Exploring Provenance in a Distributed Job
Execution System™*

Christine F. Reilly and Jeffrey F. Naughton

University of Wisconsin—Madison
Department of Computer Sciences

1210 West Dayton Street, Madison, Wisconsin 53706, USA
{chrisr, naughton}@cs.wisc.edu

Abstract. We examine provenance in the context of a distributed job
execution system. It is crucial to capture provenance information during
the execution of a job in a distributed environment because often this
information is lost once the job has finished. In this paper we discuss the
type of information that is available within a distributed job execution
system, how to capture such information, and what the burdens on the
user and system are when such information is captured. We identify what
we think is the key data that must be captured and discuss the collection
of provenance in the Quill++ project of Condor. Our conclusion is that it
is possible to capture important provenance information in a distributed
job execution system with relatively little intrusion on the user or the
system.

1 Introduction

Scientific computing applications are continuously growing in computational
complexity and in the amount of data consumed and produced [TI2I3/4]. Many
scientists utilize distributed job execution systems to meet their computational
needs [5]. Within a distributed job execution environment much information is
generated and exchanged regarding the execution and data access activities of
the scientific application. This information can be used for tracking jobs through
the system, recalling the activities of completed jobs, and for system accounting
and debugging purposes. By archiving this information in a system that is visible
to the user it can also be used to provide provenance information.

Our goal is to capture the provenance information that is available within
a distributed job execution system. We specifically focus on the Condor sys-
tem [5]; however, our discussion of the requirements for providing provenance
in the context of a job execution system is applicable to the general category of
distributed job execution systems. Condor is a distributed job execution system
that runs on a dedicated cluster of machines, on idle desktop workstations, or
on a combination of both environments [5l6]. This paper presents preliminary
work on providing provenance information in Condor. In this work we explore

* To be published in: Proceedings of the International Provenance and Annotation
Workshop, May 3-5, 2006, Chicago, IL. In: Lecture Notes in Computer Science.

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 237-245] 2006.
© Springer-Verlag Berlin Heidelberg 2006

238 C.F. Reilly and J.F. Naughton

categories of provenance in the context of a distributed job execution system,
examine what provenance data is available in Condor, and discuss how this data
can be captured.

The provenance gathered in Condor is an important part of the overall prove-
nance of data items used by the jobs run in the system. This provenance must be
gathered while a job is running because it is likely to be unavailable once the job
has completed. Condor users have expressed the desire for being able to obtain
provenance information about their jobs. Scientists are notorious for frequently
changing their data and executable programs and keeping the same file name
across multiple versions. As a result, it is often very difficult for a scientist to
determine exactly which version of their program was applied to which version
of their data to produce a given output. A second provenance need is the ability
to determine if a job is affected by a hardware problem. A number of years ago,
Intel reported a bug in the floating point unit of one of its processors. When this
happened users wanted to know if their jobs were run on machines with a faulty
processor. Our provenance system provides the information needed to meet both
of these provenance needs.

We identify two types of provenance in Condor: logical provenance and in-
frastructure provenance. In our context, logical provenance consists of the input
data items and executable program that create an output data item. Infrastruc-
ture provenance for an output data item consists of information about when
the item was created and what parts of the Condor system were involved in the
creation of the data item. These two types of provenance are described in detail
in Sect. 2

The first issue we discuss in this paper is what type and amount of informa-
tion can be captured in Condor. It is widely agreed that provenance is useful
for scientific applications [2/4] and that, intuitively, a system should provide as
much information as possible. Two factors inhibit us from collecting all possible
information: some types of information are difficult to detect, and it is infeasible
to store all possible information. In Sect. [2] we examine the information available
in Condor and discuss the benefits and drawbacks of various levels of provenance
we are able to achieve with this information.

