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Abstract

Recently, progress indicators have been proposed for
long-running SQL queries in RDBMSs. Although the
proposed techniques work well for a subset of SQL
queries, they are preliminary in the sense that (1) they
cannot provide non-trivial estimates for some SQL
queries, and (2) the provided estimates can be rather
imprecise in certain cases. In this paper, we consider the
problem of supporting non-trivial progress indicators for
awider class of SQL queries with more precise estimates.
We present a set of techniques in achieving this goal. We
report an initial implementation of these techniques in
PostgreSQL.

1. Introduction

Recently, [4, 9] proposed supporting progress
indicators for long-running SQL queries in RDBM3&e
goal of these progress indicators is to act as ex-us
interface tool so that the user can keep track hef t
percentage of the SQL query that has been completéd
the remaining query execution time.

[4, 9] proposed a set of techniques to implement

progress indicators for SQL queries. They also
demonstrated that their techniques work much béttan
naive alternatives for a subset of SQL queries. éi@w,
the techniques in [4, 9] are preliminary in thessethat (1)
they do not provide non-trivial estimates for so8@L
queries, and (2) the provided estimates can beerrath
imprecise in certain cases.

In this paper we propose new techniques that fiadi i
two categories. Techniques in the first categorprowue
the accuracy of the estimates. Our contributiorthis
category includes the observation that progresisanalrs
can profit from defining segments at a finer granity
than that used in [4, 9], and the observation ¢van the
simple approach of using the optimizer's estimafe o
whether a segment is CPU or I/O bound can subathnti
increase the accuracy of a progress indicator.
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(all the correlated sub-queries tested in [4] weraoved
by SQL Server’s rewriting before execution [13].)

The rest of the paper is organized as follows.dati®n
2, we give a brief review of previously proposed
techniques for supporting progress indicators fQLS
queries. In Section 3, we present techniques thptdve
the accuracy of the estimates provided by progress
indicators. Section 4 covers the techniques thatblen
non-trivial progress indicators for a wider clagsS§)L
gueries. In Section 5, we present results from ratiak
implementation of our techniques in PostgreSQL. We
conclude in Section 6.

2. Review of Previous Work

In this section, we briefly review the techniques
proposed in [4, 9] for supporting progress indicatfor
SQL queries. We first give an overview of the teghes
from [9] in Section 2.1. Then in Section 2.2, wesactibe
one step of the procedure in some detail, as this is
referred to in Sections 3 and 4. In Section 2.3 give a
comparison between [9] and [4].

2.1.Overview of Techniquesin [9]

The progress indicator described in [9] dividesuaryg
plan into one or more segments. Each segment iisedief
as one or more consecutive operators that candmited
as a pipeline. Each segment can be viewed as atree
operators. The query plan can be viewed as a tfee o
segments.

The cost of a segment is the total number of biytéts
input and output. If an operator at the leavesoot of a
segment is a multi-stage operator (e.g., a mulisfsrt),
then bytes handled by this operator will be courdade
each time they are read or written. The query e
sum of the costs of all the segments in the quieny. @he
query cost is measured W's, where eactJ represents
one page of bytes.

Initially, the progress indicator in [9] uses thaegy
optimizer's estimates to estimate the query cos.aA

Techniques in the second category provide newdquery runs, the progress indicator obtains moreigpee

functionality that is not covered in [4, 9]. Spécddly, we
present new techniques that allow progress indisaim
do a reasonable job of estimating progress in taegmce
of sort operators, set operators, and correlatbetjseries

information about the inputs and outputs of thensets
so it can continuously refine the estimated quest ¢this
is similar to the techniques used in dynamic query
optimization [1, 3, 5, 6, 7, 10, 11].) This is angaished
by collecting statistics at the output of each segihand



propagating the improved estimates upwards in tlexyq
plan.

At all times, the progress indicator monitors tipeed
at which bytes are being processed by the querheht
uses this information to continuously refine théneated
remaining query execution time.

2.2.Review of Refining Cardinality Estimates

We turn now to describe how the progress indicator

[9] continuously refines the estimated output aaatity

of the current segment that is being processed.ekoh

segment, it defines one or two dominant inputs Hrat

used to approximately indicate the progress of the

segment. For example,

(1) If a segment contains only one input, this inpuhis
dominant input.

(2) If a segment contains a single hash join operdter,
dominant input is the probe relation of this operat

(3) If a segment contains a single sort-merge join
operator, the dominant inputs are the two input
relations of the sort-merge join operator.

The progress indicator uses the percentage of the

dominant input that has been processed to refime th
estimated output cardinality of the current segmgvi¢
first discuss the case that the current segmenaicmone
dominant input. Then we discuss the case thatuhermt
segment contains two dominant inputs.

At the time that the current segment starts exenulti
the progress indicator gives an initial estimggeof its
output cardinality. E; is computed using the input
cardinalities of the current segment and the opens
cost estimation module. Suppose that the domimgniti
cardinality of the current segmentzisAssume that so far,
the query processor has processeif z and generatey
output tuples. Then the percentage that the dorninpat
has been processed psx/z. If we assume that at any
time, the number of output tuples that have been
generated is proportional to the percentage that th
dominant input has been processed, then we canagsti
the final output cardinality of the current segmémtbe
E,=y/p. In practice, this assumption may not be valid and
so the progress indicator also considers the dgimate
E,.

At any time, the progress indicator in [9] uses the
following heuristic formula to estimate the finaltput
cardinality E of the current segmenE=pxE,+ (1-p) *E;.
This heuristic formula intends to smooth fluctuatoin
the estimator and to let it gradually change frominitial
estimate (when the current segment just startsutioec

Recall that a segment containing a sort-merge join
operator has two dominant inputs. In this casegdhe
guery processor reaches the end of either dominpat,
the sort-merge join (and thus the segment) immelgiat
finishes execution. Therefore, the progress indicaéeds
to use the dominant input that is being scanneatively
faster to decide the percentageof the two dominant
inputs that has been processed [16].

