

Increasing the Accuracy and Coverage of SQL Progress Indicators

Gang Luo1 Jeffrey F. Naughton2 Curt J. Ellmann2 Michael W. Watzke3
IBM T.J. Watson Research Center1 University of Wisconsin-Madison2 NCR3
luog@us.ibm.com naughton@cs.wisc.edu ellmann@wisc.edu michael.watzke@ncr.com

Abstract

Recently, progress indicators have been proposed for

long-running SQL queries in RDBMSs. Although the
proposed techniques work well for a subset of SQL
queries, they are preliminary in the sense that (1) they
cannot provide non-trivial estimates for some SQL
queries, and (2) the provided estimates can be rather
imprecise in certain cases. In this paper, we consider the
problem of supporting non-trivial progress indicators for
a wider class of SQL queries with more precise estimates.
We present a set of techniques in achieving this goal. We
report an initial implementation of these techniques in
PostgreSQL.

1. Introduction

Recently, [4, 9] proposed supporting progress

indicators for long-running SQL queries in RDBMSs. The
goal of these progress indicators is to act as a user-
interface tool so that the user can keep track of the
percentage of the SQL query that has been completed and
the remaining query execution time.

[4, 9] proposed a set of techniques to implement
progress indicators for SQL queries. They also
demonstrated that their techniques work much better than
naive alternatives for a subset of SQL queries. However,
the techniques in [4, 9] are preliminary in the sense that (1)
they do not provide non-trivial estimates for some SQL
queries, and (2) the provided estimates can be rather
imprecise in certain cases.

In this paper we propose new techniques that fall into
two categories. Techniques in the first category improve
the accuracy of the estimates. Our contribution in this
category includes the observation that progress indicators
can profit from defining segments at a finer granularity
than that used in [4, 9], and the observation that even the
simple approach of using the optimizer’s estimate of
whether a segment is CPU or I/O bound can substantially
increase the accuracy of a progress indicator.

Techniques in the second category provide new
functionality that is not covered in [4, 9]. Specifically, we
present new techniques that allow progress indicators to
do a reasonable job of estimating progress in the presence
of sort operators, set operators, and correlated sub-queries

(all the correlated sub-queries tested in [4] were removed
by SQL Server’s rewriting before execution [13].)

The rest of the paper is organized as follows. In Section
2, we give a brief review of previously proposed
techniques for supporting progress indicators for SQL
queries. In Section 3, we present techniques that improve
the accuracy of the estimates provided by progress
indicators. Section 4 covers the techniques that enable
non-trivial progress indicators for a wider class of SQL
queries. In Section 5, we present results from an initial
implementation of our techniques in PostgreSQL. We
conclude in Section 6.

2. Review of Previous Work

In this section, we briefly review the techniques

proposed in [4, 9] for supporting progress indicators for
SQL queries. We first give an overview of the techniques
from [9] in Section 2.1. Then in Section 2.2, we describe
one step of the procedure in some detail, as this step is
referred to in Sections 3 and 4. In Section 2.3, we give a
comparison between [9] and [4].

2.1. Overview of Techniques in [9]

The progress indicator described in [9] divides a query

plan into one or more segments. Each segment is defined
as one or more consecutive operators that can be executed
as a pipeline. Each segment can be viewed as a tree of
operators. The query plan can be viewed as a tree of
segments.

The cost of a segment is the total number of bytes in its
input and output. If an operator at the leaves or root of a
segment is a multi-stage operator (e.g., a multi-pass sort),
then bytes handled by this operator will be counted once
each time they are read or written. The query cost is the
sum of the costs of all the segments in the query plan. The
query cost is measured in U’s, where each U represents
one page of bytes.

Initially, the progress indicator in [9] uses the query
optimizer’s estimates to estimate the query cost. As a
query runs, the progress indicator obtains more precise
information about the inputs and outputs of the segments
so it can continuously refine the estimated query cost (this
is similar to the techniques used in dynamic query
optimization [1, 3, 5, 6, 7, 10, 11].) This is accomplished
by collecting statistics at the output of each segment and

propagating the improved estimates upwards in the query
plan.

At all times, the progress indicator monitors the speed
at which bytes are being processed by the query. It then
uses this information to continuously refine the estimated
remaining query execution time.

2.2. Review of Refining Cardinality Estimates

We turn now to describe how the progress indicator in

[9] continuously refines the estimated output cardinality
of the current segment that is being processed. For each
segment, it defines one or two dominant inputs that are
used to approximately indicate the progress of the
segment. For example,
(1) If a segment contains only one input, this input is the

dominant input.
(2) If a segment contains a single hash join operator, the

dominant input is the probe relation of this operator.
(3) If a segment contains a single sort-merge join

operator, the dominant inputs are the two input
relations of the sort-merge join operator.

The progress indicator uses the percentage of the
dominant input that has been processed to refine the
estimated output cardinality of the current segment. We
first discuss the case that the current segment contains one
dominant input. Then we discuss the case that the current
segment contains two dominant inputs.

At the time that the current segment starts execution,
the progress indicator gives an initial estimate E1 of its
output cardinality. E1 is computed using the input
cardinalities of the current segment and the optimizer’s
cost estimation module. Suppose that the dominant input
cardinality of the current segment is z. Assume that so far,
the query processor has processed x of z and generated y
output tuples. Then the percentage that the dominant input
has been processed is p=x/z. If we assume that at any
time, the number of output tuples that have been
generated is proportional to the percentage that the
dominant input has been processed, then we can estimate
the final output cardinality of the current segment to be
E2=y/p. In practice, this assumption may not be valid and
so the progress indicator also considers the initial estimate
E1.

At any time, the progress indicator in [9] uses the
following heuristic formula to estimate the final output
cardinality E of the current segment: E=p×E2+(1-p)×E1.
This heuristic formula intends to smooth fluctuations in
the estimator and to let it gradually change from the initial
estimate (when the current segment just starts execution,
and we know nothing about the actual segment output
cardinality) to the actual segment output cardinality
(when the current segment finishes execution, we know
this quantity exactly.)

Recall that a segment containing a sort-merge join
operator has two dominant inputs. In this case, once the
query processor reaches the end of either dominant input,
the sort-merge join (and thus the segment) immediately
finishes execution. Therefore, the progress indicator needs
to use the dominant input that is being scanned relatively
faster to decide the percentage p of the two dominant
inputs that has been processed [16].

