
Issues in Applying Data Mining to Grid Job Failure
Detection and Diagnosis

Lakshmikant Shrinivas and Jeffrey F. Naughton
Dept. of Computer Science

University of Wisconsin-Madison, USA

pachu@cs.wisc.edu, naughton@cs.wisc.edu

ABSTRACT

As grid computation systems become larger and more complex,

manually diagnosing failures in jobs becomes impractical. Re-

cently, machine-learning techniques have been proposed to detect

a variety of application failures in grids. While this is a promising

approach, there are many options as to how to apply machine learn-

ing to this problem, and it not always obvious which approaches are

feasible or effective. We explore some issues that arise when we try

to apply existing implementations of data mining algorithms to di-

agnose as well as predict job failures in grids. We demonstrate that

a) it is feasible to gather enough data in real-time to train useful

classifier algorithms, using only a small fraction of the grid’s com-

putational resources, b) it is important to choose the features used

for classification with care, and c) it is useful to have both per-

user and system-wide classifiers, as they diagnose different kinds

of problems. We illustrate all these issues using a prototype system

that runs over the Condor grid computation platform [3].

Categories and Subject Descriptors: D.4.7 [Operating Systems]:

Organization and Design—Distributed systems; H.2.8 [Database

Management]: Database Applications—Data mining

General Terms: Experimentation, Performance, Measurement.

Keywords: grid computation systems.

1. INTRODUCTION ANDMOTIVATION
Recently, grid computation systems have become very popular

as an aid to researchers and businesses interested in running large,

complex applications. By allowing users the ability to spread out

their computation over thousands of machines, grid computation

systems allow for massive increases in productivity. However, this

ability comes at a price — if any problems occur, it is very hard

for users to diagnose why their jobs are failing, since the tradi-

tional way of determining problems (such as debuggers or profil-

ers) cannot be applied at such a large scale. Recently, machine

learning techniques have been applied to diagnose such large-scale

job failure problems, as indicated by [2] and [4], and it seems to be

a promising approach. However, machine learning can be applied

in many ways, and it is not always obvious which approaches are

computationally feasible or effective. We report our experiences

with using specific machine learning techniques to diagnose fail-

ures in jobs being run on a cluster managed by the Condor system

[3].

The authors of [2] demonstrated that data mining (specifically

classification) algorithms are quite useful in identifying commonal-

ities among job failures. The benefits of this technique are two-fold

Copyright is held by the author/owner(s).
HPDC’08, June 23–27, 2008, Boston, Massachusetts, USA.
ACM 978-1-59593-997-5/08/06.

— a) allowing users to take corrective actions based on information

gleaned from the mining, and b) predicting impending failures, in

order to provide an “early warning system” for users and adminis-

trators. For example, if a user finds out that their jobs seem to fail

on machines with limited memory, they can take corrective action

by targeting machines that have sufficient memory. Likewise, if a

user is told beforehand that a significant proportion of their jobs

are predicted to fail, then they can stop and reexamine their sub-

mission before wasting time and system resources. In commercial

grids with a pay-for-resources-consumed kind of economic model

(such as Amazon EC2 [1]), such early warning might save the user

money as well. Thus, data mining techniques may prove to be very

useful for users and administrators of a grid computation system.

However, if a developer were to try to build a classification based

fault detector/predictor for a grid, they would quickly find them-

selves faced with a number of questions, the answers to which are

not immediately apparent. Some such questions are: What kind

of information about the grid needs to be collected? Which classi-

fication algorithm(s) should be used? What are the trade-offs be-

tween the amount of data collected and the performance of the al-

gorithm(s)? Is a single, central classifier enough, or are multiple

classifiers needed? What issues arise when an existing classifier is

adapted for use on a grid computation system?

In this project, we explore the answers to these questions. Our

main contributions are as follows: we show that a) it is feasible

to gather enough data in real-time to train useful classifier algo-

rithms, with reasonable frequency, using only a small fraction of

the grid’s computational resources, b) it is important to train the

classifier using only those attributes that can predict the outcome

of a job submission, and omit attributes that are closely correlated

with the success of the job, but are only available after job com-

pletion and c) it is useful to have both per-user and system-wide

classifiers, as they diagnose different kinds of problems. Our goal

is not to develop new machine learning algorithms, but rather to ex-

periment with the application of existing algorithms to diagnosing

job failures in grids.

2. SYSTEM ARCHITECTURE
In this section, we describe our system architecture, which is

based on the Condor grid-computing platform [3].

Figure 1 shows the various components of Condor, consisting of

various agents (known as daemons), a database and an instance of

a job. When users want to submit a job to the system, they interact

with the submission agent, which advertises the job requirements

and supplies the program binary. The scheduling agent handles

the allocation of jobs to machines. The machine agent manages

the state of a machine in the grid. Once a job has been allocated

a machine, the execution sandbox takes care of the execution of

239

Sandbox

Execution Database

Agent

Job

Instance

Machine

Agent

Submission

Agent

Job

Agent

Scheduling

Agent

Database

Figure 1: Overview of Condor

the particular instance of the job on that machine. For each job

instance, a job agent is spawned on the machine from which the

job was submitted. The job agent is responsible for supplying the

necessary input files that the job needs, and receiving the output

from the job instance. All these daemons communicate with the

database agent, which records a variety of operational data from

the daemons into a central database.