2.3.Comparison between [9] and [4]

In general, [4] and [9] use similar techniques. For
example:
(1) The “pipeline” in [4] is equivalent to the “segmént
in [9].
(2) The “driver node” in [4] is equivalent to the
“dominant input” in [9].
(3) The technique in [4] of counting tuples (or the
number of getnext() calls) is similar to the tecius
in [9] of counting tuple bytes.
The technique in [4] of handling spills is similtar
the technique in [9] of counting the same byte
multiple times, once for each time the byte is
logically read or written.
[4] assumes that the actual work done per tuplbds
same across all operators in the query plan. [9]
assumes that all future segments process tuptée at
same speed.
As a result, most of the techniques we proposehiis t
paper as extensions to [9] have analogues that dueil
used with the approach proposed in [4].
The main differences between [4] and [9] are:
(1) In refining the estimated cardinalities, [4] uses a
method based on refining upper bounds and lower
bounds, while [9] uses a method based on linear
interpolation.
In estimating the completed percentage, [4] comside
all operators in the query plan and uses the driver
node hypothesis, while [9] only considers the
segment inputs and outputs.
(3) [4] does not try to predict the remaining query
execution time.
It would be an interesting area of future work to
investigate how these three differences impactutiiity
of the techniques proposed in this paper for tlogmss
indicator proposed in [4].

(4)

(5)

(2)

3. Improving the Accuracy of Predictions

In this section, we describe two new techniques tha

and we know nothing about the actual segment outputimprove the accuracy of the estimates.

cardinality) to the actual segment output cardigali
(when the current segment finishes execution, wawkn
this quantity exactly.)



3.1. Refined Definition of Segments

During query execution, [9] only collects statistiat

[9] defines a segment as one or more consecutivethe output of each segment. Hence, no statisties ar

operators that can be executed as a pipeline. Atapto
this definition, one segment can contain multipdén j
operators. In this case, this definition is too reeaand
makes it difficult for the progress indicator toopide
precise estimates. In the following, we use twonepias
to illustrate the point.

Example 1. Consider the query plan shown in Figure 1.
This query plan computes a three-table join oftiets A,
B, andC, where the join condition i&.a=B.b=C.c and
each relation has been pre-sorted on the joinbat&i
This query plan contains only one segment with $od-
merge join operators. (We adopt the conventiorBjnof
using ovals to represent segments.)

sort-merﬁjoin

7 C (table-scan)é

sort-merge join

Figure 1. Query plan in Example 1.

For a segment containing multiple join operato8, [
defines the dominant input(s) according to the ktwe
level join operator. For example, consider the sagnof
the query plan in Figure 1. [9] defines the domiriaputs

to beA andB. Suppose at some point, the percentages of

the three relations that have been processedpzr%
for A, pg=5% for B, andpc=90% for C. Then as reviewed
in Section 2, in estimating the output cardinafand also
the cost) of the segment, [9] assumes th@X(pa,

collected about the input cardinality of the indeested
loops join operator. This prevents us from contimlp
refining the estimated segment cost (and thus theryg
cost.)

From the above two examples, we can see that ierord
to improve the accuracy of the estimates providgdhk
progress indicator, we need to define segmentsfiaea
granularity so that at most one join operator existeach
segment.

Therefore, we refine the definition of segments as
follows. A segment contains one or more consecutive
operators that can be executed as a pipeline, &hiteost
one operator among these operators is a join apefabr
a pipeline that connects two join operators, thendary
of the two segments, each containing one of these t
join operators, is defined at the input of the uppeel
join operator.

According to this refined definition of segmenthet
query plan in Example 1 now contains two segmeags,
shown in Figure 3. The case with the query plan in
Example 2 is similar.

A,

rge join .

Figure 3. Query plan in Example 1 with redefined
segments.

Ps)=5% of the segment has been processed. However, in Using this refined definition of segments, when we

this case, it is more reasonable to assumenthafp,, ps,

compute the query cost, if the output of a segnteist

Pc)=90% of the segment has been processed. This ispipelined as the input to the next segment, therbttes

because once we reach the end of eitheB, or C,
whichever is first, the segment immediately finishe
execution.

Example 2. Consider the query plan shown in Figure 2.
This query plan contains only one segment with two
nested loops join operators. In estimating the ofshe
segment (and thus the query cost), we need to &tstithe
number of times that relatio€ will be index-scanned.
That is, we need to estimate the input cardinadityhe
index nested loops join operator.

index nested loops join

7 g,

block nested loops join € (index-é_c;én)

Figure 2. Query plan in Example 2.

produced by segmer8 are neither counted as they are
output by segmerfs nor counted as they are input by the
next segment.

[9] propagates the improved estimates upwards én th
qguery plan to continuously refine the estimatedrguest.
However, if we use the refined definition of segmsen
then for multiple consecutive segments that can be
executed as a pipeline, we may need to propagate th
improved estimates downwards in the query plan to
continuously refine the estimated query cost. Kangle,
in Example 1, the relative speed at which relatims
scanned will influence the cost of scannik@ndB. This
is because once we reach the endCpfwe can stop
scanningA andB immediately. The general discussion is
straightforward and thus omitted here.



3.2.Predicting Work Unit Processing Speed

In [9], both the estimated query cost and the aurre
query execution speed are measuredUis. Each U
represents one unit of work that is equal to teguired
to process one page of bytes. The current querguéire
speed is measured as the rate at whith are being
processed.