2.3. Comparison between [9] and [4]

In general, [4] and [9] use similar techniques. For

example:
(1) The “pipeline” in [4] is equivalent to the “segment”

in [9].
(2) The “driver node” in [4] is equivalent to the

“dominant input” in [9].
(3) The technique in [4] of counting tuples (or the

number of getnext() calls) is similar to the technique
in [9] of counting tuple bytes.

(4) The technique in [4] of handling spills is similar to
the technique in [9] of counting the same byte
multiple times, once for each time the byte is
logically read or written.

(5) [4] assumes that the actual work done per tuple is the
same across all operators in the query plan. [9]
assumes that all future segments process tuples at the
same speed.

As a result, most of the techniques we propose in this
paper as extensions to [9] have analogues that could be
used with the approach proposed in [4].

The main differences between [4] and [9] are:
(1) In refining the estimated cardinalities, [4] uses a

method based on refining upper bounds and lower
bounds, while [9] uses a method based on linear
interpolation.

(2) In estimating the completed percentage, [4] considers
all operators in the query plan and uses the driver
node hypothesis, while [9] only considers the
segment inputs and outputs.

(3) [4] does not try to predict the remaining query
execution time.

It would be an interesting area of future work to
investigate how these three differences impact the utility
of the techniques proposed in this paper for the progress
indicator proposed in [4].

3. Improving the Accuracy of Predictions

In this section, we describe two new techniques that

improve the accuracy of the estimates.

3.1. Refined Definition of Segments

[9] defines a segment as one or more consecutive

operators that can be executed as a pipeline. According to
this definition, one segment can contain multiple join
operators. In this case, this definition is too coarse and
makes it difficult for the progress indicator to provide
precise estimates. In the following, we use two examples
to illustrate the point.
Example 1. Consider the query plan shown in Figure 1.
This query plan computes a three-table join of relations A,
B, and C, where the join condition is A.a=B.b=C.c and
each relation has been pre-sorted on the join attribute.
This query plan contains only one segment with two sort-
merge join operators. (We adopt the convention in [9] of
using ovals to represent segments.)

Figure 1. Query plan in Example 1.

For a segment containing multiple join operators, [9]

defines the dominant input(s) according to the lowest-
level join operator. For example, consider the segment of
the query plan in Figure 1. [9] defines the dominant inputs
to be A and B. Suppose at some point, the percentages of
the three relations that have been processed are: pA=2%
for A, pB=5% for B, and pC=90% for C. Then as reviewed
in Section 2, in estimating the output cardinality (and also
the cost) of the segment, [9] assumes that max(pA,
pB)=5% of the segment has been processed. However, in
this case, it is more reasonable to assume that max(pA, pB,
pC)=90% of the segment has been processed. This is
because once we reach the end of either A, B, or C,
whichever is first, the segment immediately finishes
execution.
Example 2. Consider the query plan shown in Figure 2.
This query plan contains only one segment with two
nested loops join operators. In estimating the cost of the
segment (and thus the query cost), we need to estimate the
number of times that relation C will be index-scanned.
That is, we need to estimate the input cardinality of the
index nested loops join operator.

Figure 2. Query plan in Example 2.

During query execution, [9] only collects statistics at

the output of each segment. Hence, no statistics are
collected about the input cardinality of the index nested
loops join operator. This prevents us from continuously
refining the estimated segment cost (and thus the query
cost.)

From the above two examples, we can see that in order
to improve the accuracy of the estimates provided by the
progress indicator, we need to define segments at a finer
granularity so that at most one join operator exists in each
segment.

Therefore, we refine the definition of segments as
follows. A segment contains one or more consecutive
operators that can be executed as a pipeline, while at most
one operator among these operators is a join operator. For
a pipeline that connects two join operators, the boundary
of the two segments, each containing one of these two
join operators, is defined at the input of the upper-level
join operator.

According to this refined definition of segments, the
query plan in Example 1 now contains two segments, as
shown in Figure 3. The case with the query plan in
Example 2 is similar.

Figure 3. Query plan in Example 1 with redefined
segments.

Using this refined definition of segments, when we

compute the query cost, if the output of a segment S is
pipelined as the input to the next segment, then the bytes
produced by segment S are neither counted as they are
output by segment S nor counted as they are input by the
next segment.

[9] propagates the improved estimates upwards in the
query plan to continuously refine the estimated query cost.
However, if we use the refined definition of segments,
then for multiple consecutive segments that can be
executed as a pipeline, we may need to propagate the
improved estimates downwards in the query plan to
continuously refine the estimated query cost. For example,
in Example 1, the relative speed at which relation C is
scanned will influence the cost of scanning A and B. This
is because once we reach the end of C, we can stop
scanning A and B immediately. The general discussion is
straightforward and thus omitted here.

A (table-scan) B (table-scan)

C (table-scan)

sort-merge join

π S2

S1 sort-merge join

π

A (table-scan) B (table-scan)

C (table-scan)

sort-merge join

π

sort-merge join

π

A (table-scan) B (table-scan)

C (index-scan)

index nested loops join

π

block nested loops join

π σ

3.2. Predicting Work Unit Processing Speed

In [9], both the estimated query cost and the current

query execution speed are measured in U’s. Each U
represents one unit of work that is equal to that required
to process one page of bytes. The current query execution
speed is measured as the rate at which U’s are being
processed.

[9] assumes that all future segments process U’s at the
same speed. This assumption can be misleading if
segments in the query plan have radically different
performance characteristics. For example, consider a two-
segment plan, in which segment S1 feeds segment S2. If S1
processes U’s more slowly than S2 (perhaps S1 is I/O-
intensive whereas S2 has a high buffer pool hit rate), then
while S1 runs the progress indicator will overestimate the
time it will take to run S2.

To address this problem, we explicitly consider the fact
that different future segments may process U’s at different
speeds and try to predict such speeds. In general, for each
U of a segment S, the speed at which U will be processed
can be represented as a function f(sp, ss), where sp is the
property of segment S (e.g., how expensive are the
operators in segment S), and ss is the system state at the
time U will be processed (e.g., the load on the system, the
buffer pool contents, etc.). The better we can predict this
function, the more precise the remaining query execution
time estimated by the progress indicator.

Of course, in general, providing an accurate and
detailed implementation of f(sp, ss) is a daunting task that
may not be desirable or even feasible. Our goal in this
paper is not to define this function; instead, we propose a
simple approximation that is intended to do better than the
“uniform processing rate” assumption used in [9].

