line

annotated path table, we need a mechanism to remove path
expressions from the table. We specify two memory thresh-
olds: a target threshold, t1, and a trigger threshold, t2, such
that t1 ≤ t2. When the table size reaches t2, a table summa-
rization process is triggered. The table is summarized until
its size drops to t1 or less. t1 can be viewed as the available
memory budget at which we want the table size to stabilize.
However, we allow the table to grow to t2 so that there is
an opportunity for collecting enough information to improve
selectivity estimation accuracy. This additional information
that is collected also improves the accuracy and stability of
the table summarization process.
To summarize an on-line annotated path table, we re-

move the entries with the lowest si values. A low si value
for a table entry can mean one of two things. It can mean
that the annotated path expression of this entry occurs only
infrequently in the virtual XML document representing the
hidden Web data source, so the total result size of all XPath
queries corresponding to this annotated path expression will
be small even if there are many such queries. A low si value
for a table entry can also mean that few XPath queries is-
sued to the data source correspond to the annotated path
expression for this entry. This information is reflected di-
rectly in the ni value, but also indirectly in the si value. In
all cases, the entry with the low si value is a good candidate
for removal because it represents an infrequently occurring
path or an infrequently queried path.
We favor removing path expressions that occur

infrequently at the data source over ones that occur fre-
quently because it is very important for query optimization
to have accurate selectivity estimates for frequent values.
These selectivity estimates help us avoid “big mistakes” like
using an un-clustered index for a predicate that is not very
selective. Accurate selectivity estimates for infrequent val-
ues can certainly be important, but they are less important
than accurate selectivity estimates for frequent values. This
reasoning is reflected in end-biased histograms that explic-
itly store the frequent values of a data distribution, and that
are used in commercial database systems such as DB2.
We also favor removing infrequently queried path expres-

sions over frequently queried path expressions because we
want the on-line annotated path table to be workload-aware.

If the user workload contains certain queries with higher fre-
quency than others, we want to ensure selectivity estimation
accuracy for those frequent queries.
When we remove entries with low si values from an on-

line annotated path table, we can aggregate the information
contained in the removed entries in table entries that corre-
spond to special path expressions that we call star path ex-
pressions. A star path expression entry stores aggregated se-
lectivity information for multiple path expressions removed
from an on-line annotated path table. In this approach, an
on-line annotated path table has entries for two star path
expressions: a path expression //∗DU , and a path expression
//∗DC . The entry for the path expression //∗DU contains
the total ni and si values of all removed entries whose path
expressions contain only unconditional navigation steps (i.e.,
only U condition annotations). The entry for the path ex-
pression //∗DC contains the total ni and si values of all
removed entries whose path expressions have one or more
conditional navigation steps (i.e., some Cx annotation on
one or more tags). We make the distinction between path
expressions with conditional and unconditional navigation
because of the high impact that conditions have on selectiv-
ity. Note that these star path expressions are similar to the
star path expressions used in our work on building statis-
tics for static XML data [1]. Another alternative in table
summarization is not to use star path expressions. In this
case, the entries removed from an on-line annotated path
table are simply discarded and the information they contain
is lost.

5. EXPERIMENTAL EVALUATION
Our goal is to build on-line XML statistics for hidden Web

data sources that export their responses to user queries in
XML. Unfortunately, as mentioned earlier, publicly avail-
able hidden Web data sources do not currently export their
data in XML, although we can expect them to do so in the
near future. As such, we evaluate our proposed statistics
using static XML data, using the static XML documents in
our experiments as proxies for the virtual XML documents
that would be queried in the hidden Web.
We present the results of experiments on two real data

sets. For a more extensive experimental evaluation on real
and synthetic data sets, please refer to [2]. The first data set
we use consists of protein sequence data from the SWISS-
PROT database [18]. This data set is 141MB in size, and
it contains 4,243,031 XML elements. The second real data
set consists of bibliographic entries from the DBLP bibliog-
raphy [8]. This data set is 48MB in size, and it contains
1,399,765 XML elements. In a real deployment of our tech-
nique, SWISS-PROT and DBLP would be data sources that
export an XML view of parts of the data that they store in
databases.
The query workloads we use in our experiment consist of

