
On the Difficulty of Finding Optimal Relational

Decompositions for XML Workloads: a

Complexity Theoretic Perspective

Rajasekar Krishnamurthy ??, Venkatesan T. Chakaravarthy ? ? ?, and
Jeffrey F. Naughton ??

University of Wisconsin, Madison, WI 53706, USA,
{sekar,venkat,naughton}@cs.wisc.edu

Abstract. A key problem that arises in the context of storing XML
documents in relational databases is that of finding an optimal rela-
tional decomposition for a given set of XML documents and a given set
of XML queries over those documents. While there have been a number
of ad hoc solutions proposed for this problem, to our knowledge this pa-
per represents a first step toward formalizing the problem and studying
its complexity. It turns out that to even define what one means by an
optimal decomposition, one first needs to specify an algorithm to trans-
late XML queries to relational queries, and a cost model to evaluate
the quality of the resulting relational queries. By examining an interest-
ing problem embedded in choosing a relational decomposition, we show
that choices of different translation algorithms and cost models result
in very different complexities for the resulting optimization problems.
Our results suggest that, contrary to the trend in previous work, the
eventual development of practical algorithms for finding relational de-
compositions for XML workloads will require judicious choices of cost
models and translation algorithms, rather than an exclusive focus on the
decomposition problem in isolation.

1 Introduction

In order to leverage existing investments in relational database technology, there
has recently been considerable interest in storing XML documents in relational
databases. This problem has two main parts to it: (i) Given an XML schema
(and possibly a query workload and statistics), choose a good relational de-
composition and (ii) Given the XML schema and the corresponding relational
decomposition, translate XML queries to SQL over this relational schema. While
the two problems have been studied independently [3, 4, 6, 10, 12], they are ac-
tually closely related. In this paper, we study the relationship between the two
problems, namely, choosing a good relational decomposition and using a good
query translation algorithm.

We show, through experiments with a commercial RDBMS and a well-known
XML benchmark, that there exist translation algorithms T1 and T2, and rela-
tional decompositions D1 and D2, such that with translation T1 decomposition
?? Research supported in part by NSF grants CSA-9623632 and ITR-0086002

? ? ? Research supported in part by NSF grants

II

D1 is better than D2, while with translation T2 decomposition D2 is better than
D1. This implies that one cannot talk about the quality of a decomposition
without discussing the query translation algorithm to be used.

Any algorithm that attempts to find the optimal relational decomposition
will have some cost model for the resulting relational queries, since it needs some
way of evaluating the quality of the decomposition. To talk about the difficulty
of finding good relational decompositions, we need to be specific about the cost
models used. To show that the choice for the cost model can have a profound
impact on the complexity of finding the optimal relational decomposition, we
introduce two simple cost metrics and explore the complexity of the problem
with each in turn.

Describing and analyzing the interaction between decompositions and query
translations in full generality is a daunting task that appears (at least to us)
unlikely to be amenable to a clean formal analysis; accordingly, here we con-
sider a subset of the problem that is constrained enough to be tractable yet
rich enough to provide insight into the general problem. We specify this subset
by identifying a subset of XML schemas and a restricted class of XML queries
over these schemas. We also specify a class of decompositions that, while not
fully general, covers a wide range of decompositions we have seen in literature.
We identify an important subproblem that must be addressed when designing
an XML-to-Relational decomposition, which we call the Grouping problem. The
subset of schemas and queries we consider captures the crux of the interaction
between the decompositions and query translation algorithms in the context of
the Grouping problem. We then present three query translation algorithms,
NaiveTranslation, SingleScan and MultipleScan. In this setting, we look at how
the complexity of choosing a good solution varies as we choose different combi-
nations of translation algorithms and cost models.

Finally, we describe the CompleteGrouping problem, where we no longer fix
the query translation algorithm, so the goal is to find the best pair of (relational
decomposition strategy, query translation algorithm). We analyze the complexity
of this problem for the two cost metrics.

The rest of the paper is organized as follows. We first show in Section 2
how the relative performance of different decompositions varies as the trans-
lation algorithm is varied. We also present the two cost metrics used in this
paper. We then present a formal model describing the various parameters in the
problem in Section 3 and formally define the Grouping problem. We describe
the set-system coloring problem in Section 4 and show how it corresponds to
the Grouping problem for the family of instances we consider. We also prove
some complexity results for set-system coloring. We discuss the complexity of
the Grouping problem in Section 5 as the query translation algorithm and cost
model are varied and present our conclusions.

2 Relational Decompositions and Query Translation

Algorithms
In this section, using the XMark benchmark XML schema [11], we illustrate
the interaction between relational decompositions and XML-query to relational-

III

query translation algorithms. We then describe two cost metrics used to compare
alternative decompositions.