In a traditional optimizer [15], the cost of an operator is
defined as I/O_cost+CPU_cost. There, CPU_cost=W×N,
where W is a weighting factor and N is the number of
tuples processed. The weighting factor W converts I/O
and CPU costs to a common “currency”, which in the
PostgreSQL optimizer is “number of page reads/writes.”
Depending on whether or not I/O_cost>CPU_cost, we
define the operator as either I/O-intensive operator or
CPU-intensive operator.

[9] defines the cost of a segment S as the total number
of bytes input into/output by S. For each input I of the
segment S, we define the number of bytes input into S as
the cost of the segment input I. We define the cost of the
segment output similarly. Then the cost of the segment S
is the sum of the costs of the segment inputs and the cost
of the segment output.

For each segment input I, consider the operator Op that
is the parent of the input I in the segment. Our key
heuristic is that according to the above definition, the cost
of the segment input I is proportional to either the

I/O_cost or the CPU_cost of Op, depending on whether
Op is I/O-intensive or CPU-intensive.

Based on this heuristic, we redefine the cost of the
segment input as follows:
(1) If the operator Op is a CPU-intensive operator, we

use the CPU_cost (in U) of Op as the cost of the
segment input I.

(2) If the operator Op is an I/O-intensive operator, we
use the I/O_cost (in U) of Op as the cost of the
segment input I.

Then we use the same method in [9] to measure the
current query execution speed and estimate the remaining
query execution time.

There is an interesting question: at run time, should the
progress indicator revisit the optimizer’s estimate of
whether a segment is I/O or CPU intensive? It is certainly
possible that this could improve estimates (perhaps the
optimizer was anticipating an I/O-intensive scan but the
relation was in the buffer pool when the scan actually
occurred), although we did not pursue this in our current
implementation.

4. Improving the Coverage of the Progress

Indicator

In this section, we describe the three techniques that

provide new functionality and enable the progress
indicator to accurately handle wider classes of SQL
queries. One reasonable question at this point is whether
or not the job is “finished”; that is, are there other aspects
of the SQL language that are not covered and still require
future work?

This turns out to be difficult to answer. The issue is that
progress indicators cannot really be said to “work” for
some classes of queries and “not work” for others – it is
more precise to say that they accurately predict the
progress for some classes of queries and are less
successful for others.

Perhaps this can best be explained by a categorization
of the kinds of segments a progress indicator might hope
to handle well. One possible categorization is into the
following five patterns:
(1) Pattern 1: The segment contains only one input and

the per-tuple cost of the operators in the segment is
small and predictable.

(2) Pattern 2: The segment contains two inputs, one of
which is the dominant input.

(3) Pattern 3: The segment contains two inputs, both of
which are dominant inputs.

(4) Pattern 4: The segment contains a multi-stage
operator. The cost of the segment depends on the
number of stages required for this operator.

(5) Pattern 5: The segment contains an expensive
operator that needs to be evaluated once for each

input tuple. The cost of the operator may vary from
tuple to tuple and is hard to predict.

Note that this categorization is not exhaustive and a
segment could in fact belong to several patterns.

[9] has already proposed techniques that work well for
Pattern 1 (e.g., a segment with a selection operator),
Pattern 2 (e.g., a segment with a hash join operator), and
Pattern 3 (e.g., a segment with a sort-merge join operator.)
The techniques in that paper are less successful at
handling segments from Patterns 4 and 5. These
previously proposed techniques could be applied – for
example, one could treat a multi-stage operator as a
monolithic single stage operator, and return some
(possibly inaccurate or infrequently revised) estimate to
the user. Or one could ignore the subtle issues in a Pattern
5 segment by assuming some average cost per tuple and
never revising this estimate, thus treating a Pattern 5
segment as if it were a simple Pattern 1 segment.

Our point in this paper is that Patterns 1 through 3 are
not sufficient, and that by explicitly considering Patterns
4 and 5 we can substantially improve the accuracy and
responsiveness of a progress indicator. We demonstrate
this by considering specific examples of operators in
Pattern 4 and 5 segments. Whether or not further
refinements of this categorization are useful is an
interesting area for future work.

4.1. Refining the Estimated Cost of a Sort

Operation

A progress indicator needs to continuously refine the

estimated query cost. This is achieved by continuously
refining the estimated costs of the segments in the query
plan. However, [9] does not show how to continuously
refine the estimated cost of a segment during the
execution of a multi-pass sort operator (Pattern 4.) In this
section, we present a solution to this problem. For ease of
description, we assume that:
(1) The multi-pass sort operator is the only operator in

the segment.
(2) The multi-pass sort operation does not reduce the

number of tuples.
The extension to the general case is straightforward.

To compute the cost of a multi-pass sort operation, we
need to know:
(1) The number of sorted runs generated during the first

pass.
(2) The sizes of the sorted runs generated during the first

pass.
There are two possible cases:

Case 1. The initial sorting algorithm generates sorted runs
as large as the allotted buffer space. Then the number and
the sizes of the sorted runs can easily be computed once
the input size and buffer space are known.

Case 2. The initial sorting algorithm generates sorted runs
of varying length depending upon properties of the input
(this is the case, for example, with replacement sort [14,
page 428; 8, Section 5.4].) In this case, we need to
continuously refine both the estimated number and the
estimated sizes of the sorted runs that will be generated at
the end of the first pass.

We focus our attention on the first pass of the multi-
pass sort operation. Our solution is as follows:
(1) We conceptually think of each sorted run as an output

tuple of the segment. Then we can use the same
method in [9] that is used to estimate the output
cardinality of the current segment to estimate the
number of sorted runs that will be generated at the
end of the first pass of the sort operation. (That is, we
use a linear combination of the optimizer’s estimate
of the number of sorted runs, and the observed
number of sorted runs generated by the percentage of
input processed at the current point in time.)

(2) For sorted runs that have already been generated, we
know their exact sizes. Let T denote the total size of
the input that has not been processed. Let Es denote
the estimated number of sorted runs that have not
been generated. We estimate each sorted run that has
not been generated to be of the same size T/Es.

4.2. Refining the Estimated Output Cardinality of

a Segment that Contains a Set Operator

In this section, we discuss how to continuously refine

the estimated output cardinality of a segment that contains
a set operator. How to continuously refine the estimated
cost of a segment that contains a set operator is similar
and thus omitted here. SQL supports three set operations:
union, intersection, and set-difference. In a typical query
plan, intersection is implemented with a join operator [14].
There are many alternatives for evaluating union and set-
difference, and due to space constraints we focus only on
an illustrative pair of ways to estimate the progress of the
set-difference operator.

