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Abstract 
Many modern software systems provide progress indicators for 
long-running tasks. These progress indicators make systems 
more user-friendly by helping the user quickly estimate how 
much of the task has been completed and when the task will 
finish. However, none of the existing commercial RDBMSs 
provides a non-trivial progress indicator for long-running 
queries. In this paper, we consider the problem of supporting 
such progress indicators. After discussing the goals and 
challenges inherent in this problem, we present a set of 
techniques sufficient for implementing a simple yet useful 
progress indicator for a large subset of RDBMS queries. We 
report an initial implementation of these techniques in 
PostgreSQL. 
 
1. Introduction 

Progress indicators are a widely used user-interface technique 
in modern software systems. For example, Figure 1 shows a 
progress indicator for file downloading. Typically, a progress 
indicator has the following two features: 
(1) It keeps track of the percentage of the task that has been 

completed.  
(2) It continuously estimates the remaining task execution 

time. 
These two features make the software systems much more user-
friendly: by knowing how long he/she needs to wait for a 
program to finish, the user can better utilize his/her time [16]. In 
fact, in many cases, even a rough estimate of the remaining task 
execution time can be beneficial to the user [4]. 

Figure 1. A typical file download interface. 
 

Such progress indicators are useful whenever a user might 

have to wait for a task to complete. Unfortunately, some 
RDBMS queries definitely fall into this category, as queries can 
take a long time to run. Hence, progress indicators are desirable 
in RDBMSs [18, 15]. To the best of our knowledge, however, 
none of the existing commercial RDBMSs provides a non-trivial 
progress indicator, and we are unaware of any published 
techniques for supporting such a progress indicator. 

Some RDBMSs provide trivial progress indicators for 
complex queries by breaking the query plan into steps, and then 
reporting at any time which steps have completed and which 
steps are still left to run (see, e.g., [8].) While such a progress 
indicator is clearly much better than nothing, for many purposes 
it will be too coarse – even a long-running query may only have 
a few steps, and such a progress indicator does not give the user 
any feedback while a (potentially very long) step is running. 

Another way to provide a trivial progress indicator is to use 
the optimizer’s estimate of query running time. Providing a 
trivial progress indicator based upon the optimizer’s estimate of 
query running time is simple. If the optimizer estimates that a 
query will take t seconds, and the query has run for t′ seconds, 
we estimate that the remaining time is t – t′ seconds. While such 
a trivial progress indicator is also better than nothing, it is likely 
to be highly inaccurate. This inaccuracy arises from two main 
causes: 
(1) Optimizers’ query cost estimates typically contain errors. 

Furthermore, accurately predicting actual query running 
times is more challenging than choosing good plans over 
bad ones, as estimates that correctly rank plans only need to 
be correct about relative costs, not actual costs. For this 
reason, using optimizers’ estimates for progress indicators 
is even more problematic than using them for query 
optimization. 

(2) Due to concurrently running queries and other jobs, the 
system load may vary significantly. For a specific query, 
even if the optimizer provides an estimate that is precise for 
an unloaded system, this estimate may differ substantially 
from the actual query execution time in a loaded system. 

In this paper, we propose techniques for supporting progress 
indicators for RDBMS queries. We demonstrate the utility of 
these techniques by an implementation for select-project-join 
queries in PostgreSQL. While the resulting progress indicator 
can be refined, our experiments show that it is a useful progress 
indicator even in the presence of optimizer estimation errors and 
varying run-time system loads, and that it imposes a negligible 
(less than 1%) penalty on the running time of queries. 

Our basic approach is to separate a complex query plan into 
pipelined segments, where the boundaries of the segments are 
defined by blocking operators. We measure query progress in 
terms of the percentage of input processed by each of these 
segments. We begin with the optimizer’s estimates for 
cardinalities and sizes. However, as a query runs, we obtain 
more and more precise information about the inputs to the 
segments in its execution plan. Also, at all times, we monitor the 
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speed at which segments are processing their inputs (which is a 
function of the query plan and the system load at runtime.) We 
use this more precise information to continuously refine the 
estimated query execution time and thus to update the progress 
indicator. 

The rest of this paper is organized as follows. In Section 2, we 
discuss related work. In Section 3, we describe the goals of 
progress indicators for RDBMSs. In Section 4, we present a set 
of techniques for implementing progress indicators in an 
RDBMS. In Section 5, we present results from an initial 
implementation of our techniques in PostgreSQL. We conclude 
in Section 6. 
 

2. Related Work 
There has been a lot of work (e.g., [4], [16]) in the HCI 

(Human Computer Interaction) community for progress 
indicators. However, none of this work has addressed database 
queries. 

Online aggregation, proposed in [11], shares with this work 
the goal of providing continuous feedback during query 
execution. For long-running aggregate queries, online 
aggregation provides continuously refined approximate 
aggregate query results. For simple aggregate queries (e.g., a 
single-table scan), the online aggregation interface contains a 
progress indicator that indicates the percentage of the query that 
has been completed [11]. However, online aggregation provides 
no estimate of the remaining query execution time. Online 
aggregation requires special non-blocking query evaluation 
algorithms [11, 10]. In contrast, the progress indicators 
discussed in this paper are not limited to aggregation queries, 
and do not require non-blocking query evaluation algorithms. 

In dynamic query optimization [2, 14, 5, 12, 9, 17], people 
have proposed refining the query cost estimate at one or more 
points to change the query plan dynamically. However, such 
refinement is not continuous. Also, no estimate of the remaining 
query execution time or the percentage completed is provided in 
dynamic query optimization. 

[1, 3] propose building and maintaining histograms by 
analyzing query results (rather than examining the data sets). 
Then they use the (refined) histograms to estimate the costs of 
future queries more precisely. However, [1, 3] did not use the 
intermediate results of a query to estimate the remaining query 
execution time/cost as the query is being processed. 

Most commercial database vendors (DB2, Oracle, SQL 
Server, Teradata, Tandem, etc.) provide database monitoring 
tools. These tools provide various information (e.g., elapsed 
time, current execution step, number of I/Os performed) for a 
running query and can alert the DBA if the running query 
exhibits excessive overhead [7, 15, 8, 18]. In certain simple 
cases, such information can be used to estimate the remaining 
query execution time [15]. However, in general, the information 
provided by existing database monitoring tools is not enough to 
estimate either the percentage of the query that has been 
completed or the remaining query execution time [18]. 

Some commercial RDBMSs provide query cost estimates 
measured in time (e.g., seconds) based on an unloaded RDBMS. 
As explained in the introduction, even if a query cost estimate is 
precise for an unloaded RDBMS, it can differ significantly from 
the actual query execution time in a loaded RDBMS. 

