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Abstract 
 
Recently, progress indicators have been proposed for 

long-running SQL queries in RDBMSs. Although the 
proposed techniques work well for a subset of SQL 
queries, they are preliminary in the sense that (1) they 
cannot provide non-trivial estimates for some SQL 
queries, and (2) the provided estimates can be rather 
imprecise in certain cases. In this paper, we consider the 
problem of supporting non-trivial progress indicators for 
a wider class of SQL queries with more precise estimates. 
We present a set of techniques in achieving this goal. We 
report an initial implementation of these techniques in 
PostgreSQL. 
 
 
1. Introduction 

 
Recently, [4, 9] proposed supporting progress 

indicators for long-running SQL queries in RDBMSs. The 
goal of these progress indicators is to act as a user-
interface tool so that the user can keep track of the 
percentage of the SQL query that has been completed and 
the remaining query execution time.  

[4, 9] proposed a set of techniques to implement 
progress indicators for SQL queries. They also 
demonstrated that their techniques work much better than 
naive alternatives for a subset of SQL queries. However, 
the techniques in [4, 9] are preliminary in the sense that (1) 
they do not provide non-trivial estimates for some SQL 
queries, and (2) the provided estimates can be rather 
imprecise in certain cases.  

In this paper we propose new techniques that fall into 
two categories. Techniques in the first category improve 
the accuracy of the estimates. Our contribution in this 
category includes the observation that progress indicators 
can profit from defining segments at a finer granularity 
than that used in [4, 9], and the observation that even the 
simple approach of using the optimizer’s estimate of 
whether a segment is CPU or I/O bound can substantially 
increase the accuracy of a progress indicator.  

Techniques in the second category provide new 
functionality that is not covered in [4, 9]. Specifically, we 
present new techniques that allow progress indicators to 
do a reasonable job of estimating progress in the presence 
of sort operators, set operators, and correlated sub-queries 

(all the correlated sub-queries tested in [4] were removed 
by SQL Server’s rewriting before execution [13].) 

The rest of the paper is organized as follows. In Section 
2, we give a brief review of previously proposed 
techniques for supporting progress indicators for SQL 
queries. In Section 3, we present techniques that improve 
the accuracy of the estimates provided by progress 
indicators. Section 4 covers the techniques that enable 
non-trivial progress indicators for a wider class of SQL 
queries. In Section 5, we present results from an initial 
implementation of our techniques in PostgreSQL. We 
conclude in Section 6. 
 
2. Review of Previous Work 

 
In this section, we briefly review the techniques 

proposed in [4, 9] for supporting progress indicators for 
SQL queries. We first give an overview of the techniques 
from [9] in Section 2.1. Then in Section 2.2, we describe 
one step of the procedure in some detail, as this step is 
referred to in Sections 3 and 4. In Section 2.3, we give a 
comparison between [9] and [4]. 

 
2.1. Overview of Techniques in [9] 

 
The progress indicator described in [9] divides a query 

plan into one or more segments. Each segment is defined 
as one or more consecutive operators that can be executed 
as a pipeline. Each segment can be viewed as a tree of 
operators. The query plan can be viewed as a tree of 
segments.  

The cost of a segment is the total number of bytes in its 
input and output. If an operator at the leaves or root of a 
segment is a multi-stage operator (e.g., a multi-pass sort), 
then bytes handled by this operator will be counted once 
each time they are read or written. The query cost is the 
sum of the costs of all the segments in the query plan. The 
query cost is measured in U’s, where each U represents 
one page of bytes.  

Initially, the progress indicator in [9] uses the query 
optimizer’s estimates to estimate the query cost. As a 
query runs, the progress indicator obtains more precise 
information about the inputs and outputs of the segments 
so it can continuously refine the estimated query cost (this 
is similar to the techniques used in dynamic query 
optimization [1, 3, 5, 6, 7, 10, 11].) This is accomplished 
by collecting statistics at the output of each segment and 



 

propagating the improved estimates upwards in the query 
plan.  

At all times, the progress indicator monitors the speed 
at which bytes are being processed by the query. It then 
uses this information to continuously refine the estimated 
remaining query execution time. 

 
2.2. Review of Refining Cardinality Estimates  

 
We turn now to describe how the progress indicator in 

[9] continuously refines the estimated output cardinality 
of the current segment that is being processed. For each 
segment, it defines one or two dominant inputs that are 
used to approximately indicate the progress of the 
segment. For example,  
(1) If a segment contains only one input, this input is the 

dominant input. 
(2) If a segment contains a single hash join operator, the 

dominant input is the probe relation of this operator. 
(3) If a segment contains a single sort-merge join 

operator, the dominant inputs are the two input 
relations of the sort-merge join operator. 

The progress indicator uses the percentage of the 
dominant input that has been processed to refine the 
estimated output cardinality of the current segment. We 
first discuss the case that the current segment contains one 
dominant input. Then we discuss the case that the current 
segment contains two dominant inputs. 

At the time that the current segment starts execution, 
the progress indicator gives an initial estimate E1 of its 
output cardinality. E1 is computed using the input 
cardinalities of the current segment and the optimizer’s 
cost estimation module. Suppose that the dominant input 
cardinality of the current segment is z. Assume that so far, 
the query processor has processed x of z and generated y 
output tuples. Then the percentage that the dominant input 
has been processed is p=x/z. If we assume that at any 
time, the number of output tuples that have been 
generated is proportional to the percentage that the 
dominant input has been processed, then we can estimate 
the final output cardinality of the current segment to be 
E2=y/p. In practice, this assumption may not be valid and 
so the progress indicator also considers the initial estimate 
E1. 

At any time, the progress indicator in [9] uses the 
following heuristic formula to estimate the final output 
cardinality E of the current segment: E=p×E2+(1-p)×E1. 
This heuristic formula intends to smooth fluctuations in 
the estimator and to let it gradually change from the initial 
estimate (when the current segment just starts execution, 
and we know nothing about the actual segment output 
cardinality) to the actual segment output cardinality 
(when the current segment finishes execution, we know 
this quantity exactly.) 

