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Abstract

Recently there has been a growing interest in join
query evaluation for scenarios in which inputs arrive
at highly variable and unpredictable rates. In such
scenarios, the focus shifts from completing the com-
putation as soon as possible to producing a prefix of
the output as soon as possible. To handle this shift in
focus, most solutions to date rely upon some combi-
nation of streaming binary operators and “on-the-fly”
execution plan reorganization. In contrast, we con-
sider the alternative of extending existing symmetric
binary join operators to handle more than two inputs.
Toward this end, we have completed a prototype im-
plementation of a multi-way join operator, which we
term the “MJoin” operator, and explored its perfor-
mance. Our results show that in many instances the
MJoin produces outputs sooner than any tree of bi-
nary operators. Additionally, since MJoins are com-
pletely symmetric with respect to their inputs, they
can reduce the need for expensive runtime plan reor-
ganization. This suggests that supporting multi-way
joins in a single, symmetric, streaming operator may
be a useful addition to systems that support queries
over input streams from remote sites.

Introduction

, haughton , bolo }@cs.wisc.edu

case of local join inputs, when moving to distributed do-
mains where queries are executed over remote streaming
sources, it is worth considering whether or not this tradi-
tional approach is sufficient. Prior work has answered
that the traditional approach is not sufficient, and has
addressed the problem of streaming inputs by retaining
binary execution trees but by replacing blocking opera-
tors with streaming symmetric operators [11, 14], possi-
bly coupled with dynamic reorganization of the execu-
tion tree [7, 12] in response to fluctuating input rates. In
this paper we explore the complementary approach of al-
lowing non-binary trees; that is, by generalizing existing
streaming binary join algorithms to produce a multi-way
streaming join operator, which we callJoin, that works
over more than two inputs.

While the MJoin is a simple generalization of sym-
metric binary join algorithms, to our knowledge such an
operator has not been considered in the literature. This
is unfortunate because the MJoin has a number of at-
tractive properties in streaming environments. Using a
single multi-way join, an arrival from any input source
can be used to generate and propagate results in a sin-
gle step, without having to pass these results through
a multi-stage binary execution pipeline. Furthermore,
since the operator is completely symmetric with respect
to its inputs, there is no need to restructure a query plan
in response to changing input arrival rates. However, it
was not clear from the outset how these abstract proper-

Traditionally, multi-way join queries have been evalu-
ated by trees of binary, partially blocking, pipelined join
operators. While this has proven effective in the commo

ties would translate into actual performance; it was also
not clear exactly how the MJoin operator should handle
r}nemory overflow. In this paper we address these issues.
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in the presence of memory overflow; that a technique we
term “coordinated flushing” can improve the output rate
in the presence of overflow; and finally, that the addition
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$1 52 sources deliver their inputs at different rates, the even-
tual output rate can differ as a function of which tree of
Figure 1: A traditional binary join execution tree binary operators (e.g., deep or bushy, fast inputs high in
the tree or at the leaves) the optimizer chooses. This de-
pendence is exacerbated when some or all of the opera-
of the MJoin operator introduces an interesting new op-+ors in the tree overflow their memory quotas and spool
timization problem, the problem of deciding how best to some fraction of their inputs to disk for later process-
partition a large multi-way join into a set of one or more ing. Finding the tree that optimizes the output rate in
MJoin operators. such a scenario is challenging; even worse, if the input
To understand the motivation for our work, consider arates vary over time, there may be no single tree that is
scenario in which a system runs a multi-way join querybest for the entire duration of the query execution, and
over remote data sources arriving as streams. Using trdhe complexity of on-the-fly query plan restructuring be-
ditional query evaluation techniques, the execution plarcomes necessary [7].
would be organized as a sequence of binary join opera- However, it is not clear that the multiway join will
tors, as shown in Figure 1. If we assume the joins argye superior in all cases. A particular concern is whether
implemented with the hash join algorithm, using stan-rep|acing a tree of binary operators by a single multiway
dard terminology and notation, the system would buildgperator will cause excessive recomputation of partial re-
hash tables on the left and probe them from the right.  gyits. Another concern has to do with memory overflow
While such an approach has proven effective in tradi— specifically, how can a multiway join flush the many
tional centralized systems, in a scenario where inputs arfash tables it builds in a consistent way?
remote the situation is different. To see this, note that in

. . . Our goal in this paper is to investigate the opportu-
Figure 1, the plan will start producing results only after 9 pap g bp

: nities and challenges presented by the introduction of a
the hash tables for the left inputs, andS; throughS., 1 iti.way streaming join operator. The rest of the pa-

have peen built, since with ;tandard hash join operatorﬁer is organized as follows: Section 2 explains how the
the build phase of the left input must complete before

o -previously proposed symmetric binary hash join can be
the probe phase of the right input starts. Worse yet, ”gxtended to yield the MJoin algorithm, while Section 3
the right input of any join blocks, the whole tree blocks.

e ) ives our experimental study of the algorithm. Section 4
Symmetric binary operators, such as the symmetric has

in 114 dt0 add hi blem by el iscusses related work, while Section 5 presents our con-
join [14], were proposed to address this problem by elim-; ,qjong and identifies future directions. Finally, for the
inating blocking behavior.

i _ ) _ interested reader, Appendix A presents a rate-based cost
However, even with symmetric nonblocking binary mode| for the proposed operator.