[13] proposed a method for estimating the optimizer 
compilation time of a query. [13] also proposed using the same 
method to monitor the progress of workload analysis tools. 

However, no method is proposed in [13] to monitor the progress 
of queries. 

[15] proposed a method for monitoring the progress of long-
running rollback operations. The idea is to monitor the number 
of update log records that have not been rolled back for a 
transaction. By calculating the speed that the update log records 
are being rolled back, we can estimate the remaining rollback 
time for this transaction. This method can be integrated into the 
progress indicators for RDBMSs so that these progress 
indicators can also monitor the progress of rollback operations. 
 

3. Goals for Progress Indicators 
Figure 2 shows an example of the sort of progress indicator 

we would like to support for database queries. This interface, 
which is continuously updated, displays the elapsed time, the 
estimated remaining query execution time, the estimated 
percentage of the query that has been completed, the estimated 
query cost, and the current query execution speed. Both the 
estimated query cost and the current query execution speed are 
measured in U’s, where U is an abstract quantity that represents 
one unit of work (we will return to the question of how to define 
U in Section 4.) 
 
 
 
 
 
 
 
 
 
 

Figure 2. A progress indicator for database queries. 
 

Ideally, a progress indicator should satisfy the following 
goals: 
(1) Continuously revised estimates: At any time, for all the 

information provided to the user, the progress indicator 
should give an estimate based on all the information 
available about the query and the system at that time. This 
estimate should be continuously refined, due to both 
changes in the estimates of intermediate result sizes and 
changes in the rate at which the query is progressing. 

(2) Acceptable pacing: The progress indicator should be 
updated frequently enough that the user sees a smooth 
display. However, the update rate should not be so frequent 
as to overburden either the user interface or the user. 

(3) Minimal overhead: The progress indicator should have a 
small effect on the efficiency of query execution.  

 

4. Implementation Techniques 
In this section, we present our techniques for implementing 

progress indicators in an RDBMS. We consider select-project-
join queries, and assume that the available join algorithms are 
hash join, nested loops join, and sort-merge join, and that base 
relations can be accessed by either table-scans or index-scans.  

Our main idea is as follows: 
(1) We collect statistics at selected points of a query plan. As a 

query is being processed, we will have more and more 
precise information about intermediate results (e.g., 

 

Elapsed time 5 hour 3 min 7 sec 
Estimated time left  14 hour 25 min 16 sec (24% done)  
Estimated cost  1502831 U  
Execution speed 22 U/Sec 
 Abort 

SQL name Query 1 
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cardinality, size) and the run-time system (e.g., amount of 
available memory). We use the improved information to 
continuously refine the estimated query cost.  

(2) We continuously monitor the query execution speed (i.e., 
how many U’s are processed per second). At any time, the 
remaining query execution time is estimated to be the ratio 
of the estimated remaining query cost to the observed 
current query execution speed.  

From time to time, the progress indicator presents the latest 
estimates to the user. 

In Section 4.1, we describe how we choose the work unit U 
and how it is converted to time. In Section 4.2, we define the 
concept of segments that is crucial to our query cost estimation. 
Then we show how to get the cardinalities and sizes of segment 
inputs in Section 4.3. In Section 4.4, we present the statistics 
collection techniques. In Section 4.5, we describe how to 
continuously refine the query cost estimate. In Section 4.6, we 
discuss the techniques used in monitoring the query execution 
speed. 
 

4.1 Choosing U and Converting to Time 
As mentioned in Section 3, both the estimated query cost and 

the current query execution speed are measured by the abstract 
unit U. Each U represents one unit of work. We are purposely 
being rather vague and general in this statement, as many viable 
alternatives exist for U. The important requirements for U are 
that one can readily estimate how many U’s a query will take to 
execute, and that one can readily convert from U’s to estimated 
time, since ultimately time is likely to be the unit most 
meaningful to users. Reasonable candidates for U include I/Os, 
CPU cycles, or even a combination of the two, perhaps using 
some weighting factor. 

Our progress indicator works by continuously refining both its 
estimate of how many U’s the segments in a query will take to 
execute (segments are defined in Section 4.2) and its estimate of 
the conversion factor from U to time. The estimated number of 
U required to process a segment changes as the system gathers 
more statistics about intermediate results as the query runs. The 
refinements in the estimates of the conversion factor from U to 
time result from observations of how quickly the system is 
processing U. (If U were chosen to be CPU cycles, this 
translates to the admittedly strange sounding question “how fast 
is the system processing CPU cycles?”; in this case, this 
question would really mean “how many CPU cycles per second 
are being devoted to this query?”) 

In this paper, for simplicity, we define U in terms of bytes 
processed, with the intuition that this is easy to measure and 
serves as a rough proxy for CPU and I/O. That is, the cost of a 
query Q is the total size of the (input and intermediate result) 
tuples that are to be read and written by Q. Similarly, at any 
time, we represent the amount of work that has been done on Q 
using the total bytes that have been processed so far for Q.  

We set U to be one page of bytes, and assume initially (before 
the query starts running) that executing the query will require a 
number of U equal to the optimizer’s estimate of the number of 
I/Os for the query. Before giving its first estimate of running 
time, the progress indicator “watches” some amount of 
processing to see how quickly the system is consuming U; we 
discuss this in more detail in Section 4.6. 

As the query runs, the estimated time to process one U will 
change to reflect the observed processing rate in the system. The 
time to process one U could range from the time for one 

physical I/O (if the system is disk-bound) to the time to process 
one buffer-pool resident page of data (if the data accessed by the 
query is completely cached in memory) or anywhere in between. 
In fact, in a heavily loaded system, the time to process a U could 
even exceed the time to perform a physical I/O.  

This simple definition of U limits the precision of our 
estimates; however, in our experiments, described in Section 5 
below, this definition worked well in our tests, both for I/O and 
CPU intensive queries. We leave it as an interesting area for 
future work to explore how to improve the estimates without 
imposing undue overhead by refined definitions of U. 
 

4.2 Definition of Segments 
In order to support progress indicators, we divide a query plan 

into one or more segments so that we can focus on the individual 
segments rather than the entire query plan. (Dividing a query 
plan into parts has been proposed before, for resource 
management and parallel processing purposes [6].) Each 
segment contains one or more consecutive operators that can be 
executed as a pipeline. A pipeline continues within a segment 
and breaks at the end of a segment. In practice, blocking 
operators (e.g., hash-table build operators, sort operators, 
intermediate result materialization operators) serve as natural 
separation points of different segments [14].  

Each segment can be viewed as a tree. The root of the tree is 
the output of the segment. The leaves of the tree are the inputs of 
the segment. The inputs of a segment either come from base 
relations or from the outputs of lower-level segments. 