[9] assumes that all future segments prodé#ssat the

same speed. This assumption can be misleading if

I/O_cost or the CPU_cost of Op, depending on whether

Op is I/O-intensive or CPU-intensive.

Based on this heuristic, we redefine the cost ef th
segment input as follows:

(1) If the operatorOp is a CPU-intensive operator, we
use theCPU_cost (in U) of Op as the cost of the
segment inpuk.

(2) If the operatorOp is an I/O-intensive operator, we

use thel/O_cost (in U) of Op as the cost of the

segment inpuk.

segments in the query plan have radically different Then we use the same method in [9] to measure the

performance characteristics. For example, considero-
segment plan, in which segmeSitfeeds segmers,. If S;
processed)’s more slowly thanS, (perhapsS, is 1/0-
intensive wherea$, has a high buffer pool hit rate), then

current query execution speed and estimate theimarga
guery execution time.

There is an interesting question: at run time, khthe
progress indicator revisit the optimizer's estimaié

while S, runs the progress indicator will overestimate the whether a segment is 1/O or CPU intensive? It itadaly

time it will take to rurS,.

To address this problem, we explicitly consider fenet
that different future segments may processat different
speeds and try to predict such speeds. In gerieraach
U of a segmen§, the speed at whidd will be processed
can be represented as a functi®, s;), wheres, is the
property of segmentS (e.g., how expensive are the
operators in segmeld), ands; is the system state at the
time U will be processed (e.g., the load on the systam, t
buffer pool contents, etc.). The better we can iptadlis
function, the more precise the remaining query etien
time estimated by the progress indicator.

Of course, in general, providing an accurate and

detailed implementation dis,, s) is a daunting task that
may not be desirable or even feasible. Our goahis
paper is not to define this function; instead, wepose a
simple approximation that is intended to do bedttan the
“uniform processing rate” assumption used in [9].

In a traditional optimizer [15], the cost of an ogter is
defined ad/O_cost+ CPU_cost. There,CPU_cost=WxN,
where W is a weighting factor an®l is the number of
tuples processed. The weighting facidt converts 1/O

and CPU costs to a common “currency”, which in the

PostgreSQL optimizer is “number of page reads/write
Depending on whether or ndtO_cost>CPU_cost, we
define the operator as eith&tO-intensive operator or
CPU-intensive operator.

[9] defines the cost of a segmedias the total number
of bytes input intoutput byS. For each input of the
segmentS, we define the number of bytes input irBas
the cost of the segment input |. We define thecost of the
segment output similarly. Then the cost of the segméht
is the sum of the costs of the segment inputs badost
of the segment output.

For each segment inplUtconsider the operat@p that
is the parent of the input in the segment. Our key
heuristic is that according to the above definitithe cost
of the segment input is proportional to either the

possible that this could improve estimates (perhaps
optimizer was anticipating an 1/O-intensive scan the
relation was in the buffer pool when the scan dijtua
occurred), although we did not pursue this in aurrent
implementation.

4. Improving the Coverage of the Progress
I ndicator

In this section, we describe the three technighes t
provide new functionality and enable the progress
indicator to accurately handle wider classes of SQL
gueries. One reasonable question at this pointhistiver
or not the job is “finished”; that is, are ther&et aspects
of the SQL language that are not covered andrstilliire
future work?

This turns out to be difficult to answer. The issu¢hat
progress indicators cannot really be said to “woftk’
some classes of queries and “not work” for otherisis
more precise to say that they accurately prediet th
progress for some classes of queries and are less
successful for others.

Perhaps this can best be explained by a categonzat
of the kinds of segments a progress indicator migiute
to handle well. One possible categorization is ittie
following five patterns:

(1) Pattern 1: The segment contains only one input and
the per-tuple cost of the operators in the segrsent
small and predictable.

(2) Pattern 2: The segment contains two inputs, one of
which is the dominant input.

(3) Pattern 3: The segment contains two inputs, both of
which are dominant inputs.

(4) Pattern 4: The segment contains a multi-stage
operator. The cost of the segment depends on the
number of stages required for this operator.

(5) Pattern 5. The segment contains an expensive
operator that needs to be evaluated once for each



input tuple. The cost of the operator may vary from
tuple to tuple and is hard to predict.
Note that this categorization is not exhaustive and
segment could in fact belong to several patterns.

[9] has already proposed techniques that work feell
Pattern 1 (e.g., a segment with a selection opgrato
Pattern 2 (e.g., a segment with a hash join opgratad
Pattern 3 (e.g., a segment with a sort-merge jperator.)

Case 2. The initial sorting algorithm generates sortedsru
of varying length depending upon properties of itiput
(this is the case, for example, with replacement [gat,
page 428; 8, Section 5.4].) In this case, we need t
continuously refine both the estimated number dml t
estimated sizes of the sorted runs that will beegeied at
the end of the first pass.

We focus our attention on the first pass of thetmul

The techniques in that paper are less successful apass sort operation. Our solution is as follows:
handling segments from Patterns 4 and 5. These(l) We conceptually think of each sorted run as anuwutp

previously proposed techniques could be appliedr f
example, one could treat a multi-stage operatoraas
monolithic single stage operator, and return some
(possibly inaccurate or infrequently revised) estinto
the user. Or one could ignore the subtle issuesRattern
5 segment by assuming some average cost per togle a
never revising this estimate, thus treating a Patte
segment as if it were a simple Pattern 1 segment.

Our point in this paper is that Patterns 1 throBgtre
not sufficient, and that by explicitly considerifgtterns
4 and 5 we can substantially improve the accurawy a
responsiveness of a progress indicator. We denaiastr
this by considering specific examples of operators
Pattern 4 and 5 segments. Whether or not further
refinements of this categorization are useful is an
interesting area for future work.