1000 XPath queries each. All queries ask for paths that do
occur one or more times in the data. Each query has a ran-
dom number of navigation steps between 1 and 4. Each step
in the generated queries has a condition with probability p,
where p is a parameter. The conditions we generate consist
of one to three condition atoms connected by the logical op-
erators “and” or “or.” The condition atoms are simple con-
ditions on structure and values. 80% of the generated con-
ditions have one condition atom, 10% have two atoms, and
10% have three atoms. The condition atoms are connected

362



p SWISS-PROT DBLP

0% 424,129 56,941
10% 352,122 49,580
25% 249,392 36,745
50% 128,030 25,014

Table 1: Average result sizes of the query workloads

by “and” with probability 50% and by “or” with probabil-
ity 50%. Examples of query path expressions generated by
our query generation process for the DBLP data set include
//inproceedings[year="1999" and

author="Jones"]/booktitle and
//article/journal[text()="Algorithmica"]. In our ex-
periments, we use workloads with condition probability p =
0%, 10%, 25%, and 50%. The average result sizes of the
1000 queries in these four workloads on each of the two data
sets are presented in Table 1.
We use the Xalan XPath processor [19] to execute the

queries in our workloads and obtain their result sizes. To
simulate a sequence of user queries to a hidden Web data
source, we start with an empty on-line annotated path table
and issue the queries in a workload one by one. For every
query, we estimate its selectivity using the on-line annotated
path table and we measure estimation accuracy by compar-
ing the estimated and actual selectivity values. After query
execution, the actual result size of the query is used to up-
date and refine the path table, making it more accurate.
In the first experiment we present, we investigate the effect

of the condition classification and annotation scheme. Ta-
ble 2 shows the average absolute error in selectivity estima-
tion for the workloads with 50% of the navigation steps hav-
ing conditions (the maximum level of conditions in our work-
loads) on the two data sets. These absolute errors are best
viewed in the context of the average result sizes presented in
Table 1. Table 2 presents the selectivity estimation errors
using an on-line annotated path table of size 5KB, which
is enough to represent all the annotated path expressions
in the workloads without needing any summarization. The
table presents the average error for the last 800 queries of
each workload. We are making the assumption that the first
200 queries are training queries while the last 800 queries
are validation queries, and we are showing the average er-
ror for the validation queries. The table presents the errors
using three different condition classification and annotation
schemes: classifying conditions into conditions on structure
and conditions on values; classifying conditions into simple,
conjunctive, and disjunctive; and classifying tags into tags
with conditions and tags without conditions (i.e., grouping
all conditions into one class).
Table 2 shows that classifying conditions into simple, con-

junctive, and disjunctive has an advantage over the other
two schemes, but only a slight advantage that does not jus-
tify its extra complexity. As such, we conclude that it is
best to use the simplest scheme of grouping all conditions
into one class and annotating the tags in the XPath steps
with either U or C, for unconditional or conditional. We use
this condition annotation scheme for all our other experi-
ments. In addition to being the simplest scheme with the
lowest cost, this scheme allows for the most generalization
from observed XPath queries to future XPath queries.
The second experiment we present investigates the con-

vergence and accuracy of the selectivity estimates provided

by on-line annotated path tables. Figure 6 shows the aver-
age absolute error in selectivity estimation for the four query
workloads on the two data sets. The errors are shown for
queries grouped in groups of 100 queries each. The on-line
annotated path tables use a target memory threshold, t1, of
500 bytes, and a trigger threshold, t2, of 1000 bytes. When
summarizing the on-line annotated path tables, we use star
path expressions to represent removed entries.
The figure shows that on-line annotated path tables have

good convergence properties and can “learn” the data dis-
tribution fast. The figure also shows that as p increases and
the number of conditions in the query path expressions in-
creases, the effect of the assumption that conditions of a
particular form have a uniform effect on selectivity also in-
creases. This leads to an increase in selectivity estimation
error. However, the error remains adequately low.
In the third experiment we present, we compare on-line

annotated path tables to the static XML statistics that we
proposed in [1]. In that paper, we identified two types of
static XML statistics as winners among several techniques:
path trees with global-* summarization, and Markov tables
with m = 2 and suffix-* summarization (see [1] for details).
We compare the on-line annotated path tables that we

