Toward a ProgressIndicator for Database Queries

Gang Luo Jeffrey F. Naughton
University of Wisconsin-Madison

{gangluo, naughton}@cs.wisc.edu

Abstract

Many modern software systems provide progress a@talis for
long-running tasks. These progress indicators masems
more user-friendly by helping the user quickly mstie how
much of the task has been completed and when #hewdl
finish. However, none of the existing commercial BNISs
provides a non-trivial progress indicator for longming
queries. In this paper, we consider the problenswgporting
such progress indicators. After discussing the goahd
challenges inherent in this problem, we presentea of
techniques sufficient for implementing a simple yeteful
progress indicator for a large subset of RDBMS m@serWe
report an initial implementation of these techngu@
PostgreSQL.

1. Introduction
Progress indicators are a widely used user-interfachnique
in modern software systems. For example, Figurédndws a
progress indicator for file downloading. Typicallg, progress
indicator has the following two features:
(1) It keeps track of the percentage of the task tlaat teen
completed.
(2) It continuously estimates the remaining task exeout
time.
These two features make the software systems mocé user-
friendly: by knowing how long he/she needs to wiait a
program to finish, the user can better utilizeles/time [16]. In
fact, in many cases, even a rough estimate ofeimaining task
execution time can be beneficial to the user [4].

3% of DB2_V81_ESE_AIX433_32_DBCS.tar C... [= |[E1[5%]

® - &

Saving:

..WB1_ESE_AIX433_32_DBCS.tar from 207.25.253.61

(=)
Estimated time left 46 min 40 sec (17,1 MB of 622 MB copied)

Download ko ...\DB2_V&1_FSE_AIX433_32_DBECS.tar

Transfer rate: 221 KBfSec

[[] Claze this dislog box when download completes

Cancel

Figurel. A typical file download interface.

Such progress indicators are useful whenever a msgnt

Permission to make digital or hard copies of allpart of this work fc
personal or classroom use is granted without fee dealithat copies &
not made or distributed for profit or commercialadtage and that cop
bear this notice and the full citation on the fipstge. To copy otherwis
or republish, to post on servers to redistribute to lists, requires pi
specific permission and/or a fee.

ACM SIGMOD 200, June 13-18, 2004, Paris, France.

Copyright 2004 ACM 1-58113-859-8/04/06 ...$5.00.

Curt J. Ellmann Michael W. Watzke
NCR Advance Development Lab

{curt.ellmann, michael.watzke}@ncr.com

have to wait for a task to complete. Unfortunatebpme
RDBMS queries definitely fall into this categong queries can
take a long time to run. Hence, progress indicatoesdesirable
in RDBMSs [18, 15]. To the best of our knowledgewver,
none of the existing commercial RDBMSs provide®a-trivial
progress indicator, and we are unaware of any gl
techniques for supporting such a progress indicator

Some RDBMSs provide trivial progress indicators for
complex queries by breaking the query plan intpstand then
reporting at any time which steps have completed wahich
steps are still left to run (see, e.g., [8].) Wlslech a progress
indicator is clearly much better than nothing, ficany purposes
it will be too coarse — even a long-running queyronly have
a few steps, and such a progress indicator doegivethe user
any feedback while a (potentially very long) stepunning.

Another way to provide a trivial progress indicaierto use
the optimizer's estimate of query running time. \Rding a
trivial progress indicator based upon the optimi&estimate of
query running time is simple. If the optimizer estes that a
query will taket seconds, and the query has runtfaeconds,
we estimate that the remaining time ist’seconds. While such
a trivial progress indicator is also better thathim, it is likely
to be highly inaccurate. This inaccuracy arisesnfitvo main
causes:

(1) Optimizers’ query cost estimates typically contaimors.
Furthermore, accurately predicting actual queryniog
times is more challenging than choosing good plarer
bad ones, as estimates that correctly rank plalysneed to
be correct about relative costs, not actual cdsos. this
reason, using optimizers’ estimates for progregg#tors
is even more problematic than using them for query
optimization.

(2) Due to concurrently running queries and other jdhs,
system load may vary significantly. For a specigery,
even if the optimizer provides an estimate thatréeise for
an unloaded system, this estimate may differ snbatly
from the actual query execution time in a loadestesy.

In this paper, we propose techniques for supportirgress
indicators for RDBMS queries. We demonstrate thgtyubf
these techniques by an implementation for selegjept-join
queries in PostgreSQL. While the resulting progresicator
can be refined, our experiments show that it iseful progress
indicator even in the presence of optimizer estioma¢rrors and
varying run-time system loads, and that it imposegegligible
(less than 1%) penalty on the running time of cpgeri

Our basic approach is to separate a complex quaryipto
pipelined segments, where the boundaries of theeets are
defined by blocking operators. We measure quergness in
terms of the percentage of input processed by edcdese
segments. We begin with the optimizer's estimates f
cardinalities and sizes. However, as a query rwes,obtain
more and more precise information about the ingatghe
segments in its execution plan. Also, at all tinves,monitor the

speed at which segments are processing their ifptiish is a
function of the query plan and the system loaduatime.) We
use this more precise information to continuousjine the
estimated query execution time and thus to updeteptogress
indicator.

The rest of this paper is organized as followsSéwation 2, we
discuss related work. In Section 3, we describe gbals of
progress indicators for RDBMSs. In Section 4, wespnt a set
of techniques for implementing progress indicatams an
RDBMS. In Section 5, we present results from artiahi
implementation of our techniques in PostgreSQL. a¥eclude
in Section 6.

2. Related Work

There has been a lot of work (e.g., [4], [16]) e tHCI
(Human Computer Interaction) community for progress
indicators. However, none of this work has addrststabase
queries.

Online aggregation, proposed in [11], shares whts tork
the goal of providing continuous feedback duringemyu
execution. For long-running aggregate queries, nenli
aggregation provides continuously refined approx@ma
aggregate query results. For simple aggregate epuée.g., a
single-table scan), the online aggregation interfaontains a
progress indicator that indicates the percentagheofjuery that
has been completed [11]. However, online aggreggifovides
no estimate of the remaining query execution tir@aline
aggregation requires special non-blocking queryluaimn
algorithms [11, 10]. In contrast, the progress dathrs
discussed in this paper are not limited to aggiegagueries,
and do not require non-blocking query evaluatigoathms.

In dynamic query optimization [2, 14, 5, 12, 9, 1@ople
have proposed refining the query cost estimatenata more
points to change the query plan dynamically. Howegech
refinement is not continuous. Also, no estimatéhefremaining
query execution time or the percentage completgdogided in
dynamic query optimization.

[1, 3] propose building and maintaining histograrng
analyzing query results (rather than examining daga sets).
Then they use the (refined) histograms to estirttetecosts of
future queries more precisely. However, [1, 3] dat use the
intermediate results of a query to estimate theaneimg query
execution time/cost as the query is being processed

Most commercial database vendors (DB2, Oracle, SQL
Server, Teradata, Tandem, etc.) provide databasgtoriag
tools. These tools provide various information (e&apsed
time, current execution step, number of I/Os pentedt) for a
running query and can alert the DBA if the runniggery
exhibits excessive overhead [7, 15, 8, 18]. Inaerisimple
cases, such information can be used to estimateethaining
query execution time [15]. However, in general, itifermation
provided by existing database monitoring toolsas enough to
estimate either the percentage of the query that iheen
completed or the remaining query execution timdg.[18

Some commercial RDBMSs provide query cost estimates
measured in time (e.g., seconds) based on an widd@DBMS.
As explained in the introduction, even if a queogtcestimate is
precise for an unloaded RDBMS, it can differ sigmiftly from
the actual query execution time in a loaded RDBMS.

