
 1

Evaluating Window Joins over Unbounded Streams

Jaewoo Kang Jeffrey F. Naughton Stratis D. Viglas
University of Wisconsin-Madison
Computer Sciences Department

1210 West Dayton Street
Madison, WI 53706, USA

{jaewoo, naughton, stratis}@cs.wisc.edu

Abstract
We investigate algorithms for evaluating sliding window

joins over pairs of unbounded streams. We introduce a unit-
time-basis cost model to analyze the expected performance of
these algorithms. Using this cost model, we propose strategies
for maximizing the efficiency of processing joins in three
scenarios. First, we consider the case where one stream is much
faster than the other. We show that asymmetric combinations of
join algorithms, (e.g., hash join on one input, nested-loops join
on the other) can outperform symmetric join algorithm
implementations. Second, we investigate the case where system
resources are insufficient to keep up with the input streams. We
show that we can maximize the number of join result tuples
produced in this case by properly allocating computing
resources across the two input streams. Finally, we investigate
strategies for maximizing the number of result tuples produced
when memory is limited, and show that proper memory
allocation across the two input streams can result in
significantly lower resource usage and/or more result tuples
produced.

1. Introduction
Recently, the database research community has begun

focusing its attention on query processing over unbounded,
continuous input streams rather than fixed-size stored data sets.
In such environments, many assumptions made in traditional
query processing are no longer valid, and new problems arise.
One of the fundamental questions that naturally arise is how to
process joins over unbounded streams. In the limit, processing a
join over unbounded input streams requires unbounded memory,
since every tuple in one infinite stream must be compared with
every tuple in the other. Clearly, this is not practical. In view of
this, we expect that in practice most join queries over
unbounded input streams will contain �window predicates� that
restrict the number of tuples that must be stored for each stream.
The purpose of this paper is to investigate the problems that
arise when dealing with window join predicates and present
possible solutions.

A window join takes as input two streams of tuples, say
Stream A and Stream B, along with window sizes for both
Stream A and Stream B, as shown in Figure 1. The output is also
a stream of tuples, consisting of all pairs of tuples (a,b), where a
is from Stream A, b is from Stream B, such that (i) a and b
satisfy the join predicate, and (ii) a was in the active window for

Stream A at the same time that b was in the active window for
Stream B.

Sliding window joins arise in a number of applications. One
class of applications deals with correlating information from
different sources about the same entities. For example, we may
wish to correlate stock price movements with news stories
suspected of influencing the price. Or, in a surveillance
application, we may want to correlate cell phone traffic with
email traffic.

Another class of applications deals with tracking entities
through a network of sensors. In this sort of application, each
sensor produces a stream recording the entities as they pass the
sensor; the "join" of two sensors' streams records traffic between
the sensors. Examples of this sort of application include tracking
network packets through routers, or generating "click stream"
information about visits to multiple web sites, or even
monitoring the progress of cars through tollbooths on the
highway.

In some applications, the "exact" window join is
required. For example, if one is interested in tracking the
movements of specific entities, it is probably unacceptable for
the join to "drop" answer tuples. However, there are other
applications for which an approximate answer might suffice. As
an example of this kind of application, consider measuring the
delay in traffic between two sensor nodes. In this case it may be
acceptable to compute an average value by looking at a subset
of the complete result. Indeed, if the system does not have
sufficient resources to produce the complete result in a timely
fashion, such an approximate but up-to-date average may be
much more desirable than a delayed exact result.

Assuming a sliding window join between streams A and B
and a new arrival from stream A, then a summary of operations
the query processor needs to carry out when evaluating the join
is the following:

1. Scan stream B�s window to find any matching tuples and
propagate the result.

2. Insert the new tuple into stream A�s window.
3. Invalidate all expired tuples in stream A�s window.

Though the steps seem simple enough, it turns out that their
implementation can become complicated due to a mixture of
traditional join processing problems and additional issues
introduced by having to evaluate the join using a sliding
window over unbounded streams. Questions that can make these
problems evident are:

1. Given the collection of existing join algorithms, how can
they be applied to the problem at hand? None of the

 2

previously published join algorithms has addressed the
issue of invalidating parts of the input as time progresses.

2. How can an optimizer decide which algorithm to use? The
traditional metric of execution time to completion does not
apply in a sliding window join scenario, since the inputs
are infinite.

3. The various input streams may have very different rates.
Can a possible asymmetry in those rates be taken
advantage of when choosing an evaluation algorithm? For
instance, if one of the streams is much slower than the
other, it may be possible to assign fewer resources to
handle its inputs since they will not appear as frequently.

4. Network links are able to shift data around at very high
speeds. What happens if one of the inputs is so fast that the
query processor cannot keep up with it? In such a scenario,
and depending on the query semantics, it may be
acceptable for the query processor to �drop� inputs so it is
able to catch up with the streams and resort to approximate
answers.

5. If the query processor has limited computational and/or
memory resources how should these resources be
distributed among the streams? For instance, given a
memory budget that is less than the total amount of
memory needed to keep both windows in memory, how
much memory should be allocated for each window?

Our contributions towards answering all these questions and
solving the problems they introduce are the following:

• We classify window join scenarios on the basis of the
limitations, if any, of the query processor. The limitations
of the query processor can be either on its computational or
on its memory resources. By having such a classification,
we are able to focus on the important questions of each
individual class.

• Assuming that the query processor does not have any
serious limitations on its computational and memory
resources, the problem is mainly that of deciding on an
efficient join evaluation algorithm. Since the traditional
cardinality-based cost metric is not applicable, we present a
unit-time basis cost model that focuses on the cost of
handling a single individual input tuple of each input
stream separately. Using this refined cost model, we show
that, perhaps surprisingly, asymmetric streaming join
algorithms can perform better than their symmetric
counterparts. (By �asymmetric� we mean that, for example,
the join operator might use nested loops for one input
stream and hash join for the other.)

• If the query processor has insufficient memory or
computational resources, the focus shifts from cost

estimation to resource allocation. In that respect, we
present an analytical model that allows us to accurately
estimate how computational and/or memory resources
should be allocated to each input stream so that the
algorithm�s throughput in terms of generated result tuples
is maximized.

• Addressing all of these issues in a unified manner, allows
us to develop a powerful optimization framework for
sliding window join queries, which, by conducting an
experimental study, we prove to be correct and usable in
practice.

In summary, we propose using different join algorithms for
each input to a streaming join (e.g., hash join for one input,
nested loops join for the other.) In our experiments we show that
this is important for the performance of sliding window
joins. Furthermore, for approximate streaming window joins, we
show that the careful allocation of computing and memory
resources to the input streams can have a substantial impact on
the performance of the algorithm.

The rest of the paper is organized as follows: Section 2
presents related work. Section 3 formulates the problems we
will address in this paper. Section 4 describes our proposed cost
model framework for sliding window joins. Section 5 validates
our cost model framework and presents techniques for
maximizing join efficiency. Finally, Section 6 gives our
conclusions and identifies future work.

2. Related Work
As the Internet computing infrastructure matures, the data

access paradigm considered by DBMS researchers is expanding
from the traditional disk-oriented paradigm to include network
stream-oriented applications. A large and growing body of
research exists addressing the new problems that arise in such
situations.