The second issue we address in this paper is how to gather provenance infor-
mation in Condor. There are two entities that have information: the system and
the user. Ideally we would like to design a provenance system that is transparent
to the user and has few alterations to and impacts on Condor. Because both the
user and the system hold provenance information, we require some amount of
intrusion into each entity in order to gather provenance information. In Sect. Bl
we discuss the provenance information gained from various levels of intrusion on
both entities. We then discuss the provenance capabilities of the Condor Quill++
project in Sect. [l

2 Categories of Provenance Information

This section examines the provenance information available in a distributed job
execution system. In order to understand the space of provenance information we

Exploring Provenance in a Distributed Job Execution System 239

divide it into various categories. The first division is on the type of information
stored in the system: logical or infrastructure. Within each of these two types
we present divisions of level of reproducibility and granularity.

Data provenance in a distributed job execution system involves three entities:
the job execution system, the user, and the provenance system. The job exe-
cution system runs user submitted jobs that perform the transformation from
input data to output data. The user submits jobs and manages data items and
transformation functions. The provenance system stores information about data
items, infrastructure items, and instances of data transformations.

2.1 Logical Provenance

Logical provenance describes the input data and transformation process that
create some specific output data. This is the type of provenance that is dis-
cussed in much of the related work [A7ISIGITOTTITTIITATEIT6]. We define the
logical provenance of an output data item as the input data items and trans-
formation function that produced the output data item. Because we are looking
at the portion of provenance that is related to a distributed job execution sys-
tem, we focus only on how data is manipulated within the system. We assume
the transformation function is deterministic and free of side-effects. Therefore,
given the same input data the transformation function will always produce the
same output data. The two variables we identify for logical provenance are its
granularity and level of reproducibility. Granularity describes the level of detail
represented by a data item. The level of reproducibility of logical provenance is
determined by the method the system uses for identifying data items.

The level of granularity for logical provenance describes the level of detail
represented by a data item. The desired granularity level depends on how the
provenance information will be used [4]. Additionally, the granularity level that
a system can provide depends on at what level that system can uniquely identify
and track single data items. Some examples of granularities are file, portion of
file, database tuple, and byte. We expect that in most distributed job execution
systems a granularity of file level can be easily achieved because that is the
granularity level at which these systems generally manage data.

The level of reproducibility provided by a logical provenance system is deter-
mined by what information is stored in the system for each provenance item.
In this discussion we assume that every provenance item has a unique identifier
that is provided by either the user or the job execution system. We define three
reproducibility levels: inform, verify, and redo.

A system with logical inform provenance can tell the user what provenance
item identifiers (e.g., file names) are associated with a specific use instance.
If the user can associate the identifiers with the corresponding items in her
possession then the user can reproduce the use instance. The system stores the
unique name of the provenance item and identifies how it was used (i.e., input,
executable, output). Logical verify provenance extends logical inform provenance
by determining whether a proposed job is identical to a previous job, meaning
that the two jobs have the same input and executable files. Verify provenance

240 C.F. Reilly and J.F. Naughton

is stronger than inform provenance because it detects, for example, if the same
identifier is used for files that have different content. We suggest using a checksum
to probabilistically verify that data items are identical because storing the entire
data item is likely to require a large amount of storage.

A system with logical redo provenance is able to rerun a previously submitted
job. This system stores the entire provenance item (e.g., entire data files and
executables) along with its use type. Although logical redo provenance is an
intuitively desirable feature [I7], we do not view this level of reproducibility
to be practical in most cases. Because redo provenance requires the system to
store every data item, the storage requirements for such a system could quickly
become unreasonable. One case where logical redo provenance may be practical
is if the provenance system and user’s data storage system are integrated such
that the provenance system and user are using the same data storage system
[18/19).

2.2 Infrastructure Provenance

Infrastructure provenance information describes the environment involved in the
creation of a data item. There are two reasons why infrastructure provenance is
useful. First, if the creation of a data item is dependent on specific environment
variables then these variables are important portions of the provenance of the
data item. Second, if part of the infrastructure is found to be defective then data
items that were created using the defective infrastructure can be identified. In-
frastructure provenance consists of the two same variables as logical provenance:
granularity and level of reproducibility. However, these variables have slightly
different definitions for infrastructure provenance.