Figure 3 shows a query plan that contains five segments: 
(1) Segment S1 computes π(σ(A)) and hashes the results into 

multiple partitions PA. 
(2) Segment S2 computes σ(B) and hashes the results into 

multiple partitions PB. 
(3) Segment S3 computes a hash join using PA and PB and sorts 

the results into multiple sorted runs RAB. 
(4) Segment S4 computes σ(C) and sorts the results into 

multiple sorted runs RC. 
(5) Segment S5 computes a sort-merge join using RAB and RC 

and generates the final query result after projection. 
 
 
 
 
 
 
 
 
 

 
 

Figure 3. A query plan example. 
 

4.3 Cardinalities and Sizes of Segment Inputs 
In this section, we show how to get the cardinalities and sizes 

of segment inputs. As mentioned in Section 4.2, there are two 
kinds of inputs to segments: 
(1) Upper-level segment inputs: An upper-level input of a 

segment is the output of some other lower-level segment. 
(2) Base segment inputs: A base input of a segment comes 

from a base relation. 
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C (index-scan) 
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For an upper-level input of a segment S, at the time S starts 
execution, all the segments that are below S must have finished. 
Hence, the output cardinalities and sizes of these lower-level 
segments are known exactly, since they are computed as the 
segments run (see Section 4.4 below). 

In contrast, a base input of a segment is either a table-scan or 
an index-scan. At the beginning of a table-scan or index-scan, 
we have to use the optimizer’s cardinality and size estimate for 
the cardinality and size of the input, even if this estimate is not 
precise. (We have no choice – we have not even seen any of the 
input data in question.) Suppose that the optimizer’s cardinality 
estimate for the base segment input is Ne and the precise 
cardinality is Np. There are two possible cases: 
(a) Np≤Ne. During the table-scan or index-scan, we keep using 

Ne as the estimated segment input cardinality. After 
finishing the scan, we know the precise number Np and use 
it as the precise segment input cardinality. 

(b) Np>Ne. During the table-scan or index-scan, we keep using 
Ne as the estimated segment input cardinality, until the 
actual number of tuples that have been read exceeds Ne. 
From then on until the finish of the scan, we use the actual 
number of tuples read so far as the estimated segment input 
cardinality. 

During the table-scan or index-scan, we collect statistics about 
the average tuple size. The size of the base segment input is the 
product of its cardinality and its average tuple size. 

If the estimated segment input cardinality and/or size changes, 
we need to (see Section 4.5 below) refine the estimates related to 
the current segment, and propagate these changes upward in the 
query plan tree. 
 

4.4 Collecting Statistics 
We collect statistics about cardinalities and average tuple 

sizes of the intermediate results, which can be computed on the 
fly inexpensively as the intermediate results are being generated. 
For any intermediate result, its size is the product of its 
cardinality and its average tuple size.  

We collect statistics (output cardinality, average tuple size) at 
the output of each segment. The only exception is the last 
segment in the query plan, for which the output is the final query 
result that will be returned to the user. Therefore, no statistics 
are collected there. 

Unlike [14], we do not collect statistics about the number of 
distinct values and histograms of the intermediate results. In our 
experiments, which are described in Section 5 below, our 
statistics collection techniques worked well. It is an interesting 
area for future work to explore whether either collecting more 
complex statistics or collecting statistics within segments can 
significantly improve the estimates without imposing undue 
overhead. 

Unlike [14], we do not insert statistics collector operators into 
the query plan. Rather, we embed the statistics collection code in 
the operator code. For each operator, we augment its data 
structure so that the collected statistics can be held there. For 
each query plan, we use a flag to control whether statistics need 
to be collected. When the progress indicator feature is in use, the 
flag is turned on and we collect statistics in appropriate 
operators. If one does not wish to modify existing operator code, 
our approach to statistics collection can be modified to use that 
presented in [14].  
 

4.5 Refining the Estimate of the Number of U 
Required by the Query 

In this section, we describe techniques for refining the 
estimate of the number of U the query will require for its 
execution. The number of U required by a query is the sum of 
the number of U required by all the segments in the query plan. 
In the remainder of this section we refer to this number as the 
“cost of the query.” Similarly, we call the number of U it takes 
to execute a segment the “cost of the segment.” In Section 4.6 
we will turn to the issue of estimating the conversion factor from 
U to time. 

As mentioned in Section 3, we want to update the display on 
the progress indicators as smoothly as possible. Hence, we need 
to continuously refine the estimates of the segment costs. For 
segments that have finished execution, we know the exact costs. 
Therefore, we only need to focus on the cost of the segment that 
is currently being executed and the costs of the future segments 
that have not started execution. 

In the following, we first show how to compute the cost of a 
segment. Then we give an overview of the refining procedure 
for query cost estimation. Finally, we describe the refining 
procedure for query cost estimation in detail. 

 
Computing the Cost of a Segment 

As mentioned in Section 4.2, each segment contains one or 
more steps that are executed in a pipeline. Recall that in our 
techniques we only monitor bytes processed at the boundaries of 
segments. This means we only need to consider the inputs to the 
segment and the final output.  

Intuitively, a byte coming from a segment input is counted 
once as it is input into that segment. A byte produced by a 
segment is counted once as it is output by that segment (except 
when the segment output is the final output that is displayed to 
the user), and again as it is input by the next segment. If the 
intermediate result is indeed materialized to disk, this “double 
counting” corresponds to the cost of the byte being written to 
disk and then read back in. If at runtime this intermediate result 
actually ends up being buffered in memory, this double counting 
corresponds roughly to the cost of the byte being handled at the 
output of the lower segment and then again at the input of the 
next segment. 

A special case arises if an operator at the leaves or root of a 
segment is a multi-stage operator (for example, a multi-stage 
partition operator for a hash join, or a multi-stage sort). For such 
operators, bytes handled by the operator will be counted once 
each time they are logically read or written. 

The reader may wonder if computing costs only at segment 
boundaries is a good idea, since for deep pipelines this approach 
ignores a lot of computation within the pipeline. While it is true 
that our approach does not explicitly account for computation in 
the pipeline, this computation is implicitly considered because it 
impacts the speed with which a segment consumes its input. It is 
an interesting open question whether in general progress 
indicators can benefit from explicitly accounting for costs within 
pipelines. 
 
Overview of the Refining Procedure for Query Cost 
Estimation 

 As the current segment is being processed, we continuously 
refine the estimates for its output cardinality, its average output 
tuple size, and the total U it will consume (we describe precisely 



 

how we do this later in this section.) We propagate the improved 
estimates for the current segment upwards in the query plan to 
the next segment. Then we refine the estimates of the output 
cardinality, average output tuple size, and U for the next 
segment. Recall that in our progress estimator, U is just the 
number of bytes processed by the segment. So the question 
arises: how can we compute the expected U for a future 
segment?  