[13] proposed a method for estimating the optimizer
compilation time of a query. [13] also proposechgsthe same
method to monitor the progress of workload analysisls.

However, no method is proposed in [13] to monik& progress
of queries.

[15] proposed a method for monitoring the progrefskong-
running rollback operations. The idea is to monttee number
of update log records that have not been rolledk fac a
transaction. By calculating the speed that the tgltey records
are being rolled back, we can estimate the remginitiback
time for this transaction. This method can be irdggl into the
progress indicators for RDBMSs so that these pssgre
indicators can also monitor the progress of rokbagerations.

3. Goalsfor Progressindicators

Figure 2 shows an example of the sort of progrediator
we would like to support for database queries. Thisrface,
which is continuously updated, displays the elapsee, the
estimated remaining query execution time, the edgoh
percentage of the query that has been completedegtimated
query cost, and the current query execution spBeth the
estimated query cost and the current query exatsieed are
measured ifJ's, whereU is an abstract quantity that represents
one unit of work (we will return to the questionhaiw to define
U in Section 4.)

Progress Indicator EE

[SQL name Query 1
Elapsed time 5 hour 3 min 7 sec
Estimated time left 14 hour 25 min 16 sec (24%ejorj
Estimated cost 1502831 U
Execution speed 22 U/Sec

Figure 2. A progressindicator for database queries.

Ideally, a progress indicator should satisfy thdélofeing
goals:

(1) Continuously revised estimates: At any time, for all the
information provided to the user, the progress dattir
should give an estimate based on all the informatio
available about the query and the system at thr. tirhis
estimate should be continuously refined, due toh bot
changes in the estimates of intermediate resuéissand
changes in the rate at which the query is progrgssi

(2) Acceptable pacing: The progress indicator should be
updated frequently enough that the user sees atklmoo
display. However, the update rate should not beespent
as to overburden either the user interface or fiee.u

(3) Minimal overhead: The progress indicator should have a
small effect on the efficiency of query execution.

4. Implementation Techniques
In this section, we present our techniques for emnting
progress indicators in an RDBMS. We consider seleaject-
join queries, and assume that the available jogoréhms are
hash join, nested loops join, and sort-merge jaird that base
relations can be accessed by either table-scangex-scans.
Our main idea is as follows:
(1) We collect statistics at selected points of a qtap. As a
query is being processed, we will have more andemor
precise information about intermediate results .(e.g

cardinality, size) and the run-time system (e.gipant of
available memory). We use the improved information
continuously refine the estimated query cost.

(2) We continuously monitor the query execution spded, (
how manyU’s are processed per second). At any time, the
remaining query execution time is estimated tohgeratio
of the estimated remaining query cost to the oleskrv
current query execution speed.

From time to time, the progress indicator presehts latest

estimates to the user.

In Section 4.1, we describe how we choose the waoikU
and how it is converted to time. In Section 4.2, define the
concept of segments that is crucial to our quest estimation.
Then we show how to get the cardinalities and sidesegment
inputs in Section 4.3. In Section 4.4, we preséet gtatistics
collection techniques. In Section 4.5, we descrilmwv to
continuously refine the query cost estimate. IntiSec4.6, we
discuss the techniques used in monitoring the gegecution
speed.

4.1 Choosing U and Convertingto Time

As mentioned in Section 3, both the estimated quesy and
the current query execution speed are measuretiedbglistract
unit U. EachU represents one unit of work. We are purposely
being rather vague and general in this statementany viable
alternatives exist folJ. The important requirements faf are
that one can readily estimate how masig a query will take to
execute, and that one can readily convert ftdmto estimated
time, since ultimately time is likely to be the tninost
meaningful to users. Reasonable candidatet)forclude 1/Os,
CPU cycles, or even a combination of the two, peshasing
some weighting factor.

Our progress indicator works by continuously refqmboth its
estimate of how many'’s the segments in a query will take to
execute (segments are defined in Section 4.2)taresfimate of
the conversion factor frord to time. The estimated number of
U required to process a segment changes as the sgatbers
more statistics about intermediate results as tlegygruns. The
refinements in the estimates of the conversiorofaitom U to
time result from observations of how quickly thestgyn is
processingU. (If U were chosen to be CPU cycles, this
translates to the admittedly strange sounding guresthow fast
is the system processing CPU cycles?”; in this ,cdbis
question would really mean “how many CPU cycles ggzrond
are being devoted to this query?”)

In this paper, for simplicity, we defing in terms of bytes
processed, with the intuition that this is easynteasure and
serves as a rough proxy for CPU and 1/O. Thathis,dost of a
queryQ is the total size of the (input and intermediagsulit)
tuples that are to be read and written @y Similarly, at any
time, we represent the amount of work that has lkieere onQ
using the total bytes that have been processear $orlQ.

We setU to be one page of bytes, and assume initiallyofieef
the query starts running) that executing the quélyrequire a
number ofU equal to the optimizer’'s estimate of the number of
1/0s for the query. Before giving its first estirmabf running
time, the progress indicator “watches” some amouwift
processing to see how quickly the system is consgitdi we
discuss this in more detail in Section 4.6.

As the query runs, the estimated time to processlbmill
change to reflect the observed processing rategirsystem. The
time to process on& could range from the time for one

physical 1/0 (if the system is disk-bound) to timae to process
one buffer-pool resident page of data (if the datzessed by the
query is completely cached in memory) or anywheredtween.
In fact, in a heavily loaded system, the time tocess aJ could
even exceed the time to perform a physical 1/O.

This simple definition ofU limits the precision of our
estimates; however, in our experiments, describefeiction 5
below, this definition worked well in our tests,tbdor 1/0O and
CPU intensive queries. We leave it as an intergstirea for
future work to explore how to improve the estimat@thout
imposing undue overhead by refined definition&)of

4.2 Definition of Segments
In order to support progress indicators, we diadgiery plan
into one or more segments so that we can focus@mdlividual
segments rather than the entire query plan. (Digich query
plan into parts has been proposed before, for resou
management and parallel processing purposes [6&¢hE
segment contains one or more consecutive opergtarsan be
executed as a pipeline. A pipeline continues withisegment
and breaks at the end of a segment. In practiceckiolg
operators (e.g., hash-table build operators, squérators,
intermediate result materialization operators) seag natural
separation points of different segments [14].
Each segment can be viewed as a tree. The robedfee is
the output of the segment. The leaves of the tre¢ha inputs of
the segment. The inputs of a segment either coom frase
relations or from the outputs of lower-level segisen
Figure 3 shows a query plan that contains five sggm
(1) SegmentS; computesr{o(A)) and hashes the results into
multiple partitionsP,.

(2) SegmentS, computeso(B) and hashes the results into
multiple partitionsPg.

(3) Segments; computes a hash join usifg andPg and sorts
the results into multiple sorted ruRgg,

(4) SegmentS, computesg(C) and sorts the results into
multiple sorted run&c.