Recall that a segment containing a sort-merge join 
operator has two dominant inputs. In this case, once the 
query processor reaches the end of either dominant input, 
the sort-merge join (and thus the segment) immediately 
finishes execution. Therefore, the progress indicator needs 
to use the dominant input that is being scanned relatively 
faster to decide the percentage p of the two dominant 
inputs that has been processed [16].  

 
2.3. Comparison between [9] and [4] 

 
In general, [4] and [9] use similar techniques. For 

example:  
(1) The “pipeline” in [4] is equivalent to the “segment” 

in [9].  
(2) The “driver node” in [4] is equivalent to the 

“dominant input” in [9].  
(3) The technique in [4] of counting tuples (or the 

number of getnext() calls) is similar to the technique 
in [9] of counting tuple bytes.  

(4) The technique in [4] of handling spills is similar to 
the technique in [9] of counting the same byte 
multiple times, once for each time the byte is 
logically read or written. 

(5) [4] assumes that the actual work done per tuple is the 
same across all operators in the query plan. [9] 
assumes that all future segments process tuples at the 
same speed. 

As a result, most of the techniques we propose in this 
paper as extensions to [9] have analogues that could be 
used with the approach proposed in [4].  

The main differences between [4] and [9] are:  
(1) In refining the estimated cardinalities, [4] uses a 

method based on refining upper bounds and lower 
bounds, while [9] uses a method based on linear 
interpolation.  

(2) In estimating the completed percentage, [4] considers 
all operators in the query plan and uses the driver 
node hypothesis, while [9] only considers the 
segment inputs and outputs. 

(3) [4] does not try to predict the remaining query 
execution time. 

It would be an interesting area of future work to 
investigate how these three differences impact the utility 
of the techniques proposed in this paper for the progress 
indicator proposed in [4]. 

 
3. Improving the Accuracy of Predictions 

 
In this section, we describe two new techniques that 

improve the accuracy of the estimates.  
 
 
 
 



 

3.1. Refined Definition of Segments 
 
[9] defines a segment as one or more consecutive 

operators that can be executed as a pipeline. According to 
this definition, one segment can contain multiple join 
operators. In this case, this definition is too coarse and 
makes it difficult for the progress indicator to provide 
precise estimates. In the following, we use two examples 
to illustrate the point. 
Example 1. Consider the query plan shown in Figure 1. 
This query plan computes a three-table join of relations A, 
B, and C, where the join condition is A.a=B.b=C.c and 
each relation has been pre-sorted on the join attribute. 
This query plan contains only one segment with two sort-
merge join operators. (We adopt the convention in [9] of 
using ovals to represent segments.) 
 
 
 
 
 
 
 

Figure 1. Query plan in Example 1. 
 
For a segment containing multiple join operators, [9] 

defines the dominant input(s) according to the lowest-
level join operator. For example, consider the segment of 
the query plan in Figure 1. [9] defines the dominant inputs 
to be A and B. Suppose at some point, the percentages of 
the three relations that have been processed are: pA=2% 
for A, pB=5% for B, and pC=90% for C. Then as reviewed 
in Section 2, in estimating the output cardinality (and also 
the cost) of the segment, [9] assumes that max(pA, 
pB)=5% of the segment has been processed. However, in 
this case, it is more reasonable to assume that max(pA, pB, 
pC)=90% of the segment has been processed. This is 
because once we reach the end of either A, B, or C, 
whichever is first, the segment immediately finishes 
execution. 
Example 2. Consider the query plan shown in Figure 2. 
This query plan contains only one segment with two 
nested loops join operators. In estimating the cost of the 
segment (and thus the query cost), we need to estimate the 
number of times that relation C will be index-scanned. 
That is, we need to estimate the input cardinality of the 
index nested loops join operator.  

 
 
 
 
 
 

 
Figure 2. Query plan in Example 2. 

 
During query execution, [9] only collects statistics at 

the output of each segment. Hence, no statistics are 
collected about the input cardinality of the index nested 
loops join operator. This prevents us from continuously 
refining the estimated segment cost (and thus the query 
cost.) 

From the above two examples, we can see that in order 
to improve the accuracy of the estimates provided by the 
progress indicator, we need to define segments at a finer 
granularity so that at most one join operator exists in each 
segment.  

Therefore, we refine the definition of segments as 
follows. A segment contains one or more consecutive 
operators that can be executed as a pipeline, while at most 
one operator among these operators is a join operator. For 
a pipeline that connects two join operators, the boundary 
of the two segments, each containing one of these two 
join operators, is defined at the input of the upper-level 
join operator.  

According to this refined definition of segments, the 
query plan in Example 1 now contains two segments, as 
shown in Figure 3. The case with the query plan in 
Example 2 is similar. 
 
 
 
 
 
 
 

Figure 3. Query plan in Example 1 with redefined 
segments. 

 
Using this refined definition of segments, when we 

compute the query cost, if the output of a segment S is 
pipelined as the input to the next segment, then the bytes 
produced by segment S are neither counted as they are 
output by segment S nor counted as they are input by the 
next segment. 

[9] propagates the improved estimates upwards in the 
query plan to continuously refine the estimated query cost. 
However, if we use the refined definition of segments, 
then for multiple consecutive segments that can be 
executed as a pipeline, we may need to propagate the 
improved estimates downwards in the query plan to 
continuously refine the estimated query cost. For example, 
in Example 1, the relative speed at which relation C is 
scanned will influence the cost of scanning A and B. This 
is because once we reach the end of C, we can stop 
scanning A and B immediately. The general discussion is 
straightforward and thus omitted here. 
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3.2. Predicting Work Unit Processing Speed 
 
In [9], both the estimated query cost and the current 

query execution speed are measured in U’s. Each U 
represents one unit of work that is equal to that required 
to process one page of bytes. The current query execution 
speed is measured as the rate at which U’s are being 
processed. 

[9] assumes that all future segments process U’s at the 
same speed. This assumption can be misleading if 
segments in the query plan have radically different 
performance characteristics. For example, consider a two-
segment plan, in which segment S1 feeds segment S2. If S1 
processes U’s more slowly than S2 (perhaps S1 is I/O-
intensive whereas S2 has a high buffer pool hit rate), then 
while S1 runs the progress indicator will overestimate the 
time it will take to run S2. 