2.1 Motivating Example

In this section, we show how the quality of a decomposition is dependent on the
query translation algorithm used. A part of the XMark schema is presented in
Figure 1. Consider the various Item elements and the corresponding InCategory
elements that appear in the schema. The techniques proposed in existing litera-
ture [3, 12] map these elements into relations in one of two ways. The first way is
to create six Item relations, one for each occurrence of Item in the schema. The
Item elements are stored in relations AfricaItem, AsiaItem and so on based on
their parent element. Corresponding InCategory relations are also created. Let
us call this the fully partitioned strategy. The second way is to create an Item
relation and an InCategory relation and store all the Item elements and their cat-
egories in these relations respectively. Let us call this the fully grouped strategy.
Informally, how we decide to group the Item and InCategory elements into one
or more relations is the Grouping problem. Consider the path expression query
Q in Figure 2. Let us now look at how this query is translated into a relational
query. Consider the following simple algorithm. Identify all paths in the schema
that satisfy the query. For each path, generate a relational query by joining all re-
lations appearing in this path. The final query is the union of the queries over all
satisfying paths (six paths for Q). This query translation algorithm is presented
in Section 3.2. The relational queries for the fully-partitioned and fully-grouped
strategies, XQ1

fp and XQ1
fg respectively, are given below. Notice how the two

queries are very similar and differ mainly in the relations involved.

XQ1
fp: XQ1

fg:

select count(*) select count(*)

from Site S, AfricaItem I1, from Site S, Item I, InCategory C

AfricaInCategory C1 where S.id = I.parent

where S.id = I1.parent and I.id = C.parent

and I1.id = C1.parent and I.region = ‘africa’

and C1.category = ‘cat1’ and C.category = ‘cat1’

union all ... (6 queries) union all ... (6 queries)

We know that, using the fully grouped strategy, relation InCategory contains
exactly the set of elements returned by the path expression
“/Site/Regions//Item/InCategory”. So, we can translate query Q into a selec-
tion query on relation InCategory. In a similar fashion, we can simplify the rela-
tional query for the fully partitioned strategy as well. This kind of optimizations
can be performed by using the XML schema and XML-to-Relational mapping
information. Two such query translation algorithms are presented in Section 3.2
and 3.2. The resultant relational queries in this case, XQ2

fp and XQ2
fg, are given

below.

IV

Regions

Africa Asia Australia Europe SAmerica

Name

*

*

Item

Description Reserve

Mail
*

Mailbox

Incategory

Category

Preferred

*

Site

NAmerica

Fig. 1. XMark Benchmark schema

Find the number of items in a given category:
/Site/Regions//Item/InCategory[@Category = ‘cat1’]

Fig. 2. Path expression query Q

*** *

....................

....................

*

root

* * *

Leaf Leaf Leaf Leaf

name name name

subelement
attribute

name

E E E E
1 2 3 n

321 n

Fig. 3. Sample XML Schema in T

XQ2
fp: XQ2

fg:

select count(*) select count(*)

from AfricaInCategory C1 from InCategory C

where C1.category = ‘cat1’ where C.category = ‘cat1’

union all ... (6 paths)

On the 100MB XMark dataset [11], we noticed that XQ1
fg was 50% slower

than XQ1
fp, while XQ2

fg was about three times faster than XQ2
fp. So, we see

that for query Q, with algorithm NaiveTranslation, the fully partitioned strategy
is better, whereas with algorithm MultipleScan, the fully grouped strategy is
better. As a result, the quality of a decomposition is closely related to the query
translation algorithm used.

2.2 Two Simple Cost Metrics

An algorithm that attempts to find the optimal relational decomposition needs
a cost model for comparing alternative decompositions. One of our goals in this
paper is to show that the choice of the cost metric has a big impact on the
complexity of the problem. To illustrate this fact, we look at two simple cost
models for relational queries.

– RelCount: The cost of a relational query is the number of relation instances
in the relational algebra expression. This metric is inspired by historical work
on minimizing unions of conjunctive queries [9].

– RelSize: The cost of a relational query is the sum of the number of tuples
in relation instances in the relational algebra expression.

We next present some example scenarios where the above metrics are appli-
cable. Consider the relational queries generated by algorithm MultipleScan for
query Q.

The two queries, XQ2
fg and XQ2

fp, have a selection predicate on the category
attribute. If this predicate is a highly selective predicate and clustered indices are

V

present on the category columns of these relations, then the relational optimizer
will choose an index lookup plan for these queries. For query XQ2

fg, the cost will
be the sum of the cost of an index lookup and the cost for fetching all satisfying
tuples. For query XQ2

fp, it will be the sum of the cost of the six subqueries,
each of which is the sum of the cost of an index lookup and the cost for fetching
all satisfying tuples. Since, the query is highly selective, we can assume that
the index lookup cost is the dominating cost and so XQ2

fp is six times more

expensive than XQ2
fg. In this scenario, RelCount is a good cost metric.