One thrust in this body of research addresses problems
arising when processing continuous queries [1][2]. The
NiagaraCQ [2] system addresses scalability in terms of the
number of queries by introducing predicate grouping and group
optimization techniques. This system was built in the context of
the Niagara Internet query system [3], which proposes a
combining XML Internet searching and query processing. Such
continuous query systems can utilize the analytical framework

S tream A S tream B

C u rren t w indo w
fo r

S tream A

C u rren t w indo w
fo r

S tream B

Figure 1. A window join scenario

Tb stream B time window size. (used for logical windows)
λb stream B arrival rate

B number of tuples in window B. (in case of logical window,
B = Tb λb)

|B| number of hash buckets in window B. equivalent to the
size of hash directory.

B/|B| number of tuples in a hash bucket in window B

N node size - number of tuples in a node (B-tree node, T-tree
node)

NKey(B) number of unique keys in window B
M system memory size (number of tuples)

Pd
weight factor for search - cost of accessing one tuple in
data structure d during search operation

Id
weight factor for update - cost of accessing one tuple in
data structure d during update operation

σb window B selectivity factor - 1/NKey(B)
σ join selectivity factor - min(σa, σb)

Table 1. Definition of terms used in cost model

 3

proposed in this paper to extend their domain to include window
join queries.

Another relevant research area deals with adaptive query
processing [4][5][6] and query scrambling [7]. In adaptive query
processing, the goal is to identify at run time when sub-optimal
performance arises because of differences between the estimated
and measured selectivity factors in the query. When such a case
is detected, the plan is dynamically altered in a way that is
believed to enhance the overall performance. In query
scrambling, the focus is on identifying and exploiting periods
during which some input streams are blocked. Whenever an
operator blocks, the execution frameworks pre-empts the
operator, allowing other, non-blocked operators to execute. Both
research directions are compatible with ours, as they can take
advantage of our unit-time basis cost model framework and
asymmetric window join processing algorithms.

Streaming algorithms for join evaluation is another relevant
research area. The first such algorithm was the Symmetric Hash
Join [8], which was optimized for in-memory performance,
leading into thrashing on larger inputs. To rectify the situation
XJoin was introduced [9]. Similar techniques are presented in
[4] as well. A symmetric nested loops join was proposed in the
context of online aggregation [10]. However, none of these
works addressed the issues of performing window joins over
unbounded input streams.

Approximate answering techniques have become an
important research issue in stream data management. Many
stream applications deal with large number of data sources
(often 105+ in sensor network applications) and long running
queries. As a result, often times it is desirable to relax the query
semantics to allow approximate answers and conserve resources.
Query approximation can be done mainly in two ways: (i) by
limiting the size of states maintained for queries and (ii) by
reducing answer precision.

One of the straightforward ways to limit the size of query
states is to put sliding windows over input streams [28][29][17].
In fact, the sliding window constructs are often required as well
by application semantics in which the size of window is
explicitly specified in the query context. On the other hand,
summary data structures�e.g. wavelets, sketches, histograms,
and samples�have been used in the context of online
aggregation in which rapid, approximate answers are often more
desirable than exact, precise answers
[30][31][32][33][34][35][36][37][38][39]. Although these
structures yield reduced answer precision, the query processing
cost with summary structures is significantly lower than that
with original data.

Interestingly, the summary structures are typically well
suited to the problem of streaming data query processing, in
which the number of data sources is large and data trend
detection is often the focus rather than calculating exact
answers. Recently a good deal of research has been conducted
in this area: for example, stream sampling [27], updating
summary data structures [36][40][37][41][38], and maintaining
stream statistics [11]. Extending the proposed approximation
techniques to support sliding window queries is an interesting
area for future research. Babcock et al. presented a
comprehensive survey in [25] on broad range of topics in stream
data management, including the approximate answering.

A good deal of research has been conducted on the general
architecture of stream processing systems. Seshadri et al.

developed a sequence data base system, SEQ [15][16]. In [12],
Babu and Widom proposed architecture for a general purpose
stream data management system and identified research
problems in continuous query processing over streams. Tribeca
is an example of special purpose stream database
implementations [17]. Hancock [29] developed by Cortes et al.
is a programming language based system that simplifies the
programming work for extracting signatures from data streams.
Tucker et al. presented a stream punctuation technique that
allows stateful operators like join and aggregation to shed some
of their expired states [26]. Other general stream-oriented
database architecture works appear in the sensor network
application domain [18][19]. Examples of this work include
Berkeley�s Telegraph [13] and Cornell�s Cougar database
project [14]. Zdonik et al. [28] proposed a stream monitoring
system, Aurora, which also targeted to address the new class of
problems that arise in dealing with the massive number of
sensor data inputs and continuous queries.

Finally, Viglas and Naughton proposed a rate based
streaming query optimization framework [20]. Integrating the
rate based optimization model with our unit time cost model is
an interesting area for future research.

3. Problem Formulation
In this section, we will give a more precise description of the

problem at hand. We will start with the assumptions of our
computing environment, then present the parameters we use to
model the environment and finally present what decisions we
wish to be able to make given our modeling.

Environment

Our environment consists of infinite streams arriving into the
system over network links. The tuples of the streams are
buffered in memory or, if needed, spooled to disk for later
processing. The streams are joined by either equality or
inequality predicates. To efficiently evaluate the join, the
system may build on-the-fly indices on top of the streams. We
consider three such indices: hash indices, B+tree and T-tree
indices. Additionally, we investigate the case of not building an
index, if the cost of building and maintaining one is higher than
that of simply scanning an in-memory buffer.

Parameters
The input streams enter the system through a network link.

To capture that effect the network community has traditionally
used the arrival rate of the input process. We are mostly
interested in the effect the incoming rates have on the type of
processing we have to perform, as in the case of one input
stream being faster than the other. As we will see, this poses a
number of interesting questions.

A window predicate accompanies each query, which
effectively limits the amount of buffering the system has to
perform. There are two important parameters: the predicate
semantics, and the window size. The first parameter allows us to
use different index structures so we can efficiently answer it (for
instance, hash indices can only handle equality joins.)

The second parameter has to do with how much state per
input we need to consider. We make a distinction between
logical windows and physical windows (refer to [25] for more

 4

rigorous discussions and examples on window semantics.)
Logical windows are defined in terms of logical properties
between the tuples of the two participating streams. For instance
a logical window is �tuples arriving within the last 10 seconds.�
Physical windows on the other hand, pose more rigid, physical
constraints. For example, a physical window could instruct only
the last one thousand tuples of a stream to be kept. On the other
hand, these window constraints could either be explicit or
implicit. The two previous constraints, for instance, are explicit.
Had the two constraints been expressed in relative terms, as in
�tuples arriving within 10 seconds of each other,� or �tuples
arriving within one thousand arrivals from each other,� the
window constraints would be implicit.

Additionally, there are certain issues regarding the entity that
provides the timing for the query. Timestamps could either be
generated at acceptance time, meaning when the tuple is
accepted for processing, or at generation time, meaning the time
the tuple was sent from the remote source. We will use the
acceptance time based timestamp semantics in this work.

Finally, the system has a fixed number of computing and
memory resources. Depending on the arrival rates of the input
streams and the window size, there are four cases we need to
consider:

1. Unlimited computational, unlimited memory resources: the
system has enough computational resources to handle the
inputs, while the window sizes fit entirely in memory.

2. Unlimited computational, limited memory resources: the
system can still handle the computational part of the join
evaluation without problems, but the memory buffer
allocated to the query is not sufficient to keep the window
size entirely in main-memory.

3. Limited computational, unlimited memory resources: while
the window size fits entirely in memory, there are restricted
computational resources allocated to the query. In such a
scenario, the system must decide how to efficiently use
these resources.