To address this problem, we explicitly consider the fact 
that different future segments may process U’s at different 
speeds and try to predict such speeds. In general, for each 
U of a segment S, the speed at which U will be processed 
can be represented as a function f(sp, ss), where sp is the 
property of segment S (e.g., how expensive are the 
operators in segment S), and ss is the system state at the 
time U will be processed (e.g., the load on the system, the 
buffer pool contents, etc.). The better we can predict this 
function, the more precise the remaining query execution 
time estimated by the progress indicator.  

Of course, in general, providing an accurate and 
detailed implementation of f(sp, ss) is a daunting task that 
may not be desirable or even feasible. Our goal in this 
paper is not to define this function; instead, we propose a 
simple approximation that is intended to do better than the 
“uniform processing rate” assumption used in [9]. 

In a traditional optimizer [15], the cost of an operator is 
defined as I/O_cost+CPU_cost. There, CPU_cost=W×N, 
where W is a weighting factor and N is the number of 
tuples processed. The weighting factor W converts I/O 
and CPU costs to a common “currency”, which in the 
PostgreSQL optimizer is “number of page reads/writes.” 
Depending on whether or not I/O_cost>CPU_cost, we 
define the operator as either I/O-intensive operator or 
CPU-intensive operator. 

[9] defines the cost of a segment S as the total number 
of bytes input into/output by S. For each input I of the 
segment S, we define the number of bytes input into S as 
the cost of the segment input I. We define the cost of the 
segment output similarly. Then the cost of the segment S 
is the sum of the costs of the segment inputs and the cost 
of the segment output. 

For each segment input I, consider the operator Op that 
is the parent of the input I in the segment. Our key 
heuristic is that according to the above definition, the cost 
of the segment input I is proportional to either the 

I/O_cost or the CPU_cost of Op, depending on whether 
Op is I/O-intensive or CPU-intensive.  

Based on this heuristic, we redefine the cost of the 
segment input as follows: 
(1) If the operator Op is a CPU-intensive operator, we 

use the CPU_cost (in U) of Op as the cost of the 
segment input I. 

(2) If the operator Op is an I/O-intensive operator, we 
use the I/O_cost (in U) of Op as the cost of the 
segment input I. 

Then we use the same method in [9] to measure the 
current query execution speed and estimate the remaining 
query execution time.  

There is an interesting question: at run time, should the 
progress indicator revisit the optimizer’s estimate of 
whether a segment is I/O or CPU intensive? It is certainly 
possible that this could improve estimates (perhaps the 
optimizer was anticipating an I/O-intensive scan but the 
relation was in the buffer pool when the scan actually 
occurred), although we did not pursue this in our current 
implementation.  
 
4. Improving the Coverage of the Progress 

Indicator 
 
In this section, we describe the three techniques that 

provide new functionality and enable the progress 
indicator to accurately handle wider classes of SQL 
queries. One reasonable question at this point is whether 
or not the job is “finished”; that is, are there other aspects 
of the SQL language that are not covered and still require 
future work? 

This turns out to be difficult to answer. The issue is that 
progress indicators cannot really be said to “work” for 
some classes of queries and “not work” for others – it is 
more precise to say that they accurately predict the 
progress for some classes of queries and are less 
successful for others. 

Perhaps this can best be explained by a categorization 
of the kinds of segments a progress indicator might hope 
to handle well. One possible categorization is into the 
following five patterns: 
(1) Pattern 1: The segment contains only one input and 

the per-tuple cost of the operators in the segment is 
small and predictable.  

(2) Pattern 2: The segment contains two inputs, one of 
which is the dominant input. 

(3) Pattern 3: The segment contains two inputs, both of 
which are dominant inputs. 

(4) Pattern 4: The segment contains a multi-stage 
operator. The cost of the segment depends on the 
number of stages required for this operator. 

(5) Pattern 5: The segment contains an expensive 
operator that needs to be evaluated once for each 



 

input tuple. The cost of the operator may vary from 
tuple to tuple and is hard to predict. 

Note that this categorization is not exhaustive and a 
segment could in fact belong to several patterns. 

[9] has already proposed techniques that work well for 
Pattern 1 (e.g., a segment with a selection operator), 
Pattern 2 (e.g., a segment with a hash join operator), and 
Pattern 3 (e.g., a segment with a sort-merge join operator.) 
The techniques in that paper are less successful at 
handling segments from Patterns 4 and 5. These 
previously proposed techniques could be applied – for 
example, one could treat a multi-stage operator as a 
monolithic single stage operator, and return some 
(possibly inaccurate or infrequently revised) estimate to 
the user. Or one could ignore the subtle issues in a Pattern 
5 segment by assuming some average cost per tuple and 
never revising this estimate, thus treating a Pattern 5 
segment as if it were a simple Pattern 1 segment. 

Our point in this paper is that Patterns 1 through 3 are 
not sufficient, and that by explicitly considering Patterns 
4 and 5 we can substantially improve the accuracy and 
responsiveness of a progress indicator. We demonstrate 
this by considering specific examples of operators in 
Pattern 4 and 5 segments. Whether or not further 
refinements of this categorization are useful is an 
interesting area for future work. 
 
4.1. Refining the Estimated Cost of a Sort 

Operation 
 
A progress indicator needs to continuously refine the 

estimated query cost. This is achieved by continuously 
refining the estimated costs of the segments in the query 
plan. However, [9] does not show how to continuously 
refine the estimated cost of a segment during the 
execution of a multi-pass sort operator (Pattern 4.) In this 
section, we present a solution to this problem. For ease of 
description, we assume that: 
(1) The multi-pass sort operator is the only operator in 

the segment.  
(2) The multi-pass sort operation does not reduce the 

number of tuples.  
The extension to the general case is straightforward. 

To compute the cost of a multi-pass sort operation, we 
need to know: 
(1) The number of sorted runs generated during the first 

pass.  
(2) The sizes of the sorted runs generated during the first 

pass.  
There are two possible cases: 

Case 1. The initial sorting algorithm generates sorted runs 
as large as the allotted buffer space. Then the number and 
the sizes of the sorted runs can easily be computed once 
the input size and buffer space are known.  