On the other hand, if the selection predicate is not very selective, then the
optimizer may choose a plan that scans the relations. In this case, the cost of
XQ2

fg depends on the size of the InCategory relation, while the cost of XQ2
fp

depends on the sum of the sizes of the six region InCategory relations. In this
scenario, RelSize is a good cost metric.

We would like to emphasize the fact that the purpose of these cost models
is not to claim that they are optimal, or even very good in most cases, but
rather that they are at least reasonable and they can be used to show how the
complexity of the problem depends upon the chosen cost model.

3 Formal Model

To study the complexity of finding the optimal relational decomposition and how
it depends on the query translation algorithm used and the cost model, we next
formalize the problem in this section. We limit ourselves to a subset of the full
problem by fixing the class of XML schemas and path expression queries that
we consider. We then describe the class of relational decompositions, the class of
relational queries that can be produced by the query translation algorithms and
three candidate translation algorithms for the class of path expression queries
we consider. Finally we define the Grouping problem, a subproblem lurking in
the decomposition problem, which will be used to explore the complexity of the
decomposition problem.

3.1 Definitions

XML Schema: We consider the schema T , given in Figure 3. By varying n,
the number of children of the root, we get a family of instances. Let Label(v)
denote the name of the element v. If an edge is labeled with a “*”, then the
child element may occur more than once per parent element in the data. Oth-
erwise the child element occurs exactly once per parent element. We refer to
elements in the schema as elements and the corresponding elements in XML
documents as instance elements. We refer to the element in T that corresponds
to /root/Ei/Leaf as element Leaf i or simply as i. Let Parent(Leaf i) denote the
element Ei, which is the parent of Leaf i.
Path expression queries: We consider a class of path expression queries,
Q, that select a subset of the Leaf elements. A query Q ∈ Q is of the form
/root/(e1|e2| . . . |ek)/Leaf [@name = value], where ei is some Ej . The query Q
selects a subset of the Leaf elements from the schema based on the path con-
ditions in Q. We call this subset of Leaf elements Range(Q). For example, for

VI

Q = /root/(E2|E5|E7)/Leaf [@name = value], Range(Q) = {2, 5, 7}. Apply-
ing the value conditions on the instance elements corresponding to elements in
Range(Q) will evaluate the result for Q.

Relational Decompositions: A number of relational decompositions have
been proposed for XML data in literature [3, 4, 6, 10, 12]. These techniques can
be broadly classified into two categories: (i) methods that use the XML schema
information to decide on the relational schema [3, 12] and (ii) methods that
decide a relational schema independent of the XML schema [4, 6, 10]. For ease
of exposition, we consider only the former techniques in this paper. We have
extended Theorems 9-12 to the latter techniques as well.

As an example of decompositions based on the XML schema, for the schema
in Figure 3, the Shared approach [12] will create n + 2 relations: one for storing
root elements, one for each of the n Ei elements and one for storing all the Leaf
elements (say relation L). The name attribute is stored in relation L along with
its parent Leaf element. The relation L will have columns (Leaf, name, parentid)
corresponding to the Leaf element, name attribute and information about the
parent Ei element.

In general, a relational decomposition for the XML schema can be viewed
as a mapping function, σ, from vertices in T to a tuple (R, C). The notation
σ(x) = (R1, C1) implies that instance elements of element x are stored in column
C1 of relation R1. Since σ is a function, all instance elements of a single element
are all stored in the same relation. Moreover, two elements in the XML schema
can be mapped to the same column of a relation only if they have the same label.
For example, Leaf 1 and Leaf 2 can be mapped to the same relational column,
but Leaf 1 and the corresponding name attribute cannot be mapped to the same
relational column.

Relational queries : We consider the translation of the queries in Q to equiv-
alent relational queries containing the select, project, join and union operators
from relational algebra. These relational queries can also be viewed as the union
of several conjunctive queries. As a technical detail, we do not allow disjunc-
tions in selection and join conditions because our simple cost metrics do not
capture the actual costs of relational queries in this scenario. This restriction
can be lifted, but at the expense of requiring more expensive cost metrics and
our results still hold. In this paper, for clarity of exposition, we restrict the class
of operators allowed and use simple cost metrics. We also do not allow the set
difference operator in the relational queries; the impact of lifting this restriction
is an interesting topic for future work.