4. Limited computational, limited memory resources: the
system has insufficient resources to deal with the incoming
input rates (i.e., the speed of the streams is faster than what
the system can handle) while at the same time there is not
enough main memory to keep the window entirely in
memory.

Table 2. The four possible resource limitation scenarios

This classification partitions our problem space into four
quadrants, presented in Table 2.

Decisions
The main issue when dealing with queries over streams

arriving at different rates is to maximize the throughput of the
query. Given our modeling, there are two important decisions
that need to be made:

1. What would be the best way to allocate the fixed number
of resources, both computational and memory?

2. What would be the most efficient index structure so that
the throughput is maximized given the resources allocated
to the processing of the query?

4. Estimating the Cost of Sliding Joins
A window join query consumes unbounded input streams

and produces outputs as long as the input continues to stream in.
A traditional, cardinality-based, cost model for an evaluation
algorithm is incapable of producing cost estimates in such a
scenario since it estimates the time needed for a query to be run
to completion, and the algorithm may never complete.
Estimating the cost of a continuous window-join query,
therefore, requires a new metric; we propose a unit-time-basis
cost model as such a metric.

4.1. Generic Framework for Unit-time Cost
Estimation

Consider the join of two windowed streams, A and B. Each
tuple arrival in window A triggers three tasks: checking window
B for joining tuples, inserting the tuple in window A and
invalidating any expired tuples from that window. Given the
notation of Table 1, a cost formula for that operation is shown
below.

(() () ())
(() () ())

A B a

b

C probe b insert a invalidate a
probe a insert b invalidate b
λ

λ
= + +

+ + +
*

 (1)

The first factor of the formula measures the processing cost
for stream A arrivals, while the second factor does the same for
stream B arrivals. In each factor, each processing component
(probe, insert, invalidate) is multiplied by the expected number
of arrivals per unit time. Notice that this model captures the
invalidation cost. Expired tuples must be invalidated to ensure
that the window predicates are correctly evaluated and to avoid
wasting memory.

The choice of window semantics affects the invalidation
cost. If the window is defined as �the last n tuples arrived� (i.e.,
a physical window), invalidation can be done simply by
throwing away the oldest tuple. Alternatively, if the window is
defined as �the last n seconds� (i.e., a logical window), the
actual number of invalidated tuples may vary depending on how
tuples are distributed in the input stream�e.g., uniform inter-
arrival time vs. Poison process. While addressing the differences
between physical and logical windows is an interesting area for
future work, it is not central to the contributions of this paper. In
what follows, we will assume a physical window as the basis of
our cost model.

Another interesting point is that the cost of a single join
operation can be divided into two independent subgroups of
components, one for each input stream. We can rewrite
Equation 1 as follows:

(()) (() ())
(()) (() ())

A B A B A B

A B a b

A B b a

C C C
C probe b insert b invalidate b
C probe a insert a invalidate a

λ λ
λ λ

= +
= + +
= + +

* ()

)

(

 (2)

Rewriting the formula as above gives rise to two important
observations:

Memory Resources Unlimited Limited

Unlimited Section 5.1 Section 5.2.2 Computational
Resources Limited Section 5.2.1 Section 5.2.3

 5

1. The join operation is divided into two subcomponents,
A)B and A(B. We call these subcomponents join
directions.

2. Each subcomponent can be evaluated independently of the
other. The cost expression for CA)B is independent of the
cost expression for CA(B . In practice, this means that we
can use a different evaluation algorithm for each direction.
For instance, we can use nested-loops to evaluate the A)B
direction and a hash index to evaluate the A(B direction.

The first cost formula (for CA)B) captures the aggregate cost
of accessing window B in a single time unit. In a given time
unit, aλ tuples arrive in window A and these tuples must be
joined with tuples in window B, hence (())a probe bλ . In the
same time unit in window B, bλ tuples arrive and one tuple gets
expired per each tuple inserted, hence the second term,

(() ())b insert b invalidate bλ + . For illustration, suppose we
perform a nested-loops join (NLJ) from A to B, and we estimate
the cost of the (probe, insert, invalidate) operations in terms of
the number of tuples touched. Then, the cost of probe(b) equals
the size of window B (since the whole window must be scanned)
and the insert(b) and invalidate(b) components are both equal to
one (since, assuming physical window semantics, one tuple will
be inserted and one tuple invalidated.) Notice that all three
processing terms are determined without knowing the join
algorithm chosen for the B join A direction.

Counting the number of accessed tuples gives a reasonably
accurate estimate. It is possible, however, to improve the
estimate�s precision by refining the processing costs in terms of
the physical operations that need to be carried out. Assuming
the tuples of each window are stored in some data structure,
probing the structure actually translates to �searching the
structure for matches.� On the other hand, inserting and/or
invalidating the structure translates to �updating the structure.�
This allows us to look at different data structures in a unified
manner. The cost of each processing term of Equation 2 can
then be expressed in terms of the number of tuples accessed,
multiplied by the physical operation�s per-tuple processing cost,
as follows:

() # tuples touched while probing window b
 weight factor for search

() # tuples touched while inserting a tuple into
 window b weight factor for update

probe b

insert b

invali

=
×
=

×
() # tuples touched while invalidating a tuple

 from window b weight factor for update
date b =

×

In the following sections, we will further refine the cost
formulas based on specific join algorithm implementations. In
particular, we will address four possibilities: (i) performing a
simple nested-loops join, (ii) building a hash index over the
window, (iii) building a B+tree over the window and performing
an index nested-loops join and (iv) building a T-tree index over
the window and performing an index nested-loops join.

4.2. Specific Implementations

Cost of One-Way Nested Loops Join

The cost formula for a nested-loops join from A to B is
shown below (the terms used in cost model are described in
Table 1):

() 2
where weight factor for NLJ search
 weight factor for NLJ update

A B a n b n

n

n

C NJ B P I
P
I

λ λ= × + ×
=
=

)

 (3)

The term a nB Pλ × represents the number of tuples accessed
to search for matches in window B, multiplied by the per-tuple
access cost for search in an in-memory buffer. It is the NLJ-
specific equivalent of (())a probe bλ in Equation 2. The
invalidation and insertion costs are straightforward for the NLJ
case. In a given time unit, bλ tuples arrive from stream B and
are inserted in its window, while the same number of tuples
expire. The second term of the cost formula, 2 b nIλ × ,
represents this cost.

Cost of One-Way Hash Join

In the case of a traditional hash join, the cost of probe(b) and
invalidate(b) in Equation 2 is a function of the hash bucket size
in window B. A typical probe action requires one key hashing
and as many key comparisons as there are tuples in the retrieved
bucket. The invalidation task also performs similar actions.
However, in window joins, tuples are expired in the order of
arrivals. Taking advantage of this, we can keep the invalidation
cost significantly lower by preserving arrival orders of tuples in
each hash bucket, allowing us to directly identify the oldest
tuple in a bucket without checking the timestamps of the
bucket�s tuples. Now the invalidation cost is reduced to one key
hashing and one tuple access cost. The modified HJ cost
formula is shown below.

() 2A B a h b h
BC HJ P I
B

λ λ= × + ×) (4)

As shown in Table 1, B B represents the number of tuples
in a hash bucket of window B. A typical in-memory hash table
implementation can ensure the number of buckets remains close
to the number of unique keys in the window. However, there is
a tradeoff between memory utilization and performance
improvement by keeping the size of bucket small. The constant
weight factors, hP and hI , represent the cost of accessing a
single tuple in either a search or an update operation
respectively. Later, we will show how to determine these weight
factors.