Fortunately, we can compute the expected U for a future 
segment by invoking the optimizer’s cost estimation module 
with the improved estimates of output cardinality and output 
size for the current segment (and the existing estimates for any 
other inputs to the future segment, if it is a multiple-input 
segment – the estimates for these segment inputs are not being 
refined if they are not from the current segment.) Because the 
optimizer gives a number of I/Os in its estimate, we can convert 
this to bytes simply by multiplying the estimate by the page size. 

We continue this propagation of estimates and recalculation 
of costs until we reach the top of the query plan. Then we use 
the exact costs of the past segments, the improved cost estimate 
of the current segment, and the improved cost estimates of the 
future segments, to refine the estimated query cost. 

For example, consider the query plan example shown in 
Figure 3. Suppose the current segment is S2. We continuously 
use the improved estimates related to segment S2 to refine the 
estimates related to segments S3 and S5. The improved estimates 
related to segment S2 will not influence the estimates related to 
segments S4. Hence, for segments S4, we use the original 
estimates provided by the optimizer. (The optimizer’s estimates 
can be kept in the query plan using the annotated query plan 
technique in [14].) 

From the above description, we can see that the key step of 
refining the query cost estimate is refining the estimates related 
to the current segment. Hence, we now turn to discuss how we 
refine the estimates of output cardinality, size, and U for the 
current segment. 
 
Refining the Estimates Related to the Current Segment 

Estimating the average output tuple size is easy: at any time, 
we use the average output tuple size computed so far as the 
estimated average tuple size of the final output. Since we are 
using bytes processed as U, the U required by the current 
segment is just the product of its estimated cardinalities and 
average tuple sizes of its inputs and the output. We have shown 
how to get the estimated cardinalities and average tuple sizes of 
the inputs in Section 4.3. Hence, in the following, we focus on 
estimating the output cardinality. We first introduce the concept 
of dominant inputs, which we use to enable an approximate 
indication of how far along the current segment is in processing 
its inputs.  

For each segment, we define one or two dominant inputs. As 
mentioned in Section 4.2, each segment can be viewed as a tree. 
The leaves of the tree are the inputs of the segment. Among all 
the inputs of a segment, we choose a dominant input so that 
once all the tuples in the dominant input have been processed, 
the entire segment finishes execution. There is an exception: for 
a segment that contains a sort-merge join operator, we define 
two dominant inputs. In more detail,  
(1) If a segment contains only one input, this input is defined 

as the dominant input. 
(2) If a segment contains multiple inputs, this segment must 

contain at least one join operator. If this segment contains 

multiple join operators, we find the join operator at the 
lowest level of the segment. There are several possible 
cases for this join operator: 
(a) If it is a nested loops join operator, we define the 

dominant input to be the input of the segment that is a 
left descendant of the nested loops join operator (the 
outer relation [20]). 

(b) If it is a hash join operator, we define the dominant 
input to be the input of the segment that is a right 
descendant of the hash join operator (the probe 
relation). 

(c) If it is a sort-merge join operator, we define the 
dominant inputs to be the two inputs of the segment 
that are descendants of the sort-merge join operator. 

As an example, consider the query plan example shown in 
Figure 3. We list the dominant inputs of the segments as 
follows:  
(1) Segment S1: A. 
(2) Segment S2: B. 
(3) Segment S3: PB.  
(4) Segment S4: C. 
(5) Segment S5: RAB and RC. 

Next we turn to discuss how to use the percentage of the 
dominant input that has been processed so far to refine the 
estimated output cardinality. We first discuss the case that the 
current segment contains one dominant input. Then we discuss 
the case that the current segment contains two dominant inputs. 

At the time that the current segment starts execution, we give 
an initial estimate E1 of its output cardinality. E1 is computed 
using the input cardinalities of the current segment and the 
optimizer’s cost estimation module. This estimate may of course 
be wrong; our goal is to detect this while the segment is running, 
and gradually replace it with an estimate that approaches the true 
output cardinality as the execution of the segment nears 
completion. We do this as follows. 

Suppose that the dominant input cardinality of the current 
segment is z. Assume that so far, we have processed x of z and 
generated y output tuples. Then the percentage that the dominant 
input has been processed is p=x/z. If we assume that at any time, 
the number of output tuples that have been generated is 
proportional to the percentage that the dominant input has been 
processed, then we can estimate the final output cardinality of 
the current segment to be E2=y/p=yz/x. In practice, this 
assumption may not be valid and we also want to consider the 
initial estimate E1. 

At any time, we use the following heuristic formula to 
estimate the final output cardinality E of the current segment: 
E=p×E2+(1-p)×E1. This heuristic formula intends to smooth 
fluctuations in the estimator and to let it gradually change from 
the initial estimate (when the current segment just starts 
execution, we know nothing about the actual segment output 
cardinality) to the actual segment output cardinality (when the 
current segment finishes execution, we know this quantity 
exactly). 

Recall that a segment containing a sort-merge join operator 
has two dominant inputs. In this case, once we reach the end of 
either dominant input, the sort-merge join (and thus the 
segment) immediately finishes execution. Therefore, we need to 
use the dominant input that is being scanned relatively faster to 
decide the percentage p that the two dominant inputs have been 
processed [21].  



 

We use an example to illustrate the procedure. Consider a 
sort-merge join operator with two input relations A and B. We 
assume that both A and B have already been sorted. Suppose that 
the cardinality of A is |A|, and the cardinality of B is |B|. 
Suppose that we have processed x tuples from A and y tuples 
from B. Let qA=x/|A| and qB=y/|B|. Then we use the following 
formula to decide p: p=max(qA, qB). 
 

4.6 Monitoring Current and Predicting 
Future Query Execution Speed 

Recall that our progress indicator depends on two things: the 
estimates of U, and the estimated conversion factor between U 
and time. The conversion of U to time should reflect what we 
are observing as the system is running. So, at all times, we keep 
track of the amount of work (measured in U’s) that has been 
done for query Q in the last T seconds, where T is a pre-defined 
number. The average speed that the work has been done for 
query Q in the last T seconds is used as the estimated current 
execution speed of query Q. To minimize the influence of 
temporary fluctuations, this T should not be too small. However, 
this T should also not be too large. Otherwise, the calculated 
execution speed will not closely reflect the actual current 
execution speed. In our implementation, we choose T to be 10. 
In our experiments, we found that this number is sufficient to 
provide a smooth estimate of the current query execution speed. 

This approach to calculating the conversion from U to time is 
admittedly simplistic, and although it worked well in our 
experiments, there are cases in which it will be misleading.  