operators, problems may arise. Assuming that all inputs

of Figure 1 are remote and that each join is evaluated

with a symmetric binary join algorithm, consider the case

in which an$; arrival joins withX, , already read> tu- 2  Algorithm Description

ples. TheseX; » tuples are propagated upstream and, if

they contribute to the final result, they have to go throughThe basic idea of the MJoin algorithm is simple: gener-

each step of the execution tree until they appear in thejlize the symmetric binary hash join and the XJoin [11]

output. At each step, the operator at that step handlegigorithms to work for more than two inputs. However,

these tuples, inserting them into one hash table and usingturns out that the details are somewhat tricky. The is-

them to probe the other. That creates a large number adye is that the algorithm must be ready to accept a new

in-flight tuples, causing additional storage and communityple on any input stream at any time; upon such an ar-

cation overhead. This overhead can increase the systefyal, it must probe the other hash tables and generate

resources required per output tuple, which in turn cana result as soon as possible; and finally, it must ensure

slow the output rate. that each result tuple is generated exactly once. These
A tree of binary operators also introduces secondarygoals are rendered even more complex when some of the

subtler effects, which are inherent in the binary executioninputs overflow the space allocated for their hash tables

tree paradigm. The issue is that if different streamingand tuples must be spooled to disk for later processing.
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(1.2 that an MJoin will recompute results that are computed
only once in a tree of binary operators. For example,

ol B S SR o S R consider a three-way join query between stre#mss,

and S3. Assume that at some point in time there have

beenn; tuples received front;, ne from Sy andng

from S3. Furthermore, assume that a new tuple arrives

from S; matching withoions tuples fromS, but with

no tuples fromSs. The partial result set af,5n- result

tuples matching with th&; arrival are discarded. Then a

2.1 The Basic Algorithm new tuple arrives fronts which matches with the exist-

N o o ing partial result set. Clearly, whenever such a situation
Generalizing the symmetric binary hash join to work grises, intermediate results have to be re-computed.

for more than two inputs is straightforward. The algo-  Thjs presents a problematic situation for MJoin, par-
rithm first creates as many hash tables as there are iy arly in the presence of inflating join predicates, i.e.,
puts. When a new t_uple arrives at an input, it is insertedy e gicates for which a joining tuple from one stream
into the corresponding hash table and used to probe thgins with multiple tuples from the other streams. In
remaining hash tables. This generates every possible rgy,ch cases it may be better to materialize the intermedi-
sult tuple that can be produced by joining the new arrivalyte resyt set, in other words, to break a single MJoin into
with the memory resident tuples of the other relations.gmajier MJoins or, in the limit, to break it into a tree of
Not all hash tables will be probed for every arrival, as thepinary joins. This introduces an interesting optimization
sequence of probes stops whenever a probe of a hash tg71em which we consider later in this paper.

ble finds no matches (since in this case it cannot produce In our experiments we did not observe cases in which
answer tuples.) Figure 3 shows this sequence, Wherg,q \ocomputation made the MJoin produce results more
each probe operation is annotated with the probabilityg)oiy than a tree of binary operators. This is due to
of its taking place, which is equal to the selectivity of 5 mper of factors: (i) a good choice of a probing se-
tEe ?rewous predrllcate in the selzquenfce (Jtlaéactorz N quence will minimize the effect; (ii) probing a hash table

]E € |_gure.fl\_lotet at, in generaf, theh actors rgay k?a for matches is less intensive a CPU operation than in-
unction of time.) For instance, for the second probe 0p-giing 5 tuple into a hash table; (i) there are significant
eration to execute, the first one has to produce matche§hemory savings by not storing temporary matches; (iv)

The sequence is organized in such a way so that the mogj,eries over streams will most probably contain window
selective predicates are evaluated first and it is dn‘ferer&%

Hash Table Hash Table Hash Table
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~
hash ,“probe
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Figure 3: The probing sequence during MJoin

; hi Thi hat th I b redicates, which tends to reduce the number of tuples
or each input. This ensures that the smallest number Qf;i, \hich other tuples join, which means that the risk of
temporary tuples is generated.

recomputation is lessened; (v) highly selective join pred-
) ) icates are common (for example, key-foreign key joins),
2.2 Choosing a Probing Sequence which also lessens the risk of recomputation.

Choosing the correct probing sequence is an important FOr the interested reader, in the appendix, (A.2) we
parameter when “setting up” an MJoin operator. To givePrésent a cost model by which one can decide whether
a brief overview of how this can be easily achieved, con-& Multi-join query should be decomposed into multiple
sider the case of a query being executed oxenputs.  MJOIN's given the selectivity factors of the predicates.
Furthermore, let us assume that the selectivity factors be-

tween the joins remain constant throughout query exe2.4 Handling Memory Overflow

cution. As we mentioned, a simple heuristic of choos-
ing the best probing sequence is to evaluate the least s
lective join first. In that respect, all we need to do is
sort the selectivity factors for each input and that will
give us the optimal probing sequence for that particu
lar source. We can sort the — 1 factors for thei'”
input in (m — 1)logm — 1 steps. Given that we will L : ) o
do this for allm inputs this results in a complexity of ©f itS Inputs using some hash function. Each partition
O(m(m — 1)logm — 1). We further examine the im- has an in-memory portion, and a disk-resident portion.

pact of the probing sequence on the MJoin output rate ignitially, the disk resident portions are empty. The XJoin
Section 3.3. has three phases:

%}I_/e now turn to consider how to handle the case where
e inputs may be too large to buffer entirely in memory.
Before discussing how to deal with this issue with the
MJoin, we review how memory overflow is dealt with in
the binary XJoin.

The XJoin, like the Hybrid Hash Join, partitions each

1. The memory-to-memory phasé.a tuple ¢ arrives

on an input stream and there is room in the in-
Because the MJoin operator does not store partial tuples memory portion of the partition to whichhashes,
generated by prefixes of probing sequences, it is possible ¢ is inserted into the hash table for its stream and

2.3 Re-computation of Intermediate Results
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probed into the in-memory portion of the corre-
sponding partition of the other stream. If the in-

memory portion of the stream to whighhashes is
full, then it is flushed to disk (adding to the disk- Although XJoin's three phase approach to handling

resident portion of this partition.) memory overflow works for MJoin, with MJoin, in the
) ) presence of multiple relations overflowing the output rate

2. The disk-to-memory phaself both of the input  may qffer. In fact, maximizing the output rate for MJoin
streams block, the XJoin takes advantage of this,nnears to be a very challenging and intriguing prob-
idle” time to process some of the disk-resident | "t is a function of the input rates of the streams, the
tuples. In more detail, XJoin reads (part of) the oy selectivities between the streams, and how MJoin
disk-resident portion of some partition into mem- yacides to spill the various inputs to disk in the case of
ory, then probes it into the in-memory portion of emary overflow. To gain some insight into the prob-
the corresponding partition. In this way the XJoin |o "\ consider an important aspect of this problem in

can continue to generate results while the inputs are, jmpjified scenario. We explore this problem further in
blocked. If one of the inputs becomes unblocked, ggction 3.5.

the XJoin reverts to the memory-to-memory phase.
The generalization of this phase for MJoin is pre-
sented in Figure 4.