Cost of One-Way B+tree Index Nested Loops Join

Hash indices may offer good performance on both probe and
update operations. However, a hash index is only usable in
equality join cases because the hash index does not preserve
logical orders of key values. On the other hand, we can use NLJ
for non-equality joins. The problem there is that though NLJ has
a lower cost for update operations, it is not so efficient in terms
of search operations. Consequently, it is unlikely to give
reasonably good performance on search-heavy workloads. In
other words, if stream A is much faster than stream B in a one-
way join A to B (i.e., more searches will be performed) the join
performance will severely suffer from the high search cost.

 6

To rectify this situation, we can build an index over window
B that is more tailored toward search-heavy workloads and
perform an index nested-loops join. We implemented two such
index structures, B+tree and T-tree, for comparison. The cost
formula for the B+tree index nested loops join is shown below.

1 2

 1 2

() (log 1) log

2 (log 1) log

A B a N b

b N b

BC BJ N P
N

B N I
N

λ

λ

+

+

  = × + × ×      
  + × × + × ×      

)

 (5)

As defined in Table 1, N denotes the size of a B+tree node.
In the first half of the formula, B N   represents the number

of leaf nodes in a B+tree, and 1log N B N+     represents the
number of non-leaf nodes that need to be searched from the root
in order to reach the appropriate leaf. Hence, the height of a
B+tree is 1log 1N B N+ +     . The search cost inside a

B+tree node is equal to 2log N   , since we assume binary
search is performed within the node. The B+tree index performs
a search for a key at each node it visits on the way toward the
leaf that contains the search key. Therefore, the cost of single
probe is equal to the product of the tree�s height,

1log 1N B N+ +     , and the search cost within a node,

2log N   , multiplied by the B+tree search weight factor, bP .
Similarly, for both insertion and invalidation, we need to

search the tree first to identify the location of the tuple to be
inserted or deleted in the tree. Once the location is identified, we
insert or delete the new tuple. These insert and delete operations
can cause structural change of the B+tree, which often includes
nodes splitting, merging or contents of nodes shifted to
neighboring nodes. The hidden cost of a B+tree update
operation is captured in the update weight factor, bI . Hence, the
cost of both insert and invalidation is equal to the number of
tuples touched while searching for the insert or delete location,
multiplied by the weight factor for updating the B+tree, bI .

Cost of One-way T-tree Index Nested Loops Join

The T-tree index was proposed by Lehman and Carey [21] as
an index structure for main-memory databases. They have
shown that the T-tree has better memory utilization and search
and update performance than the B+tree. However, recent
studies suggest that a careful in-memory B+tree implementation
may outperform T-tree as the B+tree has better processor cache
(e.g. L1, L2 cache) utilization characteristics [22][23]. The
studies argue that this is particularly true with the modern
hardware memory hierarchy where L1 and L2 caches are more
than 100 times faster than main-memory.

We do not expect, however, there will be a big difference
(e.g. compared to difference between T-tree and Hash) in
performance between the two index structures, since both index
structures order tuples based on logical key values and perform
tree-based search. Furthermore, as in the case of a B+tree,
invalidation requires performing both search and update
operations. The cost formula for the index nested-loops join
using a T-tree index is shown below.

2 2

 2 2

() (1.5 (log 1) log)

(2 1.5 (log 1) log)

A B a t

b

BC TJ N P
N
B N I
N

λ

λ

  = × − + ×      
  + × × − + ×      

)

 (6)

The T-tree is similar to the AVL tree in the way searches and
updates are performed. The major difference is that the T-tree is
allowed to have more than one data entry in a node. This
substantially improves memory utilization of the T-tree, as the
grouping of data entries eliminates a large number of pointers.
One side effect of this is that each node now has a lower bound
and an upper bound key and because of this, on average, it
requires 1.5 key comparisons before it can determine which
pointer to follow during searches. Unlike the B+tree, data
entries are distributed to all nodes in the T-tree. Therefore, the
number of nodes in a tree is B N   and the height of the tree is

2log B N     . In the T-tree, a search key may be found in a
non-leaf node. The average number of nodes that a look-up
operation has to visit before finding the key is approximately
one less than the height of a tree. Once a node that contains the
key is found, it performs binary search to identify the matching
data elements. Hence, the cost of single probe is

2 2(1.5 (log 1) log) tB N N P× − + ×         . The cost formulas
for insert and invalidation can be drawn similarly to the B+tree
index case.

Testbed Implementation

We implemented the four data structures introduced in this
section. In addition, we implemented a sliding window join
operator that can accommodate asymmetric combinations of any
of the four data structures. The operators were implemented in
Java and run on Sun Microsystems� Java HotSpot Client VM
1.4.0. Experiments were performed on an AMD Athlon XP
1533Mhz machine with 1GB of memory, running Windows XP
Professional.

In all four join implementations, we maintained the arrival
order of tuples in a sliding window by chaining them with one-
directional pointers. On each arrival of a new tuple, one tuple is
removed from the tail and the new tuple is added onto the head
of the chain. Then, the tuple removed from the chain is also
removed from the index, if any.

Estimating the Weight Factors

So far, we have been using Pd and Id (where d represents one
of the four join data structures) to mask implementation effects
and/or system dependent costs. In this section, we illustrate how
we measured the weight factors for each implementation.

To estimate the weight factors, first we measured the CPU
time of each join implementation, by processing 60 seconds
worth of tuples without intermittent delays. Then, we compared
the measured run time with the cost formula while adjusting the
two weight factors. To make the task simpler, we measured the
run time of an algorithm with two different workloads: one with
search-only workload and the other with insert/invalidate-only
workload. The result from the search-only workload was used to
determine Pd, while the result from the insert/invalidate
workload was used to determine Id.

 7

For instance, to measure the CPU time of a search-only
workload with an arrival rate of 100 tuples/sec, we processed
6000 tuples (60 seconds worth) in one batch and measure the
total running time. We chose this way instead of measuring
individual tuple handling costs because in this way, we can
measure the CPU cost even for an input load that exceeds the
system�s capacity. For instance, if the estimated cost of an
algorithm crosses the 60 seconds line at the arrival rate of 120
tuples/sec, this implies that the algorithm will require full
computing power of the system to process the input rate of 120
tuples/sec and above.

We measured CPU times of 20 different points with
increasing workload rates, then equated the measured values
with the cost formula and calculated the weight factors. The cost
formula with the measured weight factors is shown below.

4 4

4 4

4
1 2

4
1 2

2

() 3 10 2 10

() 5.5 10 2 7.8 10

() (log 1) log 2.6 10

 2 (log 1) log 2.6 10

() (1.5 (log

A B a b

A B a b

A B a N

b N

A B a

C NJ B
BC HJ
B

BC BJ N
N

B N
N

BC TJ

λ λ

λ λ

λ

λ

λ

− −

− −

−
+

−
+

= × × + ×

= × × + × ×

  = × + × × ×      
  + × × + × × ×      

= ×

)

)

)

)
4

2

4
2 2

1) log) 2.6 10

 (2 1.5 (log 1) log) 2.7 10b

N
N

B N
N

λ

−

−

   − + × ×      
  + × × − + × ×      

 (7)

Cost of Full Joins

So far we have been focusing only on a one-way join cost
formula. We can obtain the full join cost formula by adding any
two one-way join cost formulas. For instance, if we add the cost
of a hash join from A to B and the cost of a hash join from B to
A, we have the cost of a full symmetric pipelined hash join.
Similarly, if we put HJ and NLJ together, we get an asymmetric
pipelined join with a HJ data structure built on one side and a
NLJ on the other. Notice that our one-way join cost formula

representation is completely independent from the data structure
used in the opposite side, and this enabled the cost estimation of
asymmetric combinations of join algorithms.