A Query Q in Q selects one or more of the Leaf elements in T . So, the
equivalent relational query will be the union of one or more queries Qi, where
each Qi is a selection query or has a single join condition. If two Leaf elements
Leaf i and Leaf j are mapped to the same relation R and Range(Q) contains just
one of them (say Leaf i), the relational query joins the relation R with σ(Ei)
(Ei is the parent of Leaf i). For example, under the fully grouped decomposition
represented by mapping σ, the query /root/E1/Leaf will translate into the query
σ(E1) 1 σ(Leaf i).

VII

The cost of a path expression query Q for a given query translation algorithm
is the cost of the relational query generated by the algorithm for Q.

The following definition will be useful in discussing later results.

Definition 1 A set S of elements in T is called a scannable set under a map-
ping σ if all the elements in S have the same label and are mapped to the same
relational column (R, c) and no other element v /∈ S is mapped to (R, c).

Intuitively if S is a scannable set under σ, then a query Q having Range(Q) = S
can be translated into a relational selection query on R.

The queries in Q have a selection condition on the name attribute of Leaf
elements. So, it can be shown that storing the Leaf element and its name at-
tribute in the same relation is better than storing them in two different relations.
Similarly, it can be shown that decompositions that map two Leaf elements to
two different columns of the same relation, have an equally good strategy that
maps the Leaf elements to two different relations. This is due to the fact that
disjunctions are not allowed in the relational queries. So, without loss of gener-
ality, we can assume that two Leaf elements are mapped to the same relation
only if they are mapped to the same column1.

We can also show that for the given family of instances (T ,Q), under our
cost metric, different mappings for the Ei and root elements have the same
performance. What really makes the difference is how the n Leaf elements are
stored in k relations, for some 1 ≤ k ≤ n.

The space of relational decompositions that needs to be examined to find the
optimal decomposition consists of the various ways in which the Leaf elements
can be grouped into k relations. We next formally define the Grouping problem
and the CompleteGrouping problem.

Definition 2 Given a schema T , a query workload QW ⊆ Q and an XML-to-
relational query translation procedure, the Grouping problem is to find a parti-
tioning of the n Leaf elements into k relations (1 ≤ k ≤ n) such that the sum
of the cost of all queries in QW is minimized.

Definition 3 Given a schema T and a query workload QW ⊆ Q, the Com-
pleteGrouping problem is to find the partitioning of the n Leaf elements into k
relations (1 ≤ k ≤ n) and the XML-to-relational query translation such that the
sum of the cost of all queries in QW is minimized.

3.2 Query Translation Algorithms

In this section, we briefly look at three different algorithms for translating a
path expression query Q into SQL. The NaiveTranslation algorithm was first
presented in [12]. The other two algorithms are improvements over this algorithm
for the class of path expression queries.

Let Range(Q) = S = {v1, v2, . . . , vm}.

1 Notice that this automatically rules out solutions like a Universal relation for all the
n Leaf elements.

VIII

Procedure NaiveTranslation(S)

1 Let σ(root) = (R1, C1).
Set Result = null

2 For i = 1 to m

3 Let σ(Parent(vi)) = (R2, C2),
σ(vi) = (R3, C3).

4 Result = Result ∪
ΠC3

(R1 1 R2 1 R3).

Fig. 4. NaiveTranslation algorithm

Procedure SingleScan(S)

1 Set Result = null

2 If (S, σ) is a scannable set, let (R1, C1)
be the corresponding relational column

3 Result = ΠC1
(R1).

4 Otherwise,
5 For i = 1 to m

6 Let σ(Parent(vi)) = (R2, C2),
and σ(vi) = (R3, C3).

7 Result = Result ∪ ΠC3
(R2 1 R3).

Fig. 5. SingleScan algorithm

Procedure MultipleScan(S)

1 Partition S into equivalence classes S1, S2, . . . Sr based on the mapping σ.
2 Set Result = null

3 For i = 1 to r,
4 Let Si = {vi

1, v
i
2, . . . , v

i
s} and σ(vi

j) = (R1, C1).
5 If (Si, σ) is a scannable set,
6 Result = Result ∪ ΠC1

(R1).
7 Otherwise,
8 For j = 1 to s

9 Let σ(Parent(vi
j)) = (R2, C2), .

10 Result = Result ∪ ΠC1
(R1 1 R2).

Fig. 6. MultipleScan algorithm

NaiveTranslation Algorithm: The naive translation strategy performs a join
between the relations corresponding to all the elements appearing in a query. For
example, let us consider the fully grouped strategy, where σ(Leaf i) = Leaf . The
query /root/E2/Leaf will be translated into a join among the root, E2 and Leaf
relations. A wild-card query will be converted into union of many queries, one
for each satisfying wild-card substitution.