2.5 Memory Overflow in MJoin

We emphasize that our primary goal is to maximize
the output rate during the memory-to-memory phase of
the MJoin. As with the binary XJoin, in MJoin, the disk-

3. The disk-to-disk phaseAfter both input streams 0-memory phase is intended to allow the system to gen-
are exhausted, the XJoin “cleans up” with a disk-to-erat_e outputs V\_/hl_le its inputs are blocked, Wh_lle the disk-
disk phase, producing all tuples that may have beeft0-disk phase is intended tp generate any.flnal answers
missed by previous memory-to-memory or disk-to- after. the inputs have terminated. Interestmgly,_ for the
memory phases. It does this in a way similar to theMJoin, how we handle memory overflow determines the
hybrid hash join: it picks a partition of one of the °utPutrate of the memory-to-memory phase.
inputs, builds an in-memory hash table on the (for- Consider an MJoimk, >4 Ry ... > Ry, where each
merly) disk resident portion of this partition, then Of the R; arrives at the same rate. Suppose that the join
reads the disk-resident portion of the Correspondingselectlvmes between th(_a streams are all equal to the same
partition from the other input, probing the hash ta- ConStaanf, and that at time the number of tupleS that
ble and generating results. Dealing with this third have arrived on each streanvis. Then a new input tu-
phase in the context of the MJoin and in particu- Ple On any stream can be expected to prodifce' o*
lar how memory is redistributed when the clean-upOutput tuples.
phase is executed, is depicted in Figure 5. Now suppose that available memory has been ex-

ceeded, and that we have spilled an equal fracfiai

The XJoin must take some care to ensure that no resuftll of the streams to disk. Then the expected output of a
tuple is generated twice; it does so through the use ofew arrival will be reduced by a factgt*~!, since only
timestamps. a fractionf of then, arrived tuples from each stream is

The same three-phase approach used by XJoin wilkvailable for probing, and the expected output would be
work for MJoin. However, because of the multi-way na- fring okt
ture of MJoin, there are some subtleties with MJoin that The preceding analysis assumes that all tuples are
do not arise for XJoin. These arise both in the handling ofspilled to disk randomly, without considering the values
memory overflow and in the use of timestamps to avoidin their join attributes. It is interesting to ask if the output
redundantly generating answer tuples. We consider eadtate can be increased by smarter ways of spilling to disk.
in turn. Suppose now that the join is a star join so that the join



predicate is of the fornR;.A; = Ry. Ay = ... = Ry.Aj. eral MJoin algorithm, though, is applicable regardless of
Then consider the following modification of the basic whether the query under evaluation is a star join or not.
MJoin. We partition each of the relations intoparti-  The reason for this is that random spilling can always be
tions by hashing on their join attribute. When it comesused throughout the execution of the algorithm.

time to spill some portion oRz; to disk, instead of doing

so blindly, we always spill from a coordinated set of par-2.6 Redundant Tuple Detection

titions. That is, if we spill tuples from partition 3 from

R to disk, for all the other streams we also spill tuplesAS was mentioned in Section 2.4, during the disk-to-

from partition 3 to disk, only going on to another parti- memory and disk-to-disk stages there is a possibility that

tion after all partition 3 tuples have been flushed. We Ca"output tuples can be generated m_ult|p_le times. We call
. o ; - these tuples redundant tuples and in this section we show
this approach “coordinated flushing.

Using coordinated flushing, when a new tuple arriveshoW to avoid them. There are only two ways in WhiCh-
on any input stream, if it falls'into an in-memory parti- a tuple and all its ma_tches render a res_ult redunqant: 0]
tion, itis immediatelyl probed in the in-memory partitions if they were present in the memory-res@ent portions of
of tﬁe other streams; if it falls into a disk resident parti-the hash tables at the same time, or (ii) the tuplelwas
tion, then it is added ’to an output buffer for that partition flushed to d|sk_and usgd to probe the memo_ry_—reS|dent

' : , hash table portions while its matches were still in mem-
and not probed in the other streams’.

A ) P ory. Notice, however, the universal qualification of the
th;[h tr}|s mcl)tdt|f|c?t|on, we {163/% that the exp?c_:ted_ above clause: a tuple aati its matches. Even if a single
number of resutt luples generated by a new arrivar 1S e"pair of matches is not a duplicate, the partial join result

ther zero (if it falls into an on-disk partition, which will is a new one and it should be propagated.

. i, k=1 _k—1 /if: .
occur with probabilitl —£), orn, ™o~ (if it falls into The way MJoin eliminates duplicates is based on

an in-memory partition, which will o_ccurwith probabil- time-stamps. Each tuple is assigned two time-stamps:
ity f.) TO. See the sec_ond term, cons!o!er the case when W6ne for its arrival into the system and one for its departure
are probing into the in-memory partition of some stream

) ) from main memory. Additionally, a separate log is kept
R;. We_ _have in totah, tples that h_ave arrived on that for each partition of each table, keeping track of when the
stream; if we probe the current tuplénto any of the on

. . Y . partition was used for a disk-to-memaory probing stage,
disk partitions, it will not produce any tuples (since they as well as the latest disk-resident tuple time-stamp for

Shat partition. Deciding whether a candidate result has
: o X Iready been propagated or not is a matter of evaluatin
Using this simple analysis, we see that the number o y propag g

ol ted i N val usi wo conditions. Assuming a tuplg from inputi being
uples generated in reEPlonks_el 0 a new armva UsiNg Coscanned and a matdh being tested, thef; >a T has
ordinated flushing ign; ™ ¢”~* tuples. This is in con-