5. On Maximizing the Efficiency of
Processing Joins

In this section, we investigate strategies for maximizing the
efficiency of processing sliding window joins in three scenarios:
(i) one stream is much faster than the other, (ii) computing
resources are insufficient to keep up with the speed of the input
streams, and (iii) memory resources are limited.

The first scenario is dealt with in the context of both memory
and computing resources being sufficient for the query
workload, and is presented in Section 5.1. The second scenario
concerns cases where the computing resources required for the
workload exceed the amount of resources available in the
system. The third scenario deals with the cases where the
memory resources are the bottleneck. The second and third
scenarios are presented in Section 5.2.

5.1. Exploiting Asymmetry in the Speed of the
Input Streams

In this section, we consider the case where the two sliding
windows fit in memory and the aggregate speed of two input
streams is less than the system�s service rate µ (i.e.,

a bλ λ µ+ < .) The focus in this section is to validate the unit-
time-basis cost model framework presented in the previous
section and using the cost model, to show how to find the best
join algorithm combination for a given workload.

To begin with, let us examine the cost graph shown in Figure
2. It shows the cost graphs of eight join algorithm combinations
composed from three one-way joins: HJ, NJ, and TJ. We
ignored the combinations of join algorithms with a B-tree index
because its performance was very close to that of a T-tree, while
a B-tree consumes more memory than a T-tree does. The join
combination NNJ is not shown in the graph because its cost was
too high.

2
4
6
8

10
12
14
16
18
20

0/1
00

0

10
0/9

00

20
0/8

00

30
0/7

00

40
0/6

00

50
0/5

00

60
0/4

00

70
0/3

00

80
0/2

00

90
0/1

00

10
00

/0

λa(tuples/sec) / λb(tuples/sec)

M
od

el
 C

os
t

HH TT HT TH
HN NH TN NT

500

1500

2500

3500

4500

5500

6500

0/1
00

0

10
0/9

00

20
0/8

00

30
0/7

00

40
0/6

00

50
0/5

00

60
0/4

00

70
0/3

00

80
0/2

00

90
0/1

00

10
00

/0

λa(tuples/sec) / λb(tuples/sec)

C
PU

 T
im

e
(m

ill
is

)

HH TT HT TH
HN NH TN NT

Figure 2. Estimated costs of eight join algorithm
combinations. (Size of window A = 5000, Size of window
B = 5000, Hash bucket size = 10, T-tree node size = 100)

Figure 3. Measured system costs of the same eight join
combinations after processing 300 seconds� worth tuples
without intermittent delays (Size of window A = 5000, Size of
window B = 5000, Hash bucket size = 10, T-tree node size = 100)

 8

Memory consumption is an important issue in a continuous
query. Because of its real-time nature, efficient memory
utilization is one of the key criteria in selecting an algorithm,
since expensive disk I/Os should be avoided. Tradeoffs between
memory utilization and performance were most significant in
the case of a hash join (We implemented static hash index with
bucket chains.) In our hash join implementation, memory
utilization improves as we increase the size of the hash bucket
(i.e. B/|B| in cost terms.) We tested bucket sizes from two to one
hundred. The improvement was steep up to ten tuples per
bucket, and then flattened up gradually. On the other hand,
increasing the bucket size affected the hash join�s performance
negatively. As the bucket size increases by one, the algorithm
needs to perform on average one more comparison for each
probe. We chose to use ten tuples per bucket because it brings
the memory utilization close to that of T-tree, while keeping
performance better than both the T-tree and the B-tree in a non-
skewed workload. A non-skewed workload is a workload not
skewed to either search or update. For instance, for a one-way
join A to B (A BC)), stream A is the search workload and B is
the update workload, and a non-skewed workload means the
speed difference between the two streams is not significant (i.e.,
the search to update ratio is close to one.)

On the other hand, the T-tree and the B-tree were less
sensitive to the size of a tree node in terms of both memory
utilization and performance. We chose to use 100 tuples per
node for both the T-tree and the B-tree. In our implementation,
given the node sizes, the T-tree provided the best memory
utilization among the three. In the test run, we observed that the
HJ (bucket size=10) consumed roughly about 5% more memory
and the BJ (w/ tree order d=50 [24]) consumed about 10% more
than the TJ.

In Figure 2, we have four important crossover points:
starting from the far left, one between TN and TH, then TH and
HH, HH and HT, and finally HT and NT. This implies that we
have five winning combinations of join algorithms among the
range of workloads. TN outperforms others at the far left side of
the graph where the workload is highly skewed toward stream
B. Then, TH takes over and dominates until workloads reach the
20%/80% (λa/λb) point. After that, HH takes over and
dominates until around the 80%/20% point. The rest of the
graph is rather symmetric with the fourth and fifth
combinations, HT and NT.

Notice that the graph is based on the case where the window
sizes for the two windows are equal (5000 tuples each.) If we
change the window size, the crossover points will move either
left or right depending on the window size ratio. For instance, if
we increase window A and decrease B, all four crossover points
in the graph will move towards the right.

Furthermore, as we mentioned earlier, we can improve the
performance of Hash Join by keeping the size of the hash bucket
low. With a hash bucket size of two we can indeed reduce the
number of crossover points in the graph to two, as HH will
dominate both HT and TH for all ranges of inputs. But again,
this will significantly hamper the memory utilization of HH.

 Figure 3 shows the result of a test run measuring the system
costs of the same eight join combinations. As we can see by
comparing Figure 2 and 3, the cost model�s estimation is quite
accurate on predicting the crossover points as well as the overall
shape of each join combination�s performance graph.

In fact, using the cost model, we can calculate the exact
crossover points by equating the cost of two neighboring join
combinations. For instance, to calculate the TN-TH crossover
point, we equate the costs of TNJ and THJ as shown below.

4 4

4 4

() ()
(() ()) (() ())

() () 0

(3 10 5.5 10)

 (2 10 2 7.8 10) 0
13.6

3 55

A B A B

A B A B A B A B

A B A B

a

b

a

b

C TNJ C THJ
C TJ C NJ C TJ C HJ

C NJ C HJ
BB
B

B

λ

λ
λ
λ

− −

− −

−
= + − +
= − =

⇔ × × − × ×

+ × − × × =

⇔ =
−

* *

() ()

))

 (8)

The term B/|B| captures the hash bucket size of the
implementation; hence we replaced it with 10. Interestingly, the
crossover point between TN and TH is only dependent on the
size of window B. If the size of window B increases, the
crossover point will move towards the left (i.e., where the speed
of stream B is far greater than A.) If the size of window B
decreases, the crossover point will move towards the right. For
example, suppose we have a window B of size 500 tuples. Then,
the estimated cross-over point is 0.0094, which means if stream
B is more than 106 times faster than stream A, TNJ will
outperform THJ, and if B is less than 106 times faster than A,
THJ will outperform TNJ.

The remaining three crossover points are shown below. The
term N in the second and third crossover points represents the
node size of the T-tree and is 100 in our implementation.