(5) SegmentS; computes a sort-merge join usiRgs and R
and generates the final query result after prajecti

€-$0rt—mer ejpin
/‘* Kt
sor

C f‘jndex-scan)

Figure 3. A query plan example.

4.3 Cardinalities and Sizes of Segment Inputs
In this section, we show how to get the cardiragitand sizes
of segment inputs. As mentioned in Section 4.2rettee two
kinds of inputs to segments:
(1) Upper-level segment inputs: An upper-level input of a
segment is the output of some other lower-leveirsag.
(2) Base segment inputs: A base input of a segment comes
from a base relation.

For an upper-level input of a segméhtat the timeS starts
execution, all the segments that are be®must have finished.
Hence, the output cardinalities and sizes of tHeser-level
segments are known exactly, since they are compasethe
segments run (see Section 4.4 below).

In contrast, a base input of a segment is eithablke-scan or
an index-scan. At the beginning of a table-scatindex-scan,
we have to use the optimizer’s cardinality and siggémate for
the cardinality and size of the input, even if tesgimate is not
precise. (We have no choice — we have not evena®gnf the
input data in question.) Suppose that the optirngzeardinality
estimate for the base segment inputNs and the precise
cardinality isN,. There are two possible cases:

(@) Ny=Ne. During the table-scan or index-scan, we keepgusin
Ne as the estimated segment input cardinality. After
finishing the scan, we know the precise nunmgand use
it as the precise segment input cardinality.

(b) Ny>Ne. During the table-scan or index-scan, we keepgusin
Ne as the estimated segment input cardinality, uthid
actual number of tuples that have been read exddgds
From then on until the finish of the scan, we use=dctual
number of tuples read so far as the estimated sagnput
cardinality.

During the table-scan or index-scan, we colledtisties about

the average tuple size. The size of the base segnpr is the

product of its cardinality and its average tupleesi

If the estimated segment input cardinality andipe shanges,
we need to (see Section 4.5 below) refine the esisrelated to
the current segment, and propagate these changesdim the
query plan tree.

4.4 Collecting Statistics

We collect statistics about cardinalities and agerauple
sizes of the intermediate results, which can beptged on the
fly inexpensively as the intermediate results ad generated.
For any intermediate result, its size is the prodat its
cardinality and its average tuple size.

We collect statistics (output cardinality, averagpgle size) at
the output of each segment. The only exceptionhés last
segment in the query plan, for which the outpulésfinal query
result that will be returned to the user. Therefore statistics
are collected there.

Unlike [14], we do not collect statistics about tmember of
distinct values and histograms of the intermediaseilts. In our
experiments, which are described in Section 5 belowr
statistics collection techniques worked well. Itais interesting
area for future work to explore whether either ecting more
complex statistics or collecting statistics wittBegments can
significantly improve the estimates without impagimndue
overhead.

Unlike [14], we do not insert statistics collectperators into
the query plan. Rather, we embed the statistideatan code in
the operator code. For each operator, we augmentata
structure so that the collected statistics can &ld there. For
each query plan, we use a flag to control whetteistics need
to be collected. When the progress indicator fegituin use, the
flag is turned on and we collect statistics in ajppiate
operators. If one does not wish to modify existipgrator code,
our approach to statistics collection can be medifio use that
presented in [14].

4.5 Refining the Estimate of the Number of U
Required by the Query

In this section, we describe techniques for refinithe
estimate of the number dfi the query will require for its
execution. The number & required by a query is the sum of
the number olJ required by all the segments in the query plan.
In the remainder of this section we refer to thisnber as the
“cost of the query.” Similarly, we call the numbafrU it takes
to execute a segment the “cost of the segmentSdction 4.6
we will turn to the issue of estimating the coni@ndactor from
U to time.

As mentioned in Section 3, we want to update tlspldy on
the progress indicators as smoothly as possiblecéjeve need
to continuously refine the estimates of the segnoests. For
segments that have finished execution, we knovexaet costs.
Therefore, we only need to focus on the cost oftgment that
is currently being executed and the costs of tharédusegments
that have not started execution.

In the following, we first show how to compute tbest of a
segment. Then we give an overview of the refiningcpdure
for query cost estimation. Finally, we describe ttefining
procedure for query cost estimation in detail.

Computing the Cost of a Segment

As mentioned in Section 4.2, each segment contamesor
more steps that are executed in a pipeline. Réleatl in our
techniques we only monitor bytes processed at tedaries of
segments. This means we only need to considenthasd to the
segment and the final output.

Intuitively, a byte coming from a segment inputcisunted
once as it is input into that segment. A byte pomdlby a
segment is counted once as it is output by thahsag (except
when the segment output is the final output thatisplayed to
the user), and again as it is input by the nextmssg. If the
intermediate result is indeed materialized to dibs “double
counting” corresponds to the cost of the byte beimiten to
disk and then read back in. If at runtime this imediate result
actually ends up being buffered in memory, thiskdewounting
corresponds roughly to the cost of the byte bemgdied at the
output of the lower segment and then again at ipetiof the
next segment.

A special case arises if an operator at the leavesot of a
segment is a multi-stage operator (for example, udtitstage
partition operator for a hash join, or a multi-gagprt). For such
operators, bytes handled by the operator will bented once
each time they are logically read or written.

The reader may wonder if computing costs only gimsnt
boundaries is a good idea, since for deep pipetimesapproach
ignores a lot of computation within the pipelinehN¥ it is true
that our approach does not explicitly account famputation in
the pipeline, this computation is implicitly consied because it
impacts the speed with which a segment consumespis. It is
an interesting open question whether in generalgrpss
indicators can benefit from explicitly accountiray tosts within
pipelines.

Overview of the Refining Procedure for Query Cost
Estimation

As the current segment is being processed, weancmnisly
refine the estimates for its output cardinalitg, average output
tuple size, and the tothl it will consume (we describe precisely

how we do this later in this section.) We propagh&improved
estimates for the current segment upwards in tlegygplan to
the next segment. Then we refine the estimatehi@foutput
cardinality, average output tuple size, abd for the next
segment. Recall that in our progress estimdtbiis just the
number of bytes processed by the segment. So thstign
arises: how can we compute the expectédfor a future
segment?

Fortunately, we can compute the expectédor a future
segment by invoking the optimizer's cost estimatimodule
with the improved estimates of output cardinalityd soutput
size for the current segment (and the existingreggs for any
other inputs to the future segment, if it is a mpldEinput
segment — the estimates for these segment inpaitsadrbeing
refined if they are not from the current segmeBefause the
optimizer gives a number of I/Os in its estimate, @&an convert
this to bytes simply by multiplying the estimatethg page size.

We continue this propagation of estimates and cetaion
of costs until we reach the top of the query plEmen we use
the exact costs of the past segments, the improesidestimate
of the current segment, and the improved cost astisnof the
future segments, to refine the estimated query cost

For example, consider the query plan example shawn
Figure 3. Suppose the current segmertgisWe continuously
use the improved estimates related to segrBemd refine the
estimates related to segmeBtsandS;. The improved estimates
related to segmer&, will not influence the estimates related to
segmentsS,. Hence, for segment§,, we use the original
estimates provided by the optimizer. (The optimiestimates
can be kept in the query plan using the annotatemtygplan
technique in [14].)