Case 2. The initial sorting algorithm generates sorted runs 
of varying length depending upon properties of the input 
(this is the case, for example, with replacement sort [14, 
page 428; 8, Section 5.4].) In this case, we need to 
continuously refine both the estimated number and the 
estimated sizes of the sorted runs that will be generated at 
the end of the first pass. 

We focus our attention on the first pass of the multi-
pass sort operation. Our solution is as follows: 
(1) We conceptually think of each sorted run as an output 

tuple of the segment. Then we can use the same 
method in [9] that is used to estimate the output 
cardinality of the current segment to estimate the 
number of sorted runs that will be generated at the 
end of the first pass of the sort operation. (That is, we 
use a linear combination of the optimizer’s estimate 
of the number of sorted runs, and the observed 
number of sorted runs generated by the percentage of 
input processed at the current point in time.) 

(2) For sorted runs that have already been generated, we 
know their exact sizes. Let T denote the total size of 
the input that has not been processed. Let Es denote 
the estimated number of sorted runs that have not 
been generated. We estimate each sorted run that has 
not been generated to be of the same size T/Es. 

 
4.2. Refining the Estimated Output Cardinality of 

a Segment that Contains a Set Operator 
 
In this section, we discuss how to continuously refine 

the estimated output cardinality of a segment that contains 
a set operator. How to continuously refine the estimated 
cost of a segment that contains a set operator is similar 
and thus omitted here. SQL supports three set operations: 
union, intersection, and set-difference. In a typical query 
plan, intersection is implemented with a join operator [14]. 
There are many alternatives for evaluating union and set-
difference, and due to space constraints we focus only on 
an illustrative pair of ways to estimate the progress of the 
set-difference operator.  

Suppose we want to compute B-A. Two commonly used 
methods include the hashing-based method and the 
sorting-based method [14, page 469]. We first discuss the 
hashing-based method in Section 4.2.1. Then we discuss 
the sorting-base method in Section 4.2.2.  

Before we start the discussion, we further refine the 
definition of segments as follows. A segment contains one 
or more consecutive operators that can be executed as a 
pipeline, while at most one operator among these 
operators is a join operator or a set operator. The reason 
for this refinement is that, as discussed below, a set 
operator behaves much like a join operator. (Recall that as 
discussed in Section 3.1, each segment contains at most 
one join operator.) 
 



 

4.2.1. Hashing-based Method. The hashing-based 
method works as follows. We build a hash table H for A. 
Then we scan B. For each tuple tB of B, we probe the hash 
table H. If tB∉A, we write tB to the result. Therefore, a set-
difference operator that is implemented with the hashing-
based method behaves much like a hash join operator 
(Pattern 2.) We can use the same method in [9] that is 
used to handle a segment that contains a hash join 
operator to handle a segment that contains a set-difference 
operator implemented with the hashing-based method 
(e.g., the dominant input of the segment is the probe 
relation.)  

 
4.2.2. Sorting-based Method. The sorting-based method 
works as follows. We first sort A, then sort B. Then we 
merge the sorted A and B. During the merging pass, we 
only write tuples of B to the result, after checking that 
they are not in A. Therefore, a set-difference operator that 
is implemented with the sorting-based method behaves 
much like a sort-merge join operator (Pattern 3.) We can 
use the same method in [9] that is used to handle a 
segment that contains a sort-merge join operator to handle 
a segment that contains a set-difference operator 
implemented with the sorting-based method (e.g., the 
segment contains two dominant inputs that are the two 
inputs of the set-difference operator.) The only exception 
is that we need to make minor changes to the formula that 
is used to estimate the output cardinality of the segment. 

We use an example to illustrate the point. Consider two 
relations A and B that have already been sorted. When we 
compute a sort-merge join between A and B, once we 
reach the end of either A or B, the sort-merge join 
immediately finishes execution. However, when we 
compute B-A, there are two possible cases: 
(1) If we reach the end of B first, the set-difference 

operation immediately finishes execution. 
(2) If we reach the end of A first, we still need to 

continue to output the remaining tuples in B, as these 
tuples belong to the result of B-A. 

Therefore, we need to use a different formula from what 
is used for a sort-merge join operation to compute the 
estimate E2 of |B-A| (E2 is defined in Section 2.) Here, |R| 
denotes the cardinality of set R. Suppose that we have 
processed x tuples from A and y tuples from B. We found 
that among those y tuples of B, z tuples are not in A. Let 
qA=x/|A| and qB=y/|B|. Then we use the same formula as 
that used in [9] to decide the percentage p: p=max(qA, qB), 
which indicates the progress of the dominant input that is 
being scanned relatively faster.  

Assume that at any time before we reach the end of 
either A or B, both the number of scanned B tuples that 
are not in A and the number of scanned B tuples are 
proportional to the percentage p. Then we can estimate 
that when we reach the end of either A or B, whichever is 

first, we will find that E3=z/p scanned B tuples are not in 
A. Also: 
(1) If qA>qB, we reach the end of A first and (1-qB/p)×|B| 

B tuples have not been scanned.  
(2) If qA≤qB, we reach the end of B first and all B tuples 

have been scanned. 
That is, in either case, we can estimate that at that time, 
E4=(1-qB/p)×|B| B tuples have not been scanned and these 
B tuples are also not in A. Therefore, we can estimate |B-
A| to be E2=E3+E4.  
 
4.2.3. Introducing Segment Boundaries. In general, the 
output of a set operator can be pipelined to the next 
operator in the query plan. In this case, we need to divide 
the segment that contains the set operator into two 
segments, where the boundary of these two segments is 
defined at the output of the set operator. We use the 
following example to illustrate the point. 
Example 3. Consider the query plan shown in Figure 4. 
Assume that both the set-difference operator and the 
aggregate operator with a group by clause are 
implemented using the sorting-based method [14]. Also, 
both relations A and B have been pre-sorted and the 
output of the set-difference operator is pipelined to the 
aggregate operator. Then if we do not introduce the 
segment boundary between the set-difference operator 
and the aggregate operator, the query plan contains only 
one segment. 
 