One situation in which this approach is misleading is when 
the system load fluctuates substantially. At times of high load, 
the progress indicator will overestimate the execution time, 
since it will think that each U takes a relatively long time to 
process. At times of light load, it will underestimate the 
execution time for analogous reasons. There is not much that 
can be done about this – it is the same situation as the one that 
occurs during a file download, when varying available 
bandwidth causes the estimated download time to be inaccurate. 
One possible improvement to our approach would be to 
incorporate some history beyond T in order to “smooth” the 
estimates (e.g., perhaps computing a decaying average, so that 
while the most recent execution speed has the major impact, the 
overall execution speed also has an impact.) 

The second situation in which our simple conversion from U 
to time could be misleading occurs when segments have 
radically different characteristics. In particular, a problem arises 
when one segment can be expected to process U much more 
quickly than another. For example, consider a two-segment plan, 
in which segment S1 feeds segment S2. If S1 processes U more 
slowly than S2 (perhaps S1 is I/O-intensive whereas S2 has a high 
buffer pool hit rate), then while S1 runs it will overestimate the 
time it will take to run S2. (Using our simple conversion 
approach, the progress indicator will eventually figure this out 
and improve its estimate - in this simple two-segment example, 
it will adjust once S2 starts running.) This problem could be 
alleviated by a more complex conversion from U to time – 
ideally this conversion should take into account both the 
expected processing speed for the segments and the current 
system load. While space limitations precluded us from 
exploring such complex conversions between U and time in this 
paper, we think this is an interesting and promising area for 
future work. 

 

5. Performance 
In this section, we present results from a prototype 

implementation of progress indicators in PostgreSQL Version 
7.3.4 [19]. We implemented all the techniques described in 
Section 4, except for those techniques that are used to handle 
sort-merge join. In all our tests, our prototyped progress 
indicators could be updated every ten seconds with less than 1% 
overhead, which we consider to have met the three goals 
mentioned in Section 3: continuously revised estimates, 
acceptable pacing, and minimal overhead.  
 

5.1 Experiment Description 
Our measurements were performed with the PostgreSQL 

client application and server running on a Dell Inspiron 4000 PC 
with one 600MHz processor, 512MB main memory, one 40GB 
IDE disk, and running the Microsoft Windows XP operating 
system. (We repeated some of the experiments on a computer 
with a 2.4GHz processor, 512MB main memory, and one 73GB 
SCSI disk. The results were similar, so we omit them here.) 

The five relations used for the tests followed the schema of 
the standard TPC-R Benchmark relations [22]: 

customer (custkey, name, address, nationkey, phone, 
acctbal, mktsegment), 

orders (orderkey, custkey, orderstatus, totalprice, orderdate, 
ship-priority), 

lineitem (orderkey, partkey, suppkey, linenumber, quantity, 
extendedprice, discount, tax, returnflag, 
linestatus). 

The customer_subset1 relation and the customer_subset2 
relation have the same schema as the customer relation while 
either of them contains only 3K tuples. In our tests, on average, 
each customer tuple matches ten orders tuples on the attribute 
custkey. Each orders tuple matches 4 lineitem tuples on the 
attribute orderkey. 
 

Table 1. Test data set. 
 number of tuples total size 

customer 0.15M 23MB 
orders 1.5M 114MB 
lineitem 6M 755MB 
customer_
subset1 

3K 0.46MB 

customer_
subset2 

3K 0.46MB 

 
We evaluated the performance of progress indicators in the 

following way: 
(1) Before we ran queries, we ran the PostgreSQL statistics 

collection program on all the five relations. 
(2) We performed three kinds of tests: 

(a) Unloaded system test: We ran the whole query on an 
unloaded system. 

(b) I/O interference test: We started executing the query 
on an unloaded system. In the middle of query 
execution, we started a large file copy. 

(c) CPU interference test: We started executing the 
query on an unloaded system. In the middle of query 
execution, we started a CPU-intensive program. 

(3) We tested five queries: 
(a) Query Q1: 



 

select * from lineitem; 
(b) Query Q2: 
select c.custkey, c.acctbal, o.orderkey, o.totalprice, 

l.discount, l.extendedprice  
from customer c, orders o, lineitem l 
where c.custkey=o.custkey and o.orderkey=l.orderkey and 

absolute(l.partkey)>0; 
(c) Query Q3: 
select c.custkey, c.acctbal, o1.orderkey, o1.totalprice, 

o2.totalprice 
from customer c, orders o1, orders o2 
where c.custkey=o1.custkey and o1.orderkey=o2.orderkey 

and c.nationkey<10; 
(d) Query Q4: 
select c.custkey, c.acctbal, o.orderkey, o.totalprice, 

o.shippriority, l.discount, l.extendedprice  
from customer c, orders o, lineitem l 
where c.custkey=o.custkey and o.orderkey=l.orderkey and 

absolute(o.totalprice)>0 and absolute(l.partkey)>0; 
(e) Query Q5: 
select *  
from customer_subset1 c1, customer_subset2 c2 
where c1.custkey<>c2.custkey; 
For query Q2, we report the test results for both the 
unloaded system test and the I/O interference test. 
However, for queries Q1, Q3 and Q4, we only report the test 
results for the unloaded system test. This is because for the 
I/O interference test, the test results for queries Q1, Q3 and 
Q4 are similar to those for query Q2 and do not provide 
much extra information. For query Q5, we report the test 
results for both the unloaded system test and the CPU 
interference test. 

(4) Before we ran each test, we restarted the computer to 
ensure a cold buffer pool. (We repeated our experiments 
with a warm buffer pool. The results were similar, so we do 
not present them here.) In all tests, we stored the outputs 
from progress indicators into a file. 

 

5.2 Test Results for Query Q1 
The purpose of the test with query Q1 is to show that for 

simple queries, the optimizer’s estimates can be fairly precise 
for an unloaded system.  

Figure 4 shows the query cost estimated by the progress 
indicator over time. The curve that represents the query cost 
estimated by the progress indicator is almost a straight line. That 
is, during the entire query execution, the progress indicator 
estimates the cost of query Q1 fairly precisely. This is because 
query Q1 is a table-scan query on the lineitem relation. Due to 
statistics collection, PostgreSQL has accurate knowledge of the 
size of the lineitem relation. 