For infrastructure provenance the level of granularity describes what informa-
tion about the environment is stored by the provenance system. One category is
information about the environment that created the data, such as the creation
date, specific processor, operating system, and amount of memory. A second
category is the system state when the data was created, for example the gen-
eral system load, and the contents of the memory and disk on the machine that
created the data.

For most systems there is a set of infrastructure information that is relatively
easy to obtain and is fairly useful. Examples of such information are: creation
time, specific processor, operating system, amount of memory, and general sys-
tem load. If at a later date a processor, or the memory or disk associated with a
specific processor, is found to be defective then the data items created with that
processor can be identified. We can also picture infrastructure information that
is difficult to record or recreate, such as the computer registry or specific state
of the memory. Additionally some infrastructure information, such as the com-
piler used by the transformation function, is found at the user level. Depending
on how provenance information in communicated to the provenance system this
user level information may or may not be available.

Infrastructure provenance has two levels of reproducibility: inform and redo.
For both levels the provenance system records infrastructure information specific

Exploring Provenance in a Distributed Job Execution System 241

to a data transformation instance. A system with inform provenance can tell
the user what infrastructure items were used in the creation of a specific data
item. With redo provenance the system can recreate a specific data item using
the same infrastructure as originally created that data item. We expect that in
most cases infrastructure inform provenance is sufficient and redo provenance is
unnecessary.

3 Obtaining Provenance Information

In this section we address the question of how the provenance system obtains
provenance information. As in Sect. 2l we assume that three entities are involved
in data provenance: the provenance system, the job execution system, and the
user. The provenance system must obtain provenance information from a com-
bination of both the user and the job execution system. We assume that at a
minimum the job execution system provides the provenance system with system
infrastructure information related to a job.

We describe the trade-offs between the amount of provenance information
gathered and intrusions on the system and the user with a cube where the
amount of intrusion on the system is on the x-axis, the amount of intrusion on
the user is on the y-axis, and the amount of provenance information is on the
z-axis (Fig. [[l). The range of each axis is 0 to 1. A job execution system that
has no provenance capabilities is located at the (0,0,0) point. A system located
anywhere on the back face of the cube, where the z-axis is equal to 1, collects
all possible provenance information. The ultimate, and perhaps unachievable,
goal is the (0,0,1) point, where all provenance information is provided with no
intrusion on either the system or user. Our goal is a system that provides a large
amount of provenance information while having small intrusions on both the user
and the job execution system. The point in Fig. [[] labeled “Goal” is intended
to loosely suggest a desirable location, where the cost of moving further back in
the cube would require dramatic increases in the intrusion on the user and/or
system.

We discuss three configurations of how information is provided to the prove-
nance system: job execution system based, user based, and shared. For each of
these configurations we discuss the feasibility of implementing the method and
the reliability of that method for gathering the provenance information. The fea-
sibility of a configuration refers to how likely we think it is that current systems
could and would be altered in order to implement the method. A high feasibility
means that it is very likely that the configuration could be implemented because
it requires few or no changes to current systems. A low feasibility means that
it is unlikely that the configuration could be implemented because it requires
many or difficult changes to current systems. The reliability of a configuration
describes how likely we think it is that the method will capture provenance in-
formation. We have greater trust in the system than in the user for providing
accurate provenance information. Therefore a high reliability means that prove-
nance information is fully provided by the system and a low reliability means
that provenance information is fully provided by the user.