 
 
 
 

Figure 4. Query plan in Example 3. 
 

When estimating the output cardinality of the segment, 
we can treat the aggregate operator with a group by clause 
like a selection operator σ [4]. The two dominant inputs 
of the segment are A and B. 

Suppose that we have processed x tuples from A and y 
tuples from B. Also, we have generated z aggregate 
groups. We cannot use the method in [9] that is reviewed 
in Section 2.2 to estimate the final number of aggregate 
groups. This is because if we reach the end of A first, the 
remaining tuples in B can still generate new aggregate 
groups. However, these B tuples are not considered in the 
method in [9]. Also, as discussed above, we can estimate 
when we reach the end of A, how many B tuples have not 
been scanned. But it is difficult to estimate how many 
new aggregate groups will be generated from the 
remaining tuples in B (recall that we do not collect 
statistics inside segments [9].) 

Therefore, we need to divide the segment that contains 
the set operator into two segments, as shown in Figure 5. 

B (table-scan) A (table-scan) 

set-difference 

aggregation with group by 



 

Then we can continuously refine the estimated output 
cardinalities of both segments easily. 

 
 
 
 
 

Figure 5. Query plan in Example 3 with redefined 
segments. 

 
4.3. Handling Nested Queries 

 
In this section, we describe a method for handling 

nested queries. Many nested queries (including all 
uncorrelated sub-queries) can be rewritten into equivalent 
un-nested queries, so they do not need any new 
techniques. In this section, we focus on techniques to 
handle correlated sub-queries that are not rewritten into 
uncorrelated sub-queries. The question of which queries 
can be rewritten is orthogonal to our discussion; our goal 
is to provide progress indicator techniques that work 
whenever an RDBMS decides to run a query plan 
containing a correlated sub-query, not to determine which 
query plans must be run as correlated sub-queries. As 
long as there are some query plans that are not rewritten, 
techniques along these lines will be needed. 

In general, a nested query can have multiple levels. In 
our discussion, we focus on the top-level query and the 
second-level sub-query. All the deeper level sub-queries 
are embedded in the second-level sub-query. Similarly, 
while a nested query can contain multiple second-level 
sub-queries, in our discussion, we assume that each nested 
query contains only one second-level sub-query. It is 
straightforward to extend our techniques to handle 
multiple second-level sub-queries. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. A simplified query plan for a nested query 

Q with a correlated second-level sub-query. 
 

Consider a multi-level query whose second-level sub-
query is correlated with the top-level query (Pattern 5.) To 

facilitate our description, when we draw the query plan, 
we do not show the second-level sub-query in detail. 
Rather, we use a bold selection operator (  ) to denote 
the selection condition that is evaluated based on the 
second-level sub-query. The content of the second-level 
sub-query is “hidden” in the bold selection operator. We 
call such a query plan a simplified query plan. For 
example, Figure 6 shows the simplified query plan for a 
multi-level query Q with a correlated second-level sub-
query. 

If we think of the bold selection operator as a normal 
selection operator, then the simplified query plan looks 
the same as a query plan for an un-nested query. Hence, 
we can use the same techniques in [9] to deal with the 
simplified query plan. However, there is a problem: the 
cost of evaluating the second-level sub-query is not 
counted, which can lead to very inaccurate estimates of 
progress. 

To incorporate the cost of the sub-query, we divide the 
segment containing the bold selection operator into two 
segments, where the boundary of these two segments is 
defined at the input to the bold selection operator. For 
example, as shown in Figure 7, we divide the segment G3 
in Figure 6 into two segments: S3 and S4. 

 
 
 
 
 
 
 
 
 

 
Figure 7. A simplified query plan for the nested 

query Q with redefined segments. 
 
When we compute the cost of the segment S that 

contains the bold selection operator, we take into account 
the cost Ctotal of evaluating the second-level sub-query for 
all the input tuples of the bold selection operator.  

We consider two ways to continuously refine the 
estimated Ctotal, which we call the “white box” method 
and the “black box” method. In the following, we first 
give an overview of both methods and explain why we 
prefer the black box method in this paper. Then we 
describe the black box method in detail. 
(1) White box method: We treat the second-level sub-

query as a normal query. We do the following two 
operations simultaneously. 
(a) Operation 1: Suppose we are currently 

processing the input tuple t of the bold selection 
operator. During the evaluation of the second-
level sub-query, we use the techniques in [9] to 
continuously refine the estimated evaluation cost 

Query Q: 
select A.a, A.e, A.h, B.b, B.k, C.m 
from A, B, C 
where A.a=B.b and B.d=C.c and 
           A.e=(select D.f from D where D.g=A.h and D.j=B.k); 
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of the second-level sub-query (for the input tuple 
t.) 

(b) Operation 2: Based on the statistics collected 
during previous evaluations of the second-level 
sub-query, for each future input tuple t′ of the 
bold selection operator, we use some method to 
continuously refine the estimated evaluation cost 
of the second-level sub-query. 

Ctotal is estimated as 

∑=
processedbeenhasthatttupleinput

ttotal CC  

∑
′

′+
processedbeingcurrentlyisorprocessedbeennothasthatttupleinput

tC . 

For any input tuple t of the bold selection operator, Ct 
represents either the observed evaluation cost or the 
estimated evaluation cost of the second-level sub-
query for tuple t, depending on whether or not tuple t 
has been processed. 

(2) Black box method: We treat the second-level sub-
query as a black box. We do the following two 
operations simultaneously. 
(a) Operation 1: When we are evaluating the 

second-level sub-query for an input tuple of the 
bold selection operator, we observe the 
evaluation cost rather than continuously refining 
the estimated evaluation cost. 

(b) Operation 2: We use the previously observed 
evaluation costs of the second-level sub-query to 
continuously refine the estimated Cavg, which is 
the average cost of evaluating the second-level 
sub-query once. 

Ctotal is estimated as Ctotal=N×Cavg, where N is the 
input cardinality of the bold selection operator. 

Compared to the white box method, the black box 
method is simpler and less expensive. In our experiments, 
which are described in Section 5, we show that the black 
box method works well for nested queries when the 
correlated sub-query is evaluated many times and each 
iteration of the sub-query is relatively cheap. 