2 2

2 2

() () () () 0

58.9 3.9 log 2.6 log

8.1 log 2.7 log 23.7

A B A B A B A B

a

b

C THJ C HHJ C TJ C HJ
A N
N

A N
N

λ
λ

− = − =

  − −       ⇔ =
   + −      

* * ((

 (9)

2 2

2 2

() () () () 0

8.1 log 2.7 log 23.7

58.9 3.9 log 2.6 log

A B A B A B A B

a

b

C HHJ C HTJ C HJ C TJ
B N
N

B N
N

λ
λ

− = − =

   + −      ⇔ =
  − −       

* *))

 (10)

() () () () 0
3 55

13.6

A B A B A B A B

a

b

C HTJ C NTJ C HJ C NJ
Aλ

λ

− = − =
−

⇔ =

* * ((

 (11)

Figure 4 shows the performance of the join combinations in
three different workload settings. Figure 4(a) represents the case
where the workload is highly skewed. In this example, window
A is much larger than window B and input stream B is much
faster than input stream A. The test result is in line with the cost
model estimation. The estimated costs of the three
representative workloads (used in Figure 4) are shown in Table
3. Notice that the estimation was accurate as it correctly
predicted the winning combination in each workload group.
Furthermore, the cost model produced the estimation in a
correct order, which was an exact match with the order of the
system costs measured during the test run. For instance, in
Figure 4(a), TNJ exhibited the best performance, while HTJ the

 9

worst. The cost model also correctly predicted the relative order
between the remaining join combinations.

Figure 4(b) shows the performance graph of a moderately
skewed workload. Figure 4(c), on the other hand, shows the
performance result of a relatively even workload. The winning
combination in Figure 4(b) was HTJ, while in Figure 4(c), the
winner was HHJ. The cost model�s estimation was accurate for
both cases. Notice that in Figure 4, some of the join
combinations are missing in the graphs. We ignored them
because their cost graphs were far off the chart.

5.2. Resource Allocation and Join Performance
In the previous section, we presented a technique to identify

the best performing join algorithm combinations for a given
workload. The discussion was based on the assumption that we
have sufficient resources to handle the workload. In this section,
we focus on cases where system resources are insufficient to
fully support the queries and workloads. As a result, users have
to resort to approximate answers rather than exact answers.

Our underlying idea is that even though the system may not
have enough resources to compute all tuples of the join, it may
have enough resources to compute some subset of the join
tuples. If the complete query involves some aggregate (for
example, average) over the join, users may be willing to accept
an estimate based upon this subset instead of the exact result.
The interesting question that arises is how to maximize the
accuracy of this estimate given the limited resources.

In what follows, we use the insight that maximizing the
number of tuples produced by the join will yield the best
expected approximate answer, since it corresponds to having a
larger sample of the true join result. Obviously some care must
be taken to ensure that the subset of the join result produced is a
random sample of the join. In the following, we assume that
when the join algorithm limits its resource usage, it does so in a

random way. For example, if the "full" join window on Stream
A should contain 10,000 tuples, and the resource allocation
strategies tell us we can only afford to keep 5000 tuples, we
keep a randomly chosen subset of 5000 tuples out of the full
10,000. Similarly, if the resource allocator tells us we can only
afford enough CPU resources to probe 50% of the A tuples into
the B window, we use a randomly chosen 50% to probe.

Now, the question is how to allocate the limited resources in
a way that improves the accuracy of approximate answers.
Should we allocate the resources across the streams in
proportion to input stream rates? Should we do so
proportionally to the size of each window? We focus on this
problem and investigate efficient resource allocation strategies
in three remaining quadrants of our problem space defined in
Table 2.

5.2.1. Case of Limited Computing Resources and
Sufficient Memory.

In this subsection we investigate the case where computing
resources are insufficient to keep up with the rates of the input
streams. Let us start with a formula that captures the output rate
of a sliding window join operation. In the following equation,
the selectivity factors of windows A and B are denoted as aσ
and bσ , respectively. To approximate join selectivity, we take
the smaller value between the two and denote it as σ .

min(,)() ()o a b a b a br B A B Aσ σ λ λ σ λ λ= + = + (12)

In this scenario, however, we have limited computing
resources and as a result we cannot support the full speed of the
input streams. Hence, the equation above should be rewritten as
follows:

0

200

400

600

800

1000

10
00

0
30

00
0

50
00

0
70

00
0

90
00

0

#of Input Tuples Processed

C
P

U
 T

im
e

(m
ill

is
) HH

TT
HT
TH
HN
TN

0
200
400
600
800

1000
1200
1400

10
00

0
30

00
0

50
00

0
70

00
0

90
00

0

#of Input Tuples Processed

C
P

U
 T

im
e

(m
ill

is
) HH

TT
HT
TH

0
200
400
600
800

1000
1200

10
00

0
30

00
0

50
00

0
70

00
0

90
00

0

#of Input Tuples Processed

C
P

U
 T

im
e

(m
ill

is
) HH

TT
HT
TH

Figure 4. Measured System Costs of the Join Combinations with Increasing Number of Input Tuples. a) (left) Window A = 9500,
Window B = 500, λa = 2, λb = 998 b) (middle) Window A = 7000, Window B = 3000, λa = 800, λb = 200 c) (right) Window A =
4000, Window B = 6000, λa = 550, λb = 450

Table 3. Cost Model Estimation. The first row is the estimated costs of the workload in Figure 4a, the second row is for 4b, and the
last row is for Figure 4c.

Window A Window B λa λb HH TT HT TH HN NH TN NT
9500 500 2 998 7.06 9.56 10.89 5.74 5.99 2845.87 4.67 2849.69
7000 3000 800 200 7.06 11.85 6.46 12.46 722.39 424.87 727.78 424.27
4000 6000 550 450 7.06 11.60 8.93 9.73 993.42 543.84 996.09 545.71

 10

()
where (join operator service rate),
 ,

o a b

a b

a a b b

r B Aσ λ λ
λ λ µ
λ λ λ λ

′ ′

′ ′

′ ′

= +
+ =
≤ ≤

 (13)

By applying the constraint in the formula, we get:

(()) ()o a a ar B A B A Aσ λ µ λ σ λ σµ′ ′ ′= + − = − + (14)

Given this equation, it is clear that we have to allocate the
maximum amount of computing resources to the join direction
that evaluates the join from the small window to the big one. In
case the two window sizes are equal, the output rate is constant
and equals to Aσµ regardless of the two input rates.

For instance, suppose that we have a window A of size 500
and B of size 1000, and the join operator can handle up to 100
tuples/sec; the speed of each input stream is greater than the
service rate. Furthermore, we assume that the cost of inserting
and invalidating a tuple in a window is relatively small
compared to the cost of evaluating the join and in turn we can
effortlessly maintain the two windows without dropping input
tuples. The best resource allocation strategy in this example is to
put the maximum resources in the join direction A to B. That is,
the join service rate of 100 tuples/sec should all be used for
probing the window B. Hence, the aλ ′ and bλ ′ in the formula
become 100 and zero, respectively, and the maximum output
rate we get is 100Kσ × tuples/sec. We will call the adjusted
rates aλ ′ and bλ ′ the effective rates for streams A and B,
respectively.

In practice, the actual distribution of resources should be
done in the context of an application. If an application requires
to process at least 10 tuples from each input stream in any given
time unit, the resulting resource allocation in the above example
should be changed to 90 tuples/sec and 10 tuples/sec to aλ ′ and

bλ ′ , respectively.
To validate the analysis, we performed a test with five

different strategies: maximizing stream A�s effective rate,
maximizing stream B�s effective rate, allocating resources
proportionally to the arrival rates, proportionally to window
sizes, and finally equally among the two inputs. The result is
shown in Figure 5. As we expected, the winner was MaxA that
allocated the maximum computing resources to the join
direction A to B, which is from the smaller window to the bigger
window, and the worst performer was MaxB that did the exact
opposite.