As an example, //Leaf will be translated into the union of n queries, one for
each Leaf element. Each of these queries will be a join between the root, Ei and
σ(Leaf i) relations. Comparing this with the best translation scheme, which just
performs a selection on the Leaf relation, we see that this scheme performs a lot
of unnecessary computation. The translation procedure is presented in Figure 4.
The condition on the attribute value is translated into a selection condition.
This selection condition and the join conditions have been omitted in the above
translation for clarity.

SingleScan Algorithm: This translation procedure converts Q into a selec-
tion query on a single relation, if Range(Q) forms a scannable set. Otherwise,
a separate relational query Qi is issued for each of the Leaf elements Leaf i. Qi

joins all relations on the schema path until the least common ancestor of all
the Leaf relations has been reached. In this case, there is a join between the

IX

appropriate Ei and Leaf i relations. For example, for the fully grouped strategy,
//Leaf will be a scan on the Leaf relation. But, /root/(E1|E2|E3)/Leaf will
be translated as the union of three queries, one each for the three paths. The
translation algorithm is given in Figure 5.

MultipleScan Algorithm: Consider a query Q with Range(Q) = {1, 2, 3, 4, 5}.
Under a decomposition that groups Leaf elements {1, 2, 3} and {4, 5, 6, . . . , n}
into two different relations, the translation into a single selection will fail. So,
under SingleScan, the relational query will be the union of 5 join queries. In Mul-
tipleScan, Range(Q) is partitioned into equivalence classes, {1, 2, 3} and {4, 5},
based on σ. Then, SingleScan is applied on each of these partitions and the re-
sulting query is the union of these queries. In this case, {1, 2, 3} gets translated
into a single query, while {4, 5} becomes the union of two queries and the trans-
lation of Q is the union of these three queries. The translation algorithm is given
in Figure 6.

4 Set System Coloring

In this section we define an abstract problem that is useful in investigating
the complexity of the grouping problem. The problem of assigning relations to
the n Leaf elements can be viewed as assigning colors to the elements of a set
of n elements. We call this problem the set system coloring problem. We define
four different cost metrics, SSCostRC , MSCostRC , SSCostRS and MSCostRS and
show that this problem is NP-Hard and MAXSNP-Hard under the first three
metrics. The problem is trivially solved under metric MSCostRS . We also give a
2-approximation algorithm under metric SSCostRC .

Definition 4 A set-system S is 4-tuple (A,H, wt, mult), where A = {a1, a2, . . . , an}
is a set, H ⊆ 2A and wt : A −→ Z+ and mult : H −→ Z+ are functions.

A set-system can also be viewed as a hypergraph with weights on its vertices
and hyperedges. So we call elements of A vertices and those of H hyperedges. The
function wt assigns a positive integer weight to each vertex and mult represents
the multiplicity of the hyperedges. For a set X ⊆ A let wt(X) =

∑
a∈X wt(a).

The insight behind the above definition is the natural correspondence be-
tween the set-system problem and the Grouping problem defined in Section 3.1.
Note that the vertices here correspond to the n Leaf elements in the group-
ing problem and the hyperedges correspond to the queries in the workload. For
a query Q, given a mapping σ, if Leaf i ∈ Range(Q) and Leaf i is not in a
scannable set, then MultipleScan algorithm will output a join query for leafi.
For metric RelCount, the number of joins performed in this query is captured by
the weight on the vertex corresponding to leafi. Observe that the weight of each
vertex is one for instances (T ,Q). For metric RelSize, the size of the relations
in the join query is captured by the wt function. Here we assume that the input
also includes statistics about the cardinality of the elements corresponding to
each schema node. mult represents the frequency of each query. Note that the

X

query workload was defined as a set in Section 3.1 and the definition can easily
be extended to include a frequency for each query in the workload.

Definition 5 A coloring σ is a mapping σ : A −→ [1..n], where n = |A|. With
respect to σ, a subset X ⊆ A is said to be scannable if all the elements in X
have the same color and no element in (A − X) has that color.

The set-system coloring problem consists of finding a coloring of minimum cost.
We can define a variety of optimization problems by supplying different cost
metrics for computing the quality of a coloring for a set-system. For our results,
four cost metrics are useful. We first define metrics SSCostRC and SSCostRS .
Then the other two metrics, MSCostRC and MSCostRS , are defined in terms of
these two metrics.

SSCostRC (S, σ): Let G be the set of scannable sets in H, with respect to σ.
Each set in G contributes a cost of 1. For every set h ∈ (H− G), each element
a in h contributes a cost of wt(a) + 1. Accounting for the multiplicities, we get
SSCostRC (S, σ) =

∑
h∈G mult(h) +

∑
h∈(H−G)

∑
a∈h(wt(a) + 1) ∗ mult(h).