Figure 5 shows the query execution speed monitored by the 
progress indicator over time. Query Q1 is a table-scan query that 
only performs sequential I/O. Also, it is the only query that runs 
in the system. Hence, during the entire query execution period, 
the monitored query execution speed is quite stable. 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 6 shows the remaining query execution time estimated 
by the progress indicator over time. Besides the curve 
representing the remaining query execution time estimated by 
the progress indicator, there are two lines in Figure 6: 
(1) The first line is a dashed line that shows the actual 

remaining query execution time over time. This dashed line 
almost coincides with the curve that represents the 
remaining query execution time estimated by the progress 
indicator. That is, during the entire query execution period, 
the remaining query execution time that is estimated by the 
progress indicator is fairly precise. This is because during 
the entire query execution period, (1) the progress indicator 
estimates the cost of query Q1 fairly precisely, and (2) the 
query execution speed is quite stable. 

(2) The second line is a dotted line that shows the optimizer’s 
“estimate” of the remaining query execution time over 
time. We use the optimizer’s estimate of the query running 
time to predict the remaining query execution time. (The 
optimizer’s estimate of the query running time is computed 
as the optimizer’s estimated number of I/Os for the query 
divided by the optimizer’s estimate of the system’s disk I/O 
speed.) We can see that compared to the dotted line, the 
curve that represents the remaining query execution time 
estimated by the progress indicator is “closer” to the dashed 
line. That is, the progress indicator is better than the 
optimizer in estimating the remaining query execution time. 
Also, the dotted line is not far from the dashed line. This is 
because for query Q1, the optimizer’s estimate of the 
number of I/Os is fairly precise while the optimizer’s 
estimate of the disk I/O speed is a little bit different from 
the monitored query execution speed. 

Figure 7 shows the progress indicator’s estimate of the 
percentage of the query that has been completed over time. The 

Figure  6. Remaining query execution time 
estimated over time (unloaded system test for Q 1).
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Figure 5. Q uery execution speed over time 
(unloaded system test for Q 1).
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Figure  4. Q uery cost estimated over time 
(unloaded system test for Q 1).
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completed percentage curve is fairly close to a straight line, as 
work is continuously being done at a rather steady speed. 

 

5.3 Test Results for Query Q2 
The purpose of the tests with query Q2 is to show how our 

progress indicator adjusts to the optimizer’s estimation errors 
that result from complex query plans. Query Q2 contains two 
joins: 
(1) A join of the customer relation and the orders relation on 

the join attribute custkey.  
(2) A join of the orders relation and the lineitem relation on the 

join attribute orderkey. 
The query plan chosen by PostgreSQL is shown in Figure 8. In 
the rest of Section 5.3, we refer to the hybrid hash join between 
the customer relation and the orders relation as the first hybrid 
hash join. We refer to the hybrid hash join between the 
intermediate result that is generated by the first hybrid hash join 
and the lineitem relation as the second hybrid hash join. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Query plan chosen by PostgreSQL. 
 

We first discuss the test results from the unloaded system test 
in Section 5.3.1. Then we discuss the test results from the I/O 
interference test in Section 5.3.2.  
 
5.3.1 Unloaded System Test Results for Query Q2 

 
 
 
 
 
 
 
 
 
 
 
Figure 9 shows the query cost estimated by the progress 

indicator over time, with the exact query cost indicated by the 

horizontal dotted line. At the beginning of query execution, the 
query cost estimated by the progress indicator remains as a 
constant that is far different from the exact query cost. Starting 
from 95 seconds, the query cost estimated by the progress 
indicator begins to increase and keeps approaching the exact 
query cost. This trend continues until 300 seconds, when the 
query cost estimated by the progress indicator reaches the exact 
query cost. From then on until the query completion time, the 
query cost estimated by the progress indicator remains as a 
second constant (the exact query cost).  

We explain this behavior as follows: 
(1) Due to statistics collection, PostgreSQL knows both the 

cardinalities and the sizes of the three relations used in 
query Q2. Since all tuples in both the customer relation and 
the orders relation participate in the first hybrid hash join, 
PostgreSQL estimates the cost of the first hybrid hash join 
fairly precisely. 

(2) The join between the customer relation and the orders 
relation is a key-foreign key join. Also, all tuples in both 
the customer relation and the orders relation participate in 
this join. Hence, PostgreSQL estimates both the cardinality 
and the size of the intermediate result that is generated by 
the first hybrid hash join fairly precisely. 

(3) PostgreSQL does not give a good estimate of the selectivity 
of the select condition absolute(l.partkey)>0 on the 
lineitem relation. Rather, for this select condition, 
PostgreSQL uses a default value 1/3 as an approximation to 
the real selectivity. This approximation is far from the real 
selectivity, which is 1 (since the absolute value of l.partkey 
is always positive). Hence, PostgreSQL gives a rather 
imprecise cardinality estimate for the intermediate result of 
the selection on the lineitem relation. As a result, 
PostgreSQL gives a rather imprecise cost estimate for the 
second hybrid hash join. 

(4) Before 95 seconds, PostgreSQL is working on the first 
hybrid hash join. During this period, the progress indicator 
does not change the query cost estimate that is provided by 
PostgreSQL, even if it is far different from the exact query 
cost. This is because: 
(a) PostgreSQL estimates the cost of the first hybrid hash 

join fairly precisely. 
(b) During this period, the progress indicator does not 

change the cost estimate for the second hybrid hash 
join, as the progress indicator does not see anything 
during the execution that would cause it to change the 
estimates for the inputs to the second hybrid hash join.  

(5) Between 95 seconds and 300 seconds, PostgreSQL is 
working on the selection on the lineitem relation. During 
this period, the progress indicator begins to detect that 
PostgreSQL was wrong in its cardinality estimate for the 
intermediate result of the selection on the lineitem relation. 
As a side effect, the progress indicator also continuously 
refines the cost estimate for the second hybrid hash join. As 
a result, the query cost estimated by the progress indicator 
keeps approaching the exact query cost. 

(6) Between 300 seconds and query completion time, 
PostgreSQL is working on the second hybrid hash join. 
During this period, the cardinalities of both inputs to the 
second hybrid hash join are known exactly so the progress 
indicator can make accurate predictions. 

Figure  9. Q uery cost e stimated over time  
(unloaded system test for Q 2).
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Figure  7. Completed percentage  estimated over 
time (unloaded system test for Q 1).
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Figure 10 shows the query execution speed monitored by the 
progress indicator over time. During query execution, the 
monitored query execution speed fluctuates. This is mainly due 
to the following reasons: 
(1) The system performance has some random fluctuations 

over time. 
(2) The entire query execution is composed of multiple stages 

(e.g., sequentially scanning a relation, probing a hash 
table). Different stages have different performance 
characteristics. For example, during some stages we mainly 
perform sequential I/Os while during some other stages we 
mainly perform random I/Os. Also, during some stages we 
mainly perform I/O-intensive operations while during some 
other stages we mainly perform CPU-intensive operations.  