. ; " been propagated in the following cases:
trast to the no overflow case, in which a new arrival is
expected to generatvcf‘lo’“—1 tuples; and the random 1. arrival(f}) > arrival(Z};) and
flushing case, in which the arrival is expected to generate  arrival(T};) < departure(;), which means théf; ar-
FFIng = ob ! tuples. rived while7; was in memory.
It is interesting to consider the special casé ef 2,
the binary join for which XJoin was proposed. There 2. latest(partitiori(;)) > arrival(Z};) and

are on disk does not affect the output rate.

we get the initially perplexing result that with random probe(partition(;)) > arrival(Z};) and

flushing, the expect number of tuples produced due to  Probe(partition(;)) < departure(;), which means
an arrival would befn;o; with coordinated flushing, thatT} has already been probed by a previous disk-
the expected number would kfer,o, exactly the same to-memory join ofZ;’s partition.

number. On further thought this makes sense; with ran-_, . . . . N .
dom spilling, there is a 100% chance a new tuple WiIIThIS check is perf(.)rm.ec_j ina smgle d'TeC“O” dt!””g. the
be probed into the other stream'’s table, where it will findsecond stage, while it is carried out in both directions

a fraction f of the table in memory; with coordinated during the third stage. Moreover, for an overall join re-
flushing, there is arf percent chance it fall into an in- sult (i.e..04—1... (T3)) 10 be propagated, the test has to

memory partition, in which case it will probe the (same) Phﬁspgzse;jezﬁqaelllsp:nsifIir?;l/r: gf g:gtlﬁ)sn' ﬁ;&rj\:ga}tngaen
in-memory partition of the other table, and the fact that y P P ' '

other partitions of the other table have been flushed t € shown.that the number O.f checks is equa_ll to the_num-
disk is irrelevant. er used in a binary execution tree employing XJoin as

Coordinated flushing over all inputs of the join is pos- the evaluation algorithm.
sible only with “star joins”, since the relations being
flushed in a coordinated fashion must have the same joir%'7 A Concrete Example
attribute. We think this kind of join may be common To present the algorithm more concretely, we will use the
in streaming applications; for example, often we needexample of Figure 6: a three-way join betweg&n S-
to join multiple streams on the time attribute. The gen-andSs;. We assume that there is one partition per stream,



while each stream has been allocated a buffer capable of
holding two tuples; each tuple is represented by its value
in the join attribute. Each tuple is annotated with the in-
terval for which it is'was memory-residépwhile each
disk-resident partition is annotated with the last time it
was used to perform a probe of the in-memory hash ta-
bles. (A value of “-1" means the partition has never been
used to probe.)
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Figure 6: An MJoin scenario
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Figure 8: The new arrival fronds in Figure 7 results
in additional overflow tuples reaching the disk and an
output tuple being generated

gorithm moves on to its disk-to-memory stage, choosing

to useS,’s disk-resident portion. It probes,’s andSs’s

memory-resident hash table portions, outputting one re-
Next, assume two tuples frois arrive; the first one  sult tuple, as shown in Figure 9.

with a value of f and the second one with a value of
b, as is the case in Figure 7. Tlfetuple is given the
timestamp 15, inserted int8’s hash table and used to
probe the other hash tables for matches. The execu-
tion engine should define the order in which it probes
the hash tables, before execution begins. If we assume
the probing sequence i85, S2} in our example, no
temporary result tuples will be generated. Had the se-
qguence beer Sy, S1}, the temporary tuple f14, f15}
would have been generated. The second arrival, with a
value ofb, is given the timestamp 16 and it has the fol-
lowing effects: (a) the tuple is inserted infg’s hash ta-

ble, causing the table to overflow, and (b) the value of the

memory

d1 0,(13_7,d1 7 | output tuple
dio bg big
P13 fa d47
C1-9 d3.7 2211
ds.9 fa7 We-11
- -
scanned X412
i
partition fi5

§4

Sz

S3

disk

tuple’s join attribute is used to probe the rest of the hastyigyre 9: An example of disk-to-memory operatic;

tables, producing a single result tuple. Figure 8 showss |,sed for probing.

the results of both operations. (Aftgrs has been han-
dled as well.)

Finally, assume all streams send theird-of-stream

b message aftedl;;'s arrival. This causes the algorithm
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bi3 f14 fs
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Figure 7: A new arrival fronts

¢ 3 Experiments

l to revert to its final clean-up stage and perform a three-
8 12 way disk-to-disk join. Notice that there are two possi-
ble result tuples withl values. Only one of them, how-
ever, should be propagated to the output, that one being
{d5-9,ds_7,d17} since the other ondd;q,ds_7,d17},

has already been generated during the second stage.

In this section we will present our experimental results

from a prototype implementation of MJain.

Next, let us assume that one more tuple has arrived.1 Experimental Setup

from the third stream with a value ef, obtaining the

timestamp 17. At this point, the inputs block, so the al-Our goal was to measure the performance improvement
we would obtain in comparison to other algorithms de-

1A single number denotes a tuple that has not been flushed to dis€igned to work over streaming sources. To do so, we de-
yet. veloped a stand-alone prototype of the algorithm in Java.
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Figure 10: The plans used during experimentation with fluctuating input rates

The queries we used were for the most part variants of
the Wisconsin Benchmark3inABPrimequery [3], ex- 100000

' " Mloin —— s
tended to handle multiple sources. et Sam o /
IBM's jikes compiler was used for byte-code gener- 80000 o
ation, which was executed using SUN®tSpotvirtual / e

60000

machine. All experiments were conducted on a 1GHz
Intel Pentium Processor with 1GB of physical mem-
ory, running RedHat Linux 7.2. To simulate streaming /;“
sources, we assigned an arrival rate to each input and i

then inserted, between arrivals, random delays following

a Poisson distribution with the given arrival rate as its

meart. As a rule, we used the slowest stream’s inter- S gy
arrival rate as the operator’s blocking threshold. The

joins in Section 3.2 were key-to-key joins so that the
choice of probing sequence was not important. For in-
stance, considering three streamsS andT' the where-
clause of the query would be:

Tuples
x
%

40000

20000

Figure 11: Performance for fluctuating input rate

where R.uniquel = S.uniquel and keeping it at the bottom. Once the stream slowed down,
S.uniquel = T.uniquel the output rates were reversed, and when the stream re-
turned to its initial rate, the original relative performance
We turn to consider inflating joins, in which the probing again appeared. This validates our intuition that while it

sequence does matter, in Section 3.3. is impossible to pick a single tree of binary operators that
is always optimal when input rates vary, MJoin is stable
3.2 Resilience to Fluctuations in Input Rate and dominates throughout.