SSCostRS (S, σ): Let G be the set of scannable sets in H, with respect to σ.
Each set in G contributes a cost equal to its size. For every set h ∈ (H − G),
each element a in h contributes a cost of wt(a)+ |σ(a)|. Accounting for the mul-
tiplicities, we get
SSCostRS (S, σ) =

∑
h∈G mult(h)∗|h|+

∑
h∈(H−G)

∑
a∈h(wt(a)+|σ(a)|)∗mult(h).

MSCostRC (S, σ) and MSCostRC (S, σ): Partition each h ∈ H into n equivalence
classes E(h) = {h1, h2, . . . , hn}, where hi = {a|a ∈ h and σ(a) = i}. Let S1

denote the set system obtained by replacing each h ∈ H by the set E(h). Then
MSCostRC (S, σ) = SSCostRC (S1, σ) and MSCostRS (S, σ) = SSCostRS (S1, σ).

The above cost metrics give instances of the set-system coloring problem that
correspond to different instances of the relational decomposition problem. For
example, SSCostRC gives an instance of set-system coloring problem that cor-
responds to the problem of finding a relational decomposition for the schema in
Figure 3 under query translation algorithm SingleScan and cost metric RelCount.
Similarly, MSCostRC , SSCostRS and MSCostRS correspond to the pairs (Multi-
pleScan,RelCount), (SingleScan,RelSize) and (MultipleScan,RelSize) respectively.

We present the following results about the complexity of this problem under
each of the above cost metrics.

4.1 Complexity results under metric SSCostRC

In this section, we look at the complexity of set-system coloring under cost metric
SSCostRC .

Theorem 1 Under metric SSCostRC , set-system coloring is NP-Hard, even if
the multiplicities of the hyperedges are restricted to be one and the weights of
vertices are restricted to be w, for any constant w ≥ 0.

XI

Proof. The problem of finding the vertex cover on 3-regular graphs is known to
be NP-Complete [7]. We give a reduction from this problem.

Let G = (V, E) be the input graph with n vertices and m edges. We output
the set-system S = (A,H, wt, mult). Let A = E and wt(a) = w, for all a. For
each v ∈ V , we add the set of (three) edges incident on v to H. The multiplicity
of any hyperedge is one. Notice that |H| = n. We can show that G has a vertex
cover of size ≤ k if and only if S has a coloring with cost ≤ n + (3w + 2) ∗ k.

Given a vertex cover V C of G of size k, we can construct a coloring σ that
uses (n−k+1) colors. For each vertex v 6∈ V C, we color the three edges incident
on v by a unique color. For all the edges that are not yet colored, we use the
(n − k + 1)th color. This coloring will have at least (n − k) good hyperedges.
Similarly, given a coloring with (n − k) good hyperedges, the set obtained by
adding the vertices corresponding to these hyperedges forms an independent set
(of size n − k). Its complement is a vertex cover of size k. We have shown that
the graph has a vertex cover of size k if and only if the set system has a coloring
with at least (n − k) good sets. Moreover, if a coloring has (n − k) good sets,
then its cost is n + (3w + 2) ∗ k. This completes the proof.

As set-system coloring is NP-Hard, we explore the possibility of efficient approx-
imation algorithms. We show that it can be approximated within a factor of 2.
We also show that the problem is MAXSNP-Complete. Thus it cannot have a
polynomial time approximation scheme (PTAS) unless NP=P.

Theorem 2 For metric SSCostRC , set-system coloring can be approximated
within a factor of 2.

Proof. We use the 2-approximation algorithm [2] for the weighted vertex cover
problem (WVC). In WVC, given a graph with weights associated each vertex,
the problem is to find the vertex cover of minimum cost. The cost of a vertex
cover is the sum of the weights of the vertices in it.

Let the input set-system be S = (A,H, wt, mult). First construct a weighted
graph G = (V, E) as follows. For each hyperedge h ∈ H, add two nodes vh and
v′h to the graph G and add an edge between them. We call the node v′

h as the
companion of vh. Add an edge between two nodes vs and vt, if s ∩ t 6= φ. For
each node vh set its weight to (wt(h)+ |h|) ∗mult(h). For the companion nodes,
set the weight to be 1.

We next apply the known 2-approximation algorithm for WVC on G. Let
the vertex cover returned by it be V C. We can construct a coloring σ for S in
the following manner. For each pair, vh, v′h at least one of them has to be in
V C. If both are present, remove v′

h from V C. Now, for each node v′
h in V C, give

a unique color to all the elements in h. Assign a common new color to all the
elements in A that are not yet colored.

It can be shown that
cost(σ) ≤ cost(V C) ≤ 2 ∗ cost(V C∗) ≤ 2 ∗ cost(σ∗)

where σ∗ is an optimal coloring of S and V C∗ is an optimal vertex cover of G.