Suppose we want to compute B-A. Two commonly used
methods include the hashing-based method and the
sorting-based method [14, page 469]. We first discuss the
hashing-based method in Section 4.2.1. Then we discuss
the sorting-base method in Section 4.2.2.

Before we start the discussion, we further refine the
definition of segments as follows. A segment contains one
or more consecutive operators that can be executed as a
pipeline, while at most one operator among these
operators is a join operator or a set operator. The reason
for this refinement is that, as discussed below, a set
operator behaves much like a join operator. (Recall that as
discussed in Section 3.1, each segment contains at most
one join operator.)

4.2.1. Hashing-based Method. The hashing-based
method works as follows. We build a hash table H for A.
Then we scan B. For each tuple tB of B, we probe the hash
table H. If tB∉A, we write tB to the result. Therefore, a set-
difference operator that is implemented with the hashing-
based method behaves much like a hash join operator
(Pattern 2.) We can use the same method in [9] that is
used to handle a segment that contains a hash join
operator to handle a segment that contains a set-difference
operator implemented with the hashing-based method
(e.g., the dominant input of the segment is the probe
relation.)

4.2.2. Sorting-based Method. The sorting-based method
works as follows. We first sort A, then sort B. Then we
merge the sorted A and B. During the merging pass, we
only write tuples of B to the result, after checking that
they are not in A. Therefore, a set-difference operator that
is implemented with the sorting-based method behaves
much like a sort-merge join operator (Pattern 3.) We can
use the same method in [9] that is used to handle a
segment that contains a sort-merge join operator to handle
a segment that contains a set-difference operator
implemented with the sorting-based method (e.g., the
segment contains two dominant inputs that are the two
inputs of the set-difference operator.) The only exception
is that we need to make minor changes to the formula that
is used to estimate the output cardinality of the segment.

We use an example to illustrate the point. Consider two
relations A and B that have already been sorted. When we
compute a sort-merge join between A and B, once we
reach the end of either A or B, the sort-merge join
immediately finishes execution. However, when we
compute B-A, there are two possible cases:
(1) If we reach the end of B first, the set-difference

operation immediately finishes execution.
(2) If we reach the end of A first, we still need to

continue to output the remaining tuples in B, as these
tuples belong to the result of B-A.

Therefore, we need to use a different formula from what
is used for a sort-merge join operation to compute the
estimate E2 of |B-A| (E2 is defined in Section 2.) Here, |R|
denotes the cardinality of set R. Suppose that we have
processed x tuples from A and y tuples from B. We found
that among those y tuples of B, z tuples are not in A. Let
qA=x/|A| and qB=y/|B|. Then we use the same formula as
that used in [9] to decide the percentage p: p=max(qA, qB),
which indicates the progress of the dominant input that is
being scanned relatively faster.

Assume that at any time before we reach the end of
either A or B, both the number of scanned B tuples that
are not in A and the number of scanned B tuples are
proportional to the percentage p. Then we can estimate
that when we reach the end of either A or B, whichever is

first, we will find that E3=z/p scanned B tuples are not in
A. Also:
(1) If qA>qB, we reach the end of A first and (1-qB/p)×|B|

B tuples have not been scanned.
(2) If qA≤qB, we reach the end of B first and all B tuples

have been scanned.
That is, in either case, we can estimate that at that time,
E4=(1-qB/p)×|B| B tuples have not been scanned and these
B tuples are also not in A. Therefore, we can estimate |B-
A| to be E2=E3+E4.

4.2.3. Introducing Segment Boundaries. In general, the
output of a set operator can be pipelined to the next
operator in the query plan. In this case, we need to divide
the segment that contains the set operator into two
segments, where the boundary of these two segments is
defined at the output of the set operator. We use the
following example to illustrate the point.
Example 3. Consider the query plan shown in Figure 4.
Assume that both the set-difference operator and the
aggregate operator with a group by clause are
implemented using the sorting-based method [14]. Also,
both relations A and B have been pre-sorted and the
output of the set-difference operator is pipelined to the
aggregate operator. Then if we do not introduce the
segment boundary between the set-difference operator
and the aggregate operator, the query plan contains only
one segment.

Figure 4. Query plan in Example 3.

When estimating the output cardinality of the segment,
we can treat the aggregate operator with a group by clause
like a selection operator σ [4]. The two dominant inputs
of the segment are A and B.

Suppose that we have processed x tuples from A and y
tuples from B. Also, we have generated z aggregate
groups. We cannot use the method in [9] that is reviewed
in Section 2.2 to estimate the final number of aggregate
groups. This is because if we reach the end of A first, the
remaining tuples in B can still generate new aggregate
groups. However, these B tuples are not considered in the
method in [9]. Also, as discussed above, we can estimate
when we reach the end of A, how many B tuples have not
been scanned. But it is difficult to estimate how many
new aggregate groups will be generated from the
remaining tuples in B (recall that we do not collect
statistics inside segments [9].)

Therefore, we need to divide the segment that contains
the set operator into two segments, as shown in Figure 5.

B (table-scan) A (table-scan)

set-difference

aggregation with group by

Then we can continuously refine the estimated output
cardinalities of both segments easily.

Figure 5. Query plan in Example 3 with redefined
segments.

4.3. Handling Nested Queries

In this section, we describe a method for handling

nested queries. Many nested queries (including all
uncorrelated sub-queries) can be rewritten into equivalent
un-nested queries, so they do not need any new
techniques. In this section, we focus on techniques to
handle correlated sub-queries that are not rewritten into
uncorrelated sub-queries. The question of which queries
can be rewritten is orthogonal to our discussion; our goal
is to provide progress indicator techniques that work
whenever an RDBMS decides to run a query plan
containing a correlated sub-query, not to determine which
query plans must be run as correlated sub-queries. As
long as there are some query plans that are not rewritten,
techniques along these lines will be needed.

In general, a nested query can have multiple levels. In
our discussion, we focus on the top-level query and the
second-level sub-query. All the deeper level sub-queries
are embedded in the second-level sub-query. Similarly,
while a nested query can contain multiple second-level
sub-queries, in our discussion, we assume that each nested
query contains only one second-level sub-query. It is
straightforward to extend our techniques to handle
multiple second-level sub-queries.