In the experiments of this section we used a three-way- . . .
join query between streants, S, andS; and organized 3.3 Inflating Joins and the Impact of the Probing Se-
it in the three ways presented in Figure 10. The input ~ 9qUeéNce

cardinalities were 100,000 tuples for streafisandS>  Our previous experiments dealt with selective joins,
and 200,000 tuples for streaf}; we also allocated a more specifically key-to-key joins. In such a scenario,
memory buffer less than the inputs’ sizes. More impor-the probing sequence is not significant. In an inflating
tantly, we did not keep a constant mean arrival rate foljoin scenario, however, as was mentioned in Section 2.1,
all inputs; in particular, we varied the input rate$f so it is important for the probing sequence to be declared
that it started off fast, slowed down towards the middle ofin such a way that the most selective predicate in evalu-
the query and gained speed again in the last third of exated first. In that case, the smallest number of temporary
ecution. The objective of this experiment was to verify results is generated. To show the detrimental effects of
MJoin’s resilience to input rate fluctuations. The resultsthe wrong probing sequence, we generated a three-way-
are presented in Figure 11. join query in the style of the one presented in Section 3.2
As exhibited in the performance results, MJoin had anhyt modified it in the following way:S; and S5 both
higher output rate in comparison to the other two planshad an input cardinality of 10,000, whi& an input car-
An equally interesting point, however, is the switch- dinality of 15,000. Moreover, instead of joining on the
ing between performances of the two non-MJoin plansyniquel attribute of the relation, we joined on one with
While the fluctuating stream was fast, the plan that keptardinality 1,000. (For instance, each tupleSfjoins
it at the top of the execution plan was faster than the ongyith 1,000 tuples ofS, so their join produces 150,000
2 Po ; . , results.) Finally, there is no fluctuation in the streams’
oisson arrival process means that the inter-arrival process fol- . . .
lows an exponential distribution with a mean equal to the inverse of thd"COMINg rates. The mean inter-arrival delay farand
Poisson process’s mean. Sy is set to 20 millisecondss, while the mean inter-arrival




[ Plan shape | Hashes| Moves | Comparisons]|

Deep (XJoin) 185,000] 185,000] 1,500,000 ] BV T
MJoin, correct se{ 35,000 | 35,000 | 1,656,727 14406 | woin, wrong sequence I
quence 120406 .
MJoin, wrong se-| 35,000 | 35,000 2,004,639 16406

quence 800000

Tuples

600000

Table 1: Increase in the number of operations due to the
wrong probing sequence

400000

200000

0

0 100 200 300 400 500 600 700

delay forS; is set to 5 millisecondss. Time (seconds)
We employed two MJoin plans and a deep binary join
plan. For one of the MJoin plans we had the correct prob-
ing sequence (from most selective to least selective predsigure 12: Performance decrease by using the wrong
icate) while for the other we declared the sequence in thgrobing sequence
worst possible way for the MJoin operator, i.e., instead of
evaluating the most selective predicate first for all inputs,
we evaluated the least selective predicate first. In thé@ther. The shapes of the three plans we used were sim-
query at hand, the two 10,000 tuple streams would firsilar to the plans of Figure 10; however, each input con-
probe the 15,000 tuple stream, producing a larger numtained 1,000,000 tuples, streasisand Sz had a 3 mil-
ber of temporary result tuples. The XJoin plan used fodisecond mean inter-arrival delay, while streaiy had
comparison evaluated the most selective predicate first.2 mean inter-arrival delay of 1 millisecond. The experi-
We instrumented the code in such a way that would al-mental results are shown in Figure*1as in all previous
low us to count the number of operations (hashes, movegxperiments, the MJoin plan is faster. This was expected
comparisons) each operator would perform. The numbefor one simple reason: by choosing an MJoin evaluation
of extra comparisons between the MJoin employing theplan for a window of 10,000 tuples, we are able to keep
correct probing sequence and the MJoin employing théll computation within memory limits, and MJoin has
wrong probing sequence is shown in Table 1 while thebeen optimized for in-memory, streaming behavior.
performance results are presented in Figure 12.
As we see from the performance results, the number

50000

of extra comparisons performed due to the wrong prob- e i
ing sequence are almost 25% of the number of expected s0000 | T
comparisons. In fact, after some point these extra com- 35000 /‘}
parisons make the MJoin perform worse than the XJoin 30000 /f"’

Tuples

plan. Another important conclusion shown in Table 1

25000 e
y
20000

stems from the comparison of operations between the ri

XJoin and the MJoin plans. Although the XJoin plan e

performs fewer key comparisons, it also performs much e

more hash and move operations. Clearly, this means that N

choosing the correct probing sequence for the MJoin op- e ey
erator is crucial.