4.1.Refining the Estimated Cost of a Sort
Operation

A progress indicator needs to continuously refine t
estimated query cost. This is achieved by contislyou
refining the estimated costs of the segments ingtrezy
plan. However, [9] does not show how to continugusl
refine the estimated cost of a segment during the
execution of a multi-pass sort operator (Patteyrirdthis
section, we present a solution to this problem. dase of
description, we assume that:

(1) The multi-pass sort operator is the only operator i
the segment.

(2) The multi-pass sort operation does not reduce the
number of tuples.

The extension to the general case is straightfatwar

To compute the cost of a multi-pass sort operatiza,
need to know:

(1) The number of sorted runs generated during the firs
pass.

(2) The sizes of the sorted runs generated duringiitste f
pass.

There are two possible cases:

Case 1. The initial sorting algorithm generates sortexsru
as large as the allotted buffer space. Then thebeum@nd
the sizes of the sorted runs can easily be computed
the input size and buffer space are known.

tuple of the segment. Then we can use the same
method in [9] that is used to estimate the output
cardinality of the current segment to estimate the
number of sorted runs that will be generated at the
end of the first pass of the sort operation. (Thaive

use a linear combination of the optimizer's estenat
of the number of sorted runs, and the observed
number of sorted runs generated by the percentiage o
input processed at the current point in time.)

For sorted runs that have already been generated, w
know their exact sizes. Lt denote the total size of
the input that has not been processed.Hsedenote

the estimated number of sorted runs that have not
been generated. We estimate each sorted run that ha
not been generated to be of the sameBizg

(2)

4.2.Refining the Estimated Output Cardinality of
a Segment that Containsa Set Operator

In this section, we discuss how to continuouslynieef
the estimated output cardinality of a segment ¢batains
a set operator. How to continuously refine thenestéd
cost of a segment that contains a set operatamitas
and thus omitted here. SQL supports three set tipesa
union, intersection, and set-difference. In a tgpiguery
plan, intersection is implemented with a join operdl4].
There are many alternatives for evaluating unioth set-
difference, and due to space constraints we foalylsan
an illustrative pair of ways to estimate the praegref the
set-difference operator.

Suppose we want to compuBeA. Two commonly used
methods include the hashing-based method and the
sorting-based method [14, page 469]. We first disdhe
hashing-based method in Section 4.2.1. Then weusksc
the sorting-base method in Section 4.2.2.

Before we start the discussion, we further refihe t
definition of segments as follows. A segment cargaine
or more consecutive operators that can be exeaseal
pipeline, while at most one operator among these
operators is a join operator or a set operator. FfEason
for this refinement is that, as discussed belowsea
operator behaves much like a join operator. (Rebatlas
discussed in Section 3.1, each segment containsost
one join operator.)



4.2.1. Hashing-based Method. The hashing-based
method works as follows. We build a hash taBléor A.
Then we scaB. For each tuplé; of B, we probe the hash
tableH. If tg/JA, we writetg to the result. Therefore, a set-
difference operator that is implemented with thehiag-

based method behaves much like a hash join operator

(Pattern 2.) We can use the same method in [9] ithat

first, we will find thatEs=2/p scanned tuples are not in

A. Also:

(1) If ga>0Qs, we reach the end & first and(1-gs/p)*|B|
B tuples have not been scanned.

(2) If gasgs, We reach the end & first and allB tuples

have been scanned.

That is, in either case, we can estimate that att time,

used to handle a segment that contains a hash joirg,=(1-qg/p)x|B| B tuples have not been scanned and these

operator to handle a segment that contains a Hetatice

B tuples are also not iA. Therefore, we can estimat |

operator implemented with the hashing-based methoda| to beE,=E;+E,.

(e.g., the dominant input of the segment is theb@ro
relation.)

4.2.2. Sorting-based Method. The sorting-based method
works as follows. We first soi, then sortB. Then we
merge the sorted andB. During the merging pass, we
only write tuples ofB to the result, after checking that
they are not irA. Therefore, a set-difference operator that
is implemented with the sorting-based method behave
much like a sort-merge join operator (Pattern 3¢ v&n

4.2.3. Introducing Segment Boundaries. In general, the
output of a set operator can be pipelined to thet ne
operator in the query plan. In this case, we neatiide

the segment that contains the set operator into two
segments, where the boundary of these two segneents
defined at the output of the set operator. We Ume t
following example to illustrate the point.

Example 3. Consider the query plan shown in Figure 4.
Assume that both the set-difference operator are th

use the same method in [9] that is used to handle aaggregate operator with a group by clause are

segment that contains a sort-merge join operatbatalle

implemented using the sorting-based method [1430Al

a segment that contains a set-difference operatoroth relationsA and B have been pre-sorted and the

implemented with the sorting-based method (e.ge, th

segment contains two dominant inputs that are W t

inputs of the set-difference operator.) The onlgegtion

is that we need to make minor changes to the farat

is used to estimate the output cardinality of tgnsent.

We use an example to illustrate the point. Congider
relationsA andB that have already been sorted. When we
compute a sort-merge join betwednand B, once we
reach the end of eitheA or B, the sort-merge join
immediately finishes execution. However, when we
computeB-A, there are two possible cases:

(1) If we reach the end oB first, the set-difference
operation immediately finishes execution.

(2) If we reach the end oA first, we still need to
continue to output the remaining tuplesBnas these
tuples belong to the result BfA.