242 C.F. Reilly and J.F. Naughton

User Intrusion

(P — Information
(0,00) System Intrusion

Fig. 1. Provenance Trade-offs Cube

When the job execution system provides all provenance information to the
provenance system, the user can remain ignorant of the provenance system unless
she requests provenance information. This scenario exists when the user intrusion
equals zero on the provenance trade-off cube (Fig. [d). In such a scenario it is
hard to capture all provenance information without intrusion on the system. For
example, system intrusion is necessary for detecting access to files that are not
declared in the job submission file. For such reasons we view a purely system-
based approach to be of low feasibility.

If all provenance information is provided by the user then few to no alterations
to the job execution system are necessary. This scenario exists when the system
intrusion equals zero on the provenance trade-off cube (Fig. [[). We categorize
this configuration of information gathering as high feasibility since few if any
changes to the job execution system are necessary. However, this configuration
has low reliability because we are completely depending on the user to provide
accurate and complete information.

If both the user and the job execution system are aware of the provenance
system then both can be relied upon for the gathering of provenance information.
This is the scenario represented by the point labeled “Goal” in Fig. [l In this
case we rely on the job execution system to send messages to the provenance
system. The user is required to be aware of the provenance system to enable
the job execution system to send reliable messages to the provenance system.
Exactly how the job execution system gathers provenance information and what
the user must do depend on the structure of the job execution system.

4 Provenance in Condor

Quill4++]20], an addition to Condor, was originally developed by the CondorDB
team to provide better support for accounting and system monitoring, but we
quickly realized that it could also be used to provide support for provenance.
Quill++ writes information about machines, jobs, and workflows to logs then
sniffs these logs and inserts the information into a central database. This ap-

Exploring Provenance in a Distributed Job Execution System 243

proach allows Quill++ to make minimal changes to the Condor code and pre-
vents Quill+4 from blocking Condor. Quill4++ has logical verify provenance ca-
pabilities and infrastructure inform provenance capabilities. Logical provenance
information is stored at the granularity of files with the file identifier and check-
sum stored for each file. Infrastructure provenance includes information about
machine hardware, software, and activity. Machine hardware information in-
cludes: processor identification, processor architecture, and amount of memory.
Machine software information includes: operating system and Condor version.
Machine activity information includes: if the machine is claimed by a Condor
job, if the machine is idle, the time when Condor last heard from the machine,
and statistics regarding machine load and activity.

Provenance information gathering is shared between the system and user.
Information about jobs and machines is gathered from the Condor system by
Quill++. File information is gathered from the job submission file. In order for
Quill++ to obtain information about files the user must specify the file identifier
and use type in the job submission file. It is possible that a job may use files
that are not specified in the job submission file leaving Quill+4 unaware of such
files.

5 Conclusions and Future Work

We have shown that a good amount of provenance functionality can be achieved
by storing information that is readily available within a distributed job execu-
tion system. For example, Quill++ stores information about the files used by a
job, when and where the job ran, and some system state information. Quill4++
imposes a minimal burden on the execution system and user, and provides what
we hope is a useful amount of provenance information.

We have identified a number of items to explore in the future. Our first goal
is to extend Quill++ to perform more system based gathering of provenance
information by recording file information when Condor transfers files to the
machine running a job. A second problem is to analyze the storage requirements
of the provenance system in Quill4+-+. Our preliminary analysis shows that in a
cluster of thousands of machines the provenance portion of Quill++ generates
a manageable amount of information over the period of one year. However, at
some point in time the provenance information will need to be archived. Our
third area of future work is to examine whether the provenance information
regarding workflows must be explicitly recorded or if workflow provenance is
recoverable from the provenance recorded for the component jobs.

Acknowledgments

This work was supported in part by National Science Foundation Award SCI-
0515491.

244 C.F. Reilly and J.F. Naughton
References
1. Bose, R., Frew, J.: Lineage retrieval for scientific data processing: A survey. ACM

2.