A problem is in MAXSNP if and only if it has some constant factor approx-
imation algorithm [8]. So, by Theorem 2, the set-system coloring is in MAXSNP.

XII

The vertex cover problem on 3-regular graphs is known to be MAXSNP-Complete
[1]. We can show that the reduction given in proof of Theorem 1 is actually an
L-reduction. Thus we have the following theorem.

Theorem 3 Under metric SSCostRC , set-system coloring is MAXSNP-Complete,
even if the multiplicities of the hyperedges are restricted to be one and the weights
of vertices are restricted to be w, for any constant w ≥ 0.

Theorem 4 Under metric SSCostRC , set-system coloring cannot be approxi-
mated within a factor of 1.36 in polynomial time, unless NP=P.

Proof. We can show that, for any constant c > 1, if there is a polynomial time
algorithm that approximates the above coloring problem within a factor of c,
then for any ε > 0, we can approximate vertex cover within a factor of c − ε.
Using the inapproximability bound of 1.36 for vertex cover [5], we get the above
result.

4.2 Complexity results for other cost metrics

We have the following results for the other three cost metrics. We omit the proofs
for lack of space.

Theorem 5 Under metric SSCostRS , set-system coloring is NP-Hard and MAXSNP-
Complete, even if the multiplicities of the hyperedges are restricted to be one and
the weights of vertices are restricted to be w, for any constant w ≥ 3.

Theorem 6 Under metric SSCostRS , when the weights of vertices are <= 1 and
the multiplicities of the hyperedges are restricted to be one, set-system coloring
is in P

Theorem 7 Under metric MSCostRC , set-system coloring is NP-Hard and MAXSNP-
Hard, even if the multiplicities of the hyperedges are restricted to be one and the
weights of vertices are restricted to be w, for any constant w ≥ 0.

Theorem 8 Under metric MSCostRS , the coloring that assigns a different color
for each vertex is an optimal solution.

5 Complexity of the Grouping and

CompleteGrouping Problems

Let us now look at the complexity of the Grouping problem for different query
translation schemes under the two cost metrics.

Theorem 9 When NaiveTranslation is the query translation algorithm,

– under metric RelCount, every relational decomposition is an optimal solution
for the Grouping problem.

XIII

– under metric RelSize, the fully partitioned strategy is the optimal solution for
the Grouping problem.

Proof Sketch: Under the NaiveTranslation algorithm, for all decomposition
strategies, the resultant relational query Q is the union of the same number of
queries. Each of these queries are similar in terms of the number of relations in it
and they differ only in the actual relations. For metric RelCount, since the cost
depends only on the number of relations, the cost is identical for all strategies.
The relations involved in the query for the fully partitioned strategy are no larger
than relations in any other strategy. So, for metric RelSize, the fully partitioned
strategy is optimal. 2

In Section 4 we showed that the set system coloring problem is NP-Hard
and MAXSNP-Hard, under the two cost metrics, SSCostRC and MSCostRC . We
saw how the set-system coloring problem corresponds to the Grouping problem
for the schema T and query workload Q, when the elements to be grouped are
represented as the set elements and the queries are represented as hyperedges.
The weights of the vertices are set to one and multiplicity of hyperedges are set
to the relative frequency of each query. It can be seen that, for the cost metric
RelCount, the two metrics SSCostRC and MSCostRC for set-system coloring
correspond to costs under the translation schemes SingleScan and MultipleScan.
Hence, we have the following theorem.

Theorem 10 Under metric RelCount, for translation algorithms SingleScan and
MultipleScan finding the optimal solution for the Grouping problem is NP-Hard.
The problem of grouping the nodes is MAXSNP-Hard.

Corollary 1 Under metric RelCount, the Grouping problem is NP-Hard and
MAXSNP-Hard.

The approximation algorithm for SSCostRC in Theorem 2 gives a 2-approximation
algorithm for the Grouping problem under SingleScan. Even though we restricted
our discussion in this paper to the family of schema T , the grouping problem on
a general XML schema can be represented as a set-system by setting the weights
on the vertices of the set-system appropriately. The results for the set-system
coloring will extend to these instances as well.

In a similar fashion, for metric RelSize, the results for set system coloring
under metrics SSCostRS and MSCostRS carry over for the two translation algo-
rithms and we have the following results.

Theorem 11 Under metric RelSize, for translation algorithm SingleScan find-
ing the optimal solution for the Grouping problem is NP-Hard. The problem of
grouping the nodes is MAXSNP-Hard.

Theorem 12 Under metric RelSize, when MultipleScan is the query translation
algorithm, the fully partitioned strategy is the optimal solution for the Group-
ing problem.