From the above description, we can see that thestegy of
refining the query cost estimate is refining thenestes related
to the current segment. Hence, we now turn to dstwow we
refine the estimates of output cardinality, sized & for the
current segment.

Refining the Estimates Related to the Current Segment

Estimating the average output tuple size is edsgng time,
we use the average output tuple size computed rsasfahe
estimated average tuple size of the final outpuic&Swe are
using bytes processed &% the U required by the current
segment is just the product of its estimated cafilies and
average tuple sizes of its inputs and the outpw.nake shown
how to get the estimated cardinalities and avetapk sizes of
the inputs in Section 4.3. Hence, in the followimg focus on
estimating the output cardinality. We first intreguthe concept
of dominant inputs, which we use to enable an apprate
indication of how far along the current segmenhiprocessing
its inputs.

For each segment, we define one or two dominantténgs
mentioned in Section 4.2, each segment can be diewe tree.
The leaves of the tree are the inputs of the segnenong all
the inputs of a segment, we choose a dominant isputhat
once all the tuples in the dominant input have bg@tessed,
the entire segment finishes execution. There isxaeption: for
a segment that contains a sort-merge join operaterdefine
two dominant inputs. In more detail,

(1) If a segment contains only one input, this inputlésined
as the dominant input.

(2) If a segment contains multiple inputs, this segmauost
contain at least one join operator. If this segnuamttains

multiple join operators, we find the join operatatr the

lowest level of the segment. There are severalilpless

cases for this join operator:

(@) If it is a nested loops join operator, we define th
dominant input to be the input of the segment that
left descendant of the nested loops join operata (
outer relation [20]).

(b) If it is a hash join operator, we define the domina
input to be the input of the segment that is atrigh
descendant of the hash join operator (the probe
relation).

(c) If it is a sort-merge join operator, we define the
dominant inputs to be the two inputs of the segment
that are descendants of the sort-merge join operato

As an example, consider the query plan example shiow
Figure 3. We list the dominant inputs of the segimeas
follows:

(1) Segment;: A
(2) Segment;: B.
(3) Segment;: Py
(4) Segment; C.
(5) Segment;: Ryg andRe.

Next we turn to discuss how to use the percentdge
dominant input that has been processed so far finer¢he
estimated output cardinality. We first discuss tiase that the
current segment contains one dominant input. Therdiscuss
the case that the current segment contains twordorhinputs.

At the time that the current segment starts exenutive give
an initial estimateE; of its output cardinalityE,; is computed
using the input cardinalities of the current segmand the
optimizer’s cost estimation module. This estimageyraf course
be wrong; our goal is to detect this while the segiis running,
and gradually replace it with an estimate that apphes the true
output cardinality as the execution of the segmartrs
completion. We do this as follows.

Suppose that the dominant input cardinality of tuerent
segment iz. Assume that so far, we have processed z and
generated output tuples. Then the percentage that the darhina
input has been processegis</z If we assume that at any time,
the number of output tuples that have been gerterie
proportional to the percentage that the dominapatifas been
processed, then we can estimate the final outpainzdity of
the current segment to bE,=y/p=yz/x In practice, this
assumption may not be valid and we also want teiden the
initial estimateE;.

At any time, we use the following heuristic formuta
estimate the final output cardinalify of the current segment:
E=pxE,+(1-p)xE;. This heuristic formula intends to smooth
fluctuations in the estimator and to let it gradypahange from
the initial estimate (when the current segment jagirts
execution, we know nothing about the actual segneemput
cardinality) to the actual segment output cardipafivhen the
current segment finishes execution, we know thigntjty
exactly).

Recall that a segment containing a sort-merge ¢aearator
has two dominant inputs. In this case, once wehr¢lae end of
either dominant input, the sort-merge join (and sthine
segment) immediately finishes execution. Therefae need to
use the dominant input that is being scanned velgtifaster to
decide the percentagethat the two dominant inputs have been
processed [21].

We use an example to illustrate the procedure. iGensa
sort-merge join operator with two input relatiohAsand B. We
assume that both andB have already been sorted. Suppose that
the cardinality ofA is |A|, and the cardinality oB is |B|.
Suppose that we have processetliples fromA andy tuples
from B. Let ga=x/|A| andgg=y/|B|. Then we use the following
formula to decid@: p=max(c, 0g)-

4.6 Monitoring Current and Predicting
Future Query Execution Speed

Recall that our progress indicator depends on hirgs: the
estimates ofJ, and the estimated conversion factor betwden
and time. The conversion &f to time should reflect what we
are observing as the system is running. So, ainadls, we keep
track of the amount of work (measuredU¥rs) that has been
done for quen@ in the lasfT seconds, wher€ is a pre-defined
number. The average speed that the work has beea fdo
queryQ in the lastT seconds is used as the estimated current
execution speed of quer®. To minimize the influence of
temporary fluctuations, thif should not be too small. However,
this T should also not be too large. Otherwise, the taied
execution speed will not closely reflect the actwairrent
execution speed. In our implementation, we chobse be 10.
In our experiments, we found that this number iSigant to
provide a smooth estimate of the current query @@t speed.

This approach to calculating the conversion fidrto time is
admittedly simplistic, and although it worked waefl our
experiments, there are cases in which it will bsl@aiding.

One situation in which this approach is misleadisigvhen
the system load fluctuates substantially. At tinésigh load,
the progress indicator will overestimate the executtime,
since it will think that eaclU takes a relatively long time to
process. At times of light load, it will underestita the
execution time for analogous reasons. There isnmath that
can be done about this — it is the same situatioth@ one that
occurs during a file download, when varying avd#ab
bandwidth causes the estimated download time todizurate.
One possible improvement to our approach would de t
incorporate some history beyoddin order to “smooth” the
estimates (e.g., perhaps computing a decaying geesd that
while the most recent execution speed has the nmajoact, the
overall execution speed also has an impact.)

The second situation in which our simple convergrom U
to time could be misleading occurs when segmentge ha
radically different characteristics. In particularproblem arises
when one segment can be expected to prodessuch more
quickly than another. For example, consider a tegrsent plan,
in which segmens, feeds segmert,. If S; processe&) more
slowly thanS, (perhapss, is I/O-intensive wheredS, has a high
buffer pool hit rate), then whil&, runs it will overestimate the
time it will take to runS,. (Using our simple conversion
approach, the progress indicator will eventualbufe this out
and improve its estimate - in this simple two-segirexample,
it will adjust onceS; starts running.) This problem could be
alleviated by a more complex conversion franto time —
ideally this conversion should take into accounthbdhe
expected processing speed for the segments andutient
system load. While space limitations precluded wemf
exploring such complex conversions betwékand time in this
paper, we think this is an interesting and prongisamea for
future work.

5. Performance
In this section, we present results from a protetyp

implementation of progress indicators in PostgreS@irsion
7.3.4 [19]. We implemented all the techniques dbsedr in
Section 4, except for those techniques that ard tséhandle
sort-merge join. In all our tests, our prototypedogress
indicators could be updated every ten secondsleéththan 1%
overhead, which we consider to have met the threalsg
mentioned in Section 3: continuously revised edsia
acceptable pacing, and minimal overhead.