3.4 Window Joins Figure 13: Window join performance

When we move from traditional joins over remote

sources to consider joins over infinite streams of data, it

makes sense to consider window-based joins, i.e., joing 5 Coordinated Flushing

that only pair tuples within a bounded time interval of ) ) ) -
each other. This is because without some sort of window this experiment we wanted to test MJoin's ability to
on which tuples can join, in the limit, infinite streams will handle memory overflow scenarios, as well as to maxi-
require infinite memory. To simulate a window-based Mize the output rate by employing the technique of coor-
join scenario, we created a three-way join query, ovedinated ﬂushmg, |ntrc_)d_uced in Sectlo_n 2.5. Todo so, we
three relations, each relation containing one million tu-9enerated a six-way join query. The inputs were divided
ples. Moreover, we imposed two window predicates over" tWo triplets, each triplet materializing the result of a
the query, with e‘_"‘Ch predlcatc_a having a horizon of ten 3The “Fluctuating Stream High” plan of Figure 10 corresponds to
thousand tuples, i.e., the predicate would only be evalume “Fast High” plan of Figure 13, while the “Fluctuating Stream Low”
ated over tuples appearing within 10,000 tuples of eaclplan to the “Fast Low” plan.




[ Stream| Tuples [ Delay |

Attribute | Cardinality |

S1 10,000 1 uniquel 10,000 100000 T dinated MJoin —— AN

S, | 100,000 5 tenk6 10,000 Binary + // v
uniquel4 100,000 80000 7

Ss3 100,000 5 tenk6 10,000 60000 Favs

Sa 10,000 1 uniquel 10,000 8 / v

Ss | 100,000 5 tenk6 10,000 o s v
unique14 100,000 /s

Se 100,000 5 tenk5 10,000 20000 // i

Table 2: Input parameters for the memory overflow sce- % - 100 200 300 400 500 600 700

Time (seconds)

nario. “Delay” is measured in milliseconds.

star-join. The two star-join result sets where then joined™igure 15: Performance during memory overflow and
on a different attribute. To present it more concretely, asimProvements obtained by employing coordinated flush-
sumingsS; to Sg are the inputs, the where-clause of the N9

qguery we ran was the following:

in memory than before, so the output rate drops. Even-
tually, however, the in-memory partitions grow so that
there are again more tuples in memory, and the output
rate rises again. The last part of the curve in which the
output rate is substantially decreased is due to the fact
that a higher percentage of the output has already been

We created three execution p|an5 for the same quer}generated, due to coordinated ﬂUShing, so the Operator
For the first plan, which is shown in Figure 14, we usedSimply waits for the rest of the output to be produced in
two MJoins to generate the results of the two star-joins/ts clean-up phase.
and then a third MJoin to join these results. The second
plan was the same MJoin setup, only employing coor3.6 On the Need for Optimization

dinated flushing to handle memory overflow. The third . .
plan was set up as a binary plan using XJoin. We thert Ne next set of experiments we conducted had to do with

streamed the inputs into the system, using the input rate§vestigating and proving that even with an operator like
shown in Table 2 (which also shows the input sizes and\/IJom, the need for optimization of join-trees still ex-

attribute cardinalities) while the results are shown in Fig-IStS- T0 do so, we experimented with a six-way join
ure 15. query and five plans for that query. Four of those five

plans are shown in Figure 16, where each input is an-
notated with its size in tuples and its inter-arrival delay.
In Figure 16, two binary join plans and two MJoin plans
but with smaller (i.e., fewer input streams) MJoin opera-
tors are shown. The fifth, not depicted, plan was a single
MJoin operator. Execution of these plans, along with the
single MJoin plan, yields the performance shown in Fig-
ure 17. Though the single MJoin operator is faster in the
beginning, its performance degrades over time, while, as
time goes by, even the bushy binary plan overtakes it.
Our initial explanation of MJoin’s performance degra-
dation had to do with its per-input cost (as this is modeled
The effect of coordinated flushing is evident in the in Appendix A.) To further follow our intuition, we mea-
plot of Figure 15 since by keeping more tuples with asured the actual cost in clock ticks of the various param-
higher probability of joining in memory the output rate eters appearing in MJoin’s cost expression, by accessing
is maximized. There are certain “jumps” in the output the processor’s hardware counters. These measurements
curve for the coordinated MJoin and these jumps appeatre presented in Table 3.
to be regular. These jumps arise from an artifact of how We then focused on the denominator of Equation 2,
we have implemented coordinated flushing. What hapwhich is the operator’'s per-time-unit cost. Performing
pens is that when an input overflows, one of its parti-the computation yields that, roughly, the per-time-unit
tions is spilled to disk. Since we spill the entire partition cost is1.52 - 10~3 seconds. Looking at the streams’ in-
to disk, at least temporarily this input has fewer tuplesput rates, as shown in Figure 16, it is easy to see that this

where Sl.uniqguel = S2.tenk6 and
Sl.uniquel = S3.tenk6 and
S4.uniquel = Sb.tenk6 and
S4.uniquel = S6.tenk6 and
S2.uniquel4 = S5.uniquel4d

S,.unique14 = Sg.uniquel4

S1 .uniquet = Sz.tenkﬁ and S4.unique1 = Ss.tenke and

S,.unique1 = S5.tenk6 S,-uniquel = Sg.tenk6

Figure 14: The MJoin used in the memory overflow sce-
nario



0-33'10°®

300K 0=10°
1ms

5 |
100K 0=10 =10 0=10"
3ms

100K 0=5"10°

5ms

~10© 6 116
200K o= 0=33"10
2ms 100K 200K

5ms  2ms

100K 100K 300K 100K 100K 100K 300K 100K 100K 200K 100K 100K 300K 100K 100K200K 100K 100K
10ms 5ms 1ms 3ms 10ms 5ms ims  3ms 5ms 2ms  10ms 5ms 1ms 3ms  5ms 2ms  10ms 5ms

6-Way-Pipeline 6-Way-Bushy MJoin-Balanced MJoin-Unbalanced

Figure 16: Six-way join execution plans

mizer needs to know how many result tuples it should op-

timize for, then it needs to choose a plan that distributes

the join over the optimal number of MJoin operators of

with the right number of inputs. Cost formulas like the

e ones presented in the appendix can assist the optimizer
i in this task.
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4 Related Work