There do exist certain cases, however, where the white 
box method is more desirable than the black box method. 
For example, if the input cardinality of the bold selection 
operator is small (say, one) and the second-level sub-
query is complex and takes a long time to execute once, 
then the estimates provided by the black box method can 
be rather imprecise.  

Now we describe the black box method in detail. We 
estimate Cavg in the following way. Before the query starts 
execution, the optimizer gives an estimate E1 of the 
average cost of evaluating the second-level sub-query 
once. During query execution, we collect statistics about 
the average cost E2 of evaluating the second-level sub-
query once. For example, suppose we have evaluated the 
second-level sub-query x times and the observed total cost 

of evaluating the second-level sub-query x times is Cx, 
then E2=Cx/x. 

Assume that at some point, we have processed x input 
tuples of the bold selection operator. That is, we have 
evaluated the second-level sub-query x times. The 
percentage that the input to the bold selection operator has 
been processed is p=x/N (recall N is the input cardinality 
of the bold selection operator.) Then, as in [9], we use the 
following heuristic linear interpolation formula to 
estimate Cavg: Cavg=p×E2+(1-p)×E1.  
 
4.4 Additional Feature 
 

In certain cases, the user wants to estimate the output 
cardinality of the query. For example, if the user suspects 
that the query will return too many answers (i.e., 
information overload [2]), he/she may want to either 
refine the query or ask the RDBMS to categorize the 
query results [2]. Therefore, it would be desirable to 
continuously refine the estimated output cardinality of the 
query and display it in the progress indicator interface. 
This feature can be done easily using the techniques in [9]. 
 
5. Performance 

 
In this section, we present results from a prototype 

implementation of our techniques in PostgreSQL Version 
7.3.4 [12]. In all our tests, our prototyped progress 
indicators could be updated every ten seconds with less 
than 2% overhead.  

 
5.1. Experiment Description 

 
Our measurements were performed with the 

PostgreSQL client application and server running on a 
Dell Inspiron 4000 PC with one 600MHz processor, 
512MB main memory, one 40GB IDE disk, and running 
the Microsoft Windows XP operating system. (We 
repeated some of the experiments on a computer with a 
2.4GHz processor, 512MB main memory, and one 73GB 
SCSI disk. The results were similar, so we omit them 
here.) 

The seven relations used for the tests followed the 
schema of the standard TPC-R Benchmark relations [17]: 

customer (custkey, name, address, nationkey, phone,  
acctbal, mktsegment), 

orders (orderkey, custkey, orderstatus, totalprice,  
orderdate, ship-priority), 

lineitem (orderkey, partkey, suppkey, linenumber,  
quantity, extendedprice, discount, tax, returnflag,  
linestatus), 

part (partkey, name, mfgr, brand, type, size, container,  
retailprice). 

 
 



 

Table 1. Test data set. 
 number of tuples total size 

customer 50K 7.5MB 
orders 1.5M 114MB 
lineitem 6M 755MB 
part 1K 0.14MB 
customer_subset1 100 16KB 
customer_subset2 2 306B 
lineitem_subset 3M 378MB 
 
The customer_subset1 and customer_subset2 relations 

have the same schema as the customer relation. The 
lineitem_subset relation has the same schema as the 
lineitem relation. In our tests, on average, each customer 
tuple matches ten orders tuples on the attribute custkey. 
Each orders tuple matches four lineitem tuples on the 
attribute orderkey. We built an index on the partkey 
attribute of the lineitem relation. 

We evaluated the performance of our techniques in the 
following way: 
(1) Before we ran queries, we ran the PostgreSQL 

statistics collection program on all the seven 
relations.  

(2) We tested five queries: 
(a) Query Q1: 
select c1.*, c2.acctbal, o.orderkey, o.totalprice, 
 o.ship-priority 
from customer c1, customer_subset1 c2, orders o 
where mod(c1.custkey+c2.custkey, 100)=0 and 
 c1.custkey=o.custkey; 
(b) Query Q2: 
select * from orders order by custkey; 
(c) Query Q3: 
select * 
from lineitem l1, lineitem_subset l2 
where l1.partkey=l2.partkey and l2.orderkey>0 
order by l1.partkey; 
(d) Query Q4: 
select * 
from part p 
where p.size<(select sum(l.quantity) from lineitem l  
  where l.partkey=p.partkey); 
(e) Query Q5: 

select *  
from customer_subset2 c 
where c.acctbal<(select sum(o.totalprice+l.extendedprice)  

  from orders o, lineitem l  
  where o.orderkey=l.orderkey and 
  absolute(l.partkey)>0 and c.custkey<o.custkey); 

(3) For each query, we performed an unloaded system 
test by running the whole query on an unloaded 
system. (We also performed some loaded system 
tests. The results are similar to that presented in [9], 
so we do not present them here.)  

(4) Before we ran each test, we restarted the computer to 
ensure a cold buffer pool. (We repeated our 
experiments with a warm buffer pool. The results 
were similar, so we do not present them here.) In all 
tests, we stored the outputs from progress indicators 
into a file. 

 
5.2. Test Results for Query Q1 

 
The purpose of the test with query Q1 is to show that by 

explicitly considering the fact that different future 
segments may process U’s at different speeds, we can 
significantly improve the accuracy of the estimates 
provided by the progress indicator. 

The query plan chosen by PostgreSQL for query Q1 
contains two join operators: 
(1) The first join operator is a nested loops join operator. 

It computes the join between the customer relation 
and the customer_subset1 relation. The optimizer 
determines that this join operator is a CPU-intensive 
operator.  

(2) The second join operator is a hybrid hash join 
operator. It computes the join between the output of 
the nested loops join operator and the orders relation. 
The optimizer determines that this join operator is an 
I/O-intensive operator. 

 
 
 
 
 
 
 
 

 
 
We tested two cases. In the first case, we did not 

consider different work unit processing speeds. In the 
second case, we considered different work unit processing 
speeds. For these two cases, we show the remaining query 
execution time estimated by the progress indicator over 
time in Figure 8 and Figure 9, respectively. In each figure, 
the actual remaining query execution time is represented 
by the dashed line. 