5.1 Experiment Description
Our measurements were performed with the PostgreSQL
client application and server running on a Delpinsn 4000 PC
with one 600MHz processor, 512MB main memory, o66R
IDE disk, and running the Microsoft Windows XP ogtang
system. (We repeated some of the experiments armgputer
with a 2.4GHz processor, 512MB main memory, and t3@B
SCSI disk. The results were similar, so we omitrilreere.)
The five relations used for the tests followed sithema of
the standard TPC-R Benchmark relations [22]:
customer (custkey, name, address, nationkey,
acctbal, mktsegment),
orders (orderkey, custkey, orderstatus, totalpoceéerdate,
ship-priority),
lineitem (orderkey, partkey, suppkey, linenumberartity,
extendedprice, discount, tax, returnflag,
linestatus).
The customer_subsetlrelation and the customer_subset2
relation have the same schema as ahstomerrelation while
either of them contains only 3K tuples. In our $esin average,
eachcustomertuple matches tenrders tuples on the attribute
custkey Each orders tuple matches 4ineitem tuples on the
attributeorderkey

phone,

Table 1. Test data set.

number of tuples total size

customer 0.15M 23MB
orders 1.5M 114MB
lineitem 6M 755MB
customer_ 3K 0.46MB
subsetl

customer_ 3K 0.46MB
subset2

We evaluated the performance of progress indicdtotthe
following way:
(1) Before we ran queries, we ran the PostgreSQL ttatis
collection program on all the five relations.
(2) We performed three kinds of tests:

(@) Unloaded system test: We ran the whole query on an
unloaded system.

(b) 1/O interference test: We started executing the query
on an unloaded system. In the middle of query
execution, we started a large file copy.

(c) CPU interference test: We started executing the
guery on an unloaded system. In the middle of query
execution, we started a CPU-intensive program.

(3) We tested five queries:

(@ Query Qu

select * from lineitem;

(b) Query Qy:

select c.custkey, c.acctbal, o.orderkey, o.totedpri
l.discount, l.extendedprice

from customer c, orders o, lineitem |

where c.custkey=o.custkey and o.orderkey=l.ordedkel
absolute(l.partkey)>0;

(c) Query Qs

select c.custkey, c.acctbal, ol.orderkey, ol.tdtap
02.totalprice

from customer c, orders o1, orders 02

where c.custkey=01.custkey and ol.orderkey=02.keger
and c.nationkey<10;

(d) Query Qg

select c.custkey, c.acctbal, o.orderkey, o.totedpri
o.shippriority, l.discount, l.extendedprice

from customer c, orders o, lineitem |

where c.custkey=o0.custkey and o.orderkey=I.ordesgkel
absolute(o.totalprice)>0 and absolute(l.partkey)>0;

(e) Query Qs

select *

from customer_subsetl c1, customer_subset2 c2

where cl.custkey<>c2.custkey;

For query Q,, we report the test results for both the

unloaded system test and the I/O

However, for querie®;, Qs andQ,, we only report the test

results for the unloaded system test. This is beeéor the

1/0 interference test, the test results for que@gsQ; and

Q, are similar to those for quei®, and do not provide

much extra information. For quei@s, we report the test

results for both the unloaded system test and tR&J C

interference test.

(4) Before we ran each test, we restarted the compuoter
ensure a cold buffer pool. (We repeated our exparim
with a warm buffer pool. The results were simiko,we do
not present them here.) In all tests, we storedothtputs
from progress indicators into a file.

5.2 Test Resultsfor Query Q

The purpose of the test with que®; is to show that for
simple queries, the optimizer's estimates can lidy farecise
for an unloaded system.

120000+

100000+

80000+

60000

estimated query cost (Us)

40000

0 20 40 60 80 100
time (seconds
Figure 4. Query cost estimated over time
(unloaded system test for Q).

Figure 4 shows the query cost estimated by therpssg
indicator over time. The curve that represents dhery cost
estimated by the progress indicator is almostaiggit line. That
is, during the entire query execution, the progresficator
estimates the cost of que€y fairly precisely. This is because
queryQ, is a table-scan query on thireitem relation. Due to
statistics collection, PostgreSQL has accurate keniye of the
size of thdineitemrelation.

interference test.

Figure 5 shows the query execution speed monitbyethe
progress indicator over time. Quedy is a table-scan query that
only performs sequential 1/0. Also, it is the onlyery that runs
in the system. Hence, during the entire query eti@tiperiod,
the monitored query execution speed is quite stable

1500

1200 T T~

©
o
o

o
o
o

query execution speed
(Us per second)

w
o
)

o
o +4

20 40 60 80 100

time (seconds
Figure 5. Query execution speed over time
(unloaded system test for Q).

estimated remaining
query execution time
(seconds)

0 20 40 60 80 100
time (seconds
Figure 6. Remaining query execution time
estimated over time (unloaded system test for Q).

Figure 6 shows the remaining query execution tisterated
by the progress indicator over time. Besides thevecu
representing the remaining query execution timémased by
the progress indicator, there are two lines in Fédu
(1) The first line is a dashed line that shows the alctu

remaining query execution time over time. This @akline
almost coincides with the curve that represents the
remaining query execution time estimated by thegmass
indicator. That is, during the entire query exemutperiod,

the remaining query execution time that is estichdtg the
progress indicator is fairly precise. This is bessmaduring
the entire query execution period, (1) the prognediator
estimates the cost of que® fairly precisely, and (2) the
query execution speed is quite stable.

(2) The second line is a dotted line that shows theroper's
“estimate” of the remaining query execution timeeiov
time. We use the optimizer’s estimate of the quanning
time to predict the remaining query execution tir(Ehe
optimizer’'s estimate of the query running time ésnputed
as the optimizer’s estimated number of I/Os for doery
divided by the optimizer’s estimate of the systedi&k 1/0
speed.) We can see that compared to the dottedtlire
curve that represents the remaining query execttioa
estimated by the progress indicator is “closerthi dashed
line. That is, the progress indicator is betterntithe
optimizer in estimating the remaining query exemutime.
Also, the dotted line is not far from the dasheet|iThis is
because for quen®,, the optimizer's estimate of the
number of 1/0Os is fairly precise while the optimize
estimate of the disk I/O speed is a little bit eli#fint from
the monitored query execution speed.

Figure 7 shows the progress indicator's estimatethaf
percentage of the query that has been completedtiove. The

completed percentage curve is fairly close to aigtt line, as
work is continuously being done at a rather stesgubed.

100%

80%

estimated completed
percentage
S o
o o
s ¥

20%

0% + T |
0 20 40 60 80 100
time (seconds
Figure 7. Completed percentage estimated over
time (unloaded system test for Q).

5.3 Test Resultsfor Query Q-

The purpose of the tests with quedy is to show how our
progress indicator adjusts to the optimizer's eatiom errors
that result from complex query plans. Qu&y contains two
joins:

(1) A join of the customerrelation and therdersrelation on
the join attributecustkey
(2) A join of theordersrelation and théneitemrelation on the
join attributeorderkey
The query plan chosen by PostgreSQL is shown inrEig. In
the rest of Section 5.3, we refer to the hybridhhjain between
the customerrelation and therdersrelation as the first hybrid
hash join. We refer to the hybrid hash join betwebe
intermediate result that is generated by the ffiygirid hash join
and thdineitemrelation as the second hybrid hash join.
71

|
hybrid hash join

/
n
hash \
h g
| lineitem(table-scan)
hybrid hash join
/ AN
hash n
7 orders(table-scan)

customei(table-scan)
Figure 8. Query plan chosen by PostgreSQL .