S Join algorithms have been extensively studied in the con-
O o0 o 100 1200 text of relational database systems, with [5] being the
Time (seconds) seminal paper on hash-based join algorithms. Also re-
lated to our work are Bloom filters [4] and bit-map join
indices [10] as ways of efficiently computing joins with
Figure 17: Six-way join performance the aid of pre-computation. Additionally, and closer re-
lated, are the techniques of hash teams [6] and general-
ized hash teams [8], in which the objective is to minimize

20000

[ Operation [ Cost (clock ticks)| Cost (seconds]] the number of performed operations in hash-based eval-
hash 175.008 1.75- 10" uation plans by sharing computation and hash table stor-
move 426.518 4.27-10 7 age space. Again, none of this previous work considered
comp 49.133 491-10" the issue of maximizing the output rate in the presence

of varying and unpredictable input rates.
Table 3: Cost of various operations as measured by the The most relevant remaining work deals with sym-
processor’s hardware counters. We were using a 1GHmetric algorithms and adaptive query execution. The first
processor; one clock tick is equal10— seconds. algorithm to explicitly take into account the streaming
nature of its inputs was the Symmetric Hash Join [14].
XJoin [11] extends this work by providing an efficient
time is greater than the fastest stream’s inter-arrival ratevay to spill overflowing inputs to disk and later join
(10~2 seconds for the 300,000 tuple stream.) This transthem to produce the final output, while in [7] the authors
lates into a backlog of tuples being created for that parpresent a way of adapting symmetric hash join into hy-
ticular stream; as far as this stream is concerned the CPWrid hash join whenever inputs become too large to fit in
is too slow to handle its rate. As time goes by, this back-memory. To the best of our knowledge none of the pre-
log starts to dominate the stream’s input rate, degradingious work on streaming join algorithms considers the
MJoin’s performance. This problem does not occur inpossibility of moving beyond binary operators to multi-
the case of the other plans, which use multiple operaway join operators.
tors, hence are not sensitive to the total number of input Evaluating queries over streaming inputs has been
streams in the join. studied in the context of query scrambling [12] and adap-
The results show that the plans with multiple smalltive query execution [1, 7]. In the former approach, an
MJoin operators can outperform both the single largeexecution plan is monitored so that whenever a blocked
MJoin operator and the plans built up with only binary input is detected the operator(s) using that input are pre-
operators. It is interesting to note that the single MJoinempted and other, non-blocked, operators are run in-
operator, while not the best plan overall, dominates in thestead. Adaptive execution frameworks employ similar
first stages of the query execution. Clearly, this presentperformance monitoring as their decision strategy but in-
a great opportunity (or challenge, depending upon youstead of giving precedence to certain operators, they dy-
perspective!) for query optimization: ideally, the opti- namically alter the plan in a way that is believed to over-



come any performance bottlenecks. Our multi-way join] Notation | Description |
operator addresses a similar problem, but without requirf  hash | Cost of hashing a key

ing any explicit monitoring or dynamic plan modifica- move | Cost of moving an object in memory
tion. Of course, we do not claim our approach abolishe§ comp | Cost of comparing two keys in memory
the need for adaptive execution, since many queries caff- r; The input rate of the®® stream

not be reduced to a single multi-way join operator; rather ok Selectivity factor of join predicatg

we claim that the introduction of a multi-input join op-
erator reduces'the burden plageq on an adaptive frame"I'able 4: Cost variables and notation used for modeling
work. The MJoin approach is similar in some respects to

SteMs [9]. The idea behind a SteM is to push state infor-

mation from the operator to the source. We differ from [6] G. Graefe, R. Bunker, and S. Cooper. Hash joins and hash teams
that approach in two aspects; a SteM is essentially a first-  in Microsoft SQL server. I'VLDB Conference1998.

class operator in the query plan. As such, it introduces[7] z.G. Ives, D. Florescu, M. Friedman, A. Y. Levy, and D. S. Weld.
additional dataflow logic [1] in the execution plan. Addi- An adaptive query execution system for data integratiors|(®-
tionally, SteMs try to address the more general problem MO Conference1999.

of sharing computation between sources (SteMs can bd8l A. Kemper, D. Kossmann, and C. Wiesner. Generalised hash

shared), which is something we do not deal with in the _ '¢ams forjoin and group-by. MLDB Conferencel999.

context of a single algorithm. [9] S. Madden, M. A. Shah, J. M. Hellerstein, and V. Raman. Con-
tinuously adaptive continuous queries over streamS&IGMOD

Conference2002.

5 Conclusions and Future Work [10] P. E. O'Neil and G. Graefe. Multi-table joins through bitmapped

Join algorithms have been extensively explored in the re-  join indices. SIGMOD Recofd24(3):?‘11* 1995
search literature, and at many points during the history11l T. Urhan and M. J. Franklin. XJoin: A reactively-scheduled
of our community one might have concluded that there ggf’(‘;')'”zed o sralor IEEE Data Engineering Bulletin
. . :27-33, .

was nothing more to be discovered about them. How- .

t least to date. this has alwavs been false — th%z] T. Urhar_1, M. J_. _F_ranklln, and L. Amsaleg. Cost based query
ever, aﬂ o ' L way frisaliavegion scrambling for initial delays. ISIGMOD Conferencel 998.
recem urry ot interest In streaming and/or adaptive JOIn[13] S. D. Viglas and J. F. Naughton. Rate-based query optimiza-
algomhms IS one countere?(ample._ ) o tion for streaming information sources. 5GMOD Conference

In this paper we continue this investigation into 2002.