The join algorithm selection should be performed after the
decision for resource allocation. Once we determine the

effective rates (workload) of the join operator, we can choose
the best join algorithm combinations for the adjusted workload,
in the way we showed in Section 5.1.

5.2.2. Case of Limited Memory and Sufficient
Computing Resources.

In this scenario, we assume that the memory is the
bottleneck. To improve the query result, we can allocate the
memory resources across the windows. We add one constraint
that reflects this into Equation 12 and obtain:

()
where (total avaliable memory)

o a br B A
A B M

σ λ λ= +
+ =

 (15)

The objective is to allocate memory resources so as to
maximize the join output rate. We can address this problem by
rewriting the formula above with the constraint, as shown
below.

(()) ()o a b b a ar M A A A Mσ λ λ σ λ λ σλ= − + = − + (16)

Given the equation above, it is easy to see that the best
strategy is to allocate most memory to the window
corresponding to the slower input rate. If stream B is faster than
stream A we should maximize window A to maximize the output
rate, and vice versa. In the case where both input streams have
equal input rates, the size of window A and B becomes
irrelevant to the output rate. In such a case, the output rate is
constant and equal to aMσλ .

Intuitively, we can see that it would be beneficial to keep the
slower stream in memory and let the faster one just probe
against it and pass by. At the other end of the spectrum, we can
think of an opposite strategy that allocates all available memory
to the fast stream and lets the slow stream probe the fast one. It
is straightforward that the first scenario is going to outperform
the second one, because the number of probe operations is
greater in the first case while the size of the target window being
probed is identical, and equal to the memory size.

Figure 6 illustrates the evaluation results of memory
allocation strategies. We tested five memory allocation
strategies that include maximizing the size of window A,
maximizing the size of window B, allocating memory resources
proportionally to the arrival rates, inverse proportionally to the
arrival rates, and equal distribution. The test results conformed
to the analysis.

Similarly, once we determine the window sizes we can
calculate the estimated cost of joins with various algorithm
combinations using the cost formula presented in Section 4.2.

0
500

1000
1500
2000
2500
3000
3500

5 10 15 20 25 30 35 40 45 50 55 60
Execution Time (seconds)

O
ut

pu
t S

iz
e

(n
um

be
r o

f t
up

le
s)

Max A
Max B
λ Proportional
Window Proportional
Equal Distribution

Figure 5. Computing Resource Allocation Strategy Evaluation.
(λa=800, λb=200, A=100, B=200, σ=0.01, µ=100)

0

5000

10000

15000

20000

5 10 15 20 25 30 35 40 45 50 55 60
Execution Time (seconds)

O
ut

pu
t S

iz
e

(n
um

be
r o

f t
up

le
s)

Max A
Max B
λ Proportional
λ Inverse
Equal Distribution

Figure 6. Memory Allocation Strategy Evaluation. (λa=10,
λb=50, M=1000, σa=0.005, σb=0.01)

 11

Then using the estimation, we can determine the best join
algorithm combinations for the given query.

5.2.3 Case of Limited Memory and Limited
Computing Resources.

In this scenario, we assume that both memory and computing
resources are limited and that we can adjust the two windows so
as to fully utilize the given memory. Additionally, we can adjust
the effective input rates for the join by allocating the computing
resources across the windows. We rewrite Equation 12 with the
additional constraints given in this scenario, as follows:

()
where , , ,

o a b

a b a a b b

r B A
A B M

σ λ λ
λ λ µ λ λ λ λ

′ ′

′ ′ ′ ′

= +
+ = + = ≤ ≤

 (17)

The arrival rates aλ ′ and bλ ′ can be rewritten in terms of
µ by applying a distribution factor, x , which is a fraction
between 0 and 1. Window size B can be also represented in
terms of A and M.

, (1) , a bx x B M Aλ µ λ µ′ ′= = − = − (18)

By making the substitutions, we obtain:

(() (1))
 ((2 1))

or x M A x A
x M x A

σ µ µ
σ µ µ
= − + −
= − −

 (19)

Now the output rate becomes a function of the two variables
x and A. In the case where x > ½, the second term in the
subtraction, (2 1)x Aµ− , is greater than zero. To maximize ro,
the second term must be minimized, thus indicating a
minimization of A. If A is minimized to zero, the term x Mσ µ
remains. To maximize it, we need to take the maximum x value,
and then ro converges to Mσµ . In other words, we should
minimize the size of window A and maximize stream A�s
effective rate. Similarly, in the case where x < ½, we should
maximize the size of window A and minimize stream A�s
effective rate. In fact, Mσµ is the maximum output rate that
we can achieve. This is because µ is the maximum number of
tuples that the join operator can process in a time unit and M is
the maximum possible target window size.

Figure 7 presents an experimental result of the performance
of various resource allocation strategies. We evaluated five
different strategies: (i) Max A / Max λb, which maximizes the
size of window A and stream B�s effective rate, similarly, (ii)

Max B / Max λa, (iii) Max A / Max λa, (iv) Max B / Max λb, and
(v) Equal Distribution.

In the experiment, the best performing group was the
combination of maximizing the window size in one window and
maximizing the effective arrival rate in the other window. This
group consists of Max A / Max λb, and Max B / Max λa. The
next highest performer, Equal Dist, is a strategy that distributes
an equal amount of resources to each stream. The worst
performer was the group of resource allocation strategies that
maximizes the size and the effective arrival rate of the same
window. The experimental results conformed to the analysis.

6. Conclusion

In this paper we investigated strategies for evaluating sliding
window joins over pairs of unbounded streams. We introduced a
unit-time basis cost model to analyze the expected performance
of these strategies. One of the notable aspects of the proposed
cost model is that it divides the join cost into two independent
terms, each corresponding to one of the two join directions. This
property allows it to estimate the cost of each join direction
separately.

To our knowledge our paper is the first to consider using
different join algorithms for each input to a streaming join (e.g.,
hash join for one input, nested loops join for the other.) We have
shown that this is important for the performance of sliding
window joins�in our experiments, we observed cases in which
the asymmetric streaming algorithms were up to 53% more
efficient than the symmetric streaming algorithms. Furthermore,
we have shown that when considering approximate streaming
window joins, the careful allocation of computing and memory
resources to the input streams can have a substantial impact on
the performance of the algorithm. For example, in our
experiments we observed cases in which an appropriately
skewed allocation of resources to input streams generated 90%
more answer tuples per unit time than did the naive equal
allocation of resources to both input streams.

A good deal of room for future work exists. One interesting
direction would be to extend the cost model beyond single joins
to full query plans. Another potentially interesting direction
would be to incorporate the findings in this paper into the
previously proposed adaptive query optimization frameworks,
so as to extend that work to handle sliding window joins.
Finally, it would be interesting to model and evaluate other
algorithms besides the ones presented in this work.

Acknowledgements

This research was supported by NSF grants CSA-9623632
and ITR 0086002.