propose in this paper to these two kinds of static XML
statistics. Since the static XML statistics can only han-
dle navigation based on the structure of the XML data and
cannot handle conditions in the query path expressions, we
only compare them to on-line statistics for workloads with
no conditions (p = 0%).
Figure 7 shows the selectivity estimation errors for work-

loads with no conditions using path trees and Markov tables,
as well as using on-line annotated path tables. As in Table 2,
the errors are shown for the last 800 queries in each workload
(the validation queries) using different memory allocations.
For static statistics, the memory allocations shown on the
x-axis are the total number of bytes given to the statistics.
For on-line statistics, the memory allocations shown are the
target threshold, t1. The trigger threshold, t2, is set to 2∗t1.
The figure shows that on-line XML statistics are compara-
ble in performance to static XML statistics, and sometimes
even better. The figure also shows that the estimation error
decreases as the available memory increases.
On-line annotated path tables are built based only on ob-

serving user queries and their result sizes. This is much
more limited information than is available for static XML
statistics, which are built by reading the entire XML data
set and processing it as needed. We expect the static statis-
tics built using full information to be more accurate than
the on-line statistics built using limited information. This is
what we see in Figure 7(a) and in small memory allocations
in Figure 7(b). However, the good news from these figures
is that the on-line statistics are comparable in accuracy to
the static statistics. Thus, even though we cannot use static
XML statistics for hidden Web data sources because we do
not have access to the data, this experiment shows that on-
line XML statistics, the only alternative we can use, are not
much less accurate.
The surprising result that we see in Figure 7(b) is that on-

line XML statistics can be more accurate than static XML
statistics. This is because on-line XML statistics are work-
load aware. On-line XML statistics try to retain informa-
tion about paths in the data that are queried by the user.
Static XML statistics, even though they have access to more
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Data Set Structure / Values Simple / Conjunctive / Disjunctive Any Condition / No Condition

SWISS-PROT 23,327 21,716 23,327
DBLP 1,591 1,585 1,591

Table 2: Effect of the condition classification method
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Figure 6: Convergence and estimation accuracy for the two data sets
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Figure 7: Comparison to static XML statistics for the two data sets
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information, summarize the data without considering user
queries. Thus, they may discard some information during
summarization that, while not significant from the point of
view of capturing a data distribution, is frequently queried
by the user. If the on-line statistics keep this information,
they can be more accurate than the static statistics.

6. CONCLUSIONS
We propose a novel type of XML statistics for hidden Web

data sources that we call on-line annotated path tables. An
on-line annotated path table for a hidden Web data source
stores the XPath query path expressions that were issued to
this data source in a more generalized form known as anno-
tated path expressions. The table also stores aggregate infor-
mation about the result sizes of the queries corresponding
to these annotated path expressions. This information can
be leveraged to estimate the selectivity of subsequent user
queries, even if these queries are seen for the first time. A
summarization algorithm ensures that the amount of mem-
ory used by the table remains bounded.
We see several directions for future work. In this paper,

we assume that queries to a hidden Web data source are
XPath selections from a virtual XML document represent-
ing the data at this source. This model of querying hidden
Web data sources is easy to incorporate into XML query pro-
cessors, and it is general and expressive enough to handle
current hidden Web interfaces. However, it would be inter-
esting to investigate other models for querying hidden Web
data sources, and to determine the impact of these models on
query optimization and processing and on statistics gather-
ing. Developing more elaborate techniques for building and
maintaining on-line annotated path tables is another possi-
ble area of future work. This includes, for example, more
elaborate techniques for handling XPath conditions. It also
includes improved table summarization methods, possibly
relying on the recency of queries, in addition to their fre-
quency, to determine which entries in the on-line annotated
path table to remove. Improving on-line annotated path
tables can also include developing techniques for detecting
changes in the data distribution at the Web sources and re-
flecting these changes in the tables. Another possible area
for future work is developing robust techniques for inferring
information about the structure of the XML tree based on
the queries in the workload and their results. Finally, it may
be possible to utilize semantic knowledge or schema knowl-
edge to construct or refine statistics for hidden Web data
sources.
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