Figure 6. A simplified query plan for a nested query

Q with a correlated second-level sub-query.

Consider a multi-level query whose second-level sub-
query is correlated with the top-level query (Pattern 5.) To

facilitate our description, when we draw the query plan,
we do not show the second-level sub-query in detail.
Rather, we use a bold selection operator () to denote
the selection condition that is evaluated based on the
second-level sub-query. The content of the second-level
sub-query is “hidden” in the bold selection operator. We
call such a query plan a simplified query plan. For
example, Figure 6 shows the simplified query plan for a
multi-level query Q with a correlated second-level sub-
query.

If we think of the bold selection operator as a normal
selection operator, then the simplified query plan looks
the same as a query plan for an un-nested query. Hence,
we can use the same techniques in [9] to deal with the
simplified query plan. However, there is a problem: the
cost of evaluating the second-level sub-query is not
counted, which can lead to very inaccurate estimates of
progress.

To incorporate the cost of the sub-query, we divide the
segment containing the bold selection operator into two
segments, where the boundary of these two segments is
defined at the input to the bold selection operator. For
example, as shown in Figure 7, we divide the segment G3
in Figure 6 into two segments: S3 and S4.

Figure 7. A simplified query plan for the nested

query Q with redefined segments.

When we compute the cost of the segment S that

contains the bold selection operator, we take into account
the cost Ctotal of evaluating the second-level sub-query for
all the input tuples of the bold selection operator.

We consider two ways to continuously refine the
estimated Ctotal, which we call the “white box” method
and the “black box” method. In the following, we first
give an overview of both methods and explain why we
prefer the black box method in this paper. Then we
describe the black box method in detail.
(1) White box method: We treat the second-level sub-

query as a normal query. We do the following two
operations simultaneously.
(a) Operation 1: Suppose we are currently

processing the input tuple t of the bold selection
operator. During the evaluation of the second-
level sub-query, we use the techniques in [9] to
continuously refine the estimated evaluation cost

Query Q:
select A.a, A.e, A.h, B.b, B.k, C.m
from A, B, C
where A.a=B.b and B.d=C.c and
 A.e=(select D.f from D where D.g=A.h and D.j=B.k);

A (table-scan) B (table-scan)

C (table-scan)

hash join

σσσσ

π

S1 S2

S3

S6

S5

sort-merge join

sort sort

hash hash S4

second-level
sub-query

A (table-scan) B (table-scan)

C (table-scan)

hash join

σσσσ

π

G1 G2

G5

G4

sort-merge join

sort sort

hash hash
G3

second-level
sub-query

B (table-scan) A (table-scan)

set-difference

aggregation with group by

S1

S2

σσσσ

of the second-level sub-query (for the input tuple
t.)

(b) Operation 2: Based on the statistics collected
during previous evaluations of the second-level
sub-query, for each future input tuple t′ of the
bold selection operator, we use some method to
continuously refine the estimated evaluation cost
of the second-level sub-query.

Ctotal is estimated as

∑=
processedbeenhasthatttupleinput

ttotal CC

∑
′

′+
processedbeingcurrentlyisorprocessedbeennothasthatttupleinput

tC .

For any input tuple t of the bold selection operator, Ct
represents either the observed evaluation cost or the
estimated evaluation cost of the second-level sub-
query for tuple t, depending on whether or not tuple t
has been processed.

(2) Black box method: We treat the second-level sub-
query as a black box. We do the following two
operations simultaneously.
(a) Operation 1: When we are evaluating the

second-level sub-query for an input tuple of the
bold selection operator, we observe the
evaluation cost rather than continuously refining
the estimated evaluation cost.

(b) Operation 2: We use the previously observed
evaluation costs of the second-level sub-query to
continuously refine the estimated Cavg, which is
the average cost of evaluating the second-level
sub-query once.

Ctotal is estimated as Ctotal=N×Cavg, where N is the
input cardinality of the bold selection operator.

Compared to the white box method, the black box
method is simpler and less expensive. In our experiments,
which are described in Section 5, we show that the black
box method works well for nested queries when the
correlated sub-query is evaluated many times and each
iteration of the sub-query is relatively cheap.

There do exist certain cases, however, where the white
box method is more desirable than the black box method.
For example, if the input cardinality of the bold selection
operator is small (say, one) and the second-level sub-
query is complex and takes a long time to execute once,
then the estimates provided by the black box method can
be rather imprecise.

Now we describe the black box method in detail. We
estimate Cavg in the following way. Before the query starts
execution, the optimizer gives an estimate E1 of the
average cost of evaluating the second-level sub-query
once. During query execution, we collect statistics about
the average cost E2 of evaluating the second-level sub-
query once. For example, suppose we have evaluated the
second-level sub-query x times and the observed total cost

of evaluating the second-level sub-query x times is Cx,
then E2=Cx/x.

Assume that at some point, we have processed x input
tuples of the bold selection operator. That is, we have
evaluated the second-level sub-query x times. The
percentage that the input to the bold selection operator has
been processed is p=x/N (recall N is the input cardinality
of the bold selection operator.) Then, as in [9], we use the
following heuristic linear interpolation formula to
estimate Cavg: Cavg=p×E2+(1-p)×E1.

4.4 Additional Feature

In certain cases, the user wants to estimate the output
cardinality of the query. For example, if the user suspects
that the query will return too many answers (i.e.,
information overload [2]), he/she may want to either
refine the query or ask the RDBMS to categorize the
query results [2]. Therefore, it would be desirable to
continuously refine the estimated output cardinality of the
query and display it in the progress indicator interface.
This feature can be done easily using the techniques in [9].

5. Performance

In this section, we present results from a prototype

implementation of our techniques in PostgreSQL Version
7.3.4 [12]. In all our tests, our prototyped progress
indicators could be updated every ten seconds with less
than 2% overhead.

5.1. Experiment Description

Our measurements were performed with the

PostgreSQL client application and server running on a
Dell Inspiron 4000 PC with one 600MHz processor,
512MB main memory, one 40GB IDE disk, and running
the Microsoft Windows XP operating system. (We
repeated some of the experiments on a computer with a
2.4GHz processor, 512MB main memory, and one 73GB
SCSI disk. The results were similar, so we omit them
here.)