Bibliography
[1] Douglas B. Terry, David Goldberg, David Nichols, Brian

M. Oki: Continuous Queries over Append-Only Databases.
SIGMOD Conference 1992: 321-330

[2] Jianjun Chen, David J. DeWitt, Feng Tian, Yuan Wang:
NiagaraCQ: A Scalable Continuous Query System for
Internet Databases. SIGMOD Conference 2000: 379-390

[3] J. F. Naughton, D. J. DeWitt, D. Maier, A. Aboulnaga, J.
Chen, L. Galanis, J. Kang, R. Krishnamurthy, Q. Luo, N.
Prakash, R. Ramamurthy, J. Shanmugasundaram, F. Tian,

0
100
200
300
400
500
600

5 10 15 20 25 30 35 40 45 50 55 60
Execution Time (seconds)

O
ut

pu
t S

iz
e

(n
um

be
r o

f t
up

le
s)

Max A / Max λb
Max B / Max λa
Max A / Max λa
Max B / Max λb
Equal Distribution

Figure 7. Resource Allocation Strategies for Limited
Memory and Limited Computing Resource Cases. (µ=10,
M=100, σ=0.01)

 12

K. Tufte, S. Viglas, Y. Wang, C. Zhang, B. Jackson, A.
Gupta, R. Chen: The Niagara Internet Query System.
IEEE Data Engineering Bulletin 24(2): 27-33 (2001)

[4] Zachary G. Ives, Daniela Florescu, Marc Friedman, Alon
Y. Levy, Daniel S. Weld: An Adaptive Query Execution
System for Data Integration. SIGMOD Conference 1999:
299-310

[5] Ron Avnur, Joseph M. Hellerstein: Eddies: Continuously
Adaptive Query Processing. SIGMOD Conference 2000:
261-272

[6] Samuel Madden, Mehul Shah, Joseph M. Hellerstein,
Vijayshankar Raman: Continuously Adaptive Continuous
Queries over Streams. SIGMOD Conference 2002

[7] Tolga Urhan, Michael J. Franklin, Laurent Amsaleg: Cost
Based Query Scrambling for Initial Delays. SIGMOD
Conference 1998: 130-141

[8] Annita N. Wilschut, Peter M. G. Apers: Dataflow Query
Execution in a Parallel Main-Memory Environment. PDIS
1991: 68-77

[9] Tolga Urhan, Michael J. Franklin: XJoin: A Reactively-
Scheduled Pipelined Join Operator. IEEE Data
Engineering Bulletin 23(2): 27-33 (2000)

[10] Peter J. Haas, Joseph M. Hellerstein: Ripple Joins for
Online Aggregation. SIGMOD Conference 1999: 287-298

[11] M. Datar, A. Gionis, P. Indyk, R. Motwani: Maintaining
Stream Statistics over Sliding Windows, 2002 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA
2002)

[12] Shivnath Babu, Jennifer Widom: Continuous Queries over
Data Streams. SIGMOD Record 30(3): 109-120 (2001)

[13] Joseph M. Hellerstein, Michael J. Franklin, Sirish
Chandrasekaran, Amol Deshpande, Kris Hildrum, Sam
Madden, Vijayshankar Raman, Mehul A. Shah: Adaptive
Query Processing: Technology in Evolution. IEEE Data
Engineering Bulletin 23(2): 7-18 (2000)

[14] Philippe Bonnet, Johannes Gehrke, Praveen Seshadri:
Towards Sensor Database Systems. Mobile Data
Management 2001: 3-14

[15] Praveen Seshadri, Miron Livny, Raghu Ramakrishnan:
Sequence Query Processing. SIGMOD Conference 1994:
430-441

[16] Praveen Seshadri, Miron Livny, Raghu Ramakrishnan:
The Design and Implementation of a Sequence Database
System. VLDB 1996: 99-110

[17] M. Sullivan, A. Heybey: Tribeca: A system for managing
large databases of network traffic. In Proceedings of the
USENIX Annual Technical Conference, New Orleans, LA,
June 1998

[18] Deborah Estrin, Ramesh Govindan, John S. Heidemann,
Satish Kumar: Next Century Challenges: Scalable
Coordination in Sensor Networks. MOBICOM 1999: 263-
270

[19] J. M. Kahn, Randy H. Katz, Kristofer S. J. Pister: Next
Century Challenges: Mobile Networking for "Smart Dust".
MOBICOM 1999: 271-278

[20] Stratis Viglas, Jeffrey F. Naughton: Rate-Based Query
Optimization for Streaming Information Sources.
SIGMOD Conference 2002

[21] Tobin J. Lehman, Michael J. Carey: A Study of Index
Structures for Main Memory Database Management
Systems. VLDB 1986: 294-303

[22] Jun Rao, Kenneth A. Ross: Making B+-Trees Cache
Conscious in Main Memory. SIGMOD Conference 2000:
475-486

[23] Jun Rao, Kenneth A. Ross: Cache Conscious Indexing for
Decision-Support in Main Memory. VLDB 1999: 78-89

[24] Raghu Ramakrishnan, Johannes Gehrke: Database
Management Systems. McGraw-Hill. 2000

[25] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev
Motwani, Jennifer Widom: Models and Issues in Data
Stream Systems. PODS 2002: 1-16

[26] http://www.cse.ogi.edu/~ptucker/PStream/
[27] Brian Babcock, Mayur Datar, Rajeev Motwani: Sampling

From a Moving Window over Streaming Data. Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA
2002)

[28] Stan Zdonik, Ugur Cetintemel, Mitch Cherniack, Christian
Convey, Sangdon Lee, Greg Seidman, Michael
Stonebraker, Nesime Tatbul, Donald Carney: Monitoring
Streams - A New Class of Data Management Applications.
VLDB 2002.

[29] Corinna Cortes, Kathleen Fisher, Daryl Pregibon, Anne
Rogers, Frederick Smith: Hancock: A Language for
Extracting Signatures from Data Streams. Knowledge
Discovery and Data Mining Conference 2000: 9-17

[30] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala,
Sridhar Ramaswamy: The Aqua Approximate Query
Answering System. SIGMOD Conference 1999: 574-576

[31] Surajit Chaudhuri, Gautam Das, Vivek R. Narasayya: A
Robust, Optimization-Based Approach for Approximate
Answering of Aggregate Queries. SIGMOD Conference
2001

[32] Phillip B. Gibbons, Yossi Matias: New Sampling-Based
Summary Statistics for Improving Approximate Query
Answers. SIGMOD Conference 1998: 331-342

[33] Venkatesh Ganti, Mong-Li Lee, Raghu Ramakrishnan:
ICICLES: Self-Tuning Samples for Approximate Query
Answering. VLDB 2000: 176-187

[34] Kaushik Chakrabarti, Minos N. Garofalakis, Rajeev
Rastogi, Kyuseok Shim: Approximate Query Processing
Using Wavelets. VLDB 2000: 111-122

[35] Jeffrey Scott Vitter, Min Wang, Balakrishna R. Iyer: Data
Cube Approximation and Histograms via Wavelets.
CIKM 1998: 96-104

[36] Yossi Matias, Jeffrey Scott Vitter, Min Wang: Dynamic
Maintenance of Wavelet-Based Histograms. VLDB 2000:
101-110

[37] Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan,
Martin Strauss: Surfing Wavelets on Streams: One-Pass
Summaries for Approximate Aggregate Queries. VLDB
2001: 79-88

[38] Alin Dobra, Minos Garofalakis, J. E. Gehrke, and Rajeev
Rastogi: Processing Complex Aggregate Queries over
Data Streams. SIGMOD Conference 2002

[39] Noga Alon, Yossi Matias, Mario Szegedy: The Space
Complexity of Approximating the Frequency Moments.
STOC 1996: 20-29

[40] Johannes Gehrke, Flip Korn, Divesh Srivastava: On
Computing Correlated Aggregates Over Continual Data
Streams. SIGMOD Conference 2001

[41] Sudipto Guha, Nick Koudas, Kyuseok Shim: Data-streams
and histograms. STOC 2001: 471-475