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

Computing Surveys 37 (2005) 1-28

Jagadish, H., Olken, F.: Data management for the biosciences: Report of the
NSF/NLM workshop on data management for molecular and cell biology, national
library of medicine. Technical Report LBNL Report LBNL-52767, Lawrence Berke-
ley National Laboratory (2003)

Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science.
SIGMOD Record 34 (2005) 31-36

Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance techniques.
Technical Report IUB-CS-TR618, Computer Science Department, Indiana Univer-
sity, Bloomington, Indiana (2005)

Condor: Project homepage, http://www.cs.wisc.edu/condor/ (2006)
Tannenbaum, T., Wright, D., Miller, K., Livny, M.: Condor — A distributed job
scheduler. In Sterling, T., ed.: Beowulf Cluster Computing with Linux. MIT Press
(2001)

Buneman, P., Khanna, S., Tan, W.C.: Why and where: A characterization of data
provenance. In: International Conference on Database Theory (ICDT). (2001)
Cui, Y., Widom, J.: Lineage tracing for general data warehouse transformations.
In: Proceedings of the 27th VLDB Conference, Roma, Italy. (2001)

Cui, Y., Widom, J.: Lineage tracing for general data warehouse transformations.
Technical report, Stanford University Database Group (2001)

Cui, Y., Widom, J.: Lineage tracing for general data warehouse transformations.
VLDB Journal 12 (2003) 41-58

Fan, H., Poulovassilis, A.: Tracing data lineage using schema transformation path-
ways. In B.Omelayenko, Klein, M., eds.: Knowledge Transformation for the Se-
mantic Web. IOS Press (2003)

Foster, 1., Vockler, J., Wilde, M., Zhao, Y.: Chimera: A virtual data system for
representing, querying, and automating data derivation. In: 14th International
Conference on Scientific and Statistical Database Management. (2002)

Frew, J., Bose, R.: Earth system science workbench: A data management in-
frastructure for earth science products. In: Thirteenth International Conference on
Scientific and Statistical Database Management, Fairfax, Virginia. (2001) 180-189
Widom, J.: Trio: A system for integrated management of data, accuracy, and
lineage. In: CIDR. (2005)

Woodruff, A., Stonebraker, M.: Supporting fine-grained data lineage in a database
visualization environment. In: Proceedings of the 13th International Conference
on Data Engineering, Birmingham, England. (April 1997) 91-102

Cui, Y., Widom, J.: Storing auxiliary data for efficient maintenance and lineage
tracing of complex views. In: Proceedings of the International Workshop on Design
and Management of Data Warehouses (DMDW), Stockholm, Sweden. (2000)
Szomszor, M., Moreau, L.: Recording and reasoning over data provenance in web
and grid services. In Meersman, R., Tari, Z., Schmidt, D.C., eds.: On The Move to
Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE - OTM Confeder-
ated International Conferences, CooplS, DOA, and ODBASE 2003, Catania, Sicily,
Italy, November 3-7, 2003. Volume 2888 of Lecture Notes in Computer Science.,
Springer (2003) 603-620

Barga, R.: Automatic generation of workflow execution provenance. In: Inter-
national Provenance and Annotation Workshop (IPAW’06), Chicago, May 2006.
(2006) http://www.ipaw.info/ipaw06.

19.

20.

Exploring Provenance in a Distributed Job Execution System 245

Braun, U., Garfinkel, S., Holland, D.A., Muniswamy-Reddy, K.K., Seltzer,
M..: Issues in automatic provenance collection. In: International Prove-
nance and Annotation Workshop (IPAW’06), Chicago, May 2006. (2006)
http://www.ipaw.info/ipaw06.

Huang, J., Kini, A., Reilly, C., Robinson, E., Shankar, S., Shrinivas, L., DeWitt,
D., Naughton, J.: An overview of Quill++: A passive operational data logging
system for Condor. https://www.cs.wisc.edu/condordb (2006)

	Introduction
	Categories of Provenance Information
	Logical Provenance
	Infrastructure Provenance

	Obtaining Provenance Information
	Provenance in Condor
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