The seven relations used for the tests followed the
schema of the standard TPC-R Benchmark relations [17]:

customer (custkey, name, address, nationkey, phone,
acctbal, mktsegment),

orders (orderkey, custkey, orderstatus, totalprice,
orderdate, ship-priority),

lineitem (orderkey, partkey, suppkey, linenumber,
quantity, extendedprice, discount, tax, returnflag,
linestatus),

part (partkey, name, mfgr, brand, type, size, container,
retailprice).

Table 1. Test data set.
 number of tuples total size

customer 50K 7.5MB
orders 1.5M 114MB
lineitem 6M 755MB
part 1K 0.14MB
customer_subset1 100 16KB
customer_subset2 2 306B
lineitem_subset 3M 378MB

The customer_subset1 and customer_subset2 relations

have the same schema as the customer relation. The
lineitem_subset relation has the same schema as the
lineitem relation. In our tests, on average, each customer
tuple matches ten orders tuples on the attribute custkey.
Each orders tuple matches four lineitem tuples on the
attribute orderkey. We built an index on the partkey
attribute of the lineitem relation.

We evaluated the performance of our techniques in the
following way:
(1) Before we ran queries, we ran the PostgreSQL

statistics collection program on all the seven
relations.

(2) We tested five queries:
(a) Query Q1:
select c1.*, c2.acctbal, o.orderkey, o.totalprice,
 o.ship-priority
from customer c1, customer_subset1 c2, orders o
where mod(c1.custkey+c2.custkey, 100)=0 and
 c1.custkey=o.custkey;
(b) Query Q2:
select * from orders order by custkey;
(c) Query Q3:
select *
from lineitem l1, lineitem_subset l2
where l1.partkey=l2.partkey and l2.orderkey>0
order by l1.partkey;
(d) Query Q4:
select *
from part p
where p.size<(select sum(l.quantity) from lineitem l
 where l.partkey=p.partkey);
(e) Query Q5:

select *
from customer_subset2 c
where c.acctbal<(select sum(o.totalprice+l.extendedprice)

 from orders o, lineitem l
 where o.orderkey=l.orderkey and
 absolute(l.partkey)>0 and c.custkey<o.custkey);

(3) For each query, we performed an unloaded system
test by running the whole query on an unloaded
system. (We also performed some loaded system
tests. The results are similar to that presented in [9],
so we do not present them here.)

(4) Before we ran each test, we restarted the computer to
ensure a cold buffer pool. (We repeated our
experiments with a warm buffer pool. The results
were similar, so we do not present them here.) In all
tests, we stored the outputs from progress indicators
into a file.

5.2. Test Results for Query Q1

The purpose of the test with query Q1 is to show that by

explicitly considering the fact that different future
segments may process U’s at different speeds, we can
significantly improve the accuracy of the estimates
provided by the progress indicator.

The query plan chosen by PostgreSQL for query Q1
contains two join operators:
(1) The first join operator is a nested loops join operator.

It computes the join between the customer relation
and the customer_subset1 relation. The optimizer
determines that this join operator is a CPU-intensive
operator.

(2) The second join operator is a hybrid hash join
operator. It computes the join between the output of
the nested loops join operator and the orders relation.
The optimizer determines that this join operator is an
I/O-intensive operator.

We tested two cases. In the first case, we did not

consider different work unit processing speeds. In the
second case, we considered different work unit processing
speeds. For these two cases, we show the remaining query
execution time estimated by the progress indicator over
time in Figure 8 and Figure 9, respectively. In each figure,
the actual remaining query execution time is represented
by the dashed line.

In the second case, the estimated remaining query
execution time is much closer to the actual remaining
query execution time than that in the first case. This is
because during the nested loops join, due to caching,
bytes are processed much faster than that during the
hybrid hash join. As a result, in the first case, during the
nested loops join, the progress indicator significantly
underestimates the time required for the hybrid hash join
and thus the remaining query execution time.

We performed another test with a query that first
performs an index-scan, then a hybrid hash join. During

Figure 9. Remaining query execution time estimated

over time (test for Q 1 - considering different work unit

processing speeds).

0

40

80

120

160

0 40 80 120 160
time (seconds)

es
tim

at
ed

 r
em

ai
n

in
g

 q
u

er
y

ex
ec

u
tio

n
 ti

m
e

(s
ec

o
n

d
s)

Figure 8. Remaining query execution time estimated
over time (te st for Q 1 - without considering different

work unit processing speeds).

0

40

80

120

160

0 40 80 120 160
t ime (seconds)

es
tim

at
ed

 r
em

ai
n

in
g

 q
u

er
y

ex
ec

u
tio

n
 t

im
e

(s
ec

o
n

d
s)

the index-scan, fetching one tuple may require up to one
page of I/O. That is, during the index-scan, bytes are
processed much more slowly than that during the hybrid
hash join. In this case, by considering different work unit
processing speeds, the progress indicator can significantly
improve the accuracy of the estimated remaining query
execution time. The results do not provide additional
insights beyond the test results for query Q1 and therefore
have been omitted.

5.3. Test Results for Query Q2

The purpose of the test with query Q2 is to show that

our progress indicator can continuously refine the
estimated cost of a sort operation.

Query Q2 sorts the orders relation according to the
custkey attribute. We tested two cases, one in which the
tuples in the orders relation were in random order, the
other in which they were almost sorted on the custkey
attribute.

For these two cases, we show the query cost estimated
by the progress indicator over time in Figure 10 and
Figure 11, respectively. Each figure contains (1) a
horizontal dotted line that represents the exact query cost,
and (2) a vertical dashed-dotted line that represents the
time that the first pass of sorting finishes.

PostgreSQL uses replacement sort. Hence, the query
cost depends on the order that tuples are arranged in the
orders relation. In both cases, at the beginning of query
execution, the progress indicator starts with the same
query cost estimated by the optimizer. Before the first
pass of sorting finishes, the progress indicator
continuously refines the estimated number and sizes of
the sorted runs that will be generated at the end of the first
pass. Hence, the query cost estimated by the progress
indicator continuously approaches the exact query cost.
After the first pass of sorting finishes, we know the exact
values of the number and sizes of the sorted runs. Hence,
we know the exact query cost.

In the randomly ordered case, at the beginning of query
execution, the optimizer gives a fairly good estimate of
the number (and also the sizes) of the sorted runs that will
be generated at the end of the first pass. Hence, the
progress indicator can estimate the query cost fairly
precisely from the first second and only needs to make
minor adjustment to this estimate during query execution.