Therefore, we need to use a different formula frohat

is used for a sort-merge join operation to comphe

estimatek, of B-A| (E; is defined in Section 2.) HergR|

denotes the cardinality of s& Suppose that we have
processed tuples fromA andy tuples fromB. We found
that among thosg tuples ofB, z tuples are not ir\. Let
ga=X/|A| andgg=Y/|B|. Then we use the same formula as
that used in [9] to decide the percentpgp=max(ga, 0g),
which indicates the progress of the dominant irtpat is
being scanned relatively faster.

output of the set-difference operator is pipelirtedthe
aggregate operator. Then if we do not introduce the
segment boundary between the set-difference operato
and the aggregate operator, the query plan contailys
one segment.

V_,aggregatiori with group.by

set-difference

Figure 4. Query plan in Example 3.

When estimating the output cardinality of the segime
we can treat the aggregate operator with a grougamse
like a selection operatar [4]. The two dominant inputs
of the segment ark andB.

Suppose that we have processeadples fromA andy
tuples fromB. Also, we have generated aggregate
groups. We cannot use the method in [9] that iferesd
in Section 2.2 to estimate the final number of aggte
groups. This is because if we reach the end fifst, the
remaining tuples irB can still generate new aggregate
groups. However, thed®tuples are not considered in the
method in [9]. Also, as discussed above, we camatd
when we reach the end Af how manyB tuples have not
been scanned. But it is difficult to estimate howny

Assume that at any time before we reach the end ofnhew aggregate groups will be generated from the

either A or B, both the number of scann&ltuples that
are not inA and the number of scanndl tuples are
proportional to the percentage Then we can estimate
that when we reach the end of eitiheor B, whichever is

remaining tuples inB (recall that we do not collect
statistics inside segments [9].)

Therefore, we need to divide the segment that awta
the set operator into two segments, as shown iar€i§.



Then we can continuously refine the estimated dutpu facilitate our description, when we draw the quplan,
cardinalities of both segments easily. we do not show the second-level sub-query in detail
Rather, we use bold selection operator (Jf]) to denote

S the selection condition that is evaluated basedthen
second-level sub-query. The content of the seceweltl
S sub-query is “hidden” in the bold selection operaiwe
call such a query plan aimplified query plan. For
Figureb5. Query plan in Example3W|th redefined example, Figure 6 shows the simplified query pland
segments. multi-level queryQ with a correlated second-level sub-
query.
4.3.Handling Nested Queries If we think of the bold selection operator as anmalr

selection operator, then the simplified query plaoks

In this section, we describe a method for handling the same as a query plan for an un-nested quemcele
nested queries. Many nested queries (including allwe can use the same techniques in [9] to deal thith
uncorrelated sub-queries) can be rewritten intavedgnt simplified query plan. However, there is a probleire
un-nested queries, so they do not need any newcost of evaluating the second-level sub-query i$ no
technigues. In this section, we focus on technigiees counted, which can lead to very inaccurate estisnafe
handle correlated sub-queries that are not rewriitéo progress.
uncorrelated sub-queries. The question of whiclrigse To incorporate the cost of the sub-query, we divfde
can be rewritten is orthogonal to our discussian; goal segment containing the bold selection operator int
is to provide progress indicator techniques tharkwo segments, where the boundary of these two segnsents
whenever an RDBMS decides to run a query plandefined at the input to the bold selection operakuor
containing a correlated sub-query, not to determihizh example, as shown in Figure 7, we divide the segi@gn
guery plans must be run as correlated sub-quefiss. in Figure 6 into two segmentS; andS,.
long as there are some query plans that are noittewy
techniques along these lines will be needed.

In general, a nested query can have multiple levels
our discussion, we focus on the top-level query el
second-level sub-query. All the deeper level subrigg
are embedded in the second-level sub-query. Similar
while a nested query can contain multiple secondtle
sub-queries, in our discussion, we assume that mested
query contains only one second-level sub-queryis It
straightforward to extend our techniques to handle i
multiple second-level sub-queries. F|gure7 A smpl|f|ed query plan for the nested
query Q with redefined segments.

QueryQ:
fsrilﬁ,cry 'g:é'e’ AR BD Bk Cm When we compute the cost of the segménthat
whereA.a=B.b andB.d=C.c and contains the bold selection operator, we take &tmount
Ae=(seleciD.f from D whereD.g=Ah andD.j=BK); the costC,yy Of evaluating the second-level sub-query for
all the input tuples of the bold selection operator
We consider two ways to continuously refine the
\ estimatedC,,y, Which we call the “white box” method
hash G4 and the "black box” method. In the following, westi
ﬁsemnd oVl ""'*-.._,\c(table scan) give an overview of both methc_)ds gnd explain why we
stib-query S prefer the black box method in this paper. Then we
sgg merge jOIn describe the black box method in detail.
_— sor/t/ -------- Sort .G (1) White box method: We treat the second-level sub-
¥ : N ? query as a normal query. We do the following two
i (ta,bfe scan ., _._I.'?‘“(table scan) operations simultaneously.
Figure 6. A smplified query plan for a nested query () Operation 1: Suppose we are currently
Q with a correlated second-level sub-query. processing the input tupteof the bold selection
operator. During the evaluation of the second-
Consider a multi-level query whose second-level- sub level sub-query, we use the techniques in [9] to

query is correlated with the top-level query (Patt.) To continuously refine the estimated evaluation cost



of the second-level sub-query (for the input tuple of evaluating the second-level sub-quaryimes isC,,
t.) thenE,=C,/x.