In the second case, the estimated remaining query 
execution time is much closer to the actual remaining 
query execution time than that in the first case. This is 
because during the nested loops join, due to caching, 
bytes are processed much faster than that during the 
hybrid hash join. As a result, in the first case, during the 
nested loops join, the progress indicator significantly 
underestimates the time required for the hybrid hash join 
and thus the remaining query execution time.  

We performed another test with a query that first 
performs an index-scan, then a hybrid hash join. During 

Figure 9. Remaining query execution time estimated

over time (test for Q 1 - considering different work unit

processing speeds).
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Figure  8. Remaining query execution time estimated
over time  (te st for Q 1 - without considering different

work unit processing speeds).
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the index-scan, fetching one tuple may require up to one 
page of I/O. That is, during the index-scan, bytes are 
processed much more slowly than that during the hybrid 
hash join. In this case, by considering different work unit 
processing speeds, the progress indicator can significantly 
improve the accuracy of the estimated remaining query 
execution time. The results do not provide additional 
insights beyond the test results for query Q1 and therefore 
have been omitted.  
 
5.3. Test Results for Query Q2 

 
The purpose of the test with query Q2 is to show that 

our progress indicator can continuously refine the 
estimated cost of a sort operation. 

Query Q2 sorts the orders relation according to the 
custkey attribute. We tested two cases, one in which the 
tuples in the orders relation were in random order, the 
other in which they were almost sorted on the custkey 
attribute. 

 
 

 
 
 
 
 
 
 

For these two cases, we show the query cost estimated 
by the progress indicator over time in Figure 10 and 
Figure 11, respectively. Each figure contains (1) a 
horizontal dotted line that represents the exact query cost, 
and (2) a vertical dashed-dotted line that represents the 
time that the first pass of sorting finishes. 

PostgreSQL uses replacement sort. Hence, the query 
cost depends on the order that tuples are arranged in the 
orders relation. In both cases, at the beginning of query 
execution, the progress indicator starts with the same 
query cost estimated by the optimizer. Before the first 
pass of sorting finishes, the progress indicator 
continuously refines the estimated number and sizes of 
the sorted runs that will be generated at the end of the first 
pass. Hence, the query cost estimated by the progress 
indicator continuously approaches the exact query cost. 
After the first pass of sorting finishes, we know the exact 
values of the number and sizes of the sorted runs. Hence, 
we know the exact query cost. 

In the randomly ordered case, at the beginning of query 
execution, the optimizer gives a fairly good estimate of 
the number (and also the sizes) of the sorted runs that will 
be generated at the end of the first pass. Hence, the 
progress indicator can estimate the query cost fairly 
precisely from the first second and only needs to make 
minor adjustment to this estimate during query execution. 

In the almost sorted case, at the beginning of query 
execution, the optimizer overestimates the number of 
sorted runs that will be generated at the end of the first 
pass by fifty times (since the tuples in the orders relation 
are almost sorted.) As a result, the optimizer significantly 
overestimates the query cost. Hence, during query 
execution, the progress indicator needs to make major 
adjustment to the estimated query cost. 
 
5.4. Test Results for Query Q3 

 
The purpose of the test with query Q3 is to show that 

our progress indicator can continuously refine the 
estimates related to a sort-merge join operation. 

The query plan chosen by PostgreSQL for query Q3 
computes a sort-merge join between the lineitem relation 
and the lineitem_subset relation. The sort key is partkey. 
We first sort the lineitem relation (the first sorting phase.) 
Then we sort the lineitem_subset relation (the second 
sorting phase.) Finally, we merge the sorted result of the 
lineitem relation and the sorted result of the 
lineitem_subset relation together (the merging phase.) 

In the lineitem relation, the partkey attribute values are 
evenly distributed between 1 and 200K. In the 
lineitem_subset relation, except for one tuple whose 
partkey=200K and orderkey=0, the partkey attribute 
values are evenly distributed between 1 and 100K. Hence, 
after evaluating the select condition l2.orderkey>0, the 
partkey attribute values are evenly distributed between 1 
and 100K in the sorted result of the lineitem_subset 
relation. However, PostgreSQL’s optimizer does not 
know this and thinks that the maximal partkey attribute 
value in the sorted result of the lineitem_subset relation is 
still 200K. 

Figure 12 shows the query cost estimated by the 
progress indicator over time, with the exact query cost 
indicated by the horizontal dotted line. There are two 
vertical dashed-dotted lines: the first one represents the 
time when the first sorting phase finishes and the second 
sorting phase starts, and the second one represents the 
time when the second sorting phase finishes and the 
merging phase starts.  

  
 
 
 
 
 
 

 
 
The behavior of the two sorting phases is similar to that 

discussed in Section 5.3. Hence, we focus our discussion 
on the merging phase. During the merging phase, the 
query cost estimated by the progress indicator keeps 

Figure 10. Q uery cost estimated over time

(test for Q 2 - randomly ordered case).
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Figure  11. Q uery cost estimated over

time (test for Q 2 - almost sorted case).

50000

60000

70000

80000

90000

100000

110000

120000

0 20 40 60 80 100
t ime (seconds)

es
tim

a
te

d
 q

u
er

y 
co

st
 (

U
s)

Figure 12. Q uery cost estimated over time (test for Q 3).
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decreasing until it reaches the exact query cost. The 
reason is as follows. Before the merging phase starts, the 
optimizer thinks that in order to complete the merging 
phase, we need to reach both the end of the sorted result 
of the lineitem relation and the end of the sorted result of 
the lineitem_subset relation. However, during the merging 
phase, the progress indicator gradually discovers that in 
order to complete the merging phase, we only need to 
scan half of the sorted result of the lineitem relation (since 
100K/200K=50%.)  

PostgreSQL uses the sorting-based method to 
implement set operations. We performed several tests for 
queries that contain set operations. The results are similar 
to those for queries Q2 and Q3 and therefore have been 
omitted. 
 