In the almost sorted case, at the beginning of query
execution, the optimizer overestimates the number of
sorted runs that will be generated at the end of the first
pass by fifty times (since the tuples in the orders relation
are almost sorted.) As a result, the optimizer significantly
overestimates the query cost. Hence, during query
execution, the progress indicator needs to make major
adjustment to the estimated query cost.

5.4. Test Results for Query Q3

The purpose of the test with query Q3 is to show that

our progress indicator can continuously refine the
estimates related to a sort-merge join operation.

The query plan chosen by PostgreSQL for query Q3
computes a sort-merge join between the lineitem relation
and the lineitem_subset relation. The sort key is partkey.
We first sort the lineitem relation (the first sorting phase.)
Then we sort the lineitem_subset relation (the second
sorting phase.) Finally, we merge the sorted result of the
lineitem relation and the sorted result of the
lineitem_subset relation together (the merging phase.)

In the lineitem relation, the partkey attribute values are
evenly distributed between 1 and 200K. In the
lineitem_subset relation, except for one tuple whose
partkey=200K and orderkey=0, the partkey attribute
values are evenly distributed between 1 and 100K. Hence,
after evaluating the select condition l2.orderkey>0, the
partkey attribute values are evenly distributed between 1
and 100K in the sorted result of the lineitem_subset
relation. However, PostgreSQL’s optimizer does not
know this and thinks that the maximal partkey attribute
value in the sorted result of the lineitem_subset relation is
still 200K.

Figure 12 shows the query cost estimated by the
progress indicator over time, with the exact query cost
indicated by the horizontal dotted line. There are two
vertical dashed-dotted lines: the first one represents the
time when the first sorting phase finishes and the second
sorting phase starts, and the second one represents the
time when the second sorting phase finishes and the
merging phase starts.

The behavior of the two sorting phases is similar to that

discussed in Section 5.3. Hence, we focus our discussion
on the merging phase. During the merging phase, the
query cost estimated by the progress indicator keeps

Figure 10. Q uery cost estimated over time

(test for Q 2 - randomly ordered case).

50000

60000

70000

80000

90000

100000

110000

120000

0 20 40 60 80 100
t ime (seconds)

e
st

im
a

te
d

 q
u

er
y

co
st

 (
U

s)

Figure 11. Q uery cost estimated over

time (test for Q 2 - almost sorted case).

50000

60000

70000

80000

90000

100000

110000

120000

0 20 40 60 80 100
t ime (seconds)

es
tim

a
te

d
 q

u
er

y
co

st
 (

U
s)

Figure 12. Q uery cost estimated over time (test for Q 3).

1100000

1150000

1200000

1250000

1300000

1350000

0 1000 2000 3000 4000 5000
time (seconds)

e
st

im
a

te
d

 q
u

e
ry

 c
o

st
 (

U
s)

decreasing until it reaches the exact query cost. The
reason is as follows. Before the merging phase starts, the
optimizer thinks that in order to complete the merging
phase, we need to reach both the end of the sorted result
of the lineitem relation and the end of the sorted result of
the lineitem_subset relation. However, during the merging
phase, the progress indicator gradually discovers that in
order to complete the merging phase, we only need to
scan half of the sorted result of the lineitem relation (since
100K/200K=50%.)

PostgreSQL uses the sorting-based method to
implement set operations. We performed several tests for
queries that contain set operations. The results are similar
to those for queries Q2 and Q3 and therefore have been
omitted.

5.5. Test Results for Query Q4

The purpose of the test with query Q4 is to show that for

those nested queries containing correlated sub-queries, the
black box method works well when the correlated sub-
query is evaluated many times and each iteration of the
sub-query is relatively cheap.

Query Q4 is a nested query that contains a correlated
sub-query. The query plan chosen by PostgreSQL for the
correlated sub-query is an index-scan on the lineitem
relation, whose cost depends heavily on the number of
lineitem tuples that match the partkey attribute value of
the input part tuple.

There is correlation between the part relation and the
lineitem relation. On average, for each partkey attribute
value existing in the lineitem relation, there are 30
lineitem tuples whose partkey attribute is of this value.
However, on average, for each partkey attribute value
existing in the part relation, there are only 5 lineitem
tuples whose partkey attribute is of this value. Because of
the correlations in the data, PostgreSQL’s optimizer
significantly overestimates the evaluation cost of the
correlated sub-query (and thus the query cost.)

Figure 13 shows the query cost estimated by the

progress indicator over time, with the exact query cost
indicated by the horizontal dotted line. We can see that
the query cost estimated by the progress indicator keeps
approaching the exact query cost. This is because the part
relation contains a large number of tuples. For each tuple,

evaluating the correlated sub-query once takes a small
amount of time. Each time after the correlated sub-query
is evaluated once, the progress indicator refines the
estimated query cost.

Figure 14 shows the query execution speed monitored
by the progress indicator over time. During the entire
query execution, the monitored query execution speed
remains much the same.

Figure 15 shows the remaining query execution time
estimated by the progress indicator over time, with the
actual remaining query execution time indicated by the
dashed line. The closer to query completion time, the
more precise the remaining query execution time
estimated by the progress indicator. This is because the
closer to query completion time, the more precise the
query cost estimated by the progress indicator.

Figure 16 shows the progress indicator’s estimate of the

percentage of the query that has been completed over time.
This percentage increases with time super-linearly. This is
because: (1) work is continuously being done at a rather
steady speed, and (2) the query cost estimated by the
progress indicator keeps decreasing with time.

5.6. Test Results for Query Q5

The purpose of the test with query Q5 is to show that for

nested queries containing correlated sub-queries, the
black box method does not work well if the input
cardinality of the bold selection operator is small while
evaluating the correlated sub-query once (for an input
tuple) takes a long time.

Query Q5 is a nested query that contains a correlated
sub-query. PostgreSQL does not give a good estimate of
the selectivity of the select condition
absolute(l.partkey)>0 on the lineitem relation. Rather, for
this select condition, PostgreSQL uses a default value 1/3
as an approximation to the real selectivity. This
approximation is far from the real selectivity, which is 1
(since the absolute value of l.partkey is always positive.)
Hence, PostgreSQL significantly underestimates the
evaluation cost of the correlated sub-query (and thus the
query cost.)

Figure 17 shows the query cost estimated by the
progress indicator over time, with the exact query cost
indicated by the horizontal dotted line. There are only two

Figure 13. Query cost estimated over time (test for Q4).