We first discuss the test results from the unloagietiem test

in Section 5.3.1. Then we discuss the test re$udta the I/O
interference test in Section 5.3.2.

5.3.1 Unloaded System Test Results for Query Q

300000+

2500004

zooooo/

150000

estimated query cost (Us)

0 100 200 300 400 500 600
time (seconds
Figure 9. Query cost estimated over time
(unloaded system test for Q).

Figure 9 shows the query cost estimated by the rpssg
indicator over time, with the exact query cost caded by the

horizontal dotted line. At the beginning of quexeeution, the

query cost estimated by the progress indicator irssnas a

constant that is far different from the exact queogt. Starting

from 95 seconds, the query cost estimated by tlgress
indicator begins to increase and keeps approacthiagexact
query cost. This trend continues until 300 secondsen the
query cost estimated by the progress indicatorhesathe exact
query cost. From then on until the query completiome, the
query cost estimated by the progress indicator iresnas a
second constant (the exact query cost).
We explain this behavior as follows:

(1) Due to statistics collection, PostgreSQL knows bibté
cardinalities and the sizes of the three relatioesd in
queryQ,. Since all tuples in both ttmistomerelation and
the ordersrelation participate in the first hybrid hash join
PostgreSQL estimates the cost of the first hybashhjoin
fairly precisely.

(2) The join between theustomerrelation and theorders
relation is a key-foreign key join. Also, all tuplén both
the customerrelation and therdersrelation participate in
this join. Hence, PostgreSQL estimates both thdimality
and the size of the intermediate result that isegeed by
the first hybrid hash join fairly precisely.

(3) PostgreSQL does not give a good estimate of tleethaty
of the select conditionabsolute(l.partkey)>0on the
lineitem relation. Rather, for this select condition,
PostgreSQL uses a default value 1/3 as an approgimia
the real selectivity. This approximation is farrfrahe real
selectivity, which is 1 (since the absolute valfi¢ martkey
is always positive). Hence, PostgreSQL gives aerath
imprecise cardinality estimate for the intermediasult of
the selection on thelineitem relation. As a result,
PostgreSQL gives a rather imprecise cost estinmat¢he
second hybrid hash join.

(4) Before 95 seconds, PostgreSQL is working on th&t fir
hybrid hash join. During this period, the prograsticator
does not change the query cost estimate that isdea by
PostgreSQL, even if it is far different from theaekquery
cost. This is because:

(@) PostgreSQL estimates the cost of the first hybashh
join fairly precisely.
(b) During this period, the progress indicator does not

change the cost estimate for the second hybrid hash

join, as the progress indicator does not see amythi
during the execution that would cause it to chathge
estimates for the inputs to the second hybrid faish

(5) Between 95 seconds and 300 seconds, PostgreSQL is

working on the selection on tHmeitem relation. During
this period, the progress indicator begins to dethat
PostgreSQL was wrong in its cardinality estimate tfee
intermediate result of the selection on limeitemrelation.
As a side effect, the progress indicator also coatisly
refines the cost estimate for the second hybrith f@ia. As
a result, the query cost estimated by the progreisator
keeps approaching the exact query cost.

(6) Between 300 seconds and query completion time,
PostgreSQL is working on the second hybrid hash. joi
During this period, the cardinalities of both inpub the
second hybrid hash join are known exactly so tlug@ss
indicator can make accurate predictions.

N o ®
o o o
o o o

N
=]
o

query execution speed
(Us per second)

o

0 100 200 300 400 500 600
time (seconds
Figure 10. Query execution speed over time
(unloaded system test for Q,).

Figure 10 shows the query execution speed monitoyetthe
progress indicator over time. During query exeautidhe
monitored query execution speed fluctuates. Thimamly due
to the following reasons:

(1) The system performance has some random fluctuations
over time.

(2) The entire query execution is composed of multgiges
(e.g., sequentially scanning a relation, probinghash
table). Different stages have different performance
characteristics. For example, during some stagesaiely
perform sequential 1/Os while during some othegeasawe
mainly perform random I/Os. Also, during some stage
mainly perform I/O-intensive operations while dgrisome
other stages we mainly perform CPU-intensive oparat

800 4
600 4

400 -

(seconds)

200 ¢

estimated remaining
query execution time

0

0 100 200 300 400 500 600
time (seconds
Figure 11. Remaining query execution time
estimated over time (unloaded system test for Q).

Figure 11 shows the remaining query execution time
estimated by the progress indicator over time. Tloser to
query completion time, the more precise the remairquery
execution time estimated by the progress indicaldrs is
because the closer to query completion time, theerpoecise
the query cost estimated by the progress indicator.

Like Figure 6, Figure 11 contains:

(1) a dashed line that shows the actual remaining query
execution time over time.

(2) a dotted line that shows the optimizer's “estimadé’the
remaining query execution time over time.

After 340 seconds, the dashed line almost coincidigls the

curve that represents the remaining query executiore

estimated by the progress indicator. That is, &t seconds,

the remaining query execution time that is estichdby the

progress indicator is fairly precise.

Compared to the dotted line, the curve that reptssthe
remaining query execution time estimated by thegmss
indicator is much “closer” to the dashed line. That the
progress indicator is much better than the optimize
estimating the remaining query execution time.

Figure 12 shows the progress indicator’'s estimdtehe
percentage of the query that has been completedtiove This

percentage keeps increasing with time, as worloigicguously
being done.

100%-
80%
60%

40%

estimated completed
percentage

20% -

0% T T T T T |
0 100 200 300 400 500 600
time (seconds
Figure 12. Completed percentage estimated over
time (unloaded system test for Q,).

As mentioned above, after 300 seconds, the progress
indicator's estimate of the query cost remains asomastant.
Also, as shown in Figure 10, after 300 seconds, ghery
execution speed does not change much. Hence, a@er
seconds, the slope of the completed percentages cemains
almost as a constant.

5.3.2 /O Interference Test Results for Query Q

In the 1/O interference test, we started executirggquery on
an unloaded system. At 190 seconds, we startagje fite copy
that ran until 885 seconds. While it was runnirgs file copy
made the system heavily loaded and significantiyretsed the
execution speed of the query. Hence, the queryutioectime
increased from 510 seconds to 1027 seconds.

In each figure of Section 5.3.2, we use two veftiashed-
dotted lines, one representing the start of the dibpy, and
another representing the end of the file copy.

Figure 13 shows the query cost estimated by thgrpss
indicator over time, with the exact query cost gadéd by the
horizontal dotted line. We were initially perplexbd the shape
of the curve in Figure 13. Why doesn't it matchttb&Figure 97
After all, a concurrently running job should notpatt the
estimate of the number &f a query will take, yet in Figure 13
the start of the file copy is clearly visible. Aftaore reflection,
we realized that this makes sense. At 190 secaovite) the file
copy starts, the progress indicator is “learnindiatt the
optimizer's estimates were wrong. It does so bychag the
generation of intermediate results. When the filpycstarts, the
rate at which intermediate results are generatetkdses, so the
progress indicator begins “learning” more slowlyenhe the
decrease in the slope of the curve.