XIV

Table 1. Complexity of Grouping problem

NaiveTranslation SingleScan MultipleScan

RelCount any solution optimal MaxSNP-Complete MaxSNP-Hard

RelSize fully partitioned MaxSNP-Hard fully partitioned

It can be shown that MultipleScan is the optimal translation algorithm for
the instances (T ,Q). Hence, we have the following results.

Lemma 1 For the class of path expression queries Q for the schema T , Multi-
pleScan produces the relational query with minimum cost.

Theorem 13 Under metric RelCount, the CompleteGrouping problem is NP-
Hard and MAXSNP-Hard.

Theorem 14 Under metric RelSize, the pair (fully partitioned strategy,MultipleScan)
is an optimal solution to the CompleteGrouping problem.

In summary, we see that the complexity of the Grouping problem depends a
lot on the query translation algorithm used and the cost model that is appro-
priate for the given workload.

6 Conclusions and Future Work

In this paper, we considered the problem of finding optimal relational decom-
positions for XML workloads in a formal perspective. We identified the Group-
ing problem, an important sub-problem in choosing a good relational decom-
position, and analyzed the complexity of this problem for three different query
translation algorithms and two simple cost metrics. The results are summarized
in Table 1. These results show that the query translation algorithm and the cost
model play a vital role in the choice of a good decomposition, and choices for
these dramatically affect the complexity of the problem.

Our work in this paper represents a first step toward formalizing and analyz-
ing the problem of mapping XML data and queries to relational counterparts.
Substantial room for future work exists in almost all directions. For example, it
would be interesting to study the complexity of the problem for more elaborate
cost functions, or relational queries that involve the difference operator, or more
general classes of XML queries and schemas. It is our hope that the insight de-
rived from our work here will be useful in such a study. Finally, we hope that
the work presented here can serve as the basis for further work eventually lead-
ing to practical algorithms for choosing good relational decompositions for XML
workloads.

XV

References

1. P. Alimonti and V. Kann. Hardness of approximating problems on cubic graphs. In
Proc. 3rd Italian Conf. on Algorithms and Complexity, Lecture Notes in Computer
Science, 1203, pages 288–298. Springer-Verlag, 1997.

2. R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted
vertex cover problem. Annals of Discrete Mathematics, 25:27–46, 1985.

3. P. Bohannon, J. Freire, P. Roy, and J. Simeon. From xml schema to relations: A
cost-based approach to xml storage. In ICDE, 2002.

4. A. Deutsch, M. Fernandez, and D. Suciu. Storing semistructured data with stored.
In SIGMOD, pages 431–442, 1999.

5. I. Dinur and S. Safra. The importance of being biased. In Proceedings of the thiry-
fourth annual ACM symposium on Theory of computing, pages 33–42. ACM Press,
2002.

6. D. Florescu and D. Kossman. Storing and querying xml data using an rdbms. In
Data Engineering Bulletin, volume 22, 1999.

7. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, San Francisco, 1979.

8. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
9. Y. Sagiv and M. Yannakakis. Equivalences among relational expressions with the

union and difference operators. Journal of the ACM (JACM), 27(4):633–655, 1980.
10. A. Schmidt, M. Kersten, M. Windhouwer, and F. Waas. Efficient relational storage

and retrieval of xml documents. Lecture Notes in Computer Science, 1997, 2001.
11. A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu, I. Manolescu, M. J. Carey,

and R. Busse. The XML Benchmark Project. Technical Report INS-R0103, CWI,
Amsterdam, The Netherlands, April 2001.

12. J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J. Naughton.
Relational databases for querying xml documents: Limitations and opportunities.
In Proceedings of the VLDB Conference, 1999.

A Horizontal partitioning and the Grouping problem

Though the Grouping problem may look very similar to the problem of horizontal
partitioning of a relational table on a single disk, there are a few differences. While
horizontal partitioning is usually done in physical database design, the Grouping prob-
lem deals with logical database design while automatically finding a good relational
schema for the given XML schema. Moreover, in the XML context how we translate an
XML query into a relational query plays an important role in the problem. For example,
if we want only Africa entries from the InCategory relation, we will have to perform ad-
ditional joins to get the results. The tree structure of an XML schema and presence of
wild cards in XML queries also create situations where an arbitrary subset of the Item
elements can be selected. On the other hand, in the horizontal partitioning context,
the domain is usually ordered and queries either select a single partition or a range
of partitions. So, the Grouping problem is actually a generalization of the horizontal
partitioning problem. The latter corresponds to the Grouping problem when all the
weights are 0. In this scenario, under metric RelCount the problem is MaxSNP-Hard,
while under metric RelSize the problem is in P for the three translation algorithms
considered in this paper.