 
 
 
 
 
 
 
 

 
 
 
 
 
Figure 11 shows the remaining query execution time 

estimated by the progress indicator over time. The closer to 
query completion time, the more precise the remaining query 
execution time estimated by the progress indicator. This is 
because the closer to query completion time, the more precise 
the query cost estimated by the progress indicator. 

Like Figure 6, Figure 11 contains: 
(1) a dashed line that shows the actual remaining query 

execution time over time. 
(2) a dotted line that shows the optimizer’s “estimate” of the 

remaining query execution time over time. 
After 340 seconds, the dashed line almost coincides with the 
curve that represents the remaining query execution time 
estimated by the progress indicator. That is, after 340 seconds, 
the remaining query execution time that is estimated by the 
progress indicator is fairly precise. 

Compared to the dotted line, the curve that represents the 
remaining query execution time estimated by the progress 
indicator is much “closer” to the dashed line. That is, the 
progress indicator is much better than the optimizer in 
estimating the remaining query execution time. 

Figure 12 shows the progress indicator’s estimate of the 
percentage of the query that has been completed over time. This 

percentage keeps increasing with time, as work is continuously 
being done.  

As mentioned above, after 300 seconds, the progress 
indicator’s estimate of the query cost remains as a constant. 
Also, as shown in Figure 10, after 300 seconds, the query 
execution speed does not change much. Hence, after 300 
seconds, the slope of the completed percentage curve remains 
almost as a constant. 
 
5.3.2 I/O Interference Test Results for Query Q2 

In the I/O interference test, we started executing the query on 
an unloaded system. At 190 seconds, we started a large file copy 
that ran until 885 seconds. While it was running, this file copy 
made the system heavily loaded and significantly decreased the 
execution speed of the query. Hence, the query execution time 
increased from 510 seconds to 1027 seconds.  

In each figure of Section 5.3.2, we use two vertical dashed-
dotted lines, one representing the start of the file copy, and 
another representing the end of the file copy. 

Figure 13 shows the query cost estimated by the progress 
indicator over time, with the exact query cost indicated by the 
horizontal dotted line. We were initially perplexed by the shape 
of the curve in Figure 13. Why doesn’t it match that of Figure 9? 
After all, a concurrently running job should not impact the 
estimate of the number of U a query will take, yet in Figure 13 
the start of the file copy is clearly visible. After more reflection, 
we realized that this makes sense. At 190 seconds, when the file 
copy starts, the progress indicator is “learning” that the 
optimizer's estimates were wrong. It does so by watching the 
generation of intermediate results. When the file copy starts, the 
rate at which intermediate results are generated decreases, so the 
progress indicator begins “learning” more slowly, hence the 
decrease in the slope of the curve. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 14 shows the query execution speed monitored by the 

progress indicator over time. Before 190 seconds (before the file 
copy starts running), the shape of the curve in Figure 14 is 
similar to that in Figure 10. However, once the file copy starts, 

Figure  11. Remaining query execution time 
estimated over time (unloaded system test for Q 2).
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Figure 13. Q uery cost estimated over time (I/O  
interference test for Q 2).
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Figure  10. Q uery execution speed over time 
(unloaded system test for Q 2).
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Figure 12. Completed percentage  estimated over 
time (unloaded system test for Q 2).
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the query execution speed is decreased. This situation continues 
until 885 seconds, when the file copy finishes. After 885 
seconds, the query execution speed again returns to that seen in 
the unloaded system test. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
Figure 15 shows the remaining query execution time 

estimated by the progress indicator over time. Before 190 
seconds (i.e., before the file copy starts running), the shape of 
the curve in Figure 15 is similar to that in Figure 11. At 190 
seconds, due to the start of the file copy, the remaining query 
execution time estimated by the progress indicator increases 
sharply. At 885 seconds, when the large file copy finishes, the 
remaining query execution time estimated by the progress 
indicator drops significantly. 

Like Figure 6, Figure 15 contains: 
(1) a dashed line that shows the actual remaining query 

execution time over time. 
(2) a dotted line that shows the optimizer’s “estimate” of the 

remaining query execution time over time. 
The general trend shown in Figure 15 is similar to that shown in 
Figure 11: 
(a) After 895 seconds, the dashed line almost coincides with 

the curve that represents the remaining query execution 
time estimated by the progress indicator. That is, after 895 
seconds, the remaining query execution time that is 
estimated by the progress indicator is fairly precise.  

(b) Compared to the dotted line, the curve that represents the 
remaining query execution time estimated by the progress 
indicator is much “closer” to the dashed line. That is, the 
progress indicator is much better than the optimizer in 
estimating the remaining query execution time. 

Figure 16 shows the progress indicator’s estimate of the 
percentage of the query that has been completed over time. In 
general, this percentage keeps increasing with time, as work is 
continuously being done. Again, the impact of the file copy is 
apparent between 190 seconds and 885 seconds. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

5.4 Test Results for Query Q3 
The purpose of the test with query Q3 is to show how the 

progress indicator handles the optimizer’s estimation errors that 
occur due to correlation. In this test, we changed the data in the 
orders relation, so that on average, each customer tuple matches 
r orders tuples on the attribute custkey, where: 
(a) r=20 if the nationkey attribute value of the customer tuple 

is between 0 and 9. 
(b) r=0  if the nationkey attribute value of the customer tuple is 

between 10 and 19. 
(c) r=10 if the nationkey attribute value of the customer tuple 

is between 20 and 24. 
Hence, in query Q3, there is correlation in the customer relation 
between the nationkey attribute and the number of orders that 
the customer has made. 

Query Q3 contains two joins. The first join is between the 
customer relation and o1. The second join is between the join 
result generated by the first join and o2. Because of the 
correlations in the data, PostgreSQL’s optimizer does not give a 
precise cardinality estimate for the first join. 

 
 

 
 
 
 
 
 
 

 
 

Figure 17 shows the query cost estimated by the progress 
indicator over time, with the exact query cost indicated by the 
horizontal dotted line. At the beginning of query execution, the 
query cost estimated by the progress indicator, which comes 
from the optimizer, is far different from the exact query cost. 
Starting from 10 seconds, the progress indicator begins to detect 
that the optimizer was wrong, and its cost estimate begins to 
increase and approaches the exact query cost. This trend 
continues until 80 seconds, when the query cost estimated by the 
progress indicator reaches the exact query cost. From then on 
until the query completion time, the query cost estimated by the 
progress indicator remains as a constant (the exact query cost). 
 

5.5 Test Results for Query Q4 
The purpose of the test with query Q4 is to show how the 

progress indicator adjusts to the optimizer’s estimation errors 
that grow with the number of joins in a query. Query Q4 
contains two joins. The first join is between the customer 

Figure 14. Q uery execution speed over time (I/O  
interference test for Q 2).