300000+

250000+

1
i
i
I
i
200000+ g
i
1

150000

estimated query cost (Us)

0 200 400 600 800 1000 1200

time (seconds

Figure 13. Query cost estimated over time (1/0
interference test for Q,).

Figure 14 shows the query execution speed monitoyetthe
progress indicator over time. Before 190 secondfo(k the file
copy starts running), the shape of the curve iruf€igl4 is
similar to that in Figure 10. However, once the fiopy starts,

the query execution speed is decreased. This isituebntinues
until 885 seconds, when the file copy finishes. eAft385
seconds, the query execution speed again returtiatseen in
the unloaded system test.

800 - '

query execution speed
(Us per second)
D
o
o

0 200 400 600 800 1000 1200
time (seconds
Figure 14. Query execution speed over time (1/0
interference test for Q,).

1000 N
800 4

600 4

(seconds)

400 4

200 .

estimated remaining
query execution time

0

0 200 400 600 800 1000 1200
time (seconds
Figure 15. Remaining query execution time

estimated over time (1/O interference test for Q,).

Figure 15 shows the remaining query execution time
estimated by the progress indicator over time. Bef@é90
seconds (i.e., before the file copy starts runnitigg¢ shape of
the curve in Figure 15 is similar to that in Figurgé. At 190
seconds, due to the start of the file copy, theairing query
execution time estimated by the progress indicatioreases
sharply. At 885 seconds, when the large file cdpislies, the
remaining query execution time estimated by thegpss
indicator drops significantly.

Like Figure 6, Figure 15 contains:

(1) a dashed line that shows the actual remaining query
execution time over time.

(2) a dotted line that shows the optimizer’s “estimabéthe
remaining query execution time over time.

The general trend shown in Figure 15 is similathi@ shown in

Figure 11:

(a) After 895 seconds, the dashed line almost coincwiés
the curve that represents the remaining query ¢iecu
time estimated by the progress indicator. Thaafigr 895
seconds, the remaining query execution time that is
estimated by the progress indicator is fairly eci

(b) Compared to the dotted line, the curve that repitsstne
remaining query execution time estimated by thegmass
indicator is much “closer” to the dashed line. Thgtthe
progress indicator is much better than the optimire
estimating the remaining query execution time.

Figure 16 shows the progress indicator’'s estimdtehe
percentage of the query that has been completedtione. In
general, this percentage keeps increasing with, tamewvork is
continuously being done. Again, the impact of the ¢opy is
apparent between 190 seconds and 885 seconds.

100%- ,
80% | !
]

60% |)

40% -

estimated completed
percentage

20%

0%

0 200 400 600 800 1000 1200
time (seconds

Figure 16. Completed percentage estimated over

time (1/0 interference test for Q).

5.4 Test Resultsfor Query Qs

The purpose of the test with que@s is to show how the
progress indicator handles the optimizer’s estiomagrrors that
occur due to correlation. In this test, we chantpeddata in the
ordersrelation, so that on average, eacistomertuple matches
r orderstuples on the attributeustkey where:

(@) r=20 if the nationkeyattribute value of theustomertuple
is between 0 and 9.
(b) r=0 if the nationkeyattribute value of theustomertuple is
between 10 and 19.
(c) r=10 if the nationkeyattribute value of theustomertuple
is between 20 and 24.
Hence, in quer®s, there is correlation in theustomerrelation
between thenationkeyattribute and the number of orders that
the customer has made.

Query Q; contains two joins. The first join is between the
customerrelation andol The second join is between the join
result generated by the first join ar@R. Because of the
correlations in the data, PostgreSQL’s optimizezsdnot give a
precise cardinality estimate for the first join.

90000

85000

80000

75000+

estimated query cost (Us)

70000

0 50 100 150 200
time (seconds
Figure 17. Query cost estimated over time
(unloaded system test for Q).

Figure 17 shows the query cost estimated by thgrpss
indicator over time, with the exact query cost gadéd by the
horizontal dotted line. At the beginning of quexeeution, the
query cost estimated by the progress indicator clividomes
from the optimizer, is far different from the exagpiery cost.
Starting from 10 seconds, the progress indicatgimseto detect
that the optimizer was wrong, and its cost estinimgins to
increase and approaches the exact query cost. f{faisl
continues until 80 seconds, when the query coshattd by the
progress indicator reaches the exact query costmFhen on
until the query completion time, the query costneated by the
progress indicator remains as a constant (the exaei/ cost).

5.5 Test Resultsfor Query Q4

The purpose of the test with que@y is to show how the
progress indicator adjusts to the optimizer's eatiom errors
that grow with the number of joins in a query. Quép,
contains two joins. The first join is between thastomer

relation and therdersrelation. The second join is between the
result of the first join and thieneitemrelation.

Query Qq contains two select conditions:
absolute(o.totalprice)>0 on the orders relation, and
absolute(l.partkey)>mn thelineitemrelation. Due to the same
reason as explained in Section 5.3.1 for FigurédstgreSQL'’s
optimizer gives a rather imprecise selectivity rastie for both
select conditions.

Due to errors in the selectivity estimate for thelest
condition absolute(o.totalprice)>p PostgreSQL’s cost estimate
of the first join is imprecise. Due to errors iretlselectivity
estimate for the select conditiorabsolute(l.partkey)>0
PostgreSQL’'s cost estimate of the second join $® ahther
imprecise.

300000+

2500004

200000+

estimated query cost (Us)

150000 : : : ‘ ‘ ‘ ‘

200 300 400 500 600 700
time (seconds

Figure 18. Query cost estimated over time

(unloaded system test for Q).

0 100

Figure 18 shows the query cost estimated by th@rpss
indicator over time, with the exact query cost gadéd by the
horizontal dotted line. The vertical dashed-dotied represents
the time when the first join finishes and the sec@in starts.
We can see that the progress indicator makes adjasboth
optimizer estimation errors twice as the query isind
processed: first, while the first join is runninggecond, during
the second join.

5.6 Test Resultsfor Query Qs

In all the above tests, the four queries used ., Qs and
Q) were primarily I/O-intensive. In this section, wescuss the
test results for quer@s, which is CPU-intensive. We first
discuss the test results from the unloaded syststrirt Section
5.6.1. Then we discuss the test results from thd DRerference
test in Section 5.6.2.

5.6.1 Unloaded System Test Results for Query Q

250

200

B e
o
& o

(seconds)

o
o

estimated remaining
query execution time

0 - T T T T |
50 100 150 200 250
time (seconds
Figure 19. Remaining query execution time
estimated over time (unloaded system test for Q).

Figure 19 shows the remaining query execution time
estimated by the progress indicator over time, wlité actual
remaining query execution time indicated by thehddsline.
We see that even for this CPU-bound query, calogathe
progress of the query using bytes consumed gives gesults.
The query plan chosen was nested loops join, seisrcase the
progress indicator is really measuring progres®ugin the

“dominant input” (in this case the outer relatiohtloe nested
loops join.)