0

10000

20000

30000

40000

0 40 80 120 160
time (seconds)

es
tim

at
ed

 q
u

er
y

co
st

 (
U

s)

Figure 14. Query execution speed over time (test for Q4).

0

20

40

60

80

100

0 40 80 120 160
time (seconds)

qu
e

ry
 e

xe
cu

tio
n

sp
e

e
d

(U
s

pe
r

se
co

nd
)

Figure 15. Remaining query execution time
estimated over time (test for Q4).

0

100

200

300

400

500

600

700

0 40 80 120 160
time (seconds)

es
tim

at
ed

 r
em

ai
n

in
g

q

u
er

y
ex

ec
u

tio
n

 t
im

e
(s

ec
o

n
d

s)

Figure 16. Completed percentage estimated over
time (test for Q4).

0%

20%

40%

60%

80%

100%

0 40 80 120 160
time (seconds)

es
tim

at
ed

 c
o

m
p

le
te

d

p
er

ce
n

ta
g

e

tuples in the customer_subset2 relation. Each time after a
customer_subset2 tuple is processed (i.e., after the
correlated sub-query is evaluated once), the progress
indicator refines the estimated query cost. However, since
evaluating the correlated sub-query once takes a long
time, the progress indicator refines the estimated query
cost rather infrequently. Therefore, there are two sudden
jumps in the query cost estimated by the progress
indicator, each corresponding to a customer_subset2
tuple.

Figure 18 shows the progress indicator’s estimate of the

percentage of the query that has been completed over time.
In general, this percentage keeps increasing with time.
The only exception is that at 555 seconds, due to the
sudden increase of the query cost estimated by the
progress indicator, the estimated completed percentage
drops suddenly.

There is an undesirable phenomenon in Figure 18.
Starting from 755 seconds, according to the progress
indicator’s estimate, the query has finished execution,
although the query keeps running until 1127 seconds.
This is because the progress indicator underestimates the
query cost and is unable to make up the query cost
estimation error in time, as the progress indicator does not
refine the estimated query cost a second time until the
query completion time.

From the above discussion, we can see that compared
to the previous work in [9], our techniques improve both
the functionality and the accuracy of progress indicator at
a minor increase in overhead (from 1% to 2%.)

6. Conclusion

Progress indicators for SQL queries are a desirable

user-interface tool in RDBMSs. However, previously
proposed techniques for supporting progress indicators for
SQL queries are limited in both functionality and
accuracy. In this paper, we propose a set of techniques to
improve previously proposed techniques so that we can
support non-trivial progress indicators for a wider class of
SQL queries more precisely. Our experiments confirm the
effectiveness of our techniques.

There is substantial scope for future work. For example:
(1) It is a non-trivial task to make the white box method

(or the hybrid method) for handling correlated sub-

queries work at a reasonable overhead. Also, it would
be interesting to see if this method can bring in
significant increase in accuracy from the user’s
perspective.

(2) How to support progress indicators for SQL queries
in ORDBMSs is an interesting open problem. In this
case, some of the challenges are: how to continuously
refine the estimated costs of UDFs, spatial queries,
etc. (UDFs match with Pattern 5 and hence the black
box method may apply.)

(3) It would be interesting to investigate how to support
progress indicators for SQL queries in parallel
DBMSs. One challenge in this case is how to handle
skew on different data server nodes.

We intend to pursue these issues in future work.

Acknowledgements

This work was supported by NSF grants CDA-9623632
and ITR 0086002.

References
[1] G. Antoshenkov. Dynamic Query Optimization in
Rdb/VMS. ICDE 1993: 538-547.
[2] K. Chakrabarti, S. Chaudhuri, and S. Hwang. Automatic
Categorization of Query Results. SIGMOD Conf. 2004: 755-766.
[3] R.L. Cole, G. Graefe. Optimization of Dynamic Query
Evaluation Plans. SIGMOD Conf. 1994: 150-160.
[4] S. Chaudhuri, V.R. Narasayya, and R. Ramamurthy.
Estimating Progress of Long Running SQL Queries. SIGMOD
Conf. 2004: 803-814.
[5] M.A. Derr. Adaptive Query Optimization in a Deductive
Database System. CIKM 1993: 206-215.
[6] Y.E. Ioannidis, R.T. Ng, and K. Shim et al. Parametric
Query Optimization. VLDB Journal 6(2): 132-151, 1997.
[7] N. Kabra, D.J. DeWitt. Efficient Mid-Query Re-
Optimization of Sub-Optimal Query Execution Plans. SIGMOD
Conf. 1998: 106-117.
[8] D.E. Knuth. The Art of Computer Programming, Volume III:
Sorting and Searching, Second Edition. Addison-Wesley, 1998.
[9] G. Luo, J.F. Naughton, and C. Ellmann et al. Toward a
Progress Indicator for Database Queries. SIGMOD Conf. 2004:
791-802.
[10] V. Markl, V. Raman, and D.E. Simmen et al. Robust Query
Processing through Progressive Optimization. SIGMOD Conf.
2004: 659-670.
[11] K.W. Ng, Z. Wang, and R.R. Muntz et al. Dynamic Query
Re-Optimization. SSDBM 1999: 264-273.
[12] PostgreSQL homepage, 2003. http://www.postgresql.org.
[13] R. Ramamurthy. Personal communication, 2004.
[14] R. Ramakrishnan, J.E. Gehrke. Database Management
Systems, Third Edition. McGraw-Hill, 2002.
[15] P.G. Selinger, M.M. Astrahan, and D.D. Chamberlin et al.
Access Path Selection in a Relational Database Management
System. SIGMOD Conf. 1979: 23-34.
[16] M. Stillger, G.M. Lohman, and V. Markl et al. LEO - DB2's
LEarning Optimizer. VLDB 2001: 19-28.
[17] TPC Homepage. TPC-R benchmark, www.tpc.org.

Figure 17. Query cost estimated over time (test for Q5).

250000

300000

350000

400000

0 200 400 600 800 1000 1200
time (seconds)

es
tim

at
ed

 q
ue

ry
 c

os
t (

U
s)

Figure 18. Completed percentage estimated over
time (test for Q5).

0%

20%

40%

60%

80%

100%

0 200 400 600 800 1000 1200
time (seconds)

es
tim

at
ed

 c
o

m
p

le
te

d

p
er

ce
n

ta
g

e