The execution of a particular instance of a job on a machine is

known as a run. For each run, the central database contains all

the job information, as well as the state of the machine that the

run occurred on. In our current system, each run is treated as an

instance (for purposes of classification) and is classified as either a

Success or a Failure. A run is labeled a “Failure” if the exit code

is not zero, or the program crashes due to a signal, or if it is kicked

out and restarted on another machine, and “Success” otherwise.

3. RESULTS AND DISCUSSION
We now look at a couple of experiments we conducted, in or-

der to shed more light on the questions raised Section 1. For our

experimental setup, we used the version 6.9.3 of the Condor grid-

computing platform [3] running over a cluster of 50 machines. All

the machines had Intel x86 based processors and ran CentOS 4.5,

a flavor of Linux. We submitted approximately 40,000 jobs, which

resulted in approximately 140,000 runs. These jobs simulated var-

ious kinds of failures such as file transfer errors, program crashes

on certain arguments and program crashes on insufficient memory.

We tested three implementations of classifiers — C4.5 [6], J48

[8] and vfdt [5]. C4.5 and J48 are both based on the C4.5 algorithm

proposed by Quinlan [6], while vfdt is part of VFML toolkit [5],

which is used for high speed data streams and very large data sets.

Figure 2 shows the training times of the three implementations

as a function of the number of training instances. The timing exper-

iments were performed on a computer with a 2.4 GHz Intel Core 2

Duo E6600 processor, with 2 GB of RAM, running CentOS 4.5.

We see that the training times are more or less linear in the num-

ber of instances for J48 and vfdt, and super-linear for C4.5. More

important, though, is to note the absolute times taken to train the

classifiers. We see that for 140,000 instances, even the slowest im-

plementation (J48) took slightly less than 25 seconds to train, while

C4.5 and vfdt took less than 15 seconds to train. Even the busiest

grids managed by Condor today have less than 100,000 thousand

jobs a day, and since the 140,000 runs in our experiments were

generated from roughly 40,000 jobs, a single modern desktop com-

puter can easily sustain the classification of jobs over a one or two

day sliding window of jobs.

Another finding from our study was that it is important to omit

certain attributes while training the classifiers, viz. attributes that

 0

 5

 10

 15

 20

 25

 0 20000 40000 60000 80000 100000 120000 140000 160000

T
im

e
 (

s
e
c
)

Number of runs (training examples)

C4.5
vfdt
J48

Figure 2: Training Times

are available only after job termination. Including such attributes

makes the classifiers very accurate, but completely useless; for ex-

ample, including the exit code attribute while training resulted in a

classifier that essentially said “if the exit code is non-zero or null,

the job is a Failure”. Many of these attributes are closely corre-

lated with the success or failure of a job, but cannot be used for

prediction, since they are unavailable while the job is running.

The interested reader can refer to [7], which contains a more

detailed analysis, as well as experiments exploring the trade-offs

between system-wide and per-user classifiers.

4. CONCLUSION
In this project, we have attempted to shed some light on the is-

sues that arise in applying machine learning algorithms and their

implementations to the problem of grid job problem diagnosis. We

demonstrated that it is feasible to gather enough data to train useful

classification algorithms and that the classifiers can be trained with

reasonable frequency using only a small fraction of the grid’s com-

putational resources. We also showed that it is important to train the

classifiers using only those attributes that can predict the outcomes

of jobs, and omit attributes that, while closely correlated with the

success of jobs, are only available after job completion. Finally,

we showed that it is useful to have both user-specific and system-

wide classifiers, as they diagnose different kinds of problems and

provide different insights to users and administrators. Even though

data mining is not a solution to finding all problems in grids, overall

it is a promising approach that deserves further investigation.

5. REFERENCES
[1] Amazon. Amazon Elastic Compute Cloud (Amazon EC2). Website. http:

//www.amazon.com/b?ie=UTF8&node=201590011.

[2] D. Cieslak, D. Thain, and N. Chawla. Short Paper: Troubleshooting

Distributed Systems via Data Mining. High Performance Distributed

Computing, 2006 15th IEEE International Symposium on, pages 309–312,

June 19-23 2006.

[3] Condor. Condor Project. Website.

http://www.cs.wisc.edu/condor/.

[4] J. Hofer and T. Fahringer. Grid Application Fault Diagnosis Using Wrapper

Services and Machine Learning. In International Conference on Service

Oriented Computing, Dresden, Germany, June 2007. Springer Verlag.

[5] G. Hulten and P. Domingos. VFML – a toolkit for mining high-speed

time-changing data streams. 2003.

[6] R. J. Quinlan. C4.5: Programs for Machine Learning (Morgan Kaufmann

Series in Machine Learning). Morgan Kaufmann, January 1993.

[7] L. Shrinivas and J. F. Naughton. Issues in Applying Data Mining to Grid Job

Failure Detection and Diagnosis. Technical report, University of

Wisconsin-Madison, 2008.

[8] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools

and Techniques with Java Implementations. Morgan Kaufmann, October 1999.

240