5.6.2 CPU Interference Test Results for Queyy Q
In this section, we discuss the test results frive €PU
interference test for quei@s. In the CPU interference test, we
started executing the query on an unloaded sysf&nil20
seconds, we started a CPU-intensive program thatrkening
until the query finished execution. During its extéeon, this
CPU-intensive program made the system heavily ldaated
significantly decreased the execution speed ofjtlery. Hence,
the query execution time increased from 211 secdnd463

seconds.

estimated remaining query
execution time (seconds)

0 100 200 300 400 500
time (seconds

Figure 20. Remaining query execution time

estimated over time (CPU interference test for Q).

Figure 20 shows the remaining query execution time
estimated by the progress indicator over time, wlith actual
remaining query execution time indicated by thehddsline. At
120 seconds, when the CPU-intensive program stagsution,
the progress indicator “notices” that the queryceien has
slowed down, and the remaining query execution estenated
by the progress indicator increases significaritarting from
140 seconds, the curve that represents the rergaigirery
execution time estimated by the progress indicabmost
coincides with the dashed line. That is, startingmf 140
seconds, the remaining query execution time estighay the
progress indicator becomes fairly precise.

6. Conclusion
In this paper, we have proposed techniques for atipg
progress indicators for RDBMS queries. Our mairaigethat as

a long-running query is being processed, we coatisly refine

the query cost estimate and monitor the currentygexecution

speed. Then we continuously give the user an eimiaboth
the percentage of the query that has been comptddthe

remaining query execution time. Our experimentswsihioat a

progress indicator based upon our techniques ifsiluseth for

1/O-intensive and CPU-intensive queries, and thatapts both
to the optimizer's estimation errors and to varyingtime
system loads.

There are several interesting directions
considering for future work:

(1) The estimation techniques described in this papefarly
coarse. For example, while measuring bytes prodeissa
reasonable proxy for actually calculating CPU an@ |
utilization, it is certainly not exact. It is a ndrivial task to
make the estimates more precise by a more detailed
consideration of these factors, and it would bergting to
see if the resulting increase in accuracy can b&imdd at a
reasonable overhead, and also if this increasedaracy is
significant from the user’s perspective.

that we ar

(2) The estimation techniques described in this papenat
make use of detailed statistics about intermediaeilts
(for example, they consider only the sizes of the
intermediate results, not histograms on their ithigtions.)
Again, it would be interesting to see if the eff@tuired to
collect and use better statistics pays off in teohsiser
satisfaction.

(3) It would be interesting to extend our techniquesritder to
support wider classes of queries (one interestinghs
challenge is how to handle correlated subquerias) ta
support systems with more options for query evatnat

(4) As mentioned in Section 4, we do not explicitly nbthe
CPU cost due to operators internal to segmentsselbests
are implicitly counted in that they slow the praggef the
segment in consuming its input. It is an interestopen
qguestion whether and when progress indicators cbeld
improved by “looking inside” the pipelined segments

Progress indicators have other potential uses &esid
providing a user-friendly interface. For examplerogress
indicators can be useful for:

(1) Load management. Suppose that due to some reason (e.g.,
to speed up the execution of a certain query), DBA
decides to choose several queries from a pool mfing
queries and blocks their execution for a while. rAgress
indicator can help the DBA choose which queriesloak.

(2) Automatic administration. The user may embed triggers
in a progress indicator to facilitate automatic afbaise
administration. For example, the firing conditiohsoich a
trigger can be: “send an email to the user if aftevhole
day's execution, the query finishes less than 1G%he
work.” This trigger function can be achieved by fieg
track of the history of the progress indicator.

(3) Performance tuning. By keeping track of the history of a
progress indicator, we can see whether the original
estimated query cost is precise enough and wheeedgoes
during query execution. Such information can hekp u
discover the performance bottleneck. Then we caidde
whether we need to improve the query plan by kegpin
statistics up-to-date, using a higher level of mjtation, or
designing a better database schema.

It would be interesting to experiment with these ather uses

of progress indicators in RDBMSs.

Acknowledgements

We would like to thank Yibin Pan for useful disciess. This
work was supported by the NCR Corporation and bisté\SF
grants CDA-9623632 and ITR 0086002.

References

[1] A. Aboulnaga, S. Chaudhuri. Self-tuning Histagrs:
Building Histograms Without Looking at Data. SIGMOD
Conf. 1999: 181-192.

[2] G. Antoshenkov. Dynamic Query Optimization in
Rdb/VMS. ICDE 1993: 538-547.

[3] N. Bruno, S. Chaudhuri, and L. Gravano. STHbolés
Multidimensional Workload-Aware Histogram. SIGMOD
Conf. 2001: 211-222.

[4] D.A. Berque, M.K. Goldberg. Monitoring an Algtrm's
Execution. Computational Support for Discrete
Mathematics, DIMACS Series in Discrete Mathemadicd
Theoretical Computer Science, Vol. 15, pp. 153-1632.

[5] R.L. Cole, G. Graefe. Optimization of Dynamicu€ly
Evaluation Plans. SIGMOD Conf. 1994: 150-160.

[6] C. Chekuri, W. Hasan, and R. Motwani. Schedylin
Problems in Parallel Query Optimization. PODS 1995:
255-265.

[7] DB2. SQL/Monitoring Facility. http://www.sprdb@m
/SQLMFVSE.PDF, 2000.

[8] M. Dempsey. Monitoring Active Queries with Teta
Manager 5.0. http://www.teradataforum.com
/attachments/a030318c.doc, 2001.

[9] M.A. Derr. Adaptive Query Optimization in a Dective
Database System. CIKM 1993: 206-215.

[10] P.J. Haas, J.M. Hellerstein. Ripple Joins fonline
Aggregation. SIGMOD Conf. 1999: 287-298.

[11] .M. Hellerstein, P.J. Haas, and H. J. Wanglir@
Aggregation. SIGMOD Conf. 1997: 171-182.

[12] Y.E. loannidis, R.T. Ng, and K. Shim et al.r&aetric
Query Optimization. VLDB Journal 6(2): 132-151, 799

[13] I.F. llyas, J. Rao, and G.M. Lohman et al. ifBsting
Compilation Time of a Query Optimizer. SIGMOD Conf.
2003: 373-384.

[14] N. Kabra, D.J. DeWitt. Efficient Mid-Query Re-
Optimization of Sub-Optimal Query Execution Plans.
SIGMOD Conf. 1998: 106-117.

[15] U. Larry. Monitoring Rollback Progress.
http://www.interealm.com/technotes/larry/rollbadkné.ht
ml, 2002.

[16] B.A. Myers. The Importance of Percent-Done gress
Indicators for Computer-Human Interfaces. SIGCH83:9
11-17.

[17] K.W. Ng, Z. Wang, and R.R. Muntz et al. DynanQuery
Re-Optimization. SSDBM 1999: 264-273.

[18] Oracle. Communication with Oracle during longning
query. http://www.experts-exchange.com/Databases
/Oracle/Q_20675711.html, 2003.

[19] PostgreSQL homepage, 2003. http://www.postiresy.

[20] R. Ramakrishnan, J.E. Gehrke. Database Managem
Systems, Third Edition. McGraw-Hill, 2002.

[21] M. Stillger, G.M. Lohman, and V. Markl et alLEO -
DB2's LEarning Optimizer. VLDB 2001: 19-28.

[22] TPC Homepage. TPC-R benchmark, www.tpc.org.