(b) Operation 2: Based on the statistics collected Assume that at some point, we have processegut
during previous evaluations of the second-level tuples of the bold selection operator. That is, hese
sub-query, for each future input tupieof the evaluated the second-level sub-quexy times. The
bold selection operator, we use some method topercentage that the input to the bold selectiomaipehas
continuously refine the estimated evaluation cost been processed = x/N (recallN is the input cardinality

of the second-level sub-query. of the bold selection operator.) Then, as in [¥, wse the
Ciotal IS €sStimated as following heuristic linear interpolation formula to
Cows = e estimateCayg: Cavg=pPXEx+ (1-p) XE;.
input tuplet that has been processed
+ Sc : 4.4 Additional Feature
input tuplet’ that hasnot been processed or is currently being processed
For any input tuplé of the bold selection operatd, In certain cases, the user wants to estimate thgubu

represents either the observed evaluation cosheor t cardinality of the query. For example, if the usespects
estimated evaluation cost of the second-level sub-that the query will return too many answers (i.e.,
query for tuplet, depending on whether or not tuple  information overload [2]), he/she may want to eithe
has been processed. refine the query or ask the RDBMS to categorize the
(2) Black box method: We treat the second-level sub- query results [2]. Therefore, it would be desirabte
query as a black box. We do the following two continuously refine the estimated output cardigaitthe
operations simultaneously. query and display it in the progress indicator rifatee.
(a) Operation 1: When we are evaluating the This feature can be done easily using the techsiquf9].
second-level sub-query for an input tuple of the
bold selection operator, we observe the 5. Performance
evaluation cost rather than continuously refining
the estimated evaluation cost. In this section, we present results from a protetyp
(b) Operation 2: We use the previously observed implementation of our techniques in PostgreSQL Mers
evaluation costs of the second-level sub-query to 7.3.4 [12]. In all our tests, our prototyped pragre
continuously refine the estimatét},,, which is indicators could be updated every ten seconds Mith
the average cost of evaluating the second-levelthan 2% overhead.
sub-query once.
Cioa is estimated agyy=NxC,yg, WhereN is the 5.1. Experiment Description
input cardinality of the bold selection operator.

Compared to the white box method, the black box Our measurements were performed with the
method is simpler and less expensive. In our erpents, PostgreSQL client application and server runningaon
which are described in Section 5, we show thatblaek Dell Inspiron 4000 PC with one 600MHz processor,
box method works well for nested queries when the 512MB main memory, one 40GB IDE disk, and running
correlated sub-query is evaluated many times amth ea the Microsoft Windows XP operating system. (We
iteration of the sub-query is relatively cheap. repeated some of the experiments on a computer avith

There do exist certain cases, however, where theewh 2 4GHz processor, 512MB main memory, and one 73GB
box method is more desirable than the black boxhatet SCSI disk. The results were similar, so we omitnthe
For example, if the input cardinality of the bolelextion here.)
operator is small (say, one) and the second-leubl s The seven relations used for the tests followed the
query is complex and takes a long time to execat®0  schema of the standard TPC-R Benchmark relatiofis [1

then the estimates provided by the black box metzod customer (custkey, name, address, nationkey, phone,
be rather imprecise. acctbal, mktsegment),

Now we describe the black box method in detail. We orders (orderkey, custkey, orderstatus, totalprice,
estimateC, in the following way. Before the query starts orderdate, ship-priority),
execution, the optimizer gives an estimde of the lineitem (orderkey, partkey, suppkey, linenumber,
average cost of evaluating the second-level subyque guantity, extendedprice, discount, tax, returnflag,
once. During query execution, we collect statisabsut linestatus),
the average codE;, of evaluating the second-level sub-  part (partkey, name, mfgr, brand, type, size, doseta
query once. For example, suppose we have evaltiaed retailprice).

second-level sub-quertimes and the observed total cost



Tablel. Test data set.

number of tuples total size
customer 50K 7.5MB
orders 1.5M 114MB
lineitem 6M 755MB
part 1K 0.14MB
customer_subset] 100 16KB
customer_subset?2 2 306B
lineitem_subset 3M 378MB

The customer_subsetl and customer_subset?2 relations
have the same schema as thetomer relation. The
lineitem subset relation has the same schema as the
lineitem relation. In our tests, on average, eaastomer
tuple matches teorders tuples on the attributeustkey.
Each orders tuple matches foutineitem tuples on the
attribute orderkey. We built an index on theartkey
attribute of thdineitem relation.

We evaluated the performance of our techniqueben t
following way:

(1) Before we ran queries, we ran the PostgreSQL

statistics collection program on all the seven
relations.

(2) We tested five queries:

(a) Query Qu:

select c1.*, c2.acctbal, o.orderkey, o.totalprice,
0.ship-priority
from customer c1, customer_subsetl c2, orders o
where mod(cl.custkey+c2.custkey, 100)=0 and
cl.custkey=o0.custkey;
(b) Query Qz:
select * from orders order by custkey;
(c) Query Qs
select *
from lineitem |1, lineitem_subset 12
where |1.partkey=I2.partkey and 12.orderkey>0
order by I1.partkey;
(d) Query Qu:
select *
from part p
where p.size<(select sum(l.quantity) from lineitem
where |.partkey=p.partkey);
(e) Query Qs
select *
from customer_subset2 ¢
where c.acctbal<(select sum(o.totalprice+l.extepded)
from orders o, lineitem |
where o.orderkey=l.orderkey and
absolute(l.partkey)>0 and c.custkey<o.custkey);

estimated remaining query
execution time (seconds)

(4) Before we ran each test, we restarted the compater
ensure a cold buffer pool. (We repeated our
experiments with a warm buffer pool. The results
were similar, so we do not present them here.)lin a
tests, we stored the outputs from progress indisato
into a file.

5.2.Test Resultsfor Query Q;

The purpose of the test with quedy is to show that by
explicitly considering the fact that different fuoéu
segments may proceds$'s at different speeds, we can
significantly improve the accuracy of the estimates
provided by the progress indicator.