streaming and_ade_lptlve Jjoin algorithms, bU_t with @ Nnew[14] A. N. wilschut and P. M. G. Apers. Pipelining in query exe-
twist: by considering multi-way (beyond binary) sym- cution. InConference on Databases, Parallel Architectures and
metric join operators. We have shown that in many cases  their Applications 1991.
a multi-way join operator can produce its output in a ] )
streaming fashion and at a faster rate than any tree of  Cost Expressions for MJoin

binary join operators. .The introdgction o_f a .mUIti'WaY In this appendix we present a cost model for MJoin op-
join operator has also introduced interesting issues withy ;o5 “Sych a cost model is essential if optimizers are
respect to how to handle memory overflow and how 0y, 1o apje to make good decisions about when and how

choose a probing sequence within the join. In futuréy, oy 10y MJoin operators; it is also useful in explaining
work we plan _to explore the opt|m_|zat|0|_’1 prqblem of how some of our experimental results in Section 3.6.
to best to split a very large multi-way join into a set of

smaller multi-way joins. A.l1 Rate-based Cost Expressions
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the output rate, before generalizing to continuous timeMJoin operators, the first one operating oveinput

Over the first second, the operator will receivetuples  streams, while the other operating ovenput streams

from the first streany;, from the second one, and so on. (wherek 4+ [ = m). Suppose that we are dealing with

The Cartesian product of these tuples and, hence, the téhe situation of having,; tuples for stream. (This can

tal size of the input that the operator will filter, will then mean either that the total input size for streais equal

be equal ta” (1) = []"_, ;. Assumingk join predicates ton, or that given the input rate; of stream, after time

in the query with each join predicate having a selectivityt we expect; arrivals.)

of f, the total number of tuples transmitted for arrivals It ma.:fes.se'?]se to decomposrelr the Singlde MJoin olp—
i ; i _ 1Tk n eration if it is cheaper to store the intermediate results

([j)LLJJr:ir%tthheeflrr]setxstescgcnodn\évlgfb S)Selzgz&ionnjgégﬁ sl_[trgal:;ﬁ from the k& and str%ams than it is to discard and re-

: - _ compute them. Assuming, predicates between the
have received an ad_dmoned twples, a_total OB - 7 _for first k sources and, predicates between the remaining
feachcsthea_m. 1;Lhe25|2fiof2£he Cartesuacri] F;]rOd“Ct ',Sbtherps'ources, the the intermediate result size forktisereams
ore f(h)' N [l ;’ -~ Hi:_ﬁ :; a;n) t (le_[iontrl U is T8, oy - T, ni, while the intermediate result size
tion of this input to the output will b&'(2) = [[._, o, - glo l
2" T, i FF:om this size!ohowever, we haveJ fc; di]scard T:: r tt:izttrv(\azr:wj S?E;;ég(iﬁlgf_;ﬁfﬁzhe:éﬁtlg f it.o'r-
the inputs handled during the first second of execution 9 i=170 Lli=1 70 1 Li=1 72

l
since these have been already propagated. After the firgili—y 7i) - (hash + move). On the other hand, prob-

second, the contribution of the next second to the out!Nd the hash tables of the firét streams for matches

. [U l .
put becomed’(2) = H?:l oj - 20 Ty rs — T(1) = will bear a cost of[[,7, o; - [[;_, ni - comp, that is
& " o . . the number of expected tuples from thetreams times
.o = IIj=yon - ITi=y mi - (2" —1). By induction, we  the cost of a comparison. In a similar way, the cost of
an prove that the number of transmitted outputs for anyyrobing the remaining streams for matches is equal to

tirrlle pointt will be given by the expressionT(t) = Hfil o - Hi_c:l n; - comp. Overall, the cost of splitting
[T 0w - i@ —(—-1)"—...=2"—1) = an MJoin ofm inputs into two MJoins ok and! inputs
H;r:l op - TIy 7 (87 — 2;11 k™). will be equal to the quantity (&, I) given in Equation 3.

The next step in extracting the operator’s output rate ko k lo !
is calculating the denominator of Equation 1. For an ar- S(k,l) = <H o - H”i + H o - Hm) .
rival in any given stream the following operations have o1 =1 o1 =1
to be performed: (i) hash the tuple, (i) move it into its
corresponding hash table, and (iii) probe the rest of the
hash tables for matches. Notice, however, that not ev-
ery tuple probes all hash tables. In a way resembling The number of times we discard the intermediate re-
pipelined execution, it goes to a next hash table only ifsylt set for each subset of inputs is equal to the number
matches in the previous one exist, as depicted in Figuref times a probe from the other subset does not produce
3. In total, the cost per alrrlval will be egu?l tash +  any matches. For the first subsetiahputs this number
move + comp - (1 + [[;Z; ox), where][;Z; ox isthe s equaltoy 'e, (1 — ;) []._, n, thatis, the probabil-
cost induced if all probes have to be perforrhe8ince ity of either one(hence, the sum) of thig predicates on
there will be > | r; arrivals for a given second, that the remaining sourcesiotproducing matches, times the
makes the time needed to make the transmission equalimber of expected tuples from thetreams. The cost
to 32", ri - (hash + move + comp - (1 + H?: or)). of discarding the intermediate result will then be equal

to Yl (1 —0y) - [I._, ni - comp that is, the result size

g Multiplied by the cost of probing (an in-memory compar-

«dson.) Using the same reasoning we can compute the cost
of discarding the intermediate result for the remaining
inputs is equal t&_", (1 — o;)- [T}, ni - comp. Over-

| | P | RN (LD Sl ) all, the cost of discarding the intermediate result sets is

equal to the quantity) (&, ) given in Equation 4.
ST (hash + move + comp - (1 + Hf;ll ak)) g g Pkl g a

(2) lo l ko k
D(k,l) = (Z (1—-0y)- an + Z (1—-0y)- Hm) -comp

i=1 i=1 i=1
(4)

(hash + move + comp) (3)

Substituting this last expression afi¢¢) into Equation 1
yields MJoin’s output rate (Equation 2). In Section 3.
we saw how Equation 2 can identify cases where MJoin
performance might degrade.

ro(t) =

A.2 MJoin Decomposition Cost Expressions

Consider the scenario of a multi-join query over If D(k,l1) > S(k,l) then it is better to decompose
streaming sources and the problem of deciding whether the singlem-way MJoin into onek-way and ond-way
single MJoin operator needs to be broken in two smalleMJoin.

4The product’s limit is set t& — 1 instead oft since one probe will
always take place.