0

200

400

600

800

0 200 400 600 800 1000 1200
time (seconds) 

q
u

e
ry

 e
xe

cu
tio

n
 s

p
e

e
d

 
(U

s 
p

e
r 

se
co

n
d

)

Figure 16. Completed percentage estimated over 
time (I/O  interference test for Q 2).
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Figure 15. Remaining query execution time  

estimated over time (I/O  interference  test for Q 2).
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Figure 17. Q uery cost estimated over time 
(unloaded system test for Q 3).
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relation and the orders relation. The second join is between the 
result of the first join and the lineitem relation. 

Query Q4 contains two select conditions: 
absolute(o.totalprice)>0 on the orders relation, and 
absolute(l.partkey)>0 on the lineitem relation. Due to the same 
reason as explained in Section 5.3.1 for Figure 9, PostgreSQL’s 
optimizer gives a rather imprecise selectivity estimate for both 
select conditions. 

Due to errors in the selectivity estimate for the select 
condition absolute(o.totalprice)>0, PostgreSQL’s cost estimate 
of the first join is imprecise. Due to errors in the selectivity 
estimate for the select condition absolute(l.partkey)>0, 
PostgreSQL’s cost estimate of the second join is also rather 
imprecise. 
 
 
 
 

 
 
 
 
 
 
 

 
Figure 18 shows the query cost estimated by the progress 

indicator over time, with the exact query cost indicated by the 
horizontal dotted line. The vertical dashed-dotted line represents 
the time when the first join finishes and the second join starts. 
We can see that the progress indicator makes adjusts to both 
optimizer estimation errors twice as the query is being 
processed: first, while the first join is running; second, during 
the second join.  
 

5.6 Test Results for Query Q5 
In all the above tests, the four queries used (Q1, Q2, Q3 and 

Q4) were primarily I/O-intensive. In this section, we discuss the 
test results for query Q5, which is CPU-intensive. We first 
discuss the test results from the unloaded system test in Section 
5.6.1. Then we discuss the test results from the CPU interference 
test in Section 5.6.2. 
 
5.6.1 Unloaded System Test Results for Query Q5 

 
 
 
 
 
 
 
 
 
 
 
Figure 19 shows the remaining query execution time 

estimated by the progress indicator over time, with the actual 
remaining query execution time indicated by the dashed line. 
We see that even for this CPU-bound query, calculating the 
progress of the query using bytes consumed gives good results. 
The query plan chosen was nested loops join, so in this case the 
progress indicator is really measuring progress through the 

“dominant input” (in this case the outer relation of the nested 
loops join.)  
 
5.6.2 CPU Interference Test Results for Query Q5 

In this section, we discuss the test results from the CPU 
interference test for query Q5. In the CPU interference test, we 
started executing the query on an unloaded system. At 120 
seconds, we started a CPU-intensive program that kept running 
until the query finished execution. During its execution, this 
CPU-intensive program made the system heavily loaded and 
significantly decreased the execution speed of the query. Hence, 
the query execution time increased from 211 seconds to 463 
seconds. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 20 shows the remaining query execution time 

estimated by the progress indicator over time, with the actual 
remaining query execution time indicated by the dashed line. At 
120 seconds, when the CPU-intensive program starts execution, 
the progress indicator “notices” that the query execution has 
slowed down, and the remaining query execution time estimated 
by the progress indicator increases significantly. Starting from 
140 seconds, the curve that represents the remaining query 
execution time estimated by the progress indicator almost 
coincides with the dashed line. That is, starting from 140 
seconds, the remaining query execution time estimated by the 
progress indicator becomes fairly precise.  
 

6. Conclusion 
In this paper, we have proposed techniques for supporting 

progress indicators for RDBMS queries. Our main idea is that as 
a long-running query is being processed, we continuously refine 
the query cost estimate and monitor the current query execution 
speed. Then we continuously give the user an estimate of both 
the percentage of the query that has been completed and the 
remaining query execution time. Our experiments show that a 
progress indicator based upon our techniques is useful both for 
I/O-intensive and CPU-intensive queries, and that it adapts both 
to the optimizer’s estimation errors and to varying runtime 
system loads. 

There are several interesting directions that we are 
considering for future work: 
(1) The estimation techniques described in this paper are fairly 

coarse. For example, while measuring bytes processed is a 
reasonable proxy for actually calculating CPU and I/O 
utilization, it is certainly not exact. It is a non-trivial task to 
make the estimates more precise by a more detailed 
consideration of these factors, and it would be interesting to 
see if the resulting increase in accuracy can be obtained at a 
reasonable overhead, and also if this increase in accuracy is 
significant from the user’s perspective. 

Figure 18. Q uery cost estimated over time 
(unloaded system test for Q 4).
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Figure 19. Remaining query execution time 
estimated over time (unloaded system test for Q 5).
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Figure 20. Remaining query execution time 

estimated over time (CPU interference  test for Q 5).
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(2) The estimation techniques described in this paper do not 
make use of detailed statistics about intermediate results 
(for example, they consider only the sizes of the 
intermediate results, not histograms on their distributions.) 
Again, it would be interesting to see if the effort required to 
collect and use better statistics pays off in terms of user 
satisfaction. 

(3) It would be interesting to extend our techniques in order to 
support wider classes of queries (one interesting such 
challenge is how to handle correlated subqueries) and to 
support systems with more options for query evaluation. 

(4) As mentioned in Section 4, we do not explicitly count the 
CPU cost due to operators internal to segments. These costs 
are implicitly counted in that they slow the progress of the 
segment in consuming its input. It is an interesting open 
question whether and when progress indicators could be 
improved by “looking inside” the pipelined segments. 

Progress indicators have other potential uses besides 
providing a user-friendly interface. For example, progress 
indicators can be useful for: 
(1) Load management. Suppose that due to some reason (e.g., 

to speed up the execution of a certain query), the DBA 
decides to choose several queries from a pool of running 
queries and blocks their execution for a while. A progress 
indicator can help the DBA choose which queries to block.  

(2) Automatic administration. The user may embed triggers 
in a progress indicator to facilitate automatic database 
administration. For example, the firing condition of such a 
trigger can be: “send an email to the user if after a whole 
day’s execution, the query finishes less than 10% of the 
work.” This trigger function can be achieved by keeping 
track of the history of the progress indicator.  

(3) Performance tuning. By keeping track of the history of a 
progress indicator, we can see whether the originally 
estimated query cost is precise enough and where time goes 
during query execution. Such information can help us 
discover the performance bottleneck. Then we can decide 
whether we need to improve the query plan by keeping 
statistics up-to-date, using a higher level of optimization, or 
designing a better database schema. 

It would be interesting to experiment with these and other uses 
of progress indicators in RDBMSs. 
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