The query plan chosen by PostgreSQL for quéry
contains two join operators:

(1) The first join operator is a nested loops join @per.

It computes the join between tlaistomer relation
and the customer_subsetl relation. The optimizer
determines that this join operator is a CPU-intensi
operator.

The second join operator is a hybrid hash join
operator. It computes the join between the outfut o
the nested loops join operator and dinders relation.
The optimizer determines that this join operatcans
I/O-intensive operator.

(2)

estimated remaining query
execution time (seconds)

80 120 160
time (seconds)

40

0

40 80

time (seconds)
Figure 8. Remaining query execution time estimated
over time (test for Q, - without considering different

work unit processing speeds).

120

-
=
3

0

Figure 9. Remaining query execution time estimated
over time (test for Q, - considering different work unit
processing speeds).

We tested two cases. In the first case, we did not
consider different work unit processing speeds.the
second case, we considered different work unitgssiag
speeds. For these two cases, we show the remajoery
execution time estimated by the progress indicatar
time in Figure 8 and Figure 9, respectively. Intefigure,
the actual remaining query execution time is regmeesl
by the dashed line.

In the second case, the estimated remaining query
execution time is much closer to the actual remajni
query execution time than that in the first caskisTis
because during the nested loops join, due to cgchin
bytes are processed much faster than that durieg th

(3) For each query, we performed an unloaded systemlYPrid hash join. As a result, in the first casering the
test by running the whole query on an unloaded nested loops join, the progress indicator signifilya
system. (We also performed some loaded systemunderestimates the time required for the hybrichjasm

tests. The results are similar to that presentg@]in ~ @nd thus the remaining query execution time. _
so we do not present them here.) We performed another test with a query that first

performs an index-scan, then a hybrid hash joirririgu



the index-scan, fetching one tuple may requireaiprte
page of 1/0. That is, during the index-scan, byaes
processed much more slowly than that during theitiyb
hash join. In this case, by considering differetrkvunit
processing speeds, the progress indicator carfiseymiy
improve the accuracy of the estimated remainingryque
execution time. The results do not provide addilon
insights beyond the test results for qu€ryand therefore
have been omitted.

5.3.Test Resultsfor Query Q.

The purpose of the test with que®y is to show that
our progress
estimated cost of a sort operation.

Query Q, sorts theorders relation according to the

In the almost sorted case, at the beginning of yquer
execution, the optimizer overestimates the numbler o
sorted runs that will be generated at the end effittst
pass by fifty times (since the tuples in tirelers relation
are almost sorted.) As a result, the optimizerifigamtly
overestimates the query cost. Hence, during query
execution, the progress indicator needs to makeomaj
adjustment to the estimated query cost.

5.4.Test Resultsfor Query Q;

The purpose of the test with que®y is to show that
our progress indicator can continuously refine the

indicator can continuously refine the estimates related to a sort-merge join operation.

The query plan chosen by PostgreSQL for qu@sy
computes a sort-merge join between limeitem relation

custkey attribute. We tested two cases, one in which the and thelineitem subset relation. The sort key ipartkey.

tuples in theorders relation were in random order, the
other in which they were almost sorted on tustkey
attribute.
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Figure 10. Query cost estimated over time

(test for Q, - randomly ordered case).

0 20 0 20 40 60 80
time (seconds)
Figure 11. Query cost estimated over

time (test for Q, - almost sorted case).
For these two cases, we show the query cost estimat
by the progress indicator over time in Figure 1@ an

100

We first sort thdineitem relation (the first sorting phase.)
Then we sort thdineitem subset relation (the second
sorting phase.) Finally, we merge the sorted resfuthe
lineitem relation and the sorted result of the
lineitem_subset relation together (the merging phase.)

In thelineitem relation, thepartkey attribute values are
evenly distributed between 1 and 200K. In the
lineitem _subset relation, except for one tuple whose
partkey=200K and orderkey=0, the partkey attribute
values are evenly distributed between 1 and 100#cl,
after evaluating the select conditidRorderkey>0, the
partkey attribute values are evenly distributed between 1
and 100K in the sorted result of tHeneitem subset
relation. However, PostgreSQL’s optimizer does not

Figure 11, respectively. Each figure contains (1) a know this and thinks that the maximgdrtkey attribute

horizontal dotted line that represents the exaetyjuaost,
and (2) a vertical dashed-dotted line that repitssére
time that the first pass of sorting finishes.

value in the sorted result of th@eitem_subset relation is
still 200K.
Figure 12 shows the query cost estimated by the

PostgreSQL uses replacement sort. Hence, the queryrogress indicator over time, with the exact queogt

cost depends on the order that tuples are arraimgtck

indicated by the horizontal dotted line. There am®

orders relation. In both cases, at the beginning of query vertical dashed-dotted lines: the first one represehe

execution, the progress indicator starts with thenes
query cost estimated by the optimizer. Before tinst f
pass of sorting finishes, the progress
continuously refines the estimated number and sifes
the sorted runs that will be generated at the élaecfirst
pass. Hence, the query cost estimated by the m®gre
indicator continuously approaches the exact quest.c
After the first pass of sorting finishes, we kndve texact
values of the number and sizes of the sorted tdesce,
we know the exact query cost.

In the randomly ordered case, at the beginninguefy
execution, the optimizer gives a fairly good estenaf
the number (and also the sizes) of the sortedthatswill
be generated at the end of the first pass. Heree, t
progress indicator can estimate the query costyfair
precisely from the first second and only needs tken
minor adjustment to this estimate during query akea.

indicator time when the second

time when the first sorting phase finishes andsteond
sorting phase starts, and the second one repretents
sorting phase finishes and the
merging phase starts.