5.5. Test Results for Query Q4 

 
The purpose of the test with query Q4 is to show that for 

those nested queries containing correlated sub-queries, the 
black box method works well when the correlated sub-
query is evaluated many times and each iteration of the 
sub-query is relatively cheap. 

Query Q4 is a nested query that contains a correlated 
sub-query. The query plan chosen by PostgreSQL for the 
correlated sub-query is an index-scan on the lineitem 
relation, whose cost depends heavily on the number of 
lineitem tuples that match the partkey attribute value of 
the input part tuple.  

There is correlation between the part relation and the 
lineitem relation. On average, for each partkey attribute 
value existing in the lineitem relation, there are 30 
lineitem tuples whose partkey attribute is of this value. 
However, on average, for each partkey attribute value 
existing in the part relation, there are only 5 lineitem 
tuples whose partkey attribute is of this value. Because of 
the correlations in the data, PostgreSQL’s optimizer 
significantly overestimates the evaluation cost of the 
correlated sub-query (and thus the query cost.) 
 

 
 
 
 
 

 
 
 
 
Figure 13 shows the query cost estimated by the 

progress indicator over time, with the exact query cost 
indicated by the horizontal dotted line. We can see that 
the query cost estimated by the progress indicator keeps 
approaching the exact query cost. This is because the part 
relation contains a large number of tuples. For each tuple, 

evaluating the correlated sub-query once takes a small 
amount of time. Each time after the correlated sub-query 
is evaluated once, the progress indicator refines the 
estimated query cost. 

Figure 14 shows the query execution speed monitored 
by the progress indicator over time. During the entire 
query execution, the monitored query execution speed 
remains much the same. 

Figure 15 shows the remaining query execution time 
estimated by the progress indicator over time, with the 
actual remaining query execution time indicated by the 
dashed line. The closer to query completion time, the 
more precise the remaining query execution time 
estimated by the progress indicator. This is because the 
closer to query completion time, the more precise the 
query cost estimated by the progress indicator. 

 
 
 
 
 
 
 
 

 
 
Figure 16 shows the progress indicator’s estimate of the 

percentage of the query that has been completed over time. 
This percentage increases with time super-linearly. This is 
because: (1) work is continuously being done at a rather 
steady speed, and (2) the query cost estimated by the 
progress indicator keeps decreasing with time.  
 
5.6. Test Results for Query Q5 

 
The purpose of the test with query Q5 is to show that for 

nested queries containing correlated sub-queries, the 
black box method does not work well if the input 
cardinality of the bold selection operator is small while 
evaluating the correlated sub-query once (for an input 
tuple) takes a long time. 

Query Q5 is a nested query that contains a correlated 
sub-query. PostgreSQL does not give a good estimate of 
the selectivity of the select condition 
absolute(l.partkey)>0 on the lineitem relation. Rather, for 
this select condition, PostgreSQL uses a default value 1/3 
as an approximation to the real selectivity. This 
approximation is far from the real selectivity, which is 1 
(since the absolute value of l.partkey is always positive.) 
Hence, PostgreSQL significantly underestimates the 
evaluation cost of the correlated sub-query (and thus the 
query cost.)  

Figure 17 shows the query cost estimated by the 
progress indicator over time, with the exact query cost 
indicated by the horizontal dotted line. There are only two 

Figure 13. Query cost estimated over time (test for Q4).
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Figure 14. Query execution speed over time (test for Q4).
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Figure 15. Remaining query execution time 
estimated over time (test for Q4).
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Figure 16. Completed percentage estimated over 
time (test for Q4).
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tuples in the customer_subset2 relation. Each time after a 
customer_subset2 tuple is processed (i.e., after the 
correlated sub-query is evaluated once), the progress 
indicator refines the estimated query cost. However, since 
evaluating the correlated sub-query once takes a long 
time, the progress indicator refines the estimated query 
cost rather infrequently. Therefore, there are two sudden 
jumps in the query cost estimated by the progress 
indicator, each corresponding to a customer_subset2 
tuple. 

 
 
 
 
 
 
 
 

 
 
Figure 18 shows the progress indicator’s estimate of the 

percentage of the query that has been completed over time. 
In general, this percentage keeps increasing with time. 
The only exception is that at 555 seconds, due to the 
sudden increase of the query cost estimated by the 
progress indicator, the estimated completed percentage 
drops suddenly.  

There is an undesirable phenomenon in Figure 18. 
Starting from 755 seconds, according to the progress 
indicator’s estimate, the query has finished execution, 
although the query keeps running until 1127 seconds. 
This is because the progress indicator underestimates the 
query cost and is unable to make up the query cost 
estimation error in time, as the progress indicator does not 
refine the estimated query cost a second time until the 
query completion time. 

From the above discussion, we can see that compared 
to the previous work in [9], our techniques improve both 
the functionality and the accuracy of progress indicator at 
a minor increase in overhead (from 1% to 2%.)  
 
6. Conclusion 

 
Progress indicators for SQL queries are a desirable 

user-interface tool in RDBMSs. However, previously 
proposed techniques for supporting progress indicators for 
SQL queries are limited in both functionality and 
accuracy. In this paper, we propose a set of techniques to 
improve previously proposed techniques so that we can 
support non-trivial progress indicators for a wider class of 
SQL queries more precisely. Our experiments confirm the 
effectiveness of our techniques. 

There is substantial scope for future work. For example: 
(1) It is a non-trivial task to make the white box method 

(or the hybrid method) for handling correlated sub-

queries work at a reasonable overhead. Also, it would 
be interesting to see if this method can bring in 
significant increase in accuracy from the user’s 
perspective.  

(2) How to support progress indicators for SQL queries 
in ORDBMSs is an interesting open problem. In this 
case, some of the challenges are: how to continuously 
refine the estimated costs of UDFs, spatial queries, 
etc. (UDFs match with Pattern 5 and hence the black 
box method may apply.) 

(3) It would be interesting to investigate how to support 
progress indicators for SQL queries in parallel 
DBMSs. One challenge in this case is how to handle 
skew on different data server nodes.  

We intend to pursue these issues in future work. 
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Figure 17. Query cost estimated over time (test for Q5).
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Figure 18. Completed percentage estimated over 
time (test for Q5).
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