13500004 | |

1300000+

1250000+

1200000+

estimated query cost (Us)

1150000+

1100000

0 1000 2000 3000
time (seconds)

Figure 12. Query cost estimated over time (test for Q).

4000 5000

The behavior of the two sorting phases is simiathat
discussed in Section 5.3. Hence, we focus our gi&on
on the merging phase. During the merging phase, the
query cost estimated by the progress indicator keep



decreasing until it reaches the exact query cose T
reason is as follows. Before the merging phasdssttre
optimizer thinks that in order to complete the niegg
phase, we need to reach both the end of the sortedt

of thelineitem relation and the end of the sorted result of
thelineitem subset relation. However, during the merging
phase, the progress indicator gradually discoveas in
order to complete the merging phase, we only need t
scan half of the sorted result of theeitem relation (since
100K/200K=50%.)

PostgreSQL uses the sorting-based method
implement set operations. We performed severas fest
queries that contain set operations. The resuitsianilar
to those for querieQ, and Q; and therefore have been
omitted.

5.5. Test Resultsfor Query Qq

maining

The purpose of the test with quey is to show that for -
those nested queries containing correlated sulieg)¢he
black box method works well when the correlated- st
query is evaluated many times and each iteratiothef
sub-query is relatively cheap.

Query Q, is a nested query that contains a correla
sub-query. The query plan chosen by PostgreSQlhtor
correlated sub-query is an index-scan on liimeitem
relation, whose cost depends heavily on the nunalber
lineitem tuples that match thpartkey attribute value of
the inputpart tuple.

There is correlation between tipart relation and the
lineitem relation. On average, for eagartkey attribute
value existing in thelineitem relation, there are 30
lineitem tuples whosepartkey attribute is of this value.
However, on average, for eagartkey attribute value
existing in thepart relation, there are only fneitem
tuples whoseartkey attribute is of this value. Because of
the correlations in the data, PostgreSQL’s optimize
significantly overestimates the evaluation cost tbé
correlated sub-query (and thus the query cost.)

estimated re
query execution time
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Figure 13 shows the query cost estimated by the
progress indicator over time, with the exact queogt
indicated by the horizontal dotted line. We can Hes
the query cost estimated by the progress indidedeps
approaching the exact query cost. This is becaweseatt
relation contains a large number of tuples. Fohdaple,

(seconds)

evaluating the correlated sub-query once takes all sm
amount of time. Each time after the correlated guéry

is evaluated once, the progress indicator refirtes t
estimated query cost.

Figure 14 shows the query execution speed monitored
by the progress indicator over time. During theirent
query execution, the monitored query execution dpee
remains much the same.

Figure 15 shows the remaining query execution time
estimated by the progress indicator over time, whié

toactual remaining query execution time indicatedthg

dashed line. The closer to query completion tines t
more precise the remaining query execution time
estimated by the progress indicator. This is bexdhse
closer to query completion time, the more precise t
guery cost estimated by the progress indicator.
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n
8
estimated completed
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Figure 15. Remaining query execution time Figure 16. Completed per centage estimated over
estimated over time (test for Q,). time (test for Q).

Figure 16 shows the progress indicator’s estimathe
percentage of the query that has been completediove
This percentage increases with time super-linedihys is
because: (1) work is continuously being done ather
steady speed, and (2) the query cost estimatechéy t
progress indicator keeps decreasing with time.

5.6. Test Resultsfor Query Qs

The purpose of the test with quedy is to show that for
nested queries containing correlated sub-queribs, t
black box method does not work well if the input
cardinality of the bold selection operator is smaliile
evaluating the correlated sub-query once (for goutin
tuple) takes a long time.

Query Qs is a nested query that contains a correlated
sub-query. PostgreSQL does not give a good estiofate
the selectivity of the select condition
absolute(l.partkey)>0 on thelineitem relation. Rather, for
this select condition, PostgreSQL uses a defallieva/3
as an approximation to the real selectivity. This
approximation is far from the real selectivity, whiis 1
(since the absolute value bpartkey is always positive.)
Hence, PostgreSQL significantly underestimates the
evaluation cost of the correlated sub-query (and tine
guery cost.)

Figure 17 shows the query cost estimated by the
progress indicator over time, with the exact queogt
indicated by the horizontal dotted line. There @mb/ two



tuples in thecustomer_subset2 relation. Each time after a
customer_subset?2 tuple is processed (i.e., after the
correlated sub-query is evaluated once), the pssgre
indicator refines the estimated query cost. Howesieice
evaluating the correlated sub-query once takesng lo
time, the progress indicator refines the estimajadry
cost rather infrequently. Therefore, there are sudden

jumps in the query cost estimated by the progress

indicator, each corresponding to @ustomer_ subset?
tuple.
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Figure 17. Query cost estimated over time (test for Q). Figure 18. Campl eted percentage esti mated over
time (test for Q).

Figure 18 shows the progress indicator’s estimathen
percentage of the query that has been completediovwe
In general, this percentage keeps increasing viitie.t
The only exception is that at 555 seconds, duehéo t

queries work at a reasonable overhead. Also, ildvou
be interesting to see if this method can bring in
significant increase in accuracy from the user’s
perspective.

How to support progress indicators for SQL queries
in ORDBMSs is an interesting open problem. In this
case, some of the challenges are: how to contityious
refine the estimated costs of UDFs, spatial queries
etc. (UDFs match with Pattern 5 and hence the black
box method may apply.)

It would be interesting to investigate how to suppo
progress indicators for SQL queries in parallel
DBMSs. One challenge in this case is how to handle
skew on different data server nodes.

We intend to pursue these issues in future work.

(2